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Over the last two decades, the PageRank problem has received increased interest from the
academic community as an efficient tool to estimate web-page importance in information
retrieval. Despite numerous developments, the design of efficient optimization algorithms for
the PageRank problem is still a challenge. This paper proposes three new algorithms with a
linear-time complexity for solving the problem over a bounded-degree graph. The idea behind
them is to set up the PageRank as a convex minimization problem over a unit simplex, and
then solve it using iterative methods with small iteration complexity. Our theoretical results
are supported by an extensive empirical justification using real-world and simulated data.
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1. Introduction

In this paper, we aim at solving a system of linear equations 𝑃𝑥 = 𝑏 for a sufficiently
sparse matrix 𝐴 and a vector 𝑏, 𝑃 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, which is primarily motivated by
finding a stationary distribution of a Markov Chain over a sparse large-scale communi-
cation graph. This problem, known as the PageRank, was pioneered by Brin and Page
in [5, 36] in the early nineties; however, it still attracts significant interest from both the
academic community and the industry.
In the PageRank we assume, that the (asymmetric) transition probability matrix 𝑃 ,

associated with the web-graph, is known; so, the problem is to find a stationary distri-
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bution or a vector 𝑥, 𝑥 ∈ R𝑛, with the coordinates corresponding to an expected portion
of time which a random walk spends at a particular node, 𝑥 = 𝑃⊤𝑥.
The problem becomes especially challenging in high dimensions, since direct computa-

tions of an inverse matrix become inefficient due to non-linear time and memory efforts.
Many studies have been devoted to the approximation of the PageRank vector based on
a random walk analysis and Markov Chain Monte Carlo methods [2, 13, 20, 21, 38, 40].
Those methods are very attractive, both theoretically and practically, while the spectral
gap, i.e., the difference between the two largest eigenvalues of the transition matrix, is suf-
ficiently large. The latter is often not the case for sparse graphs with complex topologies,
and, furthermore, estimating the gap requires significant time and effort, as well [23].
Another line of research aims at finding a stationary distribution of a Markov chain

using convex optimization [14, 26, 31, 34]. According to these results, the PageRank can
be equally stated as an ℓ𝑝-norm minimization, 𝑝 ≥ 1, constrained on a unit simplex:

‖𝑃⊤𝑥− 𝑥‖𝑝 → min
𝑥∈Δ𝑛

1

, (1)

where Δ𝑛
1 = {𝑥 :

∑︀𝑛
𝑖=1 𝑥

𝑖 = 1, 𝑥𝑖 ≥ 0}.
From the convex optimization perspective, similar problems appear in applied mathe-

matics, statistics, and machine learning. Among these are LASSO [12], a traffic matrix
estimation in large-scale communication networks [41], phase recovery in a linearized
model of electric current [39], and a finite element method [24]. The high-dimensional
nature of the problems above call into a question of the utility of traditional approaches,
which do not devote sufficient attention to the problem structure and require non-linear
time and memory efforts.
In this paper, we focus on the influence of the transition probability matrix spar-

sity on the computational complexity of the PageRank problem. We advocate partic-
ular efficiency of convex optimization methods for the simplex constrained ‖𝐴𝑥‖22 and
‖𝐴𝑥‖∞ minimization problems [6, 7]. In particular, we prove that the time complex-
ity of these problems is linear in the problem dimension if the number of non-zeros in
each row/column is bounded above by some constant 𝑑. The key contribution is a set
of efficient algorithms to update a function value, a gradient, and an argument in an
(almost) dimension-independent manner. Later in the paper, we extend our results to a
more general setup, where a limited number of dense rows or columns in the transition
matrix is allowed.

1.1 Contribution

Our contribution is as follows. We propose:

(1) The NL1 algorithm, a ℓ1-proximal gradient descent method that supports sparse
updates of the gradient and the function value. It allows us to solve the problem
with overall time complexity 𝑂(𝑛𝑑2 log2 𝑛+𝑑2 log2(𝑛/𝜀)/𝜀2), where 𝑑 is the maximal
in- and out- vertexes’ degree of the graph, 𝜀 is required accuracy, and ‖𝑃𝑥−𝑥‖2 ≤ 𝜀;

(2) The S-FW method, an extension of the Frank–Wolfe algorithm that allows efficient
updates to the gradient and the objective value. The resulting algorithm S-FW has
better time-complexity estimates compared to the NL1 method, 𝑂(𝑛 + 𝑑2 log(2 +
𝑛/𝑑2)/𝜀2). Also, the algorithm often has remarkably better performance in practice;

(3) The GK algorithm, which aims to minimize ‖𝑃⊤𝑥 − 𝑥‖∞ over the unit simplex. We
provide an equivalent saddle-point setup for this problem and, subsequently, solve it
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subsequently by a version of the mirror descent with a randomized projecting. We
prove that a randomized projection with KL-divergence guarantees the total running
time of the algorithm to be bounded from above by 𝑂(𝑛+ 𝑑 log 𝑛 log(𝑛/𝛿)/𝜀2) with
probability at least 1− 𝛿, for any 0 < 𝛿 < 1;

(4) Finally, we extend the linear-time complexity estimates to the sparse graphs with a
small number of dense rows/columns containing more than 𝑑 non-zeros.

Let us emphasize that a 𝑑-sparse matrix could have as many non-zero elements as
𝑛 · 𝑑. Time-complexity estimates of the proposed algorithms are yet sub-linear in the
number of non-zero elements of the transition matrix if its sparsity pattern is known
beforehand. The last statement implies that there is no need to read all non-zero elements
of a stochastic matrix to arrive at approximate solution of the PageRank problem. In
Table 1 we summarize the best known results for solving the PageRank problem using
optimization techniques.

Algorithm Constraint Time Complexity Objective

Nazin - Polyak [26] no 𝑂
(︁

𝑛 log(𝑛/𝛿)

𝜀2

)︁
‖𝑃⊤𝑥− 𝑥‖2 ≤ 𝜀

Nesterov [29] 𝑑-sparse 𝑂
(︁
𝑛+ 𝑑2 log𝑛

𝜀2

)︁
E‖𝑃⊤𝑥−𝑥‖2 ≤ 𝜀

Nesterov [31] 𝑑-sparse 𝑂
(︁
𝑑𝑛 log𝑛

𝜀2

)︁
‖𝑃⊤𝑥−𝑥‖∞ ≤ 𝜀

𝑂
(︁

𝑑1/2𝑛3/2 log𝑛
𝜀

)︁
Juditsky et al. [19, 27] no 𝑂

(︁
𝑛 log(𝑛/𝛿)

𝜀2

)︁
‖𝑃⊤𝑥−𝑥‖∞ ≤ 𝜀

Nesterov - Nemirovski [34] 𝑑-sparse 𝑂
(︁

𝑛𝑑
𝛼

log 1/𝜀
)︁

‖𝑥− 𝑥*‖1 ≤ 𝜀

Google page

Polyak - Tremba [37] 𝑑-sparse 𝑂
(︁

𝑑𝑛
𝜀

)︁
‖𝑃⊤𝑥− 𝑥‖1 ≤ 𝜀

on average

Gasnikov - Dmitriev, [13] 𝑑-sparse 𝑂
(︁
𝑛+

𝑑 log𝑛 log(𝑛/𝛿)

𝛽𝜀2

)︁
E‖𝑥− 𝑥*‖2 ≤ 𝜀

spectral gap 𝛽

Gasnikov - Dmitriev, [13] 𝑚 non-zeros 𝑂
(︁
𝑚+

(︁
𝑛+ 𝑚2

𝑛2

)︁
log𝑛
𝜀2

)︁
‖𝑃𝑇 𝑥−𝑥‖∞ ≤ 𝜀

Langville - Meyer, [22] 𝑑-sparse 𝑂
(︁

𝑑𝑛
𝛽

log 𝑛
𝜀

)︁
‖𝑥− 𝑥*‖1 ≤ 𝜀

spectral gap 𝛽

Cohen et al. [9] 𝑚 non-zeros 𝑂(𝑚+𝑛1+𝑜(1)) log𝑂(1)
(︁

𝑛
𝛽𝜀

)︁
E‖𝑃⊤𝑥−𝑥‖2 ≤ 𝜀

This paper, Section 2 𝑑-sparse 𝑂
(︁
𝑛𝑑2 log2 𝑛+

𝑑2 log(𝑛/𝑑2+1)

𝜀2

)︁
‖𝑃⊤𝑥− 𝑥‖2 ≤ 𝜀

This paper, Section 3 𝑑-sparse 𝑂
(︁
𝑛+

𝑑2 log(𝑛/𝑑2+2)

𝜀2

)︁
‖𝑃⊤𝑥− 𝑥‖2 ≤ 𝜀

This paper, Section 4 𝑑-sparse 𝑂
(︁
𝑛+

𝑑 log𝑛 log(𝑛/𝛿)

𝜀2

)︁
‖𝑃⊤𝑥−𝑥‖∞ ≤ 𝜀

Table 1. Time complexity of the PageRank problem. Time complexity of the algorithms proposed in this paper

along with results of Nesterov [29] are the only sub-linear algorithms known to the authors. Algorithm [9] can be
favourable in theory for high dimensions, but useless in practice due to a high degree of the logarithm.

The Google page condition, required in [34], implies the existence of a column 𝑗 such
that all 𝑃𝑖𝑗 ≥ 𝛼, 𝛼 > 0 for any 𝑖 : 1 ≤ 𝑖 ≤ 𝑛; and 𝛽 corresponds to the spectral gap of
the matrix 𝑃 , e.g. 𝛽 = 𝜆1(𝑃 ) − 𝜆2(𝑃 ) = 1 − 𝜆2(𝑃 ), the difference between the largest
and the second-largest eigenvalues of the transition matrix 𝑃 . Algorithm [29] runs on
average for the randomized coordinate descent algorithm while the estimates [13, 26, 27]
are correct with probability at least 1− 𝛿, for any 𝛿 : 0 < 𝛿 < 1.
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1.2 Paper structure and notation

In Section 2 we introduce a ℓ1 proximal gradient descent algorithm. The key idea behind
this time-efficient algorithm, referenced below as NL1, is a sparse update to a gradient
and a function value updates, 𝑓(𝑥) = ‖𝐴𝑥‖22, 𝐴 = 𝑃⊤ − 𝐼:

∇𝑓(𝑥+ ℎ) = ∇𝑓(𝑥) +𝐴⊤𝐴ℎ, 𝑓(𝑥+ ℎ) = 𝑓(𝑥) + ℎ⊤∇𝑓(𝑥) + ‖𝐴ℎ‖22.

The NL1 method does not require computation of a (full) gradient on each step if matrix
𝐴 is sufficiently sparse. We show that the update vector ℎ on each step has only two
non-zero coordinates, which correspond to the minimal and maximal components of
the gradient. To update gradient coordinates and extract the minimal and the maximal
value, we use a list of binary heaps [10], which admits logarithmic dependence of iteration
complexity in dimension.
Algorithm S-FW, a revision of the Frank–Wolfe conditional gradient, is proposed in

Section 3. The Frank–Wolfe algorithm has recently stimulated much interest, mainly due
to the numerous Big Data problems to which it has been applied [17, 18, 32]. In this paper,
we focus on an efficient gradient and a function value update for each iteration, which
reduces the algorithm’s overall time complexity. Accurate theoretical analysis results in
a better time complexity estimate compared to the NL1 algorithm. Also, the S-FW and
NL1 algorithms appear to be comparable from in practice.
In Section 4 we deal with the problem of the approximation of the PageRank vector

in the ℓ∞ norm, i.e., the minimization of ‖𝑃⊤𝑥 − 𝑥‖∞. Using a technique of Juditsky
et al. [19], the minimization can be equally stated as a saddle-point problem over the
product of two unit simplexes. A randomized mirror descent seems to be one of the
most popular tools for solving the problem efficiently. Its application to the PageRank
improves time-complexity of an iteration to 𝑂(𝑛 log(𝑛/𝛿)/𝜀2), and does not depend on
the problem sparsity [27].
Finally, in this paper, we investigate an approach pioneered by Grigoriadis and

Khachiyan in [16]. The approach’s idea is a randomized projection of the gradient on
the simplex instead of a randomized approximation of the gradient itself. The gradi-
ent’s projection on the unit simplex is carried out with the Kullback-Leibler divergence,
corresponding to the exponential weighting of the gradient coordinates. The (sparse)
randomized projection chooses one of the vertices of the unit simplex in such a way that
the expected value gives an unbiased estimation of the projection itself [13].
To this end, we design an algorithm to update the gradient vector on each iteration in

an (almost) dimension-independent manner, e.g., with an (almost) linear time-complexity

𝑂(𝑛+ 𝑑 log 𝑛 log(𝑛/𝜎)/𝜀2)

for 𝑑-sparse transition matrices, with ‖𝑃⊤𝑥−𝑥‖∞ ≤ 𝜀. Finally, we pay a special attention
to its interpretation in terms of game theory [25].
In Sections 2 - 4, we summarize sparsification techniques allowing to reduce ranking

problems over a dense graph to the problem on a sparse graph. The proposed algorithms
deliver state-of-the-art time-complexity estimates for 𝑑-sparse optimization problems if
𝑑 is sufficiently small. Faster methods are possible via the Markov Chain Monte Carlo
method for several situations. We refer to recent results [13] for details.
We conclude in Section 5 with the implementation details and a case study. Finally,

some technical proofs are given in the appendix.
In this paper, we use the following notation. By ‖𝑥‖𝑝, we denote the ℓ𝑝 norm of vector
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𝑥 ∈ R𝑛, in particular, ‖𝑥‖2 = 𝑥⊤𝑥 denotes the Euclidean norm, ‖𝑥‖1 =
∑︀𝑛

𝑖=1 |𝑥𝑖|, and
‖𝑥‖∞ = max{|𝑥1|, . . . , |𝑥𝑛|}. By 𝑂(1), we denote a positive constant.

2. ℓ1-Gradient descent for d-sparse problems

The PageRank problem can be equally stated as the following convex optimization prob-
lem for a sufficiently large positive constant 𝛾

𝑓𝛾(𝑥) =
1

2
‖𝐴𝑥‖22 +

𝑛∑︁
𝑖=1

𝛾

2
(−𝑥𝑖)2+ → min

𝑥⊤𝑒=1
, 𝛾 > 0, (2)

where 𝐴 = 𝐼 − 𝑃⊤, 𝐼 is an 𝑛 × 𝑛 identity matrix, 𝑃 ∈ R𝑛×𝑛
+ is a column stochastic

transition matrix, 𝑒 is an 𝑛-dimensional vector with each coordinate equals to one. Notice,
that 𝑓𝛾(𝑥) is a convex, non-negative, and increasing function with 𝑓𝛾(𝑥*) = 0, and
𝑧+ = max{𝑧,0}.
To solve the problem, we use a proximal gradient descent with an ℓ1 setup:

𝑥𝑘+1 = 𝑥𝑘 + argmin
ℎ:ℎ⊤𝑒=0

{︂
𝑓𝛾(𝑥𝑘) + ℎ⊤∇𝑓𝛾(𝑥𝑘) +

𝐿1

2
‖ℎ‖21

}︂
, (3)

where 𝑓𝛾(𝑥) is 𝐿1-smooth in ℓ1 norm

‖∇𝑓𝛾(𝑥)−∇𝑓𝛾(𝑦)‖∞ ≤ 𝐿1‖𝑥− 𝑦‖1.

In the case of the PageRank, 𝐿1 = 1+ 𝛾, as 𝑃 is a stochastic matrix. Lemma 2.1 implies
that the vector ℎ𝑘, which solves the problem (3), is always sparse whatever the function
𝑓𝛾(𝑥) is.

Lemma 2.1 A set of solutions of the following minimization problem

𝜑(ℎ) = 𝑓𝛾(𝑥𝑘) + ℎ⊤∇𝑓𝛾(𝑥𝑘) +
𝐿1

2
‖ℎ‖21 → min

ℎ:ℎ⊤𝑒=0
(4)

contains at least one vector ℎ𝑘 with only two non-zero coordinates

ℎ
𝑖+
𝑘 = − 1

4𝐿1

(︂
𝜕𝑓𝛾(𝑥𝑘)

𝜕𝑥𝑖+
− 𝜕𝑓𝛾(𝑥𝑘)

𝜕𝑥𝑖−

)︂
and ℎ

𝑖−
𝑘 =

1

4𝐿1

(︂
𝜕𝑓𝛾(𝑥𝑘)

𝜕𝑥𝑖+
− 𝜕𝑓𝛾(𝑥𝑘)

𝜕𝑥𝑖−

)︂
,

where 𝑖+ = argmax1≤𝑖≤𝑛 𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥
𝑖 and 𝑖− = argmin1≤𝑖≤𝑛 𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥

𝑖.

Proof. Let ℎ̄ be a solution to the problem 4, so that ‖ℎ̄‖1 = 𝑐. The minimum to the
linear function 𝑓𝛾(𝑥𝑘) + ℎ⊤∇𝑓𝛾(𝑥𝑘) + 𝐿1

2 𝑐
2 → minℎ:ℎ⊤𝑒=0,‖ℎ‖1=𝑐 is attained at ℎ𝑘 which

has exactly two non-zero coordinates ℎ𝑖
+

𝑘 = −𝑐/2, ℎ𝑖−𝑘 = 𝑐/2. The objective value is then

𝜑(ℎ𝑘) = 𝑓𝛾(𝑥𝑘)− ( max
1≤𝑖≤𝑛

𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥
𝑖 − min

1≤𝑖≤𝑛
𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥

𝑖)𝑐/2 + 𝐿1𝑐
2/2.

Taking minimum in 𝑐 ≥ 0 we get the statement of the lemma. �
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By Lemma 2.1, the gradient ∇𝑓𝛾(𝑥𝑘+1) is

∇𝑓𝛾(𝑥𝑘+1) =∇𝑓𝛾(𝑥𝑘 + ℎ𝑘)

=𝐴⊤𝐴𝑥𝑘 +𝐴⊤𝐴ℎ𝑘 + 𝛾
∑︁

𝑖=𝑖+,𝑖−

{︀
(−𝑥𝑖𝑘 − ℎ𝑖𝑘)2+ − (−𝑥𝑖𝑘)2+

}︀
. (5)

The update vector, ℎ𝑘, has at most 𝑂(min(𝑛, 𝑑2)) non-zero coordinates. To efficiently
update the gradient, we will use a doubly-linked list of binary heaps, so that the 𝑗-th
heap is used to extract the minimal value and update coordinates from (𝑗−1)⌊𝑛/𝑑2⌋+1
to min{𝑗⌊𝑛/𝑑2⌋, 𝑛} inclusively. We refer to a binary heap [10] as a Max-Heap (resp. Min-
Heap), if the key stored in each node is greater (resp. less) than or equal to the keys in
the node’s children. We require both the minimal and the maximal coordinates of the
gradient for an iteration of the algorithm. Using Min-Heap (Max-Heap) extracting the
minimal (maximal) element from a heap of 𝑚 items requires 𝑂(log𝑚) time. An update
of a single element to preserve the keys’ order requires 𝑂(log𝑚) time, as well [10]. That
is why a gradient update (5) requires 𝑂(𝑑2 log(2 + 𝑛/𝑑2)) time in total.

Algorithm 1: NL1: ℓ1 Gradient Descent for PageRank

Input: 𝑑-sparse transition matrix 𝑃 , starting point 𝑥0,

objective 𝑓𝛾(𝑥) =
1
2‖𝐴𝑥‖

2
2 +

𝛾
2

∑︀𝑛
𝑖=1(−𝑥𝑖)2+ with 𝐴 = 𝐼 − 𝑃⊤ and 𝛾 > 0,

number of iterations 𝑁 required by Theorem 2.2 and accuracy 𝜀.
Output: 𝑥𝑁 , ‖𝐴𝑥𝑁‖22 ≤ 𝜀2 where 𝑁 is given by Theorem 2.2

1 while 𝑘 ≤ 𝑁 and 𝑓𝛾(𝑥) > 𝜀2 do
2 𝑖+ = argmax1≤𝑖≤𝑛 𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥

𝑖, 𝑖− = argmin1≤𝑖≤𝑛 𝜕𝑓𝛾(𝑥𝑘)/𝜕𝑥
𝑖

3 ℎ𝑖𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1

4𝐿1

(︁
𝜕𝑓𝛾(𝑥𝑘)
𝜕𝑥𝑖+

− 𝜕𝑓𝛾(𝑥𝑘)
𝜕𝑥𝑖−

)︁
, 𝑖 = 𝑖+

− 1
4𝐿1

(︁
𝜕𝑓𝛾(𝑥𝑘)
𝜕𝑥𝑖+

− 𝜕𝑓𝛾(𝑥𝑘)
𝜕𝑥𝑖−

)︁
, 𝑖 = 𝑖−

0, otherwise

4 Update argument: 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘
5 Update gradient: ∇𝑓𝛾(𝑥𝑘+1) = ∇𝑓𝛾(𝑥𝑘) +𝐴⊤𝐴ℎ𝑘 + 𝛾(−𝑥𝑘 + ℎ𝑘)+ − 𝛾(−𝑥𝑘)+
6 Update 𝑓𝛾(𝑥𝑘+1): 𝑓𝛾(𝑥𝑘+1) =

𝑓𝛾(𝑥𝑘) + ℎ𝑘
⊤𝐴⊤𝐴𝑥𝑘 + ‖𝐴ℎ𝑘‖22/2 +

𝛾
2

∑︀
𝑖:ℎ𝑘

𝑖 ̸=0(−𝑥𝑘𝑖)2+ − (−𝑥𝑖𝑘 − ℎ𝑘
𝑖
𝑘)

2
+

7 𝑘 = 𝑘 + 1

8 return 𝑥𝑘

Algorithm 1 presents the NL1 algorithm with convergence rate established in Theo-
rem 2.2.

Theorem 2.2 For a starting point 𝑥0 in one of the vertices of the unit simplex, Algo-
rithm 1 converges to 𝑓𝛾(𝑥) ≤ 𝜀2 for any constant 𝛾 > 0, 𝑥 ≥ 0, 𝑒⊤𝑥 = 1, with the overall
time complexity

𝑇 = 𝑂

(︂
𝑛𝑑2 log(𝑛/𝑑2 + 2)log 𝑛+

𝑑2 log(𝑛/𝑑2 + 2)

𝜀2

)︂
.

The complete proof of the theorem in given in the Appendix. The bound established
in Theorem 2.2 gives a sub-linear time complexity for the case 𝑛𝜀2 = 𝑜(1), while it is less
practical for sufficiently large 𝜀, 𝑛𝜀2 = Ω(1).

6
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Matrix Sparsification. In a number of practical problems, both column and row sparsity
of the transition probability matrix seems to be very restrictive. Indeed, for the PageRank
problem, search engines such as Google or Yahoo! may refer to a large number of sites
simultaneously. In particular, that means that matrix 𝑃⊤ may have a few dense columns.
Below we propose a method to sparsify the transition probability matrix 𝑃 in order to
improve the convergence of optimization methods without loss of quality.
Consider a single linear equation 𝑎⊤𝑥 = 𝑏, 𝑥 ∈ R𝑛, where 𝑎 is a dense vector. The

system can be equally stated as

𝑎⊤𝑖 𝑥 = 𝑏𝑧𝑖, 1 ≤ 𝑖 ≤ ⌈𝑛/𝑑⌉,
⌈𝑛/𝑑⌉∑︁
𝑖=1

𝑎𝑖 = 𝑎,

⌈𝑛/𝑑⌉∑︁
𝑖=1

𝑧𝑖 = 1, 𝑧 ∈ R⌈𝑛/𝑑⌉ (6)

such that each 𝑎𝑖 has no more than 𝑑 non-zero elements. In order to guarantee that
‖𝑎⊤𝑥− 𝑏‖22 ≤ 𝜀2, one needs to find a vector 𝜓 = (𝑥, 𝑧)⊤, 𝜓 ∈ R𝑛+⌈𝑛/𝑑⌉, such that

⌈𝑛/𝑑⌉∑︁
𝑖=1

⌈𝑛/𝑑⌉‖𝑎⊤𝑖 𝑥− 𝑏𝑧𝑖‖22 ≤ 𝜀2

as under Conditions (6) and the Cauchy inequality one has:

‖𝑎⊤𝑥− 𝑏‖22 =
⃦⃦⃦⃦⌈𝑛/𝑑⌉∑︁

𝑖=1

𝑎⊤𝑖 𝑥− 𝑏𝑧𝑖
⃦⃦⃦⃦2
2

≥ ⌈𝑛/𝑑⌉−1

⌈𝑛/𝑑⌉∑︁
𝑖=1

‖𝑎⊤𝑖 𝑥− 𝑏𝑧𝑖‖22.

Eqs. (6) correspond to a system of linear equations 𝐴𝜓 = 𝐴(𝑥, 𝑧)⊤ = 0 of the size (𝑛+
𝑑 · ⌈𝑛/𝑑⌉) × (𝑛 + ⌈𝑛/𝑑⌉) with no more than 𝑑 + 1 non-zero elements in each row. For
each 𝑖, row 𝐴𝑖 of 𝐴 is as such 𝐴𝑖𝑗 = 𝑎𝑖𝑗 for 1 ≤ 𝑗 ≤ 𝑛; 𝐴𝑖𝑗 = −𝑏 for 𝑗 = 𝑛 + 𝑖, and

𝐴𝑖𝑗 = 0 otherwise. For our convenience, we refer 𝐴𝑥 as the matrix consists of the first 𝑛

columns of 𝐴, and 𝐴𝑧 and the matrix consists of the last 𝑛/𝑑 columns. In order to solve
the problem, we apply the NL1 algorithm, although it requires a minor correction:

𝑓𝛾(𝑥, 𝑧) =
1

2
‖𝐴𝜓‖22 +

𝛾

2

𝑛∑︁
𝑖=1

(−𝑥𝑖)2+ +
𝛾

2

⌈𝑛/𝑑⌉∑︁
𝑗=1

(−𝑧𝑖)2+ → min
𝑥⊤𝑒=1, 𝑥≥0

𝑧⊤𝑒=1

.

A step of the NL1 algorithm is(︂
𝑥𝑘+1

𝑧𝑘+1

)︂
=

(︂
𝑥𝑘
𝑧𝑘

)︂
+ argmin

ℎ𝑥:ℎ⊤
𝑥 𝑒=0

ℎ𝑧:ℎ⊤
𝑧 𝑒=0

{︃
𝑓𝛾(𝑥𝑘, 𝑧𝑘) +∇𝑓𝛾(𝑥𝑘,𝑧𝑘) ·

(︂
𝑥𝑘
𝑧𝑘

)︂
+
𝐿

2

⃦⃦⃦⃦(︂
ℎ𝑥
ℎ𝑧

)︂⃦⃦⃦⃦2
1

}︃
. (7)

Notice, that Eq. (7) is separable in variables 𝑥 and 𝑧, thus

𝑥𝑘+1 = 𝑥𝑘 + argmin
ℎ𝑥:ℎ⊤

𝑥 𝑒=0

{︃
1

2
‖𝐴𝑥ℎ𝑥‖+

𝛾

2

𝑛∑︁
𝑖=1

(−𝑥𝑖)2+ + 𝛾𝐴𝑥 + 𝛾

𝑛∑︁
𝑖=1

(−𝑥𝑖)+ +
𝐿

2
‖ℎ𝑥‖21

}︃

𝑧𝑘+1 = 𝑧𝑘 + argmin
ℎ𝑧:ℎ⊤

𝑧 𝑒=0

⎧⎨⎩1

2
‖𝐴𝑧ℎ𝑧‖+

𝛾

2

⌈𝑛/𝑑⌉∑︁
𝑖=1

(−𝑧𝑖)2+ + 𝛾𝐴𝑧 + 𝛾

𝑛∑︁
𝑖=1

(−𝑧𝑖)+ +
𝐿

2
‖ℎ𝑧‖21

⎫⎬⎭
7
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Recall that the optimal ℎ = (ℎ𝑥, ℎ𝑧)
⊤ is such as it has only two non-zero coordinates

in each of ℎ𝑥 and ℎ𝑧, as was true for the NL1 algorithm over the simplex, corresponding
to

𝑖+𝑥 = argmax
1≤𝑖≤𝑛

𝜕𝑓(𝑥𝑘,𝑧𝑘)

𝜕𝑥𝑖
and 𝑖−𝑥 = argmin

1≤𝑖≤𝑛

𝜕𝑓(𝑥𝑘,𝑧𝑘)

𝜕𝑥𝑖
,

if

max
1≤𝑖≤𝑛

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑥𝑖
− min

1≤𝑖≤𝑛

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑥𝑖
> max
1≤𝑗≤⌈𝑛

𝑑
⌉

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑧𝑗
− min
1≤𝑗≤⌈𝑛

𝑑
⌉

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑧𝑗
,

while

𝑖+𝑧 = argmax
1≤𝑗≤⌈𝑛

𝑑
⌉

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑧𝑗
and 𝑖−𝑧 = argmin

1≤𝑗≤⌈𝑛

𝑑
⌉

𝜕𝑓𝛾(𝑥𝑘,𝑧𝑘)

𝜕𝑧𝑗
,

otherwise. Now, for efficient implementation of the NL1 algorithm, one needs to store the
values 𝜕𝑓𝛾/𝜕𝑧

𝑗 and 𝜕𝑓𝛾/𝜕𝑥
𝑖 in separate binary heaps. A similar strategy can be used if

sparsification of multiple rows is required. Finally, we remind the reader that single-row
sparsification increases the problem dimension by ⌈𝑛/𝑑⌉, at most.
Column sparsification is slightly more involved. Consider a function 𝑓(𝑥) in more de-

tails:

𝑓𝛾(𝑥) =
1

2
‖𝐴𝑥‖22 +

𝛾

2

𝑛∑︁
𝑖=1

(−𝑥)2+, 𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑛)

𝑓𝛾(𝑥1) =min
𝑥2:𝑛

{︀
𝑓(𝑥) + 𝐼{𝑥∈Δ𝑛

1 }
}︀
.

The function 𝑓𝛾(𝑥1) is convex in 𝑥1 for any fixed 𝛾 > 0 [4, Section 3.2.5]. That is why
the value of 𝑓𝛾(𝑥1) can be computed using the NL1 algorithm while the value

𝑓*𝛾 = min
0≤𝑥1≤1

𝑓𝛾(𝑥1)

requires a one dimensional binary search so that the overall time complexity 𝑇 of the
NL1 algorithm used to solve the PageRank problem with a single dense column is in
𝑂(log(𝑛/𝜀)) higher than the one established in Theorem 2.2.
The same approach can be applied to improving the efficiency of the S-FW and GK

algorithms proposed later in Sections 3 and 4 on the PageRank instances with a few
dense rows or columns.

3. Frank–Wolfe algorithm with sparse updates

The PageRank problem, according to Eq. (2), can be stated as

𝑓(𝑥) =
1

2
‖𝐴𝑥‖22 → min

𝑥∈Δ𝑛
1

.

We use the Frank–Wolfe conditional gradient [11, 18] to solve the problem above.

8
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We choose the starting point 𝑥0 of the algorithm in an arbitrary vertex of the unit
simplex. Then on each step we solve

ℎ⊤𝑘∇𝑓(𝑥𝑘)→ min
𝑦∈Δ𝑛

1

. (8)

Furthermore the solution 𝑦𝑘 of Eq. (8) has only one non-zero coordinate 𝑦𝑖𝑘𝑘 , corre-
sponding to

𝑖𝑘 = argmin
1≤𝑖≤𝑘

𝜕𝑓(𝑥)/𝜕𝑥𝑖.

Then, the update rule is

𝑥𝑘+1 = (1− 𝛾𝑘)𝑥𝑘 + 𝛾𝑘ℎ𝑘, 𝛾𝑘 =
2

𝑘 + 1
, 𝑘 ≥ 1.

According to [30], 𝑓(𝑥𝑘)− 𝑓(𝑥) is bounded from above as:

𝑓(𝑥𝑘)− 𝑓* = 𝑓(𝑥𝑘) ≤
2𝐿1max𝑥,𝑦∈Δ𝑛

1
‖𝑥− 𝑦‖21

𝑘 + 1
≤ 8𝐿1

𝑘 + 1
, (9)

where 𝐿2
1 = max𝑥∈Δ𝑛

1
‖𝐴𝑥‖22 ≤ 2. Thus, in order to guarantee 𝑓(𝑥𝑘) ≤ 𝜀2/2, one needs

at most 32𝜀−2 iterations.
Consider a step of the algorithm in more detail. Denote 𝛽𝑘 as

𝛽𝑘 =

𝑘−1∏︁
𝑟=1

(1− 𝛾𝑟), 𝑧𝑘 = 𝑥𝑘/𝛽𝑘, 𝛾𝑘 = 𝛾𝑘/𝛽𝑘+1,with 𝛽0 = 1.

A step of the Frank–Wolfe algorithm is

𝑧𝑘+1 = 𝑧𝑘 + 𝛾𝑘ℎ𝑘, with 𝑧1 = 𝑥1.

where ℎ𝑘 is a solution of Eq. (8). Moreover, only one coordinate of ℎ𝑘:

𝑖𝑘 = argmin
1≤𝑖≤𝑘

𝜕𝑓(𝑥𝑘)/𝜕𝑥
𝑖 = argmin

1≤𝑖≤𝑘
𝐴⊤𝐴𝑧𝑖𝑘

is other than zero. Therefore, the update of the S-FW algorithm is similar to the Gauss-
Southwell rule studied in detail in [35] for minimization of the strongly convex functions.

Using the doubly-linked list of binary heaps, described in Section 2, the minimal coor-
dinate of 𝐴⊤𝐴𝑧𝑘 can be computed in 𝑂(𝑑2 log(2 + 𝑛/𝑑2)) time. Then 𝐴⊤𝐴𝑧𝑘+1 is

𝐴⊤𝐴𝑧𝑘+1 = 𝐴⊤𝐴𝑧𝑘 + 𝛾𝑘𝐴
⊤𝐴𝑦𝑘, (10)

and

∇𝑓(𝑥𝑘+1)

𝛽𝑘
=
∇𝑓(𝑥𝑘)
𝛽𝑘

+
𝛾𝑘𝛽𝑘𝐴

⊤𝐴ℎ𝑘
𝛽𝑘

,

9
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Algorithm 2: S-FW: Frank–Wolfe algorithm for PageRank

Input: 𝑑-sparse transition matrix 𝑃 , starting point 𝑥0 in one of the vertices of
unit simplex and 𝐴 = 𝑃⊤ − 𝐼; Set 𝑘 = 1 and 𝛽0 = 1

Output: 𝑥𝑘 : ‖𝐴𝑥𝑘‖2 ≤ 𝜀
1 while 𝑓(𝑧𝑘) > 𝛽2𝑘𝜀

2 do
2 𝑖𝑘 = argmin1≤𝑖≤𝑛 𝜕𝑓(𝑥𝑘)/𝜕𝑥

𝑖

3 Set 𝛾𝑘 = 2/(𝑘 + 1), 𝛽𝑘+1 = 𝛽𝑘(1− 𝛾𝑘), and 𝛾𝑘 = 𝛾𝑘/𝛽𝑘+1

4 Update step direction ℎ𝑘 = 𝛾𝑘 · 𝛿, where 𝛿𝑖𝑘 = 1, and 𝛿𝑖 = 0, 𝑖 ̸= 𝑖𝑘
5 Update argument: 𝑧𝑘+1 = 𝑧𝑘 + 𝛾𝑘ℎ𝑘

6 Update gradient: ∇𝑓(𝑥𝑘+1)
𝛽𝑘

= ∇𝑓(𝑥𝑘)
𝛽𝑘

+ 𝛾𝑘𝐴
⊤𝐴ℎ𝑘

7 Update function value 𝑓(𝑥𝑘+1):
𝑓(𝑥𝑘+1)

𝛽2
𝑘

= 𝑓(𝑥𝑘)
𝛽2
𝑘

+ 𝛾𝑘ℎ
⊤
𝑘

∇𝑓(𝑥)
𝛽𝑘

+ ‖𝐴ℎ𝑘‖22𝛾2𝑘/2
8 𝑘 = 𝑘 + 1

9 return 𝑥𝑘 = 𝑧𝑘𝛽𝑘 //Compute 𝑥𝑘 on the last iteration only

and also

𝑓(𝑥𝑘+1)

𝛽2𝑘
=
𝑓(𝑥𝑘)

𝛽2𝑘
+ 𝛾𝑘ℎ

⊤
𝑘

∇𝑓(𝑥)
𝛽𝑘

+ ‖𝐴ℎ𝑘‖22𝛾2𝑘/2.

For a 𝑑-sparse matrix 𝐴, the time required to compute 𝐴⊤𝐴𝑧𝑘+1 from 𝐴⊤𝐴𝑧𝑘 is
𝑂(𝑑2 log(2 + 𝑛/𝑑2)), as well. One can compute 𝑥𝑘 having 𝑧𝑘 as 𝑥𝑘 = 𝛽𝑘𝑥𝑘 in 𝑂(𝑛)
time.
Combining Eqs. (9) and (10), we have the following complexity estimate for the algo-

rithm.

Theorem 3.1 Algorithm 2 requires at most 𝑘 = 32𝜀−2 iterations to guarantee
‖𝑃⊤𝑥 − 𝑥‖2 ≤ 𝜀 for any 𝑑-sparse transition matrix 𝑃 . The overall time complexity
of the algorithm does not exceed

𝑇 = 𝑂

(︂
𝑛+

𝑑2 log(2 + 𝑛/𝑑2)

𝜀2

)︂
.

Discussion. Theorem 3.1 implies sub-linear convergence in the number of non-zero
elements of the transition matrix 𝑃 . This is not surprising, since we assume that the
underlying graph structure, along with required smoothness, are known a priori.
It remains an open question for the authors to improve convergence rate in terms of the

accuracy and maximal degree of the transition graph while preserving linear dependence
in the problem dimension.

4. Saddle point setup for PageRank

In the PageRank problem, one often requires an accurate approximation of a few of the
largest coordinates representing the most relevant websites rather than the full PageRank
vector. To this end, we propose an algorithm to approximate the PageRank vector in

10
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ℓ∞-norm. Below, we consider the problem

𝑓(𝑥) = ‖(𝑃⊤ − 𝐼)𝑥‖∞ = ‖𝐴𝑥‖∞ → min
𝑥∈Δ𝑛

1

.

Following [27], we set up the problem as

min
𝑥∈Δ𝑛

1

max
‖𝑦‖1≤1

⟨𝐴𝑥, 𝑦⟩ = min
𝑥∈Δ𝑛

1

max
𝑦∈Δ2𝑛

1

⟨𝐴𝑥, 𝐽𝑦⟩ = min
𝑥∈Δ𝑛

1

max
𝑦∈Δ2𝑛

1

⟨𝑥,𝐴𝑦⟩, (11)

where 𝐴 = 𝐴⊤𝐽 , 𝐽 = [𝐼𝑛,−𝐼𝑛], and 𝐼𝑛 is the 𝑛× 𝑛 identity matrix.
We propose a sub-linear-time algorithm to approximate a bilinear matrix game repre-

senting the PageRank, Problem (11). Let 𝐴𝑖𝑗 be a gain for Player 𝐴 (loss of player 𝐵),
if Player 𝐴 plays strategy 𝑖 and 𝐵 plays strategy 𝑗, 1 ≤ 𝑖 ≤ 𝑛, and 1 ≤ 𝑗 ≤ 2𝑛. Consider
the loss function for Player 𝐵 at step 𝑘:

𝑓(𝑥, 𝑦𝑘) = 𝑥⊤𝐴𝑦𝑘, 𝑥 ∈ Δ𝑛
1 ,

where 𝑦𝑘 ∈ Δ2𝑛
1 is a vector with a single non-zero coordinate corresponding to the

strategy of Player 𝐴. We also emphasize that 𝑦𝑘 depends on the whole history of the
game. Let 𝐶 be the cost of the matrix game:

𝐶 = max
𝑦∈Δ2𝑛

1

min
𝑥∈Δ𝑛

1

𝑦⊤𝐴𝑥 = min
𝑥∈Δ𝑛

1

max
𝑦∈Δ2𝑛

1

𝑦⊤𝐴𝑥 = min
𝑥∈Δ𝑛

1

‖𝐴𝑥‖∞ = 0, (12)

and

min
𝑥∈Δ𝑛

1

1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑥, 𝑦𝑖) ≥ 𝐶 ≥ max
𝑦∈Δ2𝑛

1

1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑥𝑖, 𝑦), (13)

for any sequences {𝑥𝑖}𝑁𝑖=1, {𝑦𝑖}𝑁𝑖=1 if for any 𝑖: 𝑥𝑖 ∈ Δ𝑛
1 , 𝑦𝑖 ∈ Δ2𝑛

1 , 1 ≤ 𝑖 ≤ 𝑛. In the
subsequent of the section, we consider {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 with a single non-zero coordinate
each.
To solve the problem, we assume the following randomized strategy for the Player 𝐵

played against any strategy of the Player 𝐴:

(1) Let 𝑝1 = (𝑛−1, . . . , 𝑛−1);
(2) Choose at random 𝑗𝑘, such that P(𝑗𝑘 = 𝑗) = 𝑝𝑘𝑗 ;

(3) Assume 𝑥𝑘𝑗𝑘 = 1 and 𝑥𝑘𝑗 = 0 for all 𝑗 ̸= 𝑗𝑘;
(4) Update

𝑝𝑘+1
𝑗 ∝ 𝑝𝑘𝑗 exp

(︁
−𝛾𝑥𝐴𝑖𝑘,𝑗

)︁
, (14)

where 𝑖𝑘 is a strategy that Player 𝐴 chooses at step 𝑘.

The crucial gain in the efficiency of the algorithm is due to time-efficient updates at
stage 3. Indeed, consider a binary tree with its leaves corresponding to the variables, and
constructed in such a way that the value 𝑝𝑣 assigned to a node 𝑣 is a total probability
of all leaves having 𝑣 as a predecessor. If we update the weight of a leaf according to

11
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Algorithm 3: update rule for a probability distribution

Input: (unnormalized) probability distribution 𝑝 given by a binary tree with leafs
values 𝑝𝑖 such that the probability of any leaf 𝑗 is 𝑝𝑗/

∑︀𝑛
𝑖=1 𝑝𝑖, 𝑝𝑖 > 0 for

any 𝑖 : 1 ≤ 𝑖 ≤ 𝑛,
∑︀𝑛

𝑖=1 𝑝𝑖 > 0, with and update rule of coordinate 𝑘
according to Eq. (14)

𝑝𝑘 ∝ 𝑝𝑘 exp (−𝜓𝑘) ,

Output: 𝑥 ∼ 𝑝, a sample 𝑥 follows the updated distribution 𝑝
1 // Distribution update
2 𝑢 = 𝑘 // Start with the leaf 𝑘
3 while 𝑢 ̸= root do
4 𝑝𝑢 ← 𝑝𝑢 + 𝑝𝑘(exp (−𝜓𝑘)− 1);
5 𝑢← parent of 𝑢

6 // Sampling 𝑥 ∼ 𝑝
7 𝑢 = 𝑘 // Start with the leaf 𝑘
8 while 𝑢 ̸= leaf do
9 Let 𝜈, 𝜔 be children of 𝑢

𝑢 =

{︃
𝜈, with probability 𝑝𝜈/(𝑝𝜈 + 𝑝𝜔),

𝜔, otherwise.

10 return 𝑢

Eq. (14), we also update each vertex 𝑢 belonging to the path from the leaf to the root as

𝑝𝑢 = 𝑝𝑢 + 𝜉, 𝜉 = 𝑝𝑘+1
𝑗 − 𝑝𝑘𝑗 .

In order to sample 𝑥 ∼ 𝑝𝑘+1, we start from the root of the tree and proceed to its
child 𝑎 with probability 𝑝𝑎/(𝑝𝑎 + 𝑝𝑏). Otherwise, we proceed to its sibling 𝑏, where 𝑝𝑎,
and 𝑝𝑏 are the values assigned to 𝑎 and 𝑏, respectively. We repeat the same procedure for
each node one a path from the root to one of the leafs of the tree. Algorithm 3 formalizes
this argument.
Using the same strategy for the Player 𝐴, we establish the convergence rate to the Nash

equilibrium (𝑥*, 𝜔*), which solves Problem (11) in Theorem 4.1. Algorithm 4 contains
all necessary details. It is worth mentioning an interpretation of the algorithm, e.g., on
each iteration it make an update following to a sparse projection of the gradient to the
unit simplex according to the KL divergence.

Theorem 4.1 Algorithm 4 after 𝑁 ≥ 4𝜀−2
(︁
ln(2𝑛) + ln(𝑛) + 16 ln(1/𝛿)

)︁
iterations

with a constant step-size 𝛾𝑥 =
√︀

2(log 𝑛)/𝑁 and 𝛾𝑦 =
√︀

2(log(2𝑛))/𝑁 results in a point
(�̄�𝑁 , 𝑦𝑁 ) such that, with probability at least 1− 𝛿, for any 𝛿 > 0 one has:

‖𝐴�̄�𝑁‖∞ ≤ 𝜀.

12
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Algorithm 4: ℓ∞ approximation to the PageRank problem

Input: 𝑑-sparse transition matrix 𝑃 , starting point 𝑥0 in one of the vertices of
the unit simplex, and learning rate 𝛾

Output: 𝑥𝑘 : 𝑓(�̄�𝑘, 𝑦𝑘) = �̄�𝑘𝐴𝑦𝑘 ≤ 𝜀, implies ‖𝑃⊤𝑥𝑘 − 𝑥𝑘‖∞ ≤ 𝜀
1 𝜋 = ((2𝑛)−1, . . . , (2𝑛)−1), 𝑝 = (𝑛−1, . . . , 𝑛−1),

2 starting point (𝑥0, 𝑦0) in one of the vertices of Δ𝑛
1 ×Δ2𝑛

1

3 while 𝑓(�̄�𝑘, 𝑦𝑘) > 𝜀 do
4 // Player 𝐴 turn

5 Choose at random 𝑖𝐴𝑘 , such that P(𝑖𝑘 = 𝑗) = 𝜋𝑖;

6 Assume 𝑦
𝑖𝐴𝑘
𝑘 = 1, and 𝑦𝑖𝑘 = 0 if 𝑖 ̸= 𝑖𝐴𝑘 ;

7 Update 𝜋𝑘// see Algorithm 3 for details

𝜋𝑖𝑘+1 ∝ 𝜋𝑖𝑘 exp
(︁
𝛾𝑦𝐴𝑖,𝑗𝐵𝑘

)︁
// Player 𝐵 turn

8 Choose at random 𝑗𝐵𝑘 , such that P(𝑗𝐵𝑘 = 𝑗) = 𝑝𝑗 ;

9 Assume 𝑥
𝑗𝐵𝑘
𝑘 = 1, and 𝑥𝑗𝑘 = 0 if 𝑗 ̸= 𝑗𝐵𝑘 ;

10 Update 𝑝𝑘 // see Algorithm 3 for details

𝑝𝑗𝑘+1 ∝ 𝑝
𝑗
𝑘 exp

(︁
−𝛾𝑥𝐴𝑖𝐴𝑘 ,𝑗

)︁
11 Update an average point (�̄�𝑘, 𝑦𝑘). Indeed, more time-efficient is to update

𝑘 · (�̄�𝑘, 𝑦𝑘) as this involves only sparse operations according to:

𝑘 · �̄�𝑘 =

𝑘∑︁
𝑡=1

𝑥𝑡 = (𝑘 − 1)�̄�𝑘−1 + 𝑥𝑘, 𝑘·𝑦𝑘 =

𝑘∑︁
𝑡=1

𝑦𝑡 = (𝑘 − 1)𝑦𝑘−1 + 𝑦𝑘

an can be done in 𝑂(𝑑) time
12 Update the function value, 𝑓(�̄�𝑘, 𝑦𝑘), using sparse operations only:

𝑘2𝑓(�̄�𝑘, 𝑦𝑘) = (𝑘�̄�𝑘)
⊤𝐴(𝑘𝑦𝑘)

= (𝑘 − 1)2𝑓(�̄�𝑘−1, 𝑦𝑘−1) + (𝑘 − 1)�̄�𝑘−1𝐴𝑦𝑘 + 𝑥𝑘𝐴((𝑘 − 1)𝑦𝑘) + 𝑥𝑘𝐴𝑦𝑘13

as 𝑘�̄�𝑘 = (𝑘 − 1)�̄�𝑘−1 + 𝑥𝑘, and 𝑘𝑦𝑘 = (𝑘 − 1)𝑦𝑘−1 + 𝑦𝑘. The update requires
𝑂(𝑑) time.

14 return (�̄�𝑘, 𝑦𝑘)

Moreover, the total running time of the algorithm is bounded from above as

𝑇 = 𝑂

(︂
𝑛+

𝑑 log 𝑛 log 𝑛
𝛿

𝜀2

)︂
.

The proof of the theorem is provided in Appendix B.
Discussion. The mirror descent and the dual averaging perspectives. The proposed

algorithm is essentially a mirror descent with randomized projection of the gradient on

13
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a unit simplex according to KL divergence. Let us consider the problem of minimizing
of the left hand-side of Eq. (13) in more details:

1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑥, 𝑦𝑖) =
1

𝑁

𝑁∑︁
𝑖=1

⟨𝑥,𝐴⊤𝐽𝑦𝑖⟩ → min
𝑥∈Δ𝑛

1

, (15)

where {𝑦𝑖}𝑛𝑖=1 is a sequence of unit coordinate vectors. Denote 𝑓𝑖(𝑥)
.
= 𝑓(𝑥, 𝑦𝑖) for 𝑖 ≥ 1.

Recall the setup of the mirror descent algorithm [27]. Let 𝜔(𝑥) =
∑︀𝑛

𝑖=1 𝑥
𝑖 log 𝑥𝑖 be the

distance-generating function, which is is 1-strongly convex with respect to the ℓ1 norm.
A step of the dual averaging algorithm [28] with step-size 𝛾𝑥 is:

𝑧𝑘 = 𝑧𝑘−1 − 𝛾𝑥∇𝑓𝑘(𝑥𝑘), 𝑥𝑘+1 = ∇𝜔*(𝑧𝑘), (16)

where 𝜔*(𝑧) = sup𝑥∈Δ𝑛
1

{︀
𝑧⊤𝑥− 𝜔(𝑥)

}︀
= log

{︁∑︀𝑛
𝑗=1 exp(𝑧𝑗)

}︁
. An update of 𝑥𝑘+1 in

Eq. (16) can be also viewed as a projection of 𝑧𝑘+1 to the unit simplex in accordance
with Kullback-Leibler divergence. Indeed Eq. (16) is a step of mirror descent algorithm
for simplex constrained problems as well [1, Appendix A], [3], [19]. A randomized version
of the update is then

𝑥𝑘+1 = 𝑒𝑖, with probability 𝑝𝑖𝑘+1 =
𝑝𝑖𝑘 exp

(︁
−𝛾𝑥 𝜕𝑓𝑘(𝑥𝑘)

𝜕𝑥𝑖

)︁
∑︀𝑛

𝑡=1 𝑝
𝑡
𝑘 exp

(︁
−𝛾𝑥 𝜕𝑓𝑘(𝑥𝑘)

𝜕𝑥𝑡

)︁ , (17)

where 𝑒𝑖 is a unit vector with a single non-zero coordinate corresponding to index 𝑖. Since
𝑓(𝑥,𝑦) = 𝑦⊤𝐴𝑥, update (17) is the same as the update in Algorithm 4.

5. Implementation details and case study

All algorithms proposed in the paper are implemented in C++. We test our code with
different versions of GCC (GNU Compiler Collection), clang (C language family front-
end for LLVM), and icc (Intel C Compiler) compilers under GNU/Linux, Microsoft
Windows, and Mac OS X. We conduct the experiments using:

∙ Ubuntu server 16.04.6 LTS, x86 64
∙ Intel Core i5-2500K, 16 Gb RAM
∙ GCC-5.4.0 to compile C++ code,
∙ Assembly parameters: -std=c++11 -O2 -mcmodel=small -DNDEBUG

We test our algorithms in different dimensions using the following three test beds:

(1) 𝑑-diagonal matrix for 𝑛𝑑 = 1,3,5, . . . . Each row/column of these matrices contains
(𝑛𝑑 − 1)/2 + 1 ≤ 𝑑 ≤ 𝑛𝑑 non-zero elements;

(2) randomly-generated matrices with 𝑑 non-zero elements (on average);
(3) and web-graphs from the Stanford University graph collection 1

We use accuracy 𝜀 = 10−4 in each of our experiments; 𝑥0 = (1, 0, . . . , 0) is used as
a starting point for the NL1 and S-FW algorithms, and we terminate the algorithms if
𝑓(𝑥𝑘) = ‖𝐴𝑥‖22/2 ≤ 𝜀2/2. Computational time reported for the case study includes time

1http://snap.stanford.edu/data/#web

14
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required by optimization method, 𝐴 and 𝐴⊤ generating times, an initialization of all
data structures used, as well as initial gradient/function computation.

web-graph
# non zeros

in a row in a column
average

min max min max
Stanford, 𝑛 = 281 903 2 38 607 1 256 9.20
NotreDame, 𝑛 = 325 729 2 10 722 1 3 445 5.51
BerkStan, 𝑛 = 685 230 1 84 209 1 250 12.09
Google, 𝑛 = 875 713 1 6 327 1 457 6.83

Table 2. Structure of the matrix 𝐴 for the graphs from the Stanford web-graph collection. Columns of the

transition matrix are more dense than the rows and on average both columns and rows contain a few non-zero

elements only.

The numerical experiments described below allow the following conclusions to be
drawn:

(1) In our experiments (see Figure 1) algorithm GK converges sufficiently fast for the
desired precision. But after a large number of iterations, the value of 𝑓(�̄�) starts to
grow, and the resulting point does not satisfy the accuracy condition. The reason
for this is that the values of several probabilities 𝑝𝑖 become extremely large and out
of range after a number of iterations. That leads to significant numerical errors in
estimating residual small probabilities and overall unsatisfactory performance of the
algorithm. Rescaling the probability vectors does not change the behavior of the
algorithm. The described effect decreases for larger 𝑛; refer to Fig. 1 for details.

1e−04

1e−02

1e+00

1 100
t, sec.

f(
x)

n=1e7

n=1e8

n=1e9

n=1e10

Figure 1. Convergence of the GK algorithm for various dimensions 𝑛. 𝐴 is a random 𝑛×𝑛 matrix, with a number of
non-zeros in each row and column 𝑑 = 3. Practical performance of the GK algorithm is limited due to unavoidable

errors in estimating small probabilities.

To summarize, the theoretical bounds for the GK algorithm differ markedly from
from those seen in practical performance.

(2) Computational time for 𝑑-diagonal matrices 𝐴 is much smaller than that for random
matrices (see Figures 2 and 3 for details). This is due to the fast cache operations,
which require far fewer memory reads for sequential data. Updates to computational
trees/heaps are also performed in sequential elements, which improves time perfor-
mance as well. Also, this permits the dramatic reduction of the dependence on the
actual problem dimension in practice. Thus in Table 3 for 𝑛𝑑 = 3 and accuracy

15
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𝜀 = 10−4 the computational time has increased less than twice for 𝑛 = 108 compared
with 𝑛 = 102.
Conversely, for the random matrices, caching does not give the same improvement

in speed. This significantly decreases the actual performance of the algorithms; see
Table 4 for details.

NL1 S-FW

𝑛 time, sec. iteration time iterations
𝑛𝑑 = 3; 2 ≤ 𝑑 ≤ 3
102 4.089 3 948 632 0.007 14 142
103 4.221 3 950 392 0.008 14 142
104 4.575 3 950 392 0.009 14 142
105 4.814 3 950 392 0.010 14 142
106 5.143 3 950 392 0.010 14 142
107 5.566 3 950 392 0.010 14 142
108 6.021 3 950 392 0.010 14 142
𝑛𝑑 = 11; 6 ≤ 𝑑 ≤ 11
102 14.655 2 100 964 0.041 14 749
103 37.796 5 101 072 0.041 16 956
104 39.170 5 101 072 0.062 19 995
105 39.897 5 101 072 0.064 24 495
106 41.004 5 101 072 0.065 24 495
107 43.917 5 101 072 0.068 24 495
𝑛𝑑 = 51; 26 ≤ 𝑑 ≤ 51
103 529.240 5 216 119 1.552 46 447
104 535.348 5 216 119 1.045 29 991
105 537.419 5 216 119 1.741 49 235
106 549.782 5 216 119 1.758 49 235
107 552.271 5 216 119 1.789 49 235
𝑛𝑑 = 101; 51 ≤ 𝑑 ≤ 101
104 1 935.198 5 175 085 6.464 49 925
105 1 962.307 5 175 085 9.097 68 646
106 1 940.331 5 175 085 9.134 68 646

Table 3. Time in seconds required to solve the PageRank problem. 𝐴 is a 𝑑-diagonal matrix. The S-FW algorithm
outperforms the NL1 algorithm for most of the instances and have better scalability with the dimension of the

problem.

(3) Surprisingly, the time complexity of the S-FW algorithm for the Stanford web-graph
collection is much less than that for the NL1 algorithm (see Table 5). Unfortunately,
for two problems on the list, the NL1 algorithm performance is not sufficiently high.
We propose that this is due to the fact that the NL1 algorithm modifies two variables
per iteration and often involves very expensive, dense updates compared with to the
S-FW algorithm (see Table 2 for the information about the sparsity of the transition
matrices). Table 7 contains information about the average iteration complexity of the
NL1 algorithm; it is much higher than that for the S-FW algorithm, which supports
our conjecture, particularly for the web-BerkStan dataset. Recall that this property
is true without additional matrix sparsification (refer to Section 2).
The performance of the S-FW and NL1 algorithms is shown in Figures 4–9.
We also implement and test some other non-sparse (NS) methods and non-sparse

versions of our S-FW and NL1methods. Non-sparse versions do not perform any sparse

16
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Figure 2. Computational time for the PageRank problem, 𝐴 is a 𝑛𝑑-diagonal matrix, dimension 𝑛 = 106, number
of non-zero diagonals 𝑛𝑑 = 101. The S-FW algorithm significantly outperforms the NL1 algorithms for large scale

problems.

NL1 S-FW

𝑛 time iterations time iterations
𝑑 = 3
102 0.003 1 999 0.023 39 734
103 0.031 17 748 0.118 190 601
104 0.233 141 739 0.414 632 954
105 2.374 840 617 2.107 2 009 854
106 16.171 4 020 388 9.355 6 203 826
107 56.694 11 669 495 32.442 17 916 520
108 173.070 19 988 053 121.258 43 390 838
𝑑 = 11
102 0.013 590 0.173 44 706
103 0.072 5 106 0.593 142 109
104 0.568 40 029 2.123 450 873
105 6.342 299 382 10.374 1 482 735
106 78.383 2 025 423 60.715 4 753 809
107 503.385 11 272 158 219.988 14 693 667
𝑑 = 51
103 0.891 3 851 11.681 162 015
104 8.383 31 372 42.824 510 444
105 77.137 241 191 164.751 1 621 686
106 1 300.194 1 683 845 1 152.805 5 082 774
107 11 250.461 10 627 974 5 432.107 17 479 622
𝑑 = 101
104 29.540 29 127 168.124 529 685
105 304.419 225 146 650.878 1 696 708
106 4 692.729 1 607 834 4 619.220 5 267 738

Table 4. Time in seconds required to solve the PageRank problem. 𝐴 is a random matrix. The NL1 algorithm

outperforms the S-FW algorithm in most of the sparse and low-dimensional instances, while the S-FW algorithm is
preferable for large scale cases.
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Figure 3. Time complexity for the PageRank problem. 𝐴 is a random matrix, dimension 𝑛 = 107, average number
of non-zeros in each row and column 𝑑 = 51. The NL1 and S-FW algorithms have almost the same computational

time.

NL1 S-FW

web-graph 𝑛 time, sec. iterations time, sec. iteration
Stanford 281 903 0.145 93 152 0.008 14 142
NotreDame 325 729 700.810 3 816 436 0.526 38 014
BerkStan 685 230 38 161.847 12 315 700 0.536 19 990
Google 875 713 113.643 1 083 996 0.278 37 313

Table 5. Time in seconds required to solve the PageRank problem for web-graphs from the Stanford graph
collection. The S-FW algorithm achieves significantly better time performance compared to the NL1 algorithm.

Stanford, 𝑛 = 281903 Google, 𝑛 = 875713
method time, sec. iterations time, sec. iteration
S-FW 0.008 14 142 0.278 37 313
S-FW(NS) 75.438 14 142 451.131 38 672
NL1 0.145 93 152 113.643 1 083 996
NL1(NS) 458.493 93 152 13 507.423 1 220 868
FGM(NS) 82.978 12 464 423.008 22 811

Table 6. Time in seconds required to solve the PageRank problem for web-graphs with sparse and non-sparse
(NS) versions of S-FW and NL1 methods. We compare sparse versions of the algorithms with the non-sparse ones

(NS). We have compared our algorithms with the state-of-the-art Similar Triangles Algorithm [15, 33], , which is
essentially an extension to the Fast Gradient method (FGM).

updates and replace them with “classic” full-update operations, so we can check not
only the speedup of proposed sparse updates but also it’s computational accuracy
and stability.
We implement a standard non-sparse Projected Gradient Method (PG) [33], and

the Similar Triangles algorithm [15, 33], which we further refer as FGM-NS. Test
results prove the accuracy and stability of our sparse methods – in all cases proposed
methods outperforms non-sparse ones and operates very closely it’s “full” versions
(S-FW vs. S-FW(NS) for example). Details are provided in Table 6, Figures 4, 5, 8,
and 9.
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Stanford BerkStan
# elements NL1 FW NL1 FW

𝑑𝑟

min 1.0 1.0 1.0 1.0
max 34.0 4.0 84 209.0 84 209.0
average 3.9 3.9 2 278.4 148.6

𝑑𝑐

min 2.0 2.0 1.0 1.0
max 37.0 3.0 244.0 83.0
average 2.9 2.8 15.7 6.2

𝑑𝑟 · 𝑑𝑐
min 3.0 3.0 2.0 2.0
max 1 258.0 12.0 15 494 456.0 6 989 347.0
average 11.7 11.3 84 304.3 7 507.5

Table 7. Iteration complexity for the Stanford graph collection. The S-FW algorithm has performed a much fewer

number of updates, resulting in a higher performance compared to the NL1 algorithm.
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PG(NS)

Figure 4. Time complexity for PageRank over the web-Stanford dataset. The S-FW is fastest one for both sparse

and non-sparse (NS) method versions. Sparse algorithms significantly mostly outperforms non-sparse versions.
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Figure 5. Iteration complexity for PageRank over the web-Stanford dataset. Sparse methods have almost the
same iteration complexity as the non-sparse ones.
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Figure 6. Time complexity for PageRank over the web-BerkStan dataset. The S-FW algorithm significantly out-
performs the NL1 algorithm and has a significant gain in the vicinity of the optimal point.
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Figure 7. Time complexity for PageRank over the web-BerkStan dataset. The S-FW algorithm significantly out-

performs the NL1 algorithm and has a significant gain in the vicinity of the optimal point.
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Figure 8. Time complexity for PageRank over the web-Google dataset. Sparse S-FW method is the fastest among
compared. The convergence of the Similar triangles algorithm (FGM-NS) [15, 33] is faster in terms of the number

of iterations, but slower in terms of the computational time.
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Figure 9. Iteration complexity for PageRank over the web-Google dataset. The convergence of method’s sparse
versions is very close to the non-sparse (NS) ones.

6. Conclusion

In this paper, we have proposed three novel algorithms to solve the PageRank problem.
All the algorithms can be viewed as guided versions of coordinate or block-coordinate
descent and demonstrate superior practical performance. In further works, the authors
intend to devote more attention to sparsification techniques and interplay between the
problem sparsity, dimension, and desired accuracy.
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Appendix A. Missing Proofs in Section 2

Recall the definition of 𝑓𝛾(𝑥):

𝑓𝛾(𝑥) =
1

2
‖𝐴𝑥‖22 +

𝑛∑︁
𝑖=1

𝛾

2

(︀
−𝑥𝑖

)︀2
+
.

Lemma A.1 Let 𝑥* satisfies 𝑒⊤𝑥* = 1 and 𝑓𝛾(𝑥*) ≤ 𝜀2 for some 𝛾 > 0. Then for
�̂� = (𝑥*)+/𝑒

⊤(𝑥*)+ we have

‖𝐴�̂�‖22 ≤ 4(1 + 4𝛾−1)𝜀2

and �̂� ∈ Δ𝑛
1 = {𝑥 ∈ R𝑛 :

∑︀𝑛
𝑖=1 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0}

Proof. By the conditions of the lemma

1

2
‖𝐴𝑥*‖22 +

𝑛∑︁
𝑖=1

𝛾

2

(︀
−𝑥𝑖*

)︀2
+
≤ 𝜀2. (A1)

Let 𝑥 = (𝑥*)+ − (−𝑥*)+, then by the triangle inequality we have

‖(𝐴(𝑥*)+)‖2 ≤ ‖𝐴𝑥*‖2 + ‖(𝐴(−𝑥*)+)‖2 ≤
√
2𝜀+ ‖(𝐴(−𝑥*)+)‖2. (A2)

By the Perron-Frobenius theorem, |𝜆𝑖(𝑃⊤)| ≤ 1, 1 ≤ 𝑖 ≤ 𝑛. Thus 𝜆max (𝐴) = 𝜆max (𝐼 −
𝑃⊤) ≤ 2. By Inequality A1 one has

‖𝐴(−𝑥*)+‖2 ≤ ‖(−𝑥*)+‖2 ≤ 2

√︂
2

𝛾
𝜀. (A3)

Using Inequalities A1, A2 and A3 we have the final estimate

‖𝐴(𝑥*)+‖2 ≤
√
2𝜀+ ‖𝐴(−𝑥*)+‖2 ≤

√
2𝜀+ 2

√︂
2

𝛾
𝜀.

By definition of �̂�, we have ‖𝐴�̂�‖2((𝑥*)⊤+𝑒) = ‖𝐴(𝑥*)+‖2. Since 𝑒⊤((𝑥*)+− (−𝑥*)+) = 1,

𝑒⊤𝑥* = 1, and (−𝑥*)⊤+𝑒 ≥ 0 we have (𝑥*)
⊤
+𝑒 ≥ 1 and ‖𝐴�̂�‖2 ≤ ‖𝐴(𝑥*)+‖2. An application

of the Cauchy-Schwartz inequality concludes the proof of the lemma. �

Proposition B.1 of [1] establishes convergence rate of the gradient descent in arbitrary
norm.

Proposition 1 (Proposition B.1 of [1]) Let 𝑓(𝑥) be a convex, differentiable function that
is 𝐿-smooth with respect to ‖ · ‖ on 𝑄 = R𝑛, and 𝑥0 any initial point in 𝑄. Consider the
sequence of 𝑁 gradient steps 𝑥𝑘+1 = argmin𝑦∈𝑄

{︀
𝐿
2 ‖𝑦 − 𝑥‖

2 +∇𝑓(𝑥𝑘)⊤(𝑦 − 𝑥)
}︀
, then

the last point 𝑥𝑁 satisfies

𝑓(𝑥𝑁 )− 𝑓(𝑥*) ≤ 2
𝐿𝑅2

𝑁
,

where 𝑅 = max𝑥: 𝑓(𝑥)≤𝑓(𝑥0) ‖𝑥− 𝑥*‖, and 𝑥* is any minimizer of 𝑓 .
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Now we are ready to proof Theorem 2.2.

Proof of the Theorem 2.2. A single iteration of Algorithm 1 results in a sparse update
vector ℎ containing at most two non-zero coordinates which correspond to the minimal
and the maximal coordinates of the gradient (see Lemma 2.1 for the details). Then the
gradient update for 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘 is

∇𝑓𝛾(𝑥𝑘 + ℎ𝑘) = ∇𝑓𝛾(𝑥𝑘) + 𝜂𝐴⊤𝐴ℎ𝑘 + 𝛾(−𝑥𝑘 − ℎ𝑘)+ − 𝛾(−𝑥𝑘)+

and requires 𝑂(𝑑2 log(𝑛/𝑑2 + 2)) arithmetic operations by using a set of ⌈𝑛/𝑑2⌉ binary
heaps described earlier in Section 2. An update to the function value is

𝑓𝛾(𝑥𝑘 + ℎ𝑘) = 𝑓𝛾(𝑥𝑘) + 2ℎ⊤𝑘 𝐴𝑥𝑘 + ‖𝐴ℎ𝑘‖22/2 +
𝛾

2
(−𝑥𝑘 − ℎ𝑘)2+ −

𝛾

2
(−𝑥𝑘)2+

and similarly requires at most 𝑂(𝑑2 log(𝑛/𝑑2 + 2)) operations as ℎ𝑘 contains at most 2
non-zero coordinates. Notice that the size of the level set

𝑅 = max
𝑥: 𝑓(𝑥)≤𝑓(𝑥0)

‖𝑥− 𝑥*‖1

at a point 𝑥 is bounded from above as 𝑅 ≤ 4
√︀

2𝑛𝑓𝛾(𝑥0)/𝛾 + 2. Indeed

𝛾

2

‖(−𝑥)+‖21
𝑛

≤ 𝛾

2
‖(−𝑥)+‖22 =

𝛾

2

𝑛∑︁
𝑖=1

(−𝑥𝑖)2+

≤ 1

2
‖𝐴𝑥‖22 +

𝛾

2

𝑛∑︁
𝑖=1

(−𝑥𝑖)2+ = 𝑓𝛾(𝑥) ≤ 𝑓𝛾(𝑥0) (A4)

and

𝑅 = max
𝑥: 𝑓(𝑥)≤𝑓(𝑥0)

‖𝑥− 𝑥*‖1 ≤ max
𝑥:𝑓𝛾(𝑥)≤𝑓𝛾(𝑥0)

2‖𝑥‖1

≤ 4‖(−𝑥)+‖1 + 2 ≤ 4

√︃
2𝑛𝑓𝛾(𝑥0)

𝛾
+ 2, (A5)

where ‖𝑥‖1 ≤ ‖(−𝑥)+‖1 + ‖(𝑥)+‖1 ≤ 2‖(−𝑥)+‖1 + 1 since
∑︀𝑛

𝑖=1 𝑥
𝑖 = 1.

The remainder of the proof will consists of two phases. First, we estimate the time
complexity of the algorithm to achieve 𝑓𝛾(𝑥(𝑘)) ≤ 𝛾/(8𝑛). After that, starting from 𝑥(𝑘) :

𝑓𝛾(𝑥(𝑘)) ≤ 𝛾/(8𝑛) we find the complexity of the algorithm to achieve 𝑓𝛾(𝑥𝑚) ≤ 𝜀2.

Now fix any 𝛿 > 0 such that 𝑛𝛿2 < 1, and let 𝜀2𝑘 = (𝛿2𝑛)𝑘𝑓𝛾(𝑥0), 𝑘 ≥ 1. To achieve
𝑓𝛾(𝑥(1)) ≤ 𝑛𝛿2𝑓𝛾(𝑥0) one needs according to Proposition 1 and Eq. (A5) at most:

𝑇(1) = 16
(1 + 𝛾)(1 + 8𝑛𝑓𝛾(𝑥0)/𝛾)

𝜀21
= 16

(1 + 𝛾)(1/𝑛+ 8𝑓𝛾(𝑥0)/𝛾)

𝛿2
≤ 256

(1 + 𝛾)𝑓𝛾(𝑥0)

𝛾𝛿2

iterations. Similarly, accuracy 𝑓(𝑥(𝑘)) ≤ 𝜀2𝑘 can be achieved in

𝑇(𝑘) ≤ 16
(1 + 𝛾)(1 + 8𝑛𝑓𝛾(𝑥(𝑘))/𝛾)

𝜀2𝑘
≤ 256

(1 + 𝛾)𝑛𝑓𝛾(𝑥(𝑘−1))

𝛾𝜀2𝑘
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= 256
(1 + 𝛾)𝑛(𝛿2𝑛)𝑘−1𝑓𝛾(𝑥0)

𝛾𝛿2𝑘𝑛𝑘
= 256

(1 + 𝛾)𝑓𝛾(𝑥0)

𝛾𝛿2
= 𝑇(1)

starting from 𝑥(𝑘−1), s.t. 𝑓𝛾(𝑥(𝑘−1)) ≤ 𝜀2𝑘−1𝑓𝛾(𝑥0).
Then 𝑓𝛾(𝑥(𝑘)) ≤ 𝛾/(8𝑛) in at most 𝑘 restarts:

8𝑛𝛾𝑓𝛾(𝑥0)/𝛾 ≤ 8𝑛(𝛿2𝑛)𝑘𝑓𝛾(𝑥0)/𝛾 ≤ 1,

e.g. 𝑘 = 𝑂(log(𝑛𝑓𝛾(𝑥0)/𝛾)/ log(𝑛𝛿
2)). Thus the overall number of iterations is

𝑇 =

𝑘∑︁
𝑖=1

𝑇(𝑖) = 𝑂

(︂
log(𝑛𝑓𝛾(𝑥0)/𝛾)

𝛿2 log(𝑛𝛿2)

)︂
.

The remaining time required to solve the problem starting with 𝑥(𝑘) is bounded from

above by Proposition 1 as 32(1 + 𝛾)/𝜀2. Thus, the overall complexity of the algorithm
does not exceed

𝑇 = 𝑂

(︂
𝑛+ 𝑑2 log(𝑛/𝑑2 + 2)

(︂
1 + 𝛾

𝜀2
+ inf

𝛿:𝑛𝛿2<1

[︂
log(𝑛𝑓𝛾(𝑥0)/𝛾)

𝛿2 log(𝑛𝛿2)

]︂)︂
(1 + 𝛾)2

𝛾

)︂
. (A6)

by Lemma A.1. Taking 𝛾 = 𝑂(1), and notice that 𝑓𝛾(𝑥0) = 1 if 𝑥0 is a one of the simplex
vertices one has

𝑇 = 𝑂

(︂
𝑛+ 𝑑2 log(𝑛/𝑑2 + 2)

(︂
1

𝜀2
+ inf

𝛿:𝑛𝛿2<1

[︂
log 𝑛

𝛿2 log(𝑛𝛿2)

]︂)︂)︂
= 𝑂

(︂
𝑛+

𝑑2 log(𝑛/𝑑2 + 2)

𝜀2
+ 𝑛𝑑2 log(𝑛/𝑑2 + 2) log 𝑛

)︂
,

which completes the proof of the theorem. �

Appendix B. Missing Proofs in Section 4

Theorem 4.1 provides us with an upper bound on the efficiency of this strategy. Here
we assume that the number of iterations 𝑁 is known in advance. Let us emphasize that
Algorithm 4 is a version of the Mirror Descent algorithm with randomized projecting
aims to support sparse updates (see Section 4 for details).
Our main tool below is Proposition 2, which establishes the convergence rate of stochas-

tic online optimization for linear functions 𝑓𝑘 linear in 𝑥. We refer to recent results in
[14] for a more general problem setup.
In the proof of the following proposition we mostly follow [8] and [14]. Our proof

is based on the recent results for dual averaging method [28] that gives essentially the
same sequence of steps as the mirror descent for simplex constrained convex optimization
problems [1].

Proposition 2 Let {𝑓𝑘(𝑥) = 𝑥⊤𝐴𝑦𝑘}𝑁𝑘=1 be a set of functions 𝑓 : R𝑛 → R of variable
𝑥 such that ‖∇𝑓𝑘(𝑥)‖∞ ≤ 𝑀 almost surely. Then for a constant step-size policy 𝛾 =
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𝑀−1
√︀

2 log 𝑛/𝑁 we have

𝜓𝑁
.
=

1

𝑁

𝑁∑︁
𝑘=1

𝑓𝑘(𝑥𝑘)

E𝑁 [𝜓𝑁 ]− min
𝑥∈Δ𝑛

1

1

𝑁

𝑁∑︁
𝑘=1

𝑓𝑘(𝑥) ≤𝑀
√︂

2 log 𝑛

𝑁
.

where 𝑥𝑘 is given as

𝑥𝑘 = 𝑒𝑖, with probability 𝑝𝑖𝑘 =
𝑝𝑖𝑘−1 exp

(︁
−𝛾 𝜕𝑓𝑘−1(𝑥𝑘−1)

𝜕𝑥𝑖

)︁
∑︀𝑛

𝑡=1 𝑝
𝑡
𝑘−1 exp

(︁
−𝛾 𝜕𝑓𝑘−1(𝑥𝑘−1)

𝜕𝑥𝑡

)︁ , 𝑘 ≥ 1 (B1)

and 𝑝𝑖0 = 1/𝑛 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, and the expectation E𝑁 is taken over the choice of
𝑥1, . . . , 𝑥𝑁 . Moreover, for any Ω > 0

𝑃𝑟𝑜𝑏

[︃
𝜓𝑁 > 𝑀

√︂
2

𝑁

(︁√︀
log 𝑛+ 2

√
Ω
)︁]︃
≤ exp(−Ω).

Proof. Let 𝜔(𝑥) =
∑︀𝑛

𝑖=1 𝑥𝑖 log 𝑥𝑖 be a distance generating functions, and 𝜔*(𝑧) =

log
{︁∑︀𝑛

𝑗=1 exp(𝑧
𝑗)
}︁

be its conjugate. Then the step of the dual averaging algorithm

gives:

𝑧𝑘 = 𝑧𝑘−1 − 𝛾∇𝑓𝑘(𝑥𝑘), (B2)

𝑥𝑘+1 = ∇𝜔*(𝑧𝑘), (B3)

Instead, our update rule uses a randomised projection 𝑥𝑘+1 of 𝑧𝑘 on a unit simplex,
according to Eq. (B1).
Let 𝑧𝑘,𝑡 = 𝑧𝑘𝑡+ (1− 𝑡)𝑧𝑘−1, 𝑡 ∈ R, then

𝜔*(𝑧𝑘) = 𝜔*(𝑧𝑘−1) +

∫︁ 1

0
(𝑧𝑘 − 𝑧𝑘−1)

⊤∇𝜔*(𝑡𝑧𝑘 + (1− 𝑡)𝑧𝑘−1)𝑑𝑡

= 𝜔*(𝑦𝑘−1)− 𝛾∇𝑓𝑘(𝑥𝑘)⊤∇𝜔*(𝑧𝑘−1)

− 𝛾∇𝑓𝑘(𝑥𝑘)
∫︁ 1

0
[∇𝜔*(𝑧𝑘,𝑡)−∇𝜔*(𝑧𝑘−1)] 𝑑𝑡

≤ 𝜔*(𝑧𝑘−1)− 𝛾∇𝑓𝑘(𝑥𝑘)⊤∇𝜔*(𝑧𝑘−1)

+ 𝛾‖∇𝑓𝑘(𝑥𝑘)‖∞
∫︁ 1

0
‖∇𝜔*(𝑧𝑘,𝑡)−∇𝜔*(𝑧𝑘−1)‖1 𝑑𝑡, (B4)

where the last is due to Hoelder’s inequality. By the 1-strong convexity of 𝜔(𝑥) with
respect to the ℓ1-norm we have⃦⃦

∇𝜔*(𝑧′)−∇𝜔*(𝑧)
⃦⃦
1
≤ ‖𝑧′ − 𝑧‖∞.
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Then by Inequality (B4) and (B2) we have

𝜔*(𝑧𝑘) ≤ 𝜔*(𝑧𝑘−1)− 𝛾∇𝑓𝑘(𝑥𝑘)⊤∇𝜔*(𝑧𝑘−1) +
𝛾2‖∇𝑓𝑘(𝑥𝑘)‖2∞

2
(B3)

≤ 𝜔*(𝑧𝑘−1)− 𝛾∇𝑓𝑘(𝑥𝑘)⊤𝑥𝑘 +
𝛾2‖∇𝑓𝑘(𝑥𝑘)‖2∞

2
.

(B5)

Next summing up Ineq. (B5) for all 𝑘, 1 ≤ 𝑘 ≤ 𝑁 , we have

𝛾

𝑁∑︁
𝑘=1

𝑥⊤𝑘∇𝑓𝑘(𝑥𝑘) ≤ −𝜔*(𝑧𝑁 ) + 𝜔*(𝑧0) +
𝛾2

2

𝑁∑︁
𝑘=1

‖∇𝑓𝑘(𝑥𝑘)‖2∞ .

As 𝑧0 = 0 and (B2) we get

𝛾

𝑁∑︁
𝑘=1

(𝑥𝑘 − 𝑥)⊤∇𝑓𝑘(𝑥𝑘) ≤ −𝜔*(𝑧𝑁 ) + 𝜔*(𝑧0) + 𝑥𝑇 𝑦𝑁 +
𝛾2

2

𝑁∑︁
𝑘=1

‖∇𝑓𝑘(𝑥𝑘)‖2∞ .

From 𝜔*(𝑧0) = 0 and Young’s inequality 𝜔*(𝑧) + 𝜔(𝑥) ≥ 𝑥𝑇 𝑧 we get

𝛾

𝑁∑︁
𝑘=1

(𝑥𝑘 − 𝑥)⊤∇𝑓𝑘(𝑥𝑘) ≤ 𝜔(𝑥) +
𝛾2

2

𝑁∑︁
𝑘=1

‖∇𝑓𝑘(𝑥𝑘)‖2∞ .

From convexity of 𝑓 we get

𝛾

𝑁∑︁
𝑘=1

(𝑓𝑘(𝑥𝑘)− 𝑓𝑘(𝑥)) ≤ 𝜔(𝑥) +
𝛾2

2

𝑁∑︁
𝑘=1

‖∇𝑓𝑘(𝑥𝑘)‖2∞ .

Taking expectation E𝑁 (·) with respect to 𝑥1, . . . , 𝑥𝑁 (e.g. the choice of 𝑖𝐴1 , . . . , 𝑖
𝐴
𝑁 ), we

have

𝛾

𝑁∑︁
𝑘=1

E𝑁 [𝑓𝑘(𝑥𝑘)− 𝑓𝑘(𝑥)] ≤ 𝜔(𝑥) +
𝛾2

2

𝑁∑︁
𝑘=1

E𝑁

[︁
‖∇𝑓𝑘(𝑥)‖2∞

]︁
.

To finish the proof it remains to note that ‖∇𝑓𝑘(𝑥𝑘)‖∞ ≤𝑀 and

𝜓𝑁 ≤ min
𝛾>0

log 𝑛

𝑁𝛾
+
𝑀2𝛾

2
=𝑀

√︂
2 log 𝑛

𝑁
.

The remainder of the proof relies on Azuma’s inequality. Let

𝑍𝑗 =

𝑗∑︁
𝑘=1

𝛾(𝑥− 𝑥𝑘)⊤∇𝑓𝑘(𝑥𝑘)

is a Martingale satisfying |𝑍𝑗+1−𝑍𝑗 | ≤ 𝑐𝑗
.
= 4𝑀𝛾 almost surely. By Azuma’s inequality
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we have

𝑃𝑟𝑜𝑏[𝑍𝑁 ≥ 𝑡] ≤ exp

(︃
− 𝑡2

2
∑︀𝑁

𝑗=1 𝑐
2
𝑗

)︃
.

Setting 𝑡 = 4𝑀𝛾
√
2Ω𝑁 finishes the proof of the proposition. �

Now we are ready to proof the Theorem 4.1.

Proof of the Theorem 4.1. For a point (�̄�𝑁 , 𝑦𝑁 ) defined by Algorithm 4 we have:

0 ≤ ||𝐴𝑥𝑁 ||∞
(11)
= max

𝑦∈Δ2𝑛
1

⟨𝑦, ̃︀𝐴𝑥𝑁 ⟩ (12)= max
𝑦∈Δ2𝑛

1

⟨𝑦, ̃︀𝐴𝑥𝑁 ⟩ − max
𝑦∈Δ2𝑛

1

min
𝑥∈Δ𝑛

1

⟨𝑦, ̃︀𝐴𝑥⟩
≤ max

𝑦∈Δ2𝑛
1

⟨𝑦, ̃︀𝐴𝑥𝑁 ⟩ − min
𝑥∈Δ𝑛

1

⟨𝑦𝑁 , ̃︀𝐴𝑥⟩
=

{︃
max
𝑦∈Δ2𝑛

1

⟨𝑦, ̃︀𝐴𝑥𝑁 ⟩ − 1

𝑁

𝑁∑︁
𝑘=1

⟨𝑦𝑘, ̃︀𝐴𝑥𝑘⟩
}︃

+

{︃
1

𝑁

𝑁∑︁
𝑘=1

⟨𝑦𝑘, ̃︀𝐴𝑥𝑘⟩ − min
𝑥∈Δ𝑛

1

⟨𝑦𝑁 , ̃︀𝐴𝑥⟩
}︃

≤
√︂

2

𝑁

(︁√︀
ln(2𝑛) + 2

√︀
ln(1/𝛿)

)︁
+

√︂
2

𝑁

(︁√
ln𝑛+ 2

√︀
ln(1/𝛿)

)︁
=

√︂
2

𝑁

(︁√︀
ln(2𝑛) +

√︀
ln(𝑛) + 4

√︀
ln(1/𝛿)

)︁
,

where the last estimate is accurate owing to Proposition 2 with 𝑀 = 1. That is, with
probability at least 1− 𝛿, it is sufficient to have

𝑁 ≥ 2

𝜀2

(︁√︀
ln(2𝑛) +

√︀
ln(𝑛) + 4

√︀
ln(1/𝛿)

)︁2
,

𝑁 ≥ 4

𝜀2

(︁
ln(2𝑛) + ln(𝑛) + 16 ln(1/𝛿)

)︁
iterations of the GK algorithm in order to guarantee ‖𝐴𝑥𝑁‖∞ ≤ 𝜀. Each update of 𝑥 or 𝑦
involves an update of no more than 𝑑 probabilities in vectors 𝑝 and 𝜋 corresponding to
non-zeros in the gradient. Algorithm 3 requires 𝑂(log 𝑛) time to update each. Therefore,
the time-complexity of the algorithm is bounded from above as

𝑂

(︂
𝑛+

𝑑 ln𝑛(ln𝑛+ ln(𝜎−1))

𝜀2

)︂
.

�
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