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We present two easy-to-implement gradient-free/zeroth-order methods to optimize a
stochastic non-smooth function accessible only via a black-box. The methods are built
upon efficient first-order methods in the heavy-tailed case, i.e., when the gradient noise
has infinite variance but bounded (1 + κ)-th moment for some κ ∈ (0, 1]. The first
algorithm is based on the stochastic mirror descent with a particular class of uniformly
convex mirror maps which is robust to heavy-tailed noise. The second algorithm is
based on the stochastic mirror descent and gradient clipping technique. Additionally,
for the objective functions satisfying the r-growth condition, faster algorithms are
proposed based on these methods and the restart technique.

1 Introduction

We consider stochastic non-smooth convex minimization problem

min
x∈X⊂Rd

f(x)
def
= Eξ∼D [f(x, ξ)] , (1)
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where function f(x, ξ) isM2(ξ)-Lipschitz continuous in x w.r.t. the Euclidean norm, X
is a compact convex, and the expectation Eξ∼D [f(x, ξ)] is w.r.t. random variable ξ with
unknown distribution D. We suppose that stochastic realizations of the function values
f(x) are available only through a zeroth-order oracle corrupted by some deterministic
(probably adversarial) noise δ(x)

φ(x, ξ)
def
= f(x, ξ) + δ(x). (2)

We consider two-point zeroth-order oracle setting meaning that for two query points
x, y ∈ X we can evaluate two outputs φ(x, ξ) and φ(y, ξ) with the same ξ. Function
φ(x, ξ) can be considered as a noisy approximation of a Lipschitz function f(x, ξ).

Stochastic optimization problems implies that functions f(x, ξ) must have finite
mathematical expectation for all x ∈ X .

Zeroth-order methods were studied in a wide range of works, see e.g., [1, 2] and the
references therein. Particularly, under different assumptions on black-box oracle (in the
noisy or noiseless setup) the optimal oracle complexity was obtained [3–8]. This bound
is proportional to dε−2, where ε is the desired precision to solve problem (1) in terms of
the function values. For saddle point problems, we refer to papers [9, 10] obtaining the
same bound. This result is quite expected since the above complexity is d times larger
than the complexity of optimal stochastic gradient procedures. Factor d has a natural
interpretation since to approximate (stochastic) gradient it suffices to use d+1 function
values.1 This is obvious in the smooth case (see e.g. [11]), and is not so trivial in the
non-smooth case [7]. This result was obtained it the classical setting of a finite variance
of stochastic gradients: Eξ[M(ξ)2] < ∞. However, in modern learning problems, this
condition may be violated. To this end, we aim to relax this assumption and consider
heavy-tailed noise with bounded (1+κ)-th moment for some κ ∈ (0, 1], i.e., we suppose
Eξ[M(ξ)1+κ] <∞. Under this assumption, for the first-order stochastic methods, the

optimal oracle complexity is proportional to ε−
1+κ
κ [12]. Thus for zeroth-order oracle

we may expect the bound dε−
1+κ
κ . In this paper, we obtain the bound

(√
d/ε
) 1+κ

κ

matching the expected bound only for κ = 1. To the best of our knowledge, this

poses the following open problem: is the bound
(√

d/ε
) 1+κ

κ

optimal in terms of the

dependence on d? For smooth stochastic convex optimization problems with (d + 1)-
points stochastic zeroth-order oracle the answer is negative and the optimal bound is
proportional to dε−

1+κ
κ . Thus, for κ ∈ (0, 1) our results are somewhat surprising since

the dependence on d in our bound is very different from the known results for the
case κ = 1. To the best of our knowledge, this paper provides the first known result
for gradient-free methods without assuming a finite variance of the stochastic noise.
Since we give an accurate analysis, including high-probability bounds,2 our results
could be of interest even in a very particular case of κ = 1. In this case, the high-
probability bound was previously known only for compactly supported distributions of

1To say more precisely, it suffices to use d + 1 values of f(x, ξ) with the same ξ and different (d + 1)
points x.

2We emphasize that these bounds were obtained without any probabilistic assumptions, except
Eξ[M

1+κ(ξ)] < ∞!
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f(x, ξ) [10]. That is, even for sub-Gaussian tails [13] it was an open question to obtain
high-probability bounds for gradient-free methods. The main challenge in obtaining
our results is in the combination of the auxiliary gradient-free randomization and the
original stochasticity of the oracle in the problem. The known inequalities on measure
concentration do not allow obtaining the desired sub-Gaussian concentration for the
output of the algorithm.

Gradient clipping technique has become increasingly popular for obtaining con-
vergence guarantees in terms of high probability [14–16]. Starting with the work [14]
(see also [15, 16]) one can observe an increased interest of researchers in algorithms
that use gradient clipping to be able to obtain high-probability convergence guaran-
tees in stochastic optimization problems with heavy-tailed noise. In particular, only
in the last two years optimal first-order algorithms were proposed and the following
results were obtained for their convergence guarantees: 1. in the expectation for gen-
eral proximal setup and non-smooth stochastic convex optimization problems with
infinite variance [17]; 2. in high-probability for general proximal setup and non-smooth
online stochastic convex optimization problems with infinite variance [18]; 3. in high-
probability for the Euclidean proximal setup and smooth and non-smooth stochastic
convex optimization problems and variational inequalities with infinite variance [19–
21]; 4. in high-probability for convergence of optimal variance-adaptive algorithm in
the Euclidean proximal setup for non-smooth stochastic (strongly) convex optimiza-
tion problems with infinite variance [22]. Since the aforementioned results are strongly
correlated with each other, in this paper, we depart from the works [17, 18] to incorpo-
rate zero-order oracle into their algorithms. The developed technique, which reduces
randomization caused by the gradient-free nature of the oracle to the original stochas-
ticity, allows generalizing the results of other papers considered above in a similar
manner. The idea of this reduction is not new and has already been used many times,
see e.g. [3, 4, 6, 7]. But, all these works are significantly based on the assumption of
finite variance of the stochastic noise. For the infinite noise variance setting, the tech-
nique requires significant generalizations, which we make in this paper. We expect,
that based on these results it is possible to obtain new results for zero-order algorithms
in the smooth setting and also in the setting of one-point feedback.

Contribution

1. For d-dimensional optimization, we propose two algorithms with oracle complexity

proportional to
(√

d/ε
)1+κ

κ

. This upper bound is valid under the maximal admis-

sible level of adversarial noise proportional to ε2/
√
d. For the first algorithm the

convergence results hold in expectation whereas for the second algorithm the results
are valid with high probability.

2. If additionally the objective satisfies the r-growth condition ( this includes strongly
convex problems and problems with a sharp minimum), the restart technique for

these algorithms gives oracle complexity proportional to
(√

d/ε
(r−1)

r

) 1+κ
κ

. This

upper bound is valid under the maximal level of adversarial noise proportional to
ε(2−

1
r )/
√
d.
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Organization

This paper is organized as follows. Section 2 presents the main objects and notions
that are used to construct gradient-free algorithms. In Section 3, we present our first
gradient-free algorithm which is based on mirror descent. In Section 4 we present our
second gradient-free algorithm based on gradient clipping. Finally, in Section 5 for the
objective functions satisfying the r-growth condition, we propose a faster algorithm
using the restart technique.

2 Preliminaries

Notations

For p ∈ [1, 2], we use the lp-norm, i.e. ‖x‖p =
(∑d

k=1 |xk|p
)1/p

. The corresponding

dual norm is ‖y‖q = maxx{〈x, y〉| ‖x‖p ≤ 1}, where q is defined by the equality
1/q+ 1/p = 1. We use 〈x, y〉 =∑d

k=1 xkyk to denote the inner product of x, y ∈ R
d. Let

Bd
p′ = {x ∈ R

d | ‖x‖p′ ≤ 1} and Sd
p′ = {x ∈ R

d | ‖x‖p′ = 1} be the unit ℓp′ -ball and
the unit ℓp′-sphere with center at 0, correspondingly. The full expectation of a random
variable X is denoted by E[X ]. The expectation w.r.t. random variables Y1, . . . , Yn is
denoted by EY1,...,Yn [X ]. The condition expectation w.r.t. xk, . . . , x1 is refereed to as

E[·|xk, . . . , x1] def= E|≤k[·] for brevity.

2.1 Assumptions

For a convex set X ⊂ R
d and τ > 0, let us introduce Xτ = X + τBd

2 .
Assumption 1 (Convexity). There exists τ > 0 such that function f(x, ξ) is convex
w.r.t. x for any ξ on Xτ .

This assumption implies that f(x) is convex on X .
Assumption 2 (Lipschitz continuity and boundedness of (1+κ)-th moment). There
exists τ > 0 such that function f(x, ξ) is M2(ξ)-Lipschitz continuous w.r.t. x in the
l2-norm, i.e., for all x1, x2 ∈ Xτ

|f(x1, ξ)− f(x2, ξ)| ≤M2(ξ)‖x1 − x2‖2.

Moreover, there exist κ ∈ (0, 1] and M2 such that Eξ[M2(ξ)
1+κ] ≤M1+κ

2 .
Lemma 2.1. Assumption 2 implies that f(x) is M2-Lipschitz on X .

The proof can be found in Section 8 (Lemma 8.2).
Assumption 3 (Boundedness of noise). There exists a constant ∆ > 0 such that
|δ(x)| ≤ ∆ for all x ∈ Q.

Randomized smoothing.

The main scheme that allows us to develop gradient-free methods for non-smooth
convex problems is randomized smoothing [1, 5, 12, 23, 24] of a non-smooth function
f(x, ξ). The smooth approximation to a non-smooth function f(x, ξ) is defined as

f̂τ (x)
def
= Eu,ξ[f(x+ τu, ξ)], (3)
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where u ∼ U(Bd
2 ) is a random vector uniformly distributed on the Euclidean unit ball.

The next lemma gives estimates for the quality of this approximation. In contrast
to f(x), function f̂τ (x) is smooth and has several useful properties.
Lemma 2.2. [24, Theorem 2.1] Let Assumptions 1,2 hold. Then,

1. Function f̂τ (x) is convex, Lipschitz with constant M2 on X , and satisfies

sup
x∈X
|f̂τ (x) − f(x)| ≤ τM2.

2. Function f̂τ (x) is differentiable on X with the following gradient

∇f̂τ (x) = Ee

[
d

τ
f(x+ τe)e

]
,

where e ∼ U(Sd
2 ) is a random vector uniformly distributed on the Euclidean unit

sphere.

Gradient estimate.

To employ first-order algorithms in the zero-order oracle setting, we use the following
gradient estimate

g(x, ξ, e) =
d

2τ
(φ(x + τe, ξ)− φ(x − τe, ξ))e

=
d

2τ
(f(x+ τe, ξ) + δ(x+ τe) − f(x− τe, ξ) − δ(x− τe))e. (4)

We can notice that this vector will be an unbiased estimate of the gradient of f̂τ (x)
if there is no adversarial noise ∆ = 0. Moreover, this vector has bounded (1 + κ)-th
moment, see the next lemma.
Lemma 2.3. Under Assumptions 1, 2 and 3, for q ∈ [2,+∞), we have

Eξ,e[‖g(x, ξ, e)‖1+κ
q ] ≤ 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(
daq∆

τ

)1+κ
def
= σ1+κ

q ,

where aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}.

The proof can be found in the Appendix 8.

3 First Algorithm: ZO-RSMD

In this section, we present our first gradient-free algorithm which is built upon mirror
descent algorithm with uniformly convex mirror map from [17]. Our algorithm as
well as algorithm from [17] is robust to heavy-tailed noise. Firstly we provide mirror
descent algorithm with uniformly convex mirror map from [17] and then we present
its zeroth-order version.
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3.1 Robust Stochastic Mirror Descent (RSMD)

Now we present convergence results for first-order algorithm from [17] called stochastic
mirror descent algorithm with uniformly convex mirror map (RSMD). It is based on
stochastic mirror descent algorithm [12] and the notion of uniform convexity (to be
determined further).
Definition 3.1 (Uniform convexity). Consider a differentiable convex function ψ :
R

d → R, an exponent r ≥ 2, and a constant K > 0. Then, ψ is called (K, r)-uniformly
convex w.r.t. the ℓp-norm if, for any x, y ∈ R

d,

ψ(y)− ψ(x) − 〈∇ψ(x), y − x〉 ≥ K

r
‖x− y‖rp. (5)

When r = 2 the definition of (K, r)-uniform convexity is equivalent to K-strongly
convexity. Examples of functions when r > 2 can be obtained from the next lemma.
Lemma 3.1. For κ ∈ (0, 1], q ∈ [1 + κ,∞) and p such that 1/q + 1/p = 1, we define

Kq
def
= 10max

{
1, (q − 1)

1+κ
2

}
. (6)

Then,

φp(x)
def
=

κ

1 + κ
‖x‖

1+κ
κ

p (7)

is
(
K

− 1
κ

q , 1+κ
κ

)
-uniformly convex w.r.t. the ℓp-norm.

Now we describe robust stochastic mirror descent (RSMD) algorithm [17]. Let
function Ψ : Rd → R be (K, r)-uniformly convex w.r.t. the ℓp-norm. We denote its
Fenchel conjugate and its Bregman divergence respectively as

Ψ∗(y) = sup
x∈Rd

{〈x, y〉 −Ψ(x)} and DΨ(y, x) = Ψ(y)−Ψ(x)− 〈∇Ψ(x), y − x〉.

For a given stepsize ν and gradient gk+1, the updates of RSMD are defined as follows:

yk+1 = ∇(Ψ∗)(∇Ψ(xk)− νgk+1), xk+1 = argmin
x∈X

DΨ(x, yk+1). (8)

Using the assumptions on the function Ψ, it can be proved that the updates are well-
defined and that (∇Ψ)−1 = ∇Ψ∗. The map ∇Ψ is referred to as the mirror map. The
next theorem presents the convergence guarantee for the RSMD. Let

x∗ = argmin
x∈X

f(x).

Theorem 3.2. [17, Theorem 6] Consider some κ ∈ (0, 1], p ∈ [1,∞] and prox-function
Ψp which is

(
1, 1+κ

κ

)
-uniformly convex w.r.t. p norm. Then, for the SMD Algorithm

outlined in (8), after T iterations with any gk ∈ R
d, k ∈ 1, T and starting point

6



x0 = argmin
x∈X

Ψp(x) we have

1

T

T−1∑

k=0

〈gk+1, xk − x∗〉 ≤
κ

κ+ 1

R
1+κ
κ

0

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

‖gk+1‖1+κ
q , (9)

where R
1+κ
κ

0

def
= 1+κ

κ DΨp(x
∗, x0) is the distance between starting point x0 and solution

x∗.

3.2 Zeroth order version of RSMD (ZO-RSMD)

Next, we present our first zeroth-order algorithm called ZO-RSMD (zeroth-order version
of robust SMD algorithm). The main idea of the proposed ZO-RSMD (zeroth-order
version of robust SMD algorithm) is to combine the above RSMD algorithm (8) with
the two-point gradient approximation (4).

Algorithm 1 ZO-RSMD

1: procedure ZO-RSMD (number of iterations T , stepsize ν, prox-function Ψp,
smoothing constant τ)

2: x0 ← argmin
x∈X

Ψp(x)

3: for k = 0, 1, . . . , T − 1 do

4: Sample ek ∼ Uniform({e : ‖e‖2 = 1}) independently
5: Sample ξk independently
6: Calculate gk+1 = d

2τ (φ(xk + τek, ξk)− φ(xk − τek, ξk))ek
7: Calculate yk+1 ← ∇(Ψ∗

p)(∇Ψp(xk)− νgk+1)
8: Calculate xk+1 ← argmin

x∈X
DΨp(x, yk+1)

9: end for

10: return xT ← 1
T

T−1∑
k=0

xk

11: end procedure

The next theorem provides a convergence guarantee for ZO-RSMD (see Algorithm 1).
Theorem 3.3. Let function f satisfy Assumptions 1, 2, 3, q ∈ [1 + κ,∞]. Let
Ψp(x) be a prox-function which is

(
1, 1+κ

κ

)
-uniformly convex w.r.t. the ℓp-norm (e.g.,

Ψp(x) = K
1/κ
q φp(x), where Kq, φp are defined in (6) and (7) respectively). Let step-

size ν =
R

1/κ
0

σq
T− 1

1+κ with σq given in Lemma 2.3, distance between starting point x0

and solution x∗ R
1+κ
κ

0

def
= 1+κ

κ DΨp(x
∗, x0) and diameter D

1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈X

DΨp(x, y).

Then for the output xT of the Algorithm 1 the following holds

1.

E[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R0σq

T
κ

1+κ
, (10)
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where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. Moreover, with optimal τ =

√
√
d∆DΨ+4R0daq∆T

−
κ

1+κ

2M2
, we have

E[f(xT )]− f(x∗) ≤
√
8M2

√
d∆DΨ +

√
32M2R0daq∆

T
κ

(1+κ)

+
2
√
daqM2R0

T
κ

1+κ
. (11)

Sketch of the Proof of Theorem 3.3 . the proof is based on Theorem 3.2 and inequality
(9) which give

E

[
1

T

T−1∑

k=0

〈gk+1, xk − x∗〉
]

︸ ︷︷ ︸
1

≤ E

[
κ

κ+ 1

R
1+κ
κ

0

νT

]

︸ ︷︷ ︸
2

+E

[
νκ

1 + κ

1

T

T−1∑

k=0

‖gk+1‖1+κ
q

]

︸ ︷︷ ︸
3

. (12)

1 term in (12) due to convexity and approximation properties of f̂τ (x) in Lemma
2.2 and measure concentration Lemma 8.6 can be bounded as

1 ≥ E[f(xT )]− f(x∗)− 2M2τ −
√
d∆

τ
DΨ.

3 term in (12) can be bounded by Lemma 2.3 as

3 ≤ νκ

1 + κ
σ1+κ
q .

Combining these bounds together, we get

E[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R
1+κ
κ

0

νT
+

νκ

1 + κ
σ1+κ
q .

Next we choose optimal stepsize ν =
R

1/κ
0

σq
T− 1

1+κ , τ and finish the proof.

For the complete proof we refer to Section 9.

3.3 Discussion

Maximum admissible level of adversarial noise

Let ε > 0 be a desired accuracy in terms of the function value, i.e., our goal is to
guarantee E[f(xT )] − f(x∗) ≤ ε. According to Theorem 3.3 in the case of absence of
the adversarial noise, i.e., when ∆ = 0, the iteration complexity to reach accuracy ε is

T = O

((
R0

√
daqM2

ε

) 1+κ
κ

)
if τ is chosen sufficiently small. This complexity is optimal

according to [12] in terms of ε dependency. In order to obtain the same complexity in

8



the case when ∆ > 0, we need to choose an appropriate value of τ and ensure that

∆ is sufficiently small. Thus, the terms 2M2τ and
√
d∆
τ DΨ in (10) should be of the

order ε. These conditions also make negligible the τ -depending term in σq. One can
choose τ = ε

M2
rather than optimal τ proposed in Theorem 3.3 in order to get easier

calculations. Consequently, when τ = ε
M2

and ∆ ≤ ε2

M2

√
dDΨ

, we have

T = O



(
R0

√
daqM2

ε

) 1+κ
κ


 .

According to [25, 26] bound ∆ ≤ ε2

M2

√
dDΨ

exactly matches the upper bound of

admissible adversarial noise for non-smooth zeroth-order optimization.

Dependency of the bounds on q and d

In Algorithm 1, we can freely choose p ∈ [1, 2] and Ψp, which lead to different values
of DΨ, R0, aq depending on the compact convex set X . It is desirable to reduce aq,DΨ

simultaneously, that would allow us to increase maximal noise level ∆ and converge
faster without changing the rate according to (10). Yet, unlike the well-studied SMD
Algorithm [12] with strongly convex prox-functions Ψp, there are only a few examples
of effective choices of uniformly-convex prox-functions Ψp.

4 Second Algorithm: ZO-Clip-SMD

In this section, we present our second algorithm which is based on the mirror descent
and gradient clipping technique.

An alternative approach for dealing with heavy-tailed noise distributions in
stochastic optimization is based on the gradient clipping technique, see e.g., [27]. Given
a constant c > 0, the clipping operator applied to a vector g is given by

ĝ =

{
g

‖g‖ min(‖g‖, c), g 6= 0,

0, g = 0.

Clipped gradient has several useful properties for further proofs.
Lemma 4.1. For c > 0 and stochastic vector g = g(x, ξ, e) we define ĝ =

g
‖g‖q

min(‖g‖q, c). Then we have

1.
‖ĝ − E[ĝ]‖q ≤ 2c. (13)

2. Also if E[‖g(x, ξ, e)‖1+κ
q ] ≤ σ1+κ

q , then we have
(a)

E[‖ĝ‖2q] ≤ σ1+κ
q c1−κ, (14)

(b)
E[‖ĝ − E[ĝ]‖2q] ≤ 4σ1+κ

q c1−κ, (15)

9



(c)

‖E[g]− E[ĝ]‖q ≤
σ1+κ
q

cκ
. (16)

The clipping constant c allows playing with the trade-off between the faster
convergence due to bounded second moment of ĝ and bias ‖E[ĝ − g]‖ when c→ 0.

Algorithm 2 ZO-Clip-SMD

1: procedure ZO-Clip-SMD (Number of iterations T , stepsize ν, clipping constant
c, prox-function Ψp, smoothing constant τ)

2: x0 ← argmin
x∈X

Ψp(x)

3: for k = 0, 1, . . . , T − 1 do

4: Sample ek ∼ Uniform({e : ‖e‖2 = 1}) independently
5: Sample ξk independently
6: Calculate gk+1 = d

2τ (φ(xk + τek, ξk)− φ(xk − τek, ξk))ek
7: Calculate ĝk+1 = gk+1

‖gk+1‖q
min(‖gk+1‖q, c)

8: Calculate yk+1 ← ∇(Ψ∗
p)(∇Ψp(xk)− νĝk+1)

9: Calculate xk+1 ← argmin
x∈X

DΨp(x, yk+1)

10: end for

11: return xT ← 1
T

T−1∑
k=0

xk

12: end procedure

The next theorem presents convergence rates for ZO-Clip-SMD (Algorithm 2) in
terms of the expectation of the suboptimality gap.
Theorem 4.2. Let function f satisfy Assumptions 1, 2, 3, q ∈ [2,∞], arbitrary num-
ber of iterations T , smoothing constant τ > 0 be given. Let Ψp(x) be a prox-function

which is 1-strongly convex w.r.t. the p-norm . Let the stepsize ν =
(

R2
0

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

with σq given in Lemma 2.3, distance between starting point x0 and solution x∗

R
1+κ
κ

0

def
= 1+κ

κ DΨp(x
∗, x0), diameter D

1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈X

DΨp(x, y), and the clipping

constant c = 2κDΨ

(1−κ)ν . Then for the output xT of Algorithm 2 the following holds

1. Then, we have

E[f(xT )]− f(x∗) = 2M2τ +

√
d∆

τ
DΨ +

R
2κ

1+κ

0 D
1−κ
1+κ

Ψ σq

T
κ

1+κ

, (17)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.
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2. Moreover, with the optimal τ =

√
√
d∆DΨ+4R

2κ
1+κ
0 D

1−κ
1+κ
Ψ daq∆T

−
κ

1+κ

2M2
, we have

E[f(xT )]− f(x∗) ≤
√

8M2

√
d∆DΨ +

√√√√32M2R
2κ

1+κ

0 D
1−κ
1+κ

Ψ daq∆

T
κ

(1+κ)

+
2
√
daqM2R

2κ
1+κ

0 D
1−κ
1+κ

Ψ

T
κ

1+κ
. (18)

Sketch of the Proof of Theorem 4.2 . The proof is based on Theorem 3.2 and inequal-
ity (9) for 1-strongly convex Ψp, which give

E

[
1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉
]

︸ ︷︷ ︸
1

≤ E

[
1

2

R2
0

νT

]
+ E

[
ν

2

1

T

T−1∑

k=0

‖ĝk+1‖2q

]

︸ ︷︷ ︸
2

. (19)

1 term in (19) due to convexity and approximation properties of f̂τ (x) in Lemma
2.2, measure concentration Lemma 8.6 and clipping properties in Lemma 4.1 can be
bounded as

1 ≥ E[f(xT )]− f(x∗)− 2M2τ −
√
d∆

τ
DΨ −

DΨσ
1+κ
q

cκ
.

2 term in (19) can be bounded by Lemma 4.1 as

2 ≤ ν

2
c1−κσ1+κ

q .

Combining these bounds together, we get

E[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
0

νT
+
ν

2
σ1+κ
q c1−κ +

(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ.

Next, we choose optimal clipping constant c = 2κDΨ

(1−κ)ν . Then, the optimal stepsize

ν =
(

R2
0

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

and smoothing parameter τ finish the proof.

For the complete proof we refer to Appendix 10.
The next theorem present the convergence rates of for ZO-Clip-SMD (Algorithm

2) with high probability rather than in expectation. We will use the Õ(·)-notation to
hide polynomial factors of log 1

δ .
Theorem 4.3. Let function f satisfy Assumptions 1, 2, 3, q ∈ [2,∞], arbitrary
number of iterations T , smoothing constant τ > 0 be given. Let Ψp(x) be a 1-strongly

convex w.r.t. the p-norm prox-function. Let the clipping constant c = T
1

(1+κ) σq with

11



σq given in Lemma 2.3, the stepsize ν = DΨ

c with diameter D2
Ψ

def
= 2 sup

x,y∈X
DΨp(x, y).

Then for the output xT of the Algorithm 2 the following holds

1. Then, with probability at least 1− δ, we have

f(xT )− f(x∗) ≤ 2M2τ +
∆
√
d

τ
DΨ + Õ

(DΨσq

T
κ

1+κ

)
, (20)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. Moreover, with the optimal τ =

√
√
d∆DΨ+4DΨdaq∆T

−
κ

1+κ

2M2
, we have

f(xT )− f(x∗) = Õ

(√
8M2

√
d∆DΨ +

√
32M2DΨdaq∆

T
κ

(1+κ)

+
2
√
daqM2DΨ

T
κ

1+κ

)
. (21)

Sketch of the Proof of Theorem 4.3 . To bound variables with probability at least 1−δ
we use the classical Bernstein inequality for the sum of martingale differences (i.e.
E[Xi|Xj<i] = 0, for all i ≥ 1) (Lemma 11.1) and the sum of squares of random
variables (Lemma 11.2).

The proof is based on Theorem 3.2 and inequality (9) for 1-strongly convex Ψp

which give

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
0

νT
+
ν

2

1

T

T−1∑

k=0

‖ĝk+1‖2q
︸ ︷︷ ︸

1

. (22)

Adding ±E|≤k[ĝk+1] and ±f̂τ (xk) to the left part of (22), we obtain

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 =
1

T

T−1∑

k=0

〈ĝk+1 − E|≤k[ĝk+1], xk − x∗〉
︸ ︷︷ ︸

2

+
1

T

T−1∑

k=0

〈E|≤k[ĝk+1]−∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

3

,

+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

4

.

12



We bound 1 term in (22) using Lemma 11.2 and 2 as the sum of martingale
differences using Lemma 11.1:

1 = Õ

(
σ1+κ
q,κ c1−κ +

1

T
c2
)

2 = Õ


4cDΨ

T
+

√
4σ1+κ

q c1−κ

√
T

D2
Ψ


 .

Next, we bound 4 using the convexity of f̂τ (x) in Lemma 2.2 and 3 using the
measure concentration Lemma 8.6 and clipping properties in Lemma 4.1:

3 ≤
(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ,

4 ≥ f(xT )− f(x∗)− 2M2τ.

Combining these bounds together, we get

f(xT )− f(x∗) ≤ 2M2τ +

(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ +

1

2

R2
0

νT

+ Õ


ν

2
σ1+κ
q c1−κ +

ν

2

1

T
c2 +

4cDΨ

T
+

√
4σ1+κ

q c1−κ

√
T

D2
Ψ


 .

Next, we choose the stepsize ν = DΨ

c , clipping constant c = T
1

(1+κ) σq, smoothing
parameter τ , and finish the proof.

For the complete proof we refer to Section 11.

4.1 Discussion

Maximum admissible level of adversarial noise

Let ε > 0 be a desired accuracy in terms of the function value, i.e., with probability
at least 1 − δ we have f(xT ) − f(x∗) ≤ ε. In Theorem 4.3 if there is no adversarial
noise, i.e., ∆ = 0, then the number of iterations T to reach this accuracy is given

by T = Õ

((
DΨ

√
daqM2

ε

) 1+κ
κ

)
when τ → 0. This bound is optimal in terms of ε

dependency according to [12]. In order to keep the same complexity when ∆ > 0,

the terms 2M2τ and
√
d∆
τ DΨ should be of the order ε. These conditions also make

negligible the τ -depending term in σq. One can choose τ = ε
M2

rather than optimal τ
proposed in Theorem 4.3 in order to get easier calculations. Consequently, if τ = ε

M2

13



and ∆ ≤ ε2

M2

√
dDΨ

then

T = Õ



(
DΨ

√
daqM2

ε

) 1+κ
κ


 .

According to [25, 26] bound ∆ ≤ ε2

M2

√
dDΨ

exactly matches the upper bound of

admissible adversarial noise for non-smooth zeroth-order optimization.

Recommendations for choosing Ψp

In Algorithm 2, we can freely choose p ∈ [1, 2] and Ψp, which, depending on the
compact convex set X , will change DΨ, R0, aq. The main task is to reduce aq,DΨ

simultaneously, which will allow us to increase maximal noise ∆ and converge faster
without changing the rate according to (20).

Next, we discuss some standard sets X and prox-functions Ψp taken from [28]. The
two main setups are given by

1. Ball setup:

p = 2,Ψp(x) =
1

2
‖x‖22, (23)

2. Entropy setup:

p = 1,Ψp(x) = (1 + γ)

d∑

i=1

(xi + γ/d) log(xi + γ/d), γ > 0. (24)

We consider unit balls Bd
p′ and standard simplex ∆d

+ = {x ∈ R
d : x ≥ 0,

∑
i xi = 1}

as X . By Lemma 2.3 constant aq equals d
1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}. The next

tables collect the iteration complexity T
κ

1+κ and maximum feasible noise level ∆ up
to O

(
log 1

δ

)
factor for each setup (row) and set (column).

Table 1 T
κ

1+κ up to O
(

log 1

δ

)

factor for Algorithm 2

∆d
+

Bd
1

Bd
2

Bd
∞

Ball
√

dM2/ε
√

dM2/ε
√

dM2/ε dM2/ε

Entropy ln dM2/ε lndM2/ε
√

d lndM2/ε d ln dM2/ε

Table 2 Maximum feasible noise level ∆ up to O (1) factor for Algorithm 2

∆d
+ Bd

1 Bd
2 Bd

∞

Ball ε2/(
√

dM2) ε2/(
√

dM2) ε2/(
√

dM2) ε2/(dM2)

Entropy ε2/(
√

d ln dM2) ε2/(
√

d ln dM2) ε2/(d
√

lndM2) ε2/(
√

d3 ln dM2)

From these tables, we see that for X = ∆d
+ or Bd

1 , the Entropy setup is preferable,

while the Ball setup allows maximum feasible noise level ∆ to be up to
√
ln d greater.
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Meanwhile, for X = Bd
2 or Bd

∞, the Ball setup is better in terms of both convergence
rate and noise robustness.

Comparison of two algorithms: ZO-RSMD and ZO-Clip-SMD

Despite the fact that both algorithms have the same convergence rates, ZO-Clip-SMD
is more flexible due to the greater freedom of choice of prox-functions Ψp. However, its
convergence dramatically depends on the clipping constant c which must be carefully
chosen.

5 Algorithms with Restarts: ZO-Restarts

In this section, we assume the objective function satisfies the r-growth condition [13].
In this case, optimization algorithms can be accelerated by using the restart technique
[29].
Assumption 4. Function f is r-growth function if there are r ≥ 1 and µr ≥ 0 such
that for all x

µr

2
‖x− x∗‖rp ≤ f(x)− f(x∗),

where x∗ is problem solution.
In particular, the condition of µ-strong convexity w.r.t. the ℓp-norm is the 2-growth

condition. The restart technique works if ∆ is small enough to keep the optimality of
Algorithms 1 and 2. The general scheme of the restart algorithm is presented below.

Algorithm 3 ZO-Restarts

1: procedure ZO-Restarts (Algorithm type A, number of restarts N , sequence
of number of steps {Tk}Nk=1, sequence of smoothing constants {τk}Nk=1, sequence
of stepsizes {νk}Nk=1, sequence of clipping constants {ck}Nk=1(if necessary), prox-
function Ψp)

2: x0 ← argmin
x∈X

Ψp(x) or randomly

3: for k = 0, 1, . . . , N do

4: Set parameters νk, (ck),Ψp, τk of the Algorithm A
5: Run Tk iterations of the Algorithm A with starting point x0 and get xfinal
6: x0 ← xfinal
7: end for

8: return xfinal
9: end procedure

The next theorem provides the convergence guarantee for Algorithm ZO-Restarts

run with ZO-RSMD.
Theorem 5.1. Let function f satisfy Assumptions 1, 2. Let ε > 0 be a fixed accuracy
and the r-growth Assumption 4 holds with r ≥ 1+κ

κ .

Set R0
def
= supx,y∈X

(
1+κ
κ DΨp(x, y)

) κ
1+κ and Rk = R0/2k.
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Set the number of restarts N = Õ
(

1
r log2

(
µrR

r
0

2ε

))
, sequence of number of steps

{Tk}Nk=1 =

{
Õ

([
σq2

(1+r)

µrR
r−1
k

] 1+κ
κ

)}N

k=1

, sequence of smoothing constants {τk}Nk=1 =

{
σqRk

M2T
κ

1+κ
k

}N

k=1

and sequence of stepsizes {νk}Nk=1 =

{
R

1/κ
k

σq
T

− 1
1+κ

k

}N

k=1

, where σq is

given in Lemma 2.3. Finally, let Assumption 3 hold with

∆k = Õ

(
µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)
, 1 ≤ k ≤ N.

If xfinal is the final output of Algorithm 3 with ZO-RSMD (Algorithm 1) as A and with
the above parameters, then

E[f(xfinal)]− f(x∗) ≤ ε,

and the total number of steps is

T = Õ



[
aqM2

√
d

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ


 , aq

def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1},

and on the last restart the maximum ∆ threshold is

∆N = Õ

(
µ
1/r
r

M2

√
d
ε(2−1/r)

)
.

The next theorem provides the convergence guarantee for Algorithm ZO-Restarts

run with ZO-Clip-SMD.
Theorem 5.2. 3 Let function f satisfy Assumptions 1, 2. Let ε > 0 be a fixed
accuracy and r-growth Assumption 4 holds with r ≥ 2 for in expectation estimate

or r ≥ 1 for in high probability estimate. Set R0
def
= supx,y∈X

(
2DΨp(x, y)

) 1
2 and

Rk = R0/2k. Set the number of restarts N = Õ
(

1
r log2

(
µrR

r
0

2ε

))
, sequence of num-

ber of steps {Tk}Nk=1 =

{
Õ

([
σq2

(1+r)

µrR
r−1
k

] 1+κ
κ

)}N

k=1

, sequence of smoothing constants

{τk}Nk=1 =

{
σqRk

M2T
κ

1+κ
k

}N

k=1

, sequence of clipping constants {ck}Nk=1 =

{
T

1
(1+κ)

k σq

}N

k=1

and sequence of stepsizes {νk}Nk=1 =
{

Rk

ck

}N

k=1
, where σq is given in Lemma 2.3.

3In this theorem Õ(·) denotes log d factor for in expectation bounds and log d, log 1
δ factors for in high

probability bounds. More explicit formulas are provided in the full proof.
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Finally, let Assumption 3 hold with

∆k = Õ

(
µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)
, 1 ≤ k ≤ N.

If xfinal is the final output of Algorithm 3 with ZO-Clip-SMD (Algorithm 2) as A and
with the above parameters, then

E[f(xfinal)]− f(x∗) ≤ ε,

or with probability at least 1− δ

f(xfinal)− f(x∗) ≤ ε.

The total number of steps is

T =





Õ

([
aqM2

√
d

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ

)
, r > 1

Õ

([
aqM2

√
d

µr

] 1+κ
κ

log2

(
µrR0

2ε

))
, r = 1

,

aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1},

and on the last restart the maximum ∆ threshold is

∆N = Õ

(
µ
1/r
r

M2

√
d
ε(2−1/r)

)
.

For the complete proofs of Theorems 5.1, 5.2 we refer to the Appendix 12.

5.1 Discussion

Maximum admissible level of adversarial noise

Next, we compare the maximum value of adversarial noise allowed in ZO-RSMD,
ZO-Clip-SMD and ZO-Restarts,

ZO-RSMD (1) or ZO-Clip-SMD (2) : ∆ = O

(
ε2

M2

√
dDΨ

)
,

ZO-Restarts (3) : ∆ = Õ

(
µ
1/r
r ε(2−1/r)

M2

√
d

)
.

We notice r ≥ 1. When r = 1, the first bound depends on ε quadratically whereas in
the second bound this dependence is linear. When r tends to infinity, the results are
the same. Also, in the beginning ∆k can be much bigger and it starts to decrease as
∆k = ∆1

2k(2r−1) only on subsequent restarts to reach the required accuracy.

17



q, d, ε dependencies

Next, we compare the oracle complexity of ZO-RSMD, ZO-Clip-SMD and ZO-Restarts.
Again, ZO-Restarts guarantees a better dependence on ε. Below we state the results
in expectation for r > 1

ZO-RSMD (1) or ZO-Clip-SMD (2) : T = O



[√

dM2DΨaq
ε

] 1+κ
κ


 ,

ZO-Restarts (3) : T = Õ



[ √

dM2aq

µ
1/r
r ε

(r−1)
r

] 1+κ
κ


 .

In case of r = 1 ZO-Restarts achieves linear convergence.

6 Conclusion and Future Work

In this paper, we proposed and theoretically studied new zeroth-order algorithms
to solve non-smooth optimization problems on a convex compact set with zeroth-
order oracle corrupted by heavy-tailed stochastic noise (random noise with (1 + κ)-th
bounded moment) and adversarial noise. We believe that the convergence rates can
be improved with the following possible modifications:

1. different sampling strategy for estimating gk, namely uniform sampling from the
unit ℓ1-sphere {e : ‖e‖1 = 1}, see, e.g., [30], [31].

2. different assumption about adversarial noise, namely, Lipschitz continuity

|δ(x1)− δ(x2)| ≤M‖x1 − x2‖2, ∀x1, x2 ∈ X

see, e.g.,[10].
3. adaptive strategies and heuristic methods for choosing input parameters of the

algorithm, such as stepsize ν, smoothing constant τ , etc. In practice, these constants
are difficult to estimate.

We leave their implementation for future work. We believe that the technique devel-
oped in this paper is rather general and makes it possible to use other stochastic
gradient methods to obtain new complexity bounds for zeroth-order algorithms.

Also our results can be generalized to obtain the same complexity bounds for non-
smooth convex-concave saddle-point problems in terms of the duality gap used in
[9](rather than the gap used in [10]).4 We leave this for future work.
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8 Proofs of Lemmas

8.1 General results

Lemma 8.1. 1. For all x, y ∈ R
d′

and κ ∈ (0, 1]:

‖x− y‖1+κ
q ≤ 2κ‖x‖1+κ

q + 2κ‖y‖1+κ
q , (25)

2.
∀x, y ≥ 0, κ ∈ [0, 1] : (x+ y)κ ≤ xκ + yκ. (26)

Proof. 1. By Jensen’s inequality for convex ‖ · ‖1+κ
q with 1 + κ > 1

‖x− y‖1+κ
q = 21+κ‖x/2− y/2‖1+κ

q ≤ 2κ‖x‖1+κ
q + 2κ‖y‖1+κ

q .

2. Proposition 9 from [17].

Lemma 8.2. Assumption 2 implies that f(x) is M2 Lipschitz on X .
Proof. For all x, y ∈ X

|f(x)− f(y)| = |Eξ[f(x, ξ)− f(y, ξ)]|
Jensen’s inq

≤ Eξ[|f(x, ξ)− f(y, ξ)|]

≤ Eξ[M2]‖x− y‖2
Jensen’s inq

≤ Eξ[M
(1+κ)
2 ]

1
1+κ ‖x− y‖2

≤ M2‖x− y‖2.

8.2 Smoothing

Lemma 8.3. Let f(x) be M2 Lipschitz continuous function w.r.t ‖ ·‖2. If e is random
and uniformly distributed on the Euclidean sphere and κ ∈ (0, 1], then

Ee

[
(f(e)− Ee[f(e)])

2(1+κ)
]
≤
(
bM2

2

d

)1+κ

, b =
1√
2
.

Proof. A standard result of the measure concentration on the Euclidean unit sphere
implies that for all t > 0

Pr (|f(e)− Ee[f(e)]| > t) ≤ 2 exp(−b′dt2/M2
2 ), b′ = 2 (27)

(see the proof of Proposition 2.10 and Corollary 2.6 in [32]). Therefore,

Ee

[
(f(e)− Ee[f(e)])

2(1+κ)
]
=

∞∫

t=0

Pr
(
|f(e)− Ee[f(e)]|2(1+κ) > t

)
dt
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=

∞∫

t=0

Pr
(
|f(e)− Ee[f(e)]| > t

1
2(1+κ)

)
dt

≤
∞∫

t=0

2 exp
(
−b′dt

1
(1+κ) /M2

2

)
dt ≤

(
bM2

2

d

)1+κ

.

The following lemma gives some useful facts about the measure concentration on
the Euclidean unit sphere.
Lemma 8.4. For q ≥ 2, κ ∈ (0, 1] we get

Ee

[
‖e‖2(1+κ)

q

]
≤ a2(1+κ)

q
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}.

This lemma is generalization of Lemma from [33] for κ < 1.

Proof. We use Lemma 1 from Theorem 1 from [33] which states that

1. Let ek be k-th component of e then next inequality holds true

E [|ek|q] ≤
(
q − 1

d

) q
2

, q ≥ 2. (28)

2. For any x ∈ R
d and q1 ≥ q2 we get

‖x‖q1 ≤ ‖x‖q2 , (29)

We rewrite our objective value as

Ee

[
‖e‖2(1+κ)

q

]
= Ee






(

d∑

k=1

|ek|q
)2



1+κ
q


 .

Due to Jensen’s inequality and equally distributed ek we obtain

Ee






(

d∑

k=1

|ek|q
)2



1+κ
q


 ≤


Ee



(

d∑

k=1

|ek|q
)2





1+κ
q

.

We use fact that for all xk ≥ 0, k = 1, d

d

d∑

k=1

x2k ≥
(

d∑

k=1

xk

)2

.
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Therefore, we estimate


Ee



(

d∑

k=1

|ek|q
)2





1+κ
q

≤
(
dEe

[
d∑

k=1

|ek|2q
]) 1+κ

q

= (d2Ee[|ek|2q])
1+κ
q .

Using (28) with 2q we continue chain of previous inequalities

(d2Ee[|e2|2q])
1+κ
q ≤ d

2(1+κ)
q

(
2q − 1

d

)1+κ

=
(
d

2
q−1(2q − 1)

)1+κ

.

Thus, by definition of aq and obtained estimates we conclude

aq =

√
d

2
q−1(2q − 1).

With fixed d and large q more precise upper bound can be obtained. We define function
hd(q) and find its minimum with fixed d.

hd(q) = ln

(√
d

2
q−1(2q − 1)

)
=

(
1

q
− 1

2

)
ln(d) +

1

2
ln(2q − 1),

dhd(q)

dq
=
− ln(d)

q2
+

1

2q − 1
= 0,

q2 − 2 ln(d)q + ln(d) = 0.

When d ≥ 3 minimal point q0 lies in [2,+∞)

q0 = (ln d)

(
1 +

√
1− 1

ln d

)
, ln d ≤ q0 ≤ 2 lnd.

When q ≥ q0 we obtain from (29)

aq < aq0 =

√
d

2
q 0

−1(2q0 − 1) ≤ d 1
ln d− 1

2

√
4 lnd− 1

=
e√
d

√
4 lnd− 1 ≤ d 1

q− 1
2

√
32 lnd− 8,

Consequently, we get

aq = d
1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}.
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Lemma 8.5. For the random vector e uniformly distributed on the Euclidean sphere
{e ∈ R

d : ‖e‖2 = 1} and for any r ∈ R
d, we have

Ee[|〈e, r〉|] ≤
‖r‖2√
d
.

Lemma 8.6. Let g(x, ξ, e) be defined in (4) and f̂τ (x) be defined in (3). Then, the
following holds under Assumption 3:

Eξ,e[〈g(x, ξ, e), r〉] ≥ 〈∇f̂τ (x), r〉 −
d∆

τ
Ee[|〈e, r〉|]

for any r ∈ R
d.

Proof. We remind that by definition (4) of estimated gradient g

g(x, ξ, e) =
d

2τ
(f(x+ τe, ξ) + δ(x+ τe)− f(x− τe, ξ) − δ(x− τe))e.

Then multiplying g on arbitrary r and taking full expectation from both sides we get

Eξ,e[〈g(x, ξ, e), r〉] =
d

2τ
Eξ,e[〈(f(x+ τe, ξ) − f(x− τe, ξ))e, r〉]

+
d

2τ
Eξ,e[〈(δ(x + τe)− δ(x− τe))e, r〉].

In the first term we use fact that e symmetrically distributed

d

2τ
Eξ,e[〈(f(x + τe, ξ)− f(x− τe, ξ))e, r〉] = d

τ
Eξ,e[〈f(x+ τe, ξ)e, r〉]

=
d

τ
Ee[〈Eξ[f(x+ τe, ξ)]e, r〉] = d

τ
〈Ee[f(x+ τe)e], r〉. (30)

Using Lemma 2.2 in (30) we take expectation

d

τ
〈Ee[f(x+ τe)e], r〉 = 〈∇f̂τ (x), r〉.

In the second term we use Assumption 3

d

2τ
Eξ,e[〈(δ(x + τe)− δ(x− τe))e, r〉] ≥ −d∆

τ
Ee[|〈e, r〉|].

Adding two terms together we get necessary result.

25



Proof of Lemma 2.3. By definition (4) of estimated gradient g we obtain next chain
of inequalities

Eξ,e[‖g(x, ξ, e)‖1+κ
q ] = Eξ,e

[∣∣∣∣
∣∣∣∣
d

2τ
(φ(x + τe, ξ)− φ(x − τe, ξ))e

∣∣∣∣
∣∣∣∣
1+κ

q

]

=

(
d

2τ

)1+κ

Eξ,e

[
‖e‖1+κ

q |(f(x+ τe, ξ)− f(x− τe, ξ) + δ(x + τe)− δ(x− τe))|1+κ
]

(25)

≤ 2κ
(
d

2τ

)1+κ

Eξ,e

[
‖e‖1+κ

q |f(x+ τe, ξ)− f(x− τe, ξ)|1+κ
]

(31)

+ 2κ
(
d

2τ

)1+κ

Eξ,e

[
‖e‖1+κ

q |δ(x + τe)− δ(x− τe)|1+κ
]
. (32)

Lets deal with (31) term. Adding ±α(ξ) for any α(ξ) in (31) we get

Eξ,e

[
‖e‖1+κ

q |f(x+ τe, ξ)− f(x− τe, ξ)|1+κ
]

≤ Eξ,e

[
‖e‖1+κ

q |(f(x+ τe, ξ)− α) − (f(x− τe, ξ)− α)|1+κ
]

(25)

≤ 2κEξ,e

[
‖e‖1+κ

q |f(x+ τe, ξ)− α|1+κ
]
+ 2κEξ,e

[
‖e‖1+κ

q |f(x− τe, ξ)− α|1+κ
]
.

(33)

We consider that distribution of e is symmetric,

(33) ≤ 2κ+1
Eξ,e

[
‖e‖1+κ

q |f(x+ τe, ξ) − α|1+κ
]
. (34)

Let α(ξ) = Ee[f(x + τe, ξ)], then because of Cauchy-Schwartz inequality and
conditional expectation properties,

(34) ≤ 2κ+1
Eξ,e

[
‖e‖1+κ

q |f(x+ τe, ξ)− α|1+κ
]

= 2κ+1
Eξ

[
Ee

[
‖e‖1+κ

q |f(x+ τe, ξ) − α|1+κ
]]

≤ 2κ+1
Eξ

[√
Ee

[
‖e‖2(1+κ)

q

]
Ee

[
|f(x+ τe, ξ)− Ee[f(x+ τe, ξ)]|2(1+κ)

]
]
.(35)

Next, we use Ee

[
‖e‖2(1+κ)

q

]
≤ a

2(1+κ)
q and Lemma 8.3 for f(x + τe, ξ) with fixed ξ

and Lipschitz constant M2(ξ)τ ,

(35) ≤ 2κ+1a1+κ
q Eξ



√(

2−1/2τ2M2
2 (ξ)

d

)1+κ



= 2κ+1a1+κ
q

(
τ22−1/2

d

)(1+κ)/2

Eξ

[
M1+κ

2 (ξ)
]
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≤ 2κ+1

(√
2−1/2

d
aqM2τ

)1+κ

. (36)

Lets deal with (32) term. We use the Cauchy-Schwartz inequality, bounded noise

Assumption 3 and inequality Ee

[
‖e‖2(1+κ)

q

]
≤ a2(1+κ)

q that follows from the definition

of aq

Eξ,e

[
‖e‖1+κ

q |δ(x + τe)− δ(x− τe)|1+κ
]

≤
√
Ee

[
‖e‖2(1+κ)

q

]
Ee

[
|δ(x+ τe)− δ(x− τe)|2(1+κ)

]

≤ a1+κ
q 21+κ∆1+κ = (2aq∆)1+κ. (37)

Adding(36) and (37) we get final result

Eξ,e[‖g(x, ξ, e)‖1+κ
q ] ≤ 1

2

(
d

τ

)1+κ

21+κ

(√
2−1/2

d
aqτM2

)1+κ

+ (2aq∆)1+κ


 =

= 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(
daq∆

τ

)1+κ

.

9 Proof of ZO-RSMD in Expectation Convergence

Proof of Theorem 3.3. By definition x∗ ∈ argmin
x∈X

f(x).

We use Convergence Theorem 3.2 for Robust SMD Algorithm and set of update
vectors gk(xk, ξk, ek)

1

T

T−1∑

k=0

〈gk+1, xk − x∗〉 ≤
κ

κ+ 1

R
1+κ
κ

0

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

‖gk+1‖1+κ
q . (38)

Then we take full expectation E from both sides of (38)

1

T

T−1∑

k=0

E [〈gk+1, xk − x∗〉] ≤
κ

κ+ 1

R
1+κ
κ

0

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

E
[
‖gk+1‖1+κ

q

]
. (39)

Using boundness of estimated gradient (1 + κ)-th moment from Lemma 2.3 for the
right part of inequality (39) we get

νκ

1 + κ

1

T

T−1∑

k=0

E
[
‖gk+1‖1+κ

q

]
≤ νκ

1 + κ

1

T

T−1∑

k=0

σ1+κ
q ≤ νκ

1 + κ
σ1+κ
q . (40)
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Using conditional math expectation and Lemma 8.6 for the left part of inequality (39)
we estimate

1

T

T−1∑

k=0

E [〈gk+1, xk − x∗〉] =
1

T

T−1∑

k=0

E
[
E|≤k[〈gk+1, xk − x∗〉]

]

≥ 1

T

T−1∑

k=0

E[〈∇f̂τ (xk), xk − x∗〉]−
1

T

T−1∑

k=0

d∆

τ
E
[
E
ek|≤k[|〈ek, xk − x∗〉|]

]
. (41)

1. For the first term of (41) by convexity of f̂τ (x) we obtain

1

T

T−1∑

k=0

E[〈∇f̂τ (xk), xk − x∗〉] ≥
1

T

T−1∑

k=0

(
E[f̂τ (xk)]− f̂τ (x∗)

)
.

Then we define xT = 1
T

T−1∑
k=0

xk and use Jensen’s inequality

1

T

T−1∑

k=0

(
E[f̂τ (xk)]− f̂τ (x∗)

)
≥ E[f̂τ (xT )]− f̂τ (x∗).

Finally, we apply approximation property of f̂τ (x) from Lemma 2.2

E[f̂τ (xT )]− f̂τ (x∗) ≥ E[f(xT )]− f(x∗)− 2M2τ. (42)

2. For the second term of (41) we use concentration measure property from Lemma 8.5
and estimate

−d∆
Tτ

T−1∑

k=0

E
ek|≤k[|〈ek, xk − x∗〉|] ≥ −

d∆

Tτ

T−1∑

k=0

1√
d
‖xk − x∗‖2

p≤2

≥ −d∆
Tτ

T−1∑

k=0

1√
d
‖xk − x∗‖p. (43)

Let’s notice that Ψp is
(
1, 1+κ

κ

)
-uniformly convex function w.r.t. p norm. Then by

definition (5) we bound ‖xk − x∗‖p

‖xk − x∗‖p ≤
(
1 + κ

κ
DΨp(xk, x

∗)

) κ
1+κ

≤ sup
x,y∈X

(
1 + κ

κ
DΨq∗

(x, y)

) κ
1+κ

= DΨ
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Hence, after this bound we get

(43) ≥ −d∆
Tτ

T−1∑

k=0

1√
d
‖xk − x∗‖p ≥ −

√
d∆

τ
DΨ. (44)

Next, we combine (40), (42), (44) together to obtain final estimate

E[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R
1+κ
κ

0

νT
+

νκ

1 + κ
σ1+κ
q . (45)

Now we select good parameters of the Algorithm to lower right part of (45). By

choosing optimal ν =
R

1/κ
0

σq
T− 1

1+κ we get

E[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ + 2R0σqT

− κ
1+κ .

Finally, we get explicit bound of σq using Lemma 8.1

σq ≤ 2

( √
d

21/4
aqM2

)
+ 2

(
daq∆

τ

)
.

And set optimal τ

τ =

√√
d∆DΨ + 4R0daq∆T

− κ
1+κ

2M2
.

10 Proof of ZO-Clip-SMD in Expectation Convergence

First, we prove some useful statements about clipped gradient vector properties.
Similar proof can be found in [18].

Proof of Lemma 4.1. 1. By Jensen’s inequality for ‖·‖q and definition of ĝ we estimate

‖ĝ − E[ĝ]‖q ≤ ‖ĝ‖q + ‖E[ĝ]‖q

≤
∣∣∣∣
∣∣∣∣
g

‖g‖q
min(‖g‖q, c)

∣∣∣∣
∣∣∣∣
q

+ E

[∣∣∣∣
∣∣∣∣
g

‖g‖q
min(‖g‖q, c)

∣∣∣∣
∣∣∣∣
q

]

= min(‖g‖q, c) + E[min(‖g‖q, c)]
≤ c+ c = 2c.

2.(a) Considering E[‖g(x, ξ, e)‖1+κ
q ] ≤ σ1+κ

q and ‖ĝ‖q ≤ c we get

E[‖ĝ‖1+κ
q ‖ĝ‖1−κ

q ] ≤ σ1+κ
q c1−κ.
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(b) By Jensen’s inequality for ‖ · ‖q we obtain

E[‖ĝ − E[ĝ]‖2q] ≤ 2E[‖ĝ‖2q + 2‖E[ĝ]‖2q]
≤ 2E[‖ĝ‖2q] + 2E[‖ĝ‖2q]]
(14)

≤ 2σ1+κ
q,κ c1−κ + 2σ1+κ

q,κ c1−κ ≤ 4σ1+κ
q,κ c1−κ.

(c) Due to convexity of norm function and Jensen’s inequality we estimate

‖E[g]− E[ĝ]‖q ≤ E[‖g − ĝ‖q] ≤ E
[
‖g‖q1{‖g‖q>c}

]
.

Final result follows from ‖g‖1+κ
q 1{‖g‖q>c} ≥ ‖g‖qcκ1{‖g‖q>c}

E
[
‖g‖q1{‖g‖q>c}

]
≤ E

[
‖g‖q1{‖g‖q>c}

]
≤
σ1+κ
q,κ

cκ
.

Proof of the Theorem 4.2. Let us note from first term of (41) in the proof of Theorem
3.3 that for any xk

f(xT )− f(x∗) ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ. (46)

Next, we define functions

lk(x)
def
= 〈E|≤k[ĝk+1], x− x∗〉.

Note that lk(x) is convex for any k and ∇lk(x) = E|≤k[ĝk+1]. Therefore sampled
estimation gradient is unbiased. With these functions we can rewrite the right part of
(46) as follows

1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ

=
1

T

T−1∑

k=0

(
〈∇f̂τ (xk)− E|≤k[ĝk+1], xk − x∗〉

)
+

1

T

T−1∑

k=0

(lk(xk)− lk(x∗)) + 2M2τ.

(47)

Then we take full expectation from both sides of (47)

E

[
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉
]
+ 2M2τ
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= E

[
1

T

T−1∑

k=0

(
〈∇f̂τ (xk)− E|≤k[ĝk+1], xk − x∗〉

)]

︸ ︷︷ ︸
D

+ E

[
1

T

T−1∑

k=0

(lk(xk)− lk(x∗))
]

︸ ︷︷ ︸
E

+2M2τ.

We add ±E|≤k[gk+1] in D term and get

E

[
1

T

T−1∑

k=0

(
〈∇f̂τ (xk)− E|≤k[ĝk+1], xk − x∗〉

)]

= E

[
1

T

T−1∑

k=0

〈E|≤k[gk+1]− E|≤k[ĝk+1], xk − x∗〉
]

+ E

[
1

T

T−1∑

k=0

〈∇f̂τ (xk)− E|≤k[gk+1], xk − x∗〉
]
. (48)

In order to bound the first term of (48) let’s notice that Ψp is (1, 2)-uniformly convex
function w.r.t. p norm. Then by definition (5) we bound ‖xk − x∗‖p

‖xk − x∗‖p ≤
(
2DΨp(xk, x

∗)
) 1

2 ≤ sup
x,y∈X

(
2DΨp(x, y)

) 1
2 = DΨ,

and estimate ‖xk − u‖p ≤ DΨ, for all u ∈ X .
We apply the Cauchy–Schwarz inequality to inner product in the first term of (48)

E

[
1

T

T−1∑

k=0

(
〈E|≤k[gk+1]− E|≤k[ĝk+1], xk − x∗〉

)
]

≤ 1

T

T−1∑

k=0

(
E
[
E|≤k

[
‖E|≤k[gk+1]− E|≤k[ĝk+1]‖q‖xk − x∗‖p

]]) (16)

≤ DΨ

σ1+κ
q

cκ
. (49)

To bound the second term in (48) we use Lemma 8.6 and Lemma 8.5

E

[
1

T

T−1∑

k=0

(
〈∇f̂τ (xk)− E|≤k[gk+1], xk − x∗〉

)]

≤ 1

T

T−1∑

k=0

d∆

τ
E
[
E
e|<k[|〈e, xk − x∗〉|]

]

≤ 1

T

T−1∑

k=0

d∆

τ

1√
d
E[‖xk − x∗‖2]
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p≤2

≤ 1

T

T−1∑

k=0

d∆

τ

1√
d
E[‖xk − x∗‖p] ≤

∆
√
d

τ
DΨ. (50)

Next, we bound E term. First of all, we rewrite it as

E

[
1

T

T−1∑

k=0

(lk(xk)− lk(x∗))
]
=

1

T

T−1∑

k=0

E
[
E|≤k[〈E|≤k[ĝk+1], xk − x∗〉]

]

=
1

T

T−1∑

k=0

E
[
E|≤k[〈ĝk+1, xk − x∗〉]

]
.

For the Robust SMD Algorithm with update vectors ĝk by Convergence Theorem
3.2 with bounded second moment next inequality holds true

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
0

νT
+
ν

2

1

T

T−1∑

k=0

‖ĝk+1‖2q. (51)

Taking E from both sides of (51) we get

1

T

T−1∑

k=0

E[〈ĝk+1, xk − x∗〉] =
1

T

T−1∑

k=0

E
[
E|≤k[〈ĝk+1, xk − x∗〉]

]

≤ 1

2

R2
0

νT
+
ν

2

1

T

T−1∑

k=0

E
[
E|≤k[‖ĝk+1‖2q]

]
.

By (14) from Lemma 4.1 we bound second moment of clipped gradient

E|≤k(‖ĝk+1‖2q) ≤ σ1+κ
q c1−κ,

And hence get,

1

T

T−1∑

k=0

E[〈ĝk+1, xk − x∗〉] ≤
1

2

R2
0

νT
+
ν

2
σ1+κ
q c1−κ. (52)

Combining bounds (49), (50), (52) together, we obtain final estimate

E[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
0

νT
+
ν

2
σ1+κ
q c1−κ +

(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ.

In order to get minimal upper bound we find optimal parameters. First, we choose c
by finding minimum of

min
c>0

σ1+κ
q

(
1

cκ
DΨ +

ν

2
c1−κ

)
= min

c
σ1+κ
q h1(c)

32



h′1(c) =
ν
2 (1− κ)c−κ − κ 1

c1+κDΨ = 0⇒ c∗ = 2κDΨ

(1−κ)ν .

E[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
0

νT
+∆

√
d

τ
DΨ

+ σ1+κ
q,κ

(
D1−κ2−κνκ

[
(1− κ)κ
κκ

+
κ(1−κ)

(1 − κ)(1−κ)

])
. (53)

Considering bound of κ ∈ [0, 1] and as consequence

[
(1− κ)κ
κκ

+
κ(1−κ)

(1− κ)(1−κ)

]
≤ 2,

we simplify (53)

E[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
0

νT
+∆

√
d

τ
DΨ + σ1+κ

q

(
2D1−κ

Ψ νκ
)
. (54)

Choosing optimal ν∗ similarly we get

ν∗ =

(
R2

0

4Tκσ1+κ
q D1−κ

Ψ

) 1
1+κ

And

E[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ +

R
2κ

1+κ

0 D
1−κ
1+κ

Ψ σq

T
κ

1+κ
2
[
κ

1
1+κ + κ−

κ
1+κ

]
.

Considering bound of κ ∈ [0, 1] next inequality holds true

[
κ

1
1+κ + κ−

κ
1+κ

]
≤ 2.

Thus, we can simplify upper bound even more

E[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ + 2

R
2κ

1+κ

0 D
1−κ
1+κ

Ψ σq

T
κ

1+κ
. (55)

In order to avoid ν → ∞ when κ → 0 one can also choose ν∗ =
(

R2
0

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

.

Estimation (55) does not change.
Finally, we get explicit bound σq with Lemma 8.1

σq ≤ 2

( √
d

21/4
aqM2

)
+ 2

(
daq∆

τ

)
,
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And set optimal τ

τ =

√√√√
√
d∆DΨ + 4R

2κ
1+κ

0 D
1−κ
1+κ

Ψ daq∆T
− κ

1+κ

2M2
.

11 Proof of ZO-Clip-SMD in High Probability
Convergence

Before we turn to the proof of Theorem 4.3, we present two lemmas representing the
Bernstein inequality for the sum of martingale differences and the sum of squares of
bounded random variables. These are some classical results on measure concentration.
Lemma 11.1 (Lemma 23 from [18]). Let {Xi}i≥1 be martingale difference sequence,
i.e. E[Xi|Xi−1, . . . , X1] = 0 for all i ≥ 1. Also b, σ is such deterministic constants that
|Xi| < b almost surely and E[X2

i |Xi−1, . . . , X1] < σ2 for i ≥ 1. Then for arbitrary
fixed number µ and for all T with probability at least 1− δ next inequality holds true

∣∣∣∣∣

t∑

i=1

µXi

∣∣∣∣∣ ≤ 2b|µ| log 1

δ
+ σ|µ|

√
2T log

1

δ
.

Lemma 11.2 (Theorem 20 from [18]). Let Zi be a sequence of random variables
adapted to a filtration Ft. Further, suppose |Zi| < b almost surely and E[Z2

i ] ≤ σ2 .
Then for any µ > 0 with probability at least 1− δ next inequality holds true

T∑

k=1

Z2
k ≤ 3Tσ2 log


4

δ

[
log

(√
σ2T

µ2

)
+ 2

]2


+ 20max(µ2, b2) log

(
112

δ

[
log

(
2max(µ, b)

µ

)
+ 1

]2)
.

By choosing µ = b ≥ σ we simplify

T∑

k=1

Z2
k ≤ 3Tσ2 log

(
4

δ

[
log
(√

T
)
+ 2
]2)

+ 20b2 log

(
12

δ

)
.

Proof of the Theorem 4.3. Lets notice from the first term of (41) in the proof of
Theorem 3.3 that for any xk next inequality holds true

f(xT )− f(x∗) ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ. (56)
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For the Robust SMD Algorithm with update vectors ĝk Convergence Theorem 3.2
with the bounded second moment guarantees that

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
0

νT
+
ν

2

1

T

T−1∑

k=0

‖ĝk+1‖2q. (57)

Let’s define random variable Zk = ‖ĝk+1‖q and notice that |Zk| ≤ c by definition of
clipping and E[Z2

i ] ≤ 4σ1+κ
q,κ c1−κ by (15) from clipped gradient properties Lemma 4.1.

Thus, we can apply Lemma 11.2 and with probability at least 1− δ bound mean sum
of the clipped gradients second moments

1

T

T−1∑

k=0

‖ĝk+1‖2q ≤ 12σ1+κ
q,κ c1−κ log

(
4

δ

[
log
(√

T
)
+ 2
]2)

+
20

T
c2 log

(
12

δ

)
. (58)

The left part of (57) can be rewritten as

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 =
1

T

T−1∑

k=0

〈ĝk+1 −∇f̂τ (xk), xk − x∗〉+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉

=
1

T

T−1∑

k=0

〈ĝk+1 − E|≤k[ĝk+1], xk − x∗〉
︸ ︷︷ ︸

1

+
1

T

T−1∑

k=0

〈E|≤k[ĝk+1]−∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

2

+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

3

.

In the 1 term we can proof that this is the sum of the martingale sequence dif-
ference. Indeed, we notice that xk is fixed when we take E|≤k and martingale property
holds true, i.e.

E|≤k[〈ĝk+1 − E|≤k[ĝk+1], xk − x∗〉] = 0.

By Lemma 4.1 we bound each element of martingale sequence

|〈ĝk+1 − E|≤k[ĝk+1], xk − x∗〉| ≤ ‖ĝk+1 − E|≤k[ĝk+1]‖q‖xk − x∗‖p ≤ 2c · ‖xk − x∗‖p.

And by (15) from Lemma 4.1 we bound expectation of square of each element

E
[
|〈ĝk+1 − E|≤k[ĝk+1], xk − x∗〉|2

]
≤ 4σ1+κ

q c1−κ · ‖xk − x∗‖2p.

Lets notice that Ψp is (1, 2)-uniformly convex function w.r.t. p norm. Then by
definition (5) we bound
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‖xk − x∗‖p ≤
(
2DΨp(xk, x

∗)
) 1

2 ≤ sup
x,y∈X

(
2DΨp(x, y)

) 1
2 = DΨ,

and estimate ‖xk−u‖p ≤ D for all u ∈ X . Hence, we can apply Bernstein’s inequality
Lemma 11.1 and get with probability at least 1− δ and µ = 1

T that

1

T

T−1∑

k=0

|〈ĝk+1−E|≤k[ĝk+1], xk −x∗〉| ≤
4cDΨ

T
log

1

δ
+

√
4σ1+κ

q c1−κ

√
T

D2
Ψ

√
2 log

1

δ
. (59)

For the 2 we use bound of D term from (48) in the proof of Theorem 4.2

|〈E|≤k[ĝk+1]−∇f̂τ (xk), xk − x∗〉| ≤
(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ. (60)

For the 3 we use already obtained bound (56)

f(xT )− f(x∗)− 2M2τ ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉. (61)

Putting (58), (59), (60), (61) in (57), we get with probability at least 1− δ that

f(xT )− f(x∗) ≤ 2M2τ +

(
σ1+κ
q

cκ
+∆

√
d

τ

)
DΨ +

1

2

R2
0

νT

+
ν

2

[
12σ1+κ

q c1−κ log

(
4

δ

[
log
(√

T
)
+ 2
]2)]

+
ν

2

20

T
c2 log

(
12

δ

)
+

4cDΨ

T
log

1

δ
+

√
4σ1+κ

q c1−κ

√
T

D2
Ψ

√
2 log

1

δ
. (62)

Next we select optimal parameter in order to minimize upper bound. Choosing c =

T
1

(1+κ) σq and putting it in (62), we get

f(xT )− f(x∗) ≤ 2M2τ +

(
σq

T
κ

1+κ
+∆

√
d

τ

)
DΨ +

1

2

R2
0

νT

+
ν

2

[
12σ2

qT
1−κ

(1+κ) log

(
4

δ

[
log
(√

T
)
+ 2
]2)]

+
ν

2

20σ2
q

T
κ−1
1+κ

log

(
12

δ

)
+

4σqDΨ

T
κ

1+κ
log

1

δ
+

2σq

T
κ

1+κ
DΨ

√
2 log

1

δ
. (63)
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Then we define δ̃−1 = 4
δ

[
log
(√

T
)
+ 2
]2
, choose ν = DΨ

c , put it in (63) and obtain

f(xT )− f(x∗) ≤ 2M2τ +

(
σq

T
κ

1+κ
+∆

√
d

τ

)
DΨ +

DΨσq

2T
κ

1+κ

[
1 + 12 log

1

δ̃
+ 20 log

4

δ

]

+
4σqDΨ

T
κ

1+κ
log

1

δ
+

2σq

T
κ

1+κ
DΨ

√
2 log

1

δ
. (64)

Simplifying (64), we get

f(xT )− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ

+
DΨσq

2T
κ

1+κ

[
3 + 8 log

1

δ
+ 12 log

1

δ̃
+ 20 log

4

δ
+ 4

√
2 log

1

δ

]
.

Finally, we get explicit bound of σq with Lemma 8.1

σq ≤ 2

( √
d

21/4
aqM2

)
+ 2

(
daq∆

τ

)
,

And set optimal τ

τ =

√√
d∆DΨ + 2βDΨdaq∆T

− κ
1+κ

2M2
.

12 Sketch of Proof of ZO-Restarts Convergence

Proof of Theorems 5.1, 5.2. In this proof Õ(·) denotes log d factor.
Step 1: ZO-RSMD in Expectation.

Now x0 in Algorithm 1 can be chosen in stochastic way.

Similarly to proof of Theorem 3.3 but with ν =
E[DΨp (x

∗,x0)]
1

1+κ

σq
T− 1

1+κ and bound

R0 ≤ DΨ one can get from (45)

E[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ + 2E

[
DΨp(x

∗, x0)
] κ

1+κ σqT
− κ

1+κ . (65)

Under obligatory condition ∆ ≤ σ2
qE[DΨp (x

∗,x0)]
κ

1+κ

M2

√
dT

2κ
1+κ

picking τ =
σqE[DΨp (x

∗,x0)]
κ

1+κ

M2T
κ

1+κ
, we

obtain from (65) estimate

E[f(xT )]− f(x∗) ≤ (2 + 1 + 2)
σqE

[
DΨp(x

∗, x0)
] κ

1+κ

T
κ

1+κ

. (66)
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In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use

fact that DΨp(x
∗, x0) = Õ(‖x0 − x∗‖

1+κ
κ

p ) from [34](Remark 3) and denote Rk =

E

[
‖xk − x∗‖

1+κ
κ

p

] κ
1+κ

.

Under r-growth Assumption 4 we bound E[f(xT )]− f(x∗) from both sides

µr

2
E
[
‖xT − x∗‖rp

]
≤ E[f(xT )]− f(x∗) ≤ Õ

(
R0

σq

T
κ

1+κ

)
. (67)

Due to Jensen’s inequality which we can apply since r ≥ 1+κ
κ we rewrite (67) in order

to obtain R1 in it as

µr

2
E

[
‖xT − x∗‖

1+κ
κ

p

]r/ 1+κ
κ ≤ µr

2
E
[
‖xT − x∗‖rp

]
≤ Õ

(
R0

σq

T
κ

1+κ

)
. (68)

Let’s find out after how many iterations R0 value halves

µr

2
Rr

1 ≤ Õ
(
R0

σq

T
κ

1+κ

)
≤ µr

2

(
R0

2

)r

. (69)

From right inequality of (69) we obtain number of iterations for one stage

T1 ≥ Õ



(
2(1+r)σq
µr

) 1+κ
κ 1

R
(r−1)(1+κ)

κ
0


 .

For convenience we define A
def
=

2(1+r)σq

µr
.

After T1 iterations we restart algorithm with starting point x0 = xT1 and Rk =
Rk−1/2 = R0/2

k.
After N restarts total number of iterations T will be

T =

N∑

k=1

Tk = Õ


 A

1+κ
κ

R
(r−1)(1+κ)

κ
0

N−1∑

k=0

2k(
(r−1)(1+κ)

κ )




= Õ


 A

(1+κ)
κ

R
(r−1)(1+κ)

κ
0

[
2N(

(r−1)(1+κ)
κ ) − 1

]

 . (70)

On the last stage we can get bound with number of restarts N in it

E[f(xfinal)]− f(x∗) ≤ ε = Õ

(
RN−1

σq

T
κ

1+κ

N

)

≤ Õ

(
µr

2

(
RN−1

2

)r)
≤ Õ

(
µr

2

Rr
0

2(N−1)r

)
.
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Consequently, in order to get ε accuracy we need N restarts and total number of
iterations T , where

N = Õ

(
1

r
log2

(
µrR

r
0

2ε

))
, (71)

T = Õ



[
2

r2+1
r σq

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ


 , Tk = Õ



[
σq2

(1+r)

µrR
r−1
0

2k(r−1)

] 1+κ
κ


 . (72)

In each restart section we get different bounds for noise absolute value. From Tk
formula from (70) we get bound

∆k = Õ

(
µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)
. (73)

Hence, ∆k will be the smallest on the last iteration, when k = N , i.e.

∆N = Õ

(
µ
1/r
r

M2

√
d
ε(2−1/r)

)
.

Step 2: ZO-Clip-SMD in Expectation.

Now x0 in Algorithm 2 can be chosen in stochastic way.
Similarly to proof of Theorem 4.2 but with ν∗ =

E
[
DΨp(x

∗, x0)
] 1

2

(
1

4Tσ1+κ
q

) 1
1+κ

, c∗ = E
[
DΨp(x

∗, x0)
] 1

2 /ν∗ one can get from (54)

E[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ + 2

σqE
[
DΨp(x

∗, x0)
] 1

2

T
κ

1+κ

. (74)

Under obligatory condition ∆ ≤ σ2
qE[DΨp (x

∗,x0)]
1
2

M2

√
dT

2κ
1+κ

picking τ =
σqE[DΨp (x

∗,x0)]
1
2

M2T
κ

1+κ
, we

obtain from (74) estimate

E[f(xT )]− f(x∗) ≤ (2 + 1 + 2)
σqE

[
DΨp(x

∗, x0)
] 1

2

T
κ

1+κ
.

In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use

fact that DΨp(x
∗, x0) = Õ(‖x0 − x∗‖2p) from [34](Remark 3) and denote Rk =

E
[
‖xk − x∗‖2p

] 1
2 .

Under r-growth Assumption 4 we bound E[f(xT )]− f(x∗) from both sides

µr

2
E
[
‖xT − x∗‖rq∗

]
≤ E[f(xT )]− f(x∗) ≤ Õ

(
R0

σq

T
κ

(1+κ)

)
.
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Due to Jensen’s inequality which we can apply since r ≥ 2 we obtain

µr

2
E
[
‖xT − x∗‖2q∗

]r/2 ≤ µr

2
E
[
‖xT − x∗‖rq∗

]
≤ Õ

(
R0

σq

T
κ

(1+κ)

)
.

Next part of the proof is the same from Step 1 starting from (68). Analogically, we
get the same T2,N2 and noise bounds from (72), (71) and (73) correspondingly.

Step 3: ZO-Clip-SMD in High Probability.

Now x0 in Algorithm 2 can be chosen in stochastic way.
Important moment about convergence in high probability in restart setup is to

control final probability. Let number of restarts be N3, if each restart has probability
to be in bounds at least 1−δ/N3 then final probability to be in bounds will be greater
than 1− δ which is probability of ’all restarts to be in bounds’. Usually N3 ∼ log(1ε ),
thus

log
N3

1
= log log

1

ε
≪ log

1

δ

1

ε
1+κ
κ

.

It means that we can use log 1
δ instead of log N3

δ .

Similarly to proof of Theorem 4.3 but ν∗ =
[
DΨp(x

∗, x0)
]1/2 ( 1

Tσ1+κ
q

) 1
1+κ

, c∗ =

E
[
DΨp(x

∗, x0)
] 1

2 /ν∗ one can get from (63) with probability at least 1− δ/N3

f(xT )− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ

+

[
DΨp(x

∗, x0)
]1/2

σq

2T
κ

1+κ

[
3 + 8 log

1

δ
+ 12 log

1

δ̃
+ 20 log

4

δ
+ 4

√
2 log

1

δ

]
.

Denote δ̃−1 = 4
δ

[
log
(√

T
)
+ 2
]2
, β =

[
3 + 8 log 1

δ + 12 log 1

δ̃
+ 20 log 4

δ + 4
√
2 log 1

δ

]
.

Under obligatory condition ∆ ≤ β2σ2
qD

1
2
Ψp

(x∗,x0)

M2

√
dT

2κ
1+κ

picking τ =
βσqD

1
2
Ψp

(x∗,x0)

M2T
κ

1+κ
, we

obtain estimate

f(xT )− f(x∗) ≤ (2 + 1 + 1)
σqβ

[
DΨp(x

∗, x0)
] 1

2

T
κ

1+κ
.

In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use fact

that DΨp(x
∗, x0) = Õ(‖x0 − x∗‖2p) from [34](Remark 3) and denote Rk = ‖xk − x∗‖p.

Under r-growth Assumption 4 we get

µr

2
‖xT − x∗‖rp ≤ f(xT )− f(x∗) ≤ Õ

(
R0

σqβ

T
κ

(1+κ)

)
.
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For r > 1 next part of the proof is the same from Step 1 starting from (68) with

A
def
=

2(1+r)βσq
µr

.

Analogically, we get T3,N3 and noise bounds from (72), (71) and (73) correspondingly.

N = Õ

(
1

r
log2

(
µrR

r
0

2ε

))
,

T = Õ



[
2

r2+1
r σqβ

µ
1/r
r

1

ε
(r−1)

r

] 1+κ
κ


 , Tk = Õ



[
σqβ2

(1+r)

µrR
r−1
0

2k(r−1)

] 1+κ
κ


 . (75)

In each restart section we get different bounds for noise absolute value. From Tk
formula from (75)

∆k = Õ

(
µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)
.

Hence, ∆k will be the smallest on the last iteration, when k = N , i.e.

∆N = Õ

(
µ
1/r
r

M2

√
d
ε(2−1/r)

)
.

In case of r = 1 number of iterations Tk at step k from (75) changes as

Tk = A
1+κ
κ ,

and we do not need to apply the formula (70) for the sum of the geometric progression.

Thus, total number of iterations T after N = Õ
(
log2

(
µrR0

2ε

))
restarts equals

T =

N∑

k=1

Tk = NA
1+κ
κ = Õ

([
βσq
µr

] 1+κ
κ

log2

(
µrR0

2ε

))
.
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