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Abstract: Network utility maximization is the most important problem in network traffic
management. Given the growth of modern communication networks, we consider utility
maximization problem in a network with a large number of connections (links) that are used
by a huge number of users. To solve this problem an adaptive mirror descent algorithm for
many constraints is proposed. The key feature of the algorithm is that it has a dimension-
free convergence rate. The convergence of the proposed scheme is proved theoretically. The
theoretical analysis is verified with numerical simulations. We compare the algorithm with
another approach, using the ellipsoid method (EM) for the dual problem. Numerical experiments
showed that the performance of the proposed algorithm against EM is significantly better in
large networks and when very high solution accuracy is not required. Our approach can be used
in many network design paradigms, in particular, in software-defined networks.
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Communication Networks, Bandwidth allocation, Utility functions

1. INTRODUCTION

One of the most significant design features of modern
communication network systems is the capacity to adjust
the distribution of bandwidth and other network proper-
ties for achieving best performance and reliability in real-
time. The tasks of finding the best configuration and/or
design parameters for networks are actually reduced to
solving complex optimization problems with thousands
and millions of variables.

The key question we address in this article is how the
available bandwidth on the network should be distributed
among competing connections. In this case, users can
control the use of available bandwidth by adjusting the
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connection price. As mentioned earlier, in view of the
huge size of such networks it is very important to develop
algorithms dimension-free on the size of the system.

Thus, network utility maximization (NUM) problems in
computer networks with a large number of connections are
considered. Connections are used for their own purposes
by consumers (users), the number of whom can also be
very large. The purpose of the work is to determine the
mechanism of resource allocation, which in the context
of this task are available bandwidth connections. At the
same time, it is necessary to ensure stable operation of the
system and prevent overloads. As an optimality criterion,
the sum of the utilities of all users of the network is used.

The original resource allocation framework, reduced to the
maximization of aggregate concave utility functions sub-
ject to link capacity constraints, was pioneered by Kelly
et al. (1998). During the last two decades NUM framework
has found wide-ranging applications to wireless and sen-
sor networks, and many other fields Palomar and Chiang
(2006); Dehghan et al. (2016), for a survey, see Shakkottai
and Srikant (2008) and references therein.
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Also, the mechanisms of decentralized resource allocation
proposed in a monograph by Arrow and Hurwicz (1958)
have since attracted much attention in economic research,
see, for example, Kakhbod (2013); Campbell et al. (1987);
Friedman and Oren (1995). Furthermore, the problem of
resource distribution in computer networks was investi-
gated in a recent paper by Rokhlin (2019) as well. In this
paper, following Nesterov and Shikhman (2018); Ivanova
et al. (2019, 2018), we additionally consider a price adjust-
ment mechanism. The proposed approach has a practical
value due to decentralization, which means that to set
and adjust the price of an individual connection, only the
reaction of the users who use that connection is necessary,
not the reaction of all users.

2. PROBLEM STATEMENT

Consider a communication network with m connections
(links) and n users (or nodes). Users exchange packets
through a fixed connections’ set. The network structure
is given by the binary routing matrix C = (Cj

i ) ∈ R
m×n.

The columns of the matrix Ci 6= 0, i = 1, . . . , n are
boolean m-dimensional vectors such that Cj

i = 1 if node i

is used in the connection j, otherwise Cj
i = 0. Capacity

constraints are given by the vector b ∈ R
m with strictly

positive components. These constraints imply that no
connection is overloaded. Users evaluate the quality of the
network with utility functions uk(xk), k = 1, . . . , n, where
xk ∈ R+ is the network rate for the k–th user.

The problem of maximizing the total utility of the network
under the given constraints is formulated as follows:

max{
Cx=

n∑
k=1

Ckxk

}
≤b

{
U(x) =

n∑

k=1

uk(xk)

}
, (1)

where uk(xk) k = 1, . . . , n are concave functions and
x = (x1, . . . , xn) ∈ R

n
+. Optimal resource allocation x∗

is a solution of the problem (1).

Denote gj(x) = 〈Cj ,x〉 − bj , j = 1, . . . ,m. Note that

|gj(x1)− gj(x
2)| ≤ ‖Cj‖2‖x1 − x2‖2 ≤ m · ‖x1 − x2‖2.

The last inequality holds due to the definition of matrix C.
So, each gj(x), j = 1, . . . ,m is Mg = m-Lipschitz con-
tinuous.

For convenience, we will further consider the minimization
problem equivalent to (1)

min
gj(x)≤0, j=1, m

f(x), (2)

where f(x) = −U(x).

3. MIRROR DESCENT FOR MANY CONSTRAINTS

Let us consider the max-type functional constraint: g(x) =
max
j∈1,m

gj(x), which keeps the Lipschitz property and non-

smoothness, provided that all functions gj(x), j =
1, . . . , m, satisfy these properties.

3.1 First algorithm

The first variant of Mirror Descent Algorithm for many
constraints is suggested, see Algorithm 1.

Algorithm 1 Mirror Descent Algorithm for many con-
straints

Require: ε > 0,Θ0 : d(x∗) = 1
2‖x0 − x∗‖2 6 Θ2

0, initial

point x0 = 0
1: I =: ∅
2: N ← 0
3: repeat
4: if gj(x

N ) 6 ε‖∇gj(xN )‖2, ∀ j = 1, m then

5: xN+1 =
[
xN − ε∇f(xN )

‖∇f(xN )‖2

]
+

6: // hN = ε
‖∇f(xN )‖2

7: N → I
8: else
9: (gjN (xN ) > ε‖∇gjN (xN )‖2), jN = 1, m)

10: xN+1 =
[
xN − ε∇gjN (xN )

‖∇gjN (xN )‖2

]
+

11: // hN = ε
‖∇gjN (xN )‖2

12: end if
13: N ← N + 1

14: until 2
Θ2

0

ε2
6 N

Ensure: x̄N := argmin
xk, k∈I

f(xk)

Now we will estimate the rate of convergence of the
proposed method. For this we need the following auxiliary
assumption (Nesterov (2018), Lemma 3.2.1). Recall that
x∗ is the solution of the problem (2).

Lemma 1. Let us define the following function:

ω(τ) = max
x∈R

n
+

{f(x)− f(x∗) : ‖x− x∗‖ 6 τ}, (3)

where τ is a positive number. Then for any y ∈ X

f(y)− f(x∗) 6 ω(vf (y,x
∗)), (4)

where

vf (y,x
∗) =

〈 ∇f(y)
‖∇f(y)‖ ,y − x∗

〉
for∇f(y) 6= 0

and vf (y,x
∗) = 0 for ∇f(y) = 0.

Theorem 2. Let ε > 0 be a fixed number and the stopping
criterion of Algorithm 1 be satisfied. Then

min
k∈I

vf (x
k,x∗) 6 ε, max

k∈I
gj(x

k) ≤ εMg, j ∈ 1,m. (5)

Proof.

1) If k ∈ I (for productive steps),

hk(f(x
k)− f(x∗)) ≤ hk〈∇f(xk),xk − x∗〉 = εvf (x

k,x∗)

6
h2
k

2
||∇f(xk)||22 +

1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22

=
ε2

2
+

1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22. (6)

2) If k 6∈ I, then
gjk (x

k)−gjk (x
∗)

||∇gjk (x
k)||2

≥ gjk (xk)

||∇gjk (x
k)||2

> ε.

Therefore, the following inequalities hold



ε2 < hk(gjk(x
k)− gjk(x

∗)) 6
h2
k

2
||∇gjk(xk)||22

+
1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22

=
ε2

2
+

1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22,

or
ε2

2
<

1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22. (7)

3) After summing the inequalities (6) and (7) we have:

∑

k∈I

εvf (x
k,x∗) 6 |I|ε

2

2
− ε2|J |

2

+
1

2
‖x0 − x∗‖22 −

1

2
‖xk+1 − x∗‖22 = ε2|I| − ε2N

2
+ Θ2

0.

And since
∑

k∈I vf (x
k,x∗) ≥ |I|min

k∈I
vf (x

k,x∗), after the

stopping criterion of the algorithm holds we have

|I|min
k∈I

εvf (x
k,x∗)6 ε2|I| − ε2N

2
+ Θ2

0 ≤ ε2|I|.

So, min
k∈I

vf (x
k,x∗) 6 ε.

Further, for each k ∈ I gj(x
k) 6 ε||∇gj(xk)||2 6 εMg, j =

1, . . . ,m.

Now we have to show that the set of productive steps I
is non-empty. If I = ∅, then |J | = N and the Lipschitz

continuous of g means that N >
2Θ2

0

ε2
. On the other hand,

from (7) we have:

ε2N

2
<

1

2
‖x0 − x∗‖22 6 Θ2

0,

which leads us to the controversy, so I 6= ∅.

Now let us show how to estimate the quality of the
solution by the function basing on the previous theorem
for Lipschitz continuous function.

Corollary 3. Let f satisfy the Lipschitz condition

|f(x)− f(y)| 6 Mf‖x− y‖2 ∀x,y ∈ X. (8)

Then, after the stopping of Algorithm 1, the following
inequality holds:

min
k∈I

f(xk)− f(x∗) ≤Mfε.

Proof. Note that

min
k∈I

f(xk)− f(x∗) ≤ min
k∈I

vf (x
k,x∗) · ‖∇f(xk)‖2 ≤Mfε.

Now, we estimate the rate of convergence of Algorithm 1
for a differentiable objective functional f with a Lipschitz-
continuous gradient.

‖∇f(x)−∇f(y)‖∗ 6 L‖x− y‖ ∀x, y ∈ X. (9)

Assume that similarly to Devolder et al. (2014) we have
an inexact (δ, L)-gradient ∇δf for f :

f(x) 6 f(x∗) + 〈∇δf(x∗),x− x∗〉+
1

2
L‖x− x∗‖2 + δ

for exact solution x∗ we can get that

min
k∈I

f(xk)− f(x∗)

6min
k∈I

{
‖∇δf(x∗)‖2‖xk − x∗‖+

1

2
L‖xk − x∗‖2 + δ

}
.

From Theorem 2 in view of Lemma 1 we obtain the
following corollary

Corollary 4. Let f be differentiable and 9 hold. Assume
that we have an inexact (δ, L)-gradient ∇δf of function f
at each point x. Then, after the stopping of Algorithm 1,
the next inequality holds:

min
k∈I

f(xk)− f(x∗) 6 ε‖∇f(x∗)‖2 +
1

2
Lε2 + δ.

Let us consider the rate of convergence of Algorithm 1 for
a differentiable objective Hölder-continuous functional f ,
i.e. for some ν ∈ [0; 1)

|f(x) − f(y)| 6 Mf, ν‖x− y‖ν ∀x, y ∈ Q. (10)

For example, ν = 1/2 for f(x) =
√
x. Let us recall the

following inequality Stonyakin et al. (2019)

Mνa
ν
6 Mν

[
Mν

δ

] 1−ν

1+ν a2

2
+ δ, (11)

which is true for each δ > 0. Then by (10) we have

|f(x)− f(y)| 6 M
2

1+ν
ν

2δ
1−ν

1+ν

||x− y||22 + δ.

Set δ = ε. Then

|f(x)− f(y)| 6 M
2

1+ν
ν

2ε
1−ν

1+ν︸ ︷︷ ︸
M

||x− y||22 + ε. (12)

By Lemma 1 after the stopping of Algorithm 1 we have
min
k∈I

vf (x
k, x∗) < ε. It means the following inequality:

f(x̂)− f∗
6

M
2

1+ν
ν

2ε
1−ν
1+ν

ε2 + ε =
M

2
1+ν
ν

2
ε1+

2ν
1+ν + ε. (13)

Then we can formulate the following corollary

Corollary 5. Let f be a Hölder-continuous functional
and (10) hold. Then, after the stopping of Algorithm 1
for ε < 1 the inequality (13) means

f(x̂)− f∗
6 M̂ε

for some M̂ > 0.

So, for problems with a convex Hölder-continuous differ-
entiable objective and convex Lipcshitz-continuous func-
tional constraints we can achieve an ε-solution after O

(
1
ε2

)
iterations of Algorithm 1. This estimate is optimal due to
its optimality on a significantly narrower class of prob-
lems with Lipschitz-continuous objective functionals Ne-
mirovsky and Yudin (1983).

3.2 Second algorithm

Let us consider the following method for fixed accuracy
ε > 0, initial approach x0, Θ0: ‖x0 − x∗‖22 6 2Θ2

0 and
Lipschitz-continuous functional constraint g:

|g(x)− g(y)| 6 Mg||x− y|| ∀x, y ∈ R
n
+.



Algorithm 2 Another variant of adaptive mirror descent
for many constraints.

Require: ε > 0,Θ0 : d(x∗) = 1
2‖x0 − x∗‖2 6 Θ2

0, x
0 = 0

- initial point.
1: I =: ∅
2: N ← 0
3: repeat
4: if gj(x

N ) 6 ε‖∇gj(xN )‖2, ∀j ∈ 1,m then

5: xN+1 =
[
xN − ε∇f(xN )

‖∇f(xN )‖2
2

]
+

6: // hN = ε
‖∇f(xN )‖2

2

7: N → I
8: else
9: (gjN (xN ) > ε‖∇gjN (xN )‖2), jN ∈ 1,m)

10: xN+1 =
[
xN − ε∇gjN (xN )

‖∇gjN (xN )‖2

]
+

11: // hN = ε
‖∇gjN (xN )‖2

12: end if
13: N ← N + 1
14: until

2Θ2
0

ε2
6

∑

k∈I

1

||∇f(xk)||2∗
+ |J |, (14)

where |J | — the number of unproductive steps
(we denote by |I| the number of productive steps, i.e.
|I|+ |J | = N).

Ensure: x̂N = 1∑
k∈I

hk

∑
k∈I

hkx
k

Theorem 6. Let ε > 0 be a fixed number and the stopping
criterion of Algorithm 2 be satisfied. Then the following
inequality is true:

f(x̂N )− f(x∗) 6 ε and

g(x̂N ) 6
ε∑

k∈I hk

∑

k∈I

hk||g(xk)||2 6 εMg,

where x̂N = 1∑
k∈I

hk

∑
k∈I

hkx
k.

Proof. We give only a sketch of the proof because the
proof of this theoremmostly follows the proof of theorem 2.
1) If k ∈ I (for productive steps),

hk(f(x
k)− f(x∗))

≤ ε2

2
· 1

||∇f(xk)||22
+

1

2
‖xk − x∗‖22 −

1

2
‖xk+1 − x∗‖22.

2) If k 6∈ I inequality (7) holds.

3) Summing the inequalities and after fulfilling the crite-
rion for stopping the algorithm (14):

∑

k∈I

hk(f(x
k)− f(x∗)) 6 ε

∑

k∈I

hk,

where for x̂N :=
∑
k∈I

hkx
k∑

k∈I
hk

holds (15). Wherein ∀k ∈

I g(xk) 6 ε||∇g(xk)||2 6 εMg and holds (15).

Let us estimate the number of iterations necessary to fulfill
the stopping criterion (14) in the case of a Lipschitz-
continuous objective functional

|f(x)− f(y)| 6 Mf ||x− y||2.

It is clear that ∀k ∈ I ||∇f(xk)||2 6 Mf and therefore

|J |+
∑

k∈I

1

||∇f(xk)||2∗
> |J |+ |I|

M2
f

> (|I|+|J |) 1

max{1,M2
f }

.

This means that for

>
2Θ2

0max{1,M2
f }

ε2
(15)

the stopping criterion (14) is obviously fulfilled, that is,
the desired accuracy is achieved in O

(
1
ε2

)
iterations.

3.3 Modification for the logarithm utility functions

Note that the most common utility functions for networks
are logarithms, i.e. uk(xk) = log xk. However, the loga-
rithm is not a Lipschitz function on R

n
+, since its gradient

is unlimited near zero. However, consider the following
modification of Algorithm 1. We shift the boundary of
the feasible set from zero, i.e. let xk ≥ εn, k = 1, . . . , n.
Then, by the definition of the gradient of the logarithm,
the utility function will be Lipschitz with the constant
MU = 1

ε
, i.e.

||∇U(x)||2 ≤
n∑

k=1

|u′
k(xk)| ≤ n · 1

εn
=

1

ε
.

Firstly, to solve this problem, we apply Algorithm 1 for

N =

⌈
2
Θ2

0

ε4

⌉
with hk = ε2

‖∇f(xk)‖2
for k ∈ I and hk =

ε2

‖∇gjk (xk)‖2
for k 6∈ I. Then, we obtain the following

estimation for the convergence rate

Corollary 7. After the N =

⌈
2
Θ2

0

ε4

⌉
steps of Algorithm 1,

the following inequality holds:

min
k∈I

f(xk)− f(x∗) ≤ ε.

Moreover, let us estimate the convergence rate of Algo-
rithm 2 applied to this problem. Using estimation (15)
with max at MU = 1

ε
we obtain the following corollary.

Corollary 8. After the N =

⌈
2
Θ2

0

ε4

⌉
steps of Algorithm 2,

the following inequality holds:

f(x̂N )− f(x∗) 6 ε

where x̂N = 1∑
k∈I

hk

∑
k∈I

hkx
k.

Note that the convergence rates of Algorithm 1 and Algo-
rithm 2 are of the same order, but due to the adaptability
of the stopping criterion, Algorithm 2 works better in prac-
tice. Moreover, Algorithm 2 does not require modification
of steps.

4. ELLIPSOID METHOD

Consider the transition to the dual problem for (1). Let
λ = (λ1, . . . , λm) ∈ R

m
+ be a vector of dual multipliers

, which can be interpreted as a compound price vector.
Define dual objective function

ϕ(λ) = max
x∈R

n
+

{
n∑

k=1

uk(xk) + 〈λ,b−
n∑

k=1

Ckxk〉
}

=



= 〈λ,b〉+
n∑

k=1

(uk(xk(λ))− 〈λ, Ckxk(λ)〉),

and users choose the optimal data rates xk by solving the
following optimization problem

xk(λ) = argmax
xk ∈R+

{uk(xk)− xk〈λ, Ck〉} . (16)

Then to find the optimal prices λ
∗ we need to solve the

problem
min

λ∈R
m
+

ϕ(λ). (17)

Suppose that for the primal problem the Slater condition
is satisfied, then due to the strong duality both the primal
and the dual problems will have a solution. Using Slater’s
condition, one can compactify the solution of the dual
problem. We assume that the following estimate is correct
for solving the dual problem:

||λ∗||2 ≤ R.

In this case, the value R does not affect the operation of
the algorithms under consideration, but R is only present
in their convergence rate estimations.

To solve the dual problem, we consider the ellipsoid
method. As the starting point of the method, we take the

Algorithm 3 Ellipsoid method

Require: uk(xk), k = 1, ..., n — concave functions.
1: B0 := 2R · In
2: for t = 0, ..., N − 1 do
3: Compute ∇ϕ(λt)
4: qt := BT

t ∇ϕ(λt)

5: pt :=
BT

t qt√
qT
t BtBT

t qt
6:

Bt+1 :=
m√

m2 − 1
Bt +

(
m

m+ 1
− m√

m2 − 1

)
Btptp

T
t

7: λ
t+1 := λ

t − 1

m+ 1
Btpt

8: end for
9: return λ

N

zero vector, i.e. λ0 = 0. The problem will be solved on the
set Λ2R, where

Λ2R = {λ ∈ R
m
+ : ‖λ‖2 ≤ 2R}.

To restore the solution of the primal problem by the
solution of the dual problem, it is necessary to determine
the accuracy certificate ξ for the ellipsoid method. The
accuracy certificate is a sequence of weights ξ = {ξt}N−1

t=0
such that

ξt ≥ 0,

N−1∑

t=0

ξt = 1.

A detailed description of the construction of such a certifi-
cate can be found in Nemirovski et al. (2010).

Now we formulate a theorem of convergence rate estima-
tion Ivanova et al. (2019).

Theorem 9. Let Algorithm 3 start with an initial ball
B0 = {λ ∈ R

m : ‖λ‖2 ≤ 2R}. Then after

N = 2m(m+ 1)

⌈
log

(
32 · 4MR

ε

)⌉

the following inequalities will hold

U(x∗)− U(x̂N ) ≤ ε, ‖[Cx̂N − b]+‖2 ≤ ε,

where x̂N =
∑

t∈IN

ξtx(λ
t), IN =

{
t ≤ N − 1 : λt ∈ int Λ2R

}
.

5. EXPERIMENTS

To test the performance of Algorithm 2 we compared it
with the ellipsoid method (Algorithm 3). The behavior
of the methods was tested in problems (1) of different
configurations of networks and with different accuracy ε.

The routing matrix C was generated as follows: Cj
i = 1

with probability p = 0.5 or Cj
i = 0 with probability

1 − p = 0.5. The elements of the vector b are uniform
random variables: bi ∈ [0.1, 0.4]. The utility functions
are logarithmic. The initial values for Algorithm 2 and
the ellipsoid method (EM) are x0 = 0 and λ

0 = 10−20,
respectively. The radius 2R of the initial ball in the
ellipsoid method and the radius R =

√
2Θ of the ball

containing x∗ in Algorithm 2 were chosen experimentally
in such a way that the intermediate solutions obtained
by the methods remained inside the given set at each
iteration. The required solution accuracy ε was chosen so
that the boundary shift nε of the feasible set from zero
was small enough, that is no more than ∼ 10−1.

Table 1. Convergence results of Algo-
rithm 2 (A2) and the ellipsoid method (EM),

ε = 6e− 4

n 50 100 200

m 100 150 100 150 100 150

A2
Iter 142243 142516 171292 174270 193621 198585

Time, s 16.77 21.91 33.56 37.63 46.8 49.22

EM
Iter 512749 758327 531448 760537 532992 761008

Time, s 601.74 885.54 1022.73 1293.15 1418.67 1481.02

Table 2. Convergence results of Algo-
rithm 2 (A2) and the ellipsoid method (EM),

ε = 3e− 4

n 50 100 200

m 100 150 100 150 100 150

A2
Iter 8724510 9105234 9006192 9574296 9157003 9611472

Time, s 921.38 1224.70 1276.73 1411.67 1424.12 1670.74

EM
Iter 603578 801775 628267 833323 633571 850051

Time, s 1084.22 1317.61 1321.48 1705.46 1492.88 1921.06

Table 3. Convergence results of Algo-
rithm 2 (A2) and the ellipsoid method (EM),

ε = 2e− 4

n 50 100

m 100 150 100 150

A2
Iter 25225735 29752323 26055762 33846145

Time, s 1367.54 1569.25 1550.62 1796.34

EM
Iter 599423 960529 618783 971525

Time, s 1223.86 1515.32 1677.25 1900.03

n 200

m 100 150

A2
Iter 28532359 37244837

Time, s 1723.07 1985.52

EM
Iter 667294 1021528

Time, s 1891.18 2293.34



The results of the experiments are presented in Tables 1-
3. As one can see from Tables 1-2, for ε = 6e − 4 and
ε = 3e − 4, the proposed algorithm shows better time
than the ellipsoid method. Even for high solution accuracy,
ε = 2e−4, Algorithm 2 showed a large number of iterations
and almost the same time as EM, as shown in Table 3. So,
in a case where very high solution accuracy is not required,
it is reasonable to apply the proposed algorithm.

The conducted experiments confirm the following theo-
retical fact about Algorithm 2: the convergence rate of
Algorithm 2 depends only on the smoothness level of
the target function and of the constraints and does not
depend on the number of constraints m (see Section 3).
Unlike in the case of the ellipsoid method, where there
is a quadratic growth over m in the theoretical number
of iterations (Theorem 9). So, if we compare the number
of iterations (Iter) for the same n and for m = 100 and
m = 150 in Tables 1-3, one can notice that the number
of iterations for EM increases almost 1.5− 2 times and it
is not the same for Algorithm 2. The theoretical results
tell us that for Algorithm 2, as m increases and n is the
same, the number of iterations should not change. But due
to the adaptability of the stopping criterion, in practice it
changes slightly, since in both cases this number is less
than the theoretical convergence rate estimate.

6. CONCLUSION

In conclusion, we note that despite the theoretical at-
tractiveness of Algorithm 1 (for example, as can be seen
from Section 3.1, one can obtain estimates for cases with
an inexact oracle and objective functions with different
smoothness levels), our experiments showed that Algo-
rithm 2 is significantly faster (both in time and in number
of iterations) in practice due to adaptability of the stop-
ping criterion.

Moreover, we considered Algorithm 3 from Stonyakin
et al. (2018) (see also Algorithm 1 from Bayandina et al.
(2018a)). Note, in comparison with Algorithm 2 this
algorithm guarantees a better estimate for the residual by
constraint g(x) ≤ ε with similar estimates for the objective
function and similar complexity O

(
ε−2

)
. However, in

practice, it works much worse than Algorithm 2 and
Algorithm 1.

Another important observation concerning the comparison
of Algorithms 2 and 1 with methods from Bayandina
et al. (2018a); Stonyakin et al. (2018) in practice is that
for medium and large networks. The practical result in a
reasonable time can be obtained only from Algorithm 2.

In conclusion we note that approaches considered by us
allow us to determine the prices of connections. Here
you can use the properties of primal-duality of considered
Mirror Descent methods Bayandina et al. (2018b,a).
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