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The rapid development of machine learning and deep learning has introduced increas-
ingly complex optimization challenges that must be addressed. Indeed, training
modern, advanced models has become difficult to implement without leveraging mul-
tiple computing nodes in a distributed environment. Distributed optimization is also
fundamental to emerging fields such as federated learning. Specifically, there is a need
to organize the training process to minimize the time lost due to communication. A
widely used and extensively researched technique to mitigate the communication bot-
tleneck involves performing local training before communication. This approach is the
focus of our paper. Concurrently, adaptive methods that incorporate scaling, notably
led by Adam, have gained significant popularity in recent years. Therefore, this paper
aims to merge the local training technique with the adaptive approach to develop
efficient distributed learning methods. We consider the classical Local SGD method
and enhance it with a scaling feature. A crucial aspect is that the scaling is described
generically, allowing us to analyze various approaches, including Adam, RMSProp,
and OASIS, in a unified manner. In addition to the theoretical analysis, we validate
the performance of our methods in practice by training a neural network.
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1 Introduction

Distributed optimization

Today, there are numerous problem statements related to distributed optimization,
with one of the most popular applications being in machine learning [1] and deep
learning [2]. The rapid advancement of artificial intelligence has enabled the resolu-
tion of a wide range of challenges, ranging from object classification, credit scoring
to machine translation. Consequently, the complexity of machine learning problems
has been increasing steadily, necessitating the processing of ever-larger data sets with
increasingly large models [3]. Therefore, it is now challenging to envision learning pro-
cesses without the use of parallel computing and, by extension, distributed algorithms
[4–8].

In practice, various settings for distributed computing can be considered. One
classical distributed setting involves optimization within a computing cluster. In this
scenario, it is assumed that optimization occurs on a computational cluster, facilitating
parallel computations to expedite the learning process and enabling communication
between different workers. This cluster setting closely resembles collaborative learning,
where, instead of a single large cluster, there is a network of users with potentially
smaller computational resources. These resources could be virtually combined into
a substantial computational resource capable of addressing the overarching learning
problem.

It is worth noting that, in these formulations, it can be assumed that local data
on each device is homogeneous—identical and originating from the same distribu-
tion—due to the artificial uniform partitioning of the dataset across computing devices.
A more realistic setting occurs when data are inherently distributed among users,
resulting in heterogeneity among local data across workers. An example of a problem
statement within this setting is federated learning [9–11], where each user’s data is
private and often has a unique nature, coming from heterogeneous distributions.

Communication bottleneck

A central challenge of distributed optimization algorithms is organizing communi-
cations between computing devices or nodes. Consequently, numerous aspects need
consideration, ranging from the organization of the communication process to its
efficiency. In particular, communication costs can be significant due to the large vol-
umes of information transmitted, especially in contemporary problems. As a result,
total communication time in distributed learning becomes a bottleneck that must be
addressed.

Various techniques exist to address the issue of total communication complexity
[4, 12–14]. In this paper, we concentrate on one such technique: local steps. The core
of this approach is to enable devices to perform a certain number of local compu-
tations without the need for communication. Consequently, this significantly reduces
the frequency of communications, which can in turn lower the final complexity of
algorithms.
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Methods with local steps

Local techniques have already been explored in various contexts. Among the first
local method, Parallel SGD was proposed in [15] and has since evolved, appearing
under new identities such as Local SGD [16] and FedAvg [17]. Additionally, there have
been studies introducing various modifications, including momentum [18], quantization
[19, 20], and variance reduction [21, 22]. Nevertheless, new interpretations of local
techniques continue to emerge. For instance, relatively recent works like SCAFFOLD
[11] and ProxSkip [23], along with their modifications, have been introduced. It is also
worth mentioning the research path focusing on Hessian similarity [24–27] of local
functions, where local techniques are employed, but in these cases, most of the local
steps are performed by a single/main device.

Although these approaches and techniques are widespread, they are all funda-
mentally based on variations of gradient descent, whether deterministic or stochastic.
Recently, particularly in the field of machine learning, so-called adaptive methods have
gained traction. These methods, which involve fitting adaptive parameters for indi-
vidual components of a variable, have become increasingly popular due to research
demonstrating their superior results in learning problems. This can be achieved by uti-
lizing a scaling/preconditioning matrix that alters the vector direction of the descent.
Among the most prominent methods incorporating this approach are Adam [28],
RMSProp [29], and AdaGrad [30].

The choice of preconditioner

The structure of the preconditioner can vary significantly. For instance, calculations
based on the gradient at the current point, as exemplified by Adam and RMSProp,
can be utilized. Alternatively, a scaling matrix structure based on the Hutchinson
approximation [31, 32], such as that employed in OASIS [33], may be used. To enhance
computation, recurrence relations (exponential smoothing) are typically introduced for
the preconditioner. One of its most critical attributes is its diagonal form, attributed
to the fact that using the preconditioner resembles the quasi-Newton [34, 35] method.
Consequently, calculating the inverse matrix becomes necessary, and this task is
simplified significantly for the diagonal form.

The aforementioned techniques – local steps in distributed optimization and pre-
conditioning – are widely used and have practical significance, yet their integration
has not been extensively explored. Therefore, we have defined the following objectives
for our research:

• Combine the two techniques to introduce a new local method with preconditioning
updates.

• Obtain a general convergence analysis of this method for a specific class of adaptive
settings.

2 Contributions and related works

Our contributions are delineated into four main parts:
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• Formulation of a new local method: This paper introduces a method that
merges the Local SGD technique with preconditioning updates. In this approach,
each device employs preconditioning to scale gradients on each node within the
communication network. Devices perform multiple iterations to solve their local
problems and, during a communication round, transmit information to the server,
where the collected variables are averaged. Concurrently, the preconditioning matrix
is updated and distributed by the server to all clients. The concept of Local SGD has
been extensively explored in literature [9, 16, 36–38], with [36] providing particularly
tight and unimproved results [39], which we leverage for our analysis.

• Unified assumption on the preconditioning matrix: To facilitate the con-
vergence analysis of our novel algorithm, the exact structure of the scaling matrix
need not be specified. We introduce a classical general assumption that allows us
to examine a specific class of preconditioners simultaneously. This approach aligns
with previous studies [40, 41], which have indicated that many adaptive methods,
including Adam, RMSProp, and OASIS, adhere to this assumption.

• Setting for Theoretical Analysis: Diverging from prior research, we depart from
certain assumptions, such as gradient boundedness and gradient similarity ([42,
Assumptions 2 and 3]). This shift enables us to address a broader class of problems.

• Interpretability of Results: Prior research has examined the combination of
the two heuristics mentioned above. Specifically, [42] explored local methods with
scaling, such as FedAdaGrad and FedAdam, but we identified discrepancies in their
results. Our study elucidates why our approach is exempt from these shortcomings
(see Section 5.2). Our findings offer greater interpretability, despite focusing on a
more generalized theory in terms of preconditioning.

3 Preliminaries, requirements and notations

In distributed optimization, we solve an optimization problem in a form

min
x∈Rd

{
f(x)

def
=

1

M

M∑
m=1

fm(x)

}
, (1)

where fm(x)
def
= Ezm∼Dm [fm(x, zm)] is the loss function for mth-client, m ∈ [M ] and

Dm is the distribution of the data for mth-client, x are parameters of the model. We
also denote the solution of the problem (1) as x∗.

Given the diverse formulations of distributed learning, we differentiate between two
scenarios: homogeneous (identical) and heterogeneous. Formally, in the homogeneous
case, the equality of loss functions is guaranteed by the uniformity of the data: f1(x) =
. . . = fm(x). Conversely, the heterogeneous case arises when such equality does not
hold.

To prove convergence, we introduce classical assumptions [43, 44] for objective
functions: smoothness, unbiasedness and bounded variance, and smoothness of the
stochastic function. Our analysis, based on [36], adopts the same set of assumptions.
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Assumption 1. Assume that each fm is µ-strongly convex for µ ≥ 0 and L-smooth.
That is, for all x, y ∈ Rd

µ

2
∥x− y∥2 ≤ fm(x)− fm(y)− ⟨∇fm(y), x− y⟩ ≤ L

2
∥x− y∥2.

Also we define κ
def
= L

µ , the condition number.
Next, we state two sets of assumptions about the problem’s stochastic nature,

leading to varying convergence rates.
Assumption 2. Assume that fm satisfies following: for all x ∈ Rd with z ∼ Dm

drawn i.i.d. according to a distribution Dm:

Ez∼Dm
[∇fm(x, z)] = ∇fm(x),

Ez∼Dm

[
∥∇fm(x, z)−∇fm(x)∥2

]
≤ σ2.

Assumption 2 traditionally controls stochasticity but often does not apply to finite-
sum problems (for µ > 0 strongly convex objectives [45]). To encompass such cases,
we introduce the following assumption:
Assumption 3. Assume that fm(·, z) : Rd → R is almost-surely L-smooth and µ-
strongly convex.

Additionally, to yield more precise results in heterogeneous scenarios, we introduce
the following definition:

σ2
dif

def
=

1

M

M∑
m=1

Ezm∼Dm

[
∥∇fm(x∗, zm)∥2

]
.

4 Preconditioning meets local method

We are now prepared to present our algorithm, introduce a unified assumption for the
preconditioner along with its properties, and discuss theoretical results for convergence
within two distinct regimes.

4.1 SAVIC

Let us describe the Algorithm 1, which is based on Local SGD. Each client maintains
its own variable xm

t , where m ∈ [M ] represents the client index, t denotes the iteration
number, and fm is the loss function of the mth-client. Additionally, we define a series
of time moments t1, t2, . . ., designated for communication. Depending on whether the
current point in time aligns with a communication moment, a client either performs
local steps or transmits its current information to the server, where averaging occurs.
The innovation introduced in this algorithm is the matrix D̂tp , with tp indicating one
of the synchronization iterations. In the algorithm described, this modification acts as
a preconditioner, highlighted in blue for emphasis. It is crucial to note that the matrix
is updated exclusively during synchronization moments and remains consistent across
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Algorithm 1 Stochastic Adaptive Vehicle with Infrequent Communications

Require: step-size γ > 0, initial vector x0 = xm
0 for all m ∈ [M ], synchronization

timesteps t0 = 0, t1, t2, . . ..
1: for t = 0, 1, . . . do
2: for m = 1, . . . ,M in parallel do
3: if t = tp for some p then

4: update the matrix D̂tp

5: end if
6: sample zm

i.i.d.∼ Dm

7: if data is identical then
8: compute ∇fm(xm

t , zm) = ∇f(xm
t , zm) such that E [∇f(xm

t , zm) | xm
t ] =

∇f(xm
t )

9: else
10: compute ∇fm(xm

t , zm), such that E [∇fm(xm
t , zm) | xm

t ] = ∇fm(xm
t )

11: end if

12: xm
t+1 =

{
1
M

∑M
j=1(x

j
t − γ(D̂tp)−1∇fj(x

j
t , zj)), if t = tp for some p ∈ N

xm
t − γ(D̂tp)−1∇fm(xm

t , zm), otherwise

13: end for
14: end for

all clients. The rationale behind these facts will be elucidated later when we delve into
the properties of the preconditioner.

4.2 Preconditioning

In practice, we often encounter various recurrence relations between preconditioners
for two adjacent iterations. One rule for updating the scaling matrix is given by the
following expression:

(Dt)2 = βt(D
t−1)2 + (1− βt)(H

t)2, (2)

where βt ∈ [0, 1] is a preconditioning momentum parameter and (Ht)2 is a diag-
onal matrix. This update mechanism is observed in Adam-based methods, where
(Ht)2 = diag (∇f(xt, zt)⊙∇f(xt, zt)), here zt is an independent random variable.

The original Adam [28] has βt = β−βt+1

1−βt+1 or an earlier method, RMSProp [29] has

βt ≡ β. Furthermore, the update rule (2) is also applicable to AdaHessian [46], which
relies on Hutchinson method. For this, we need to select the momentum parameter as

βt =
β−βt+1

1−βt+1 and set (Ht)2 = diag
(
vt ⊙∇2f(xt, zt)vt

)2
, where vt has i.i.d. elements

that follow the Rademacher distribution.
Alternatively, the update for the preconditioning matrix can be represented as

Dt = βtD
t−1 + (1− βt)H

t. (3)

This approach is also commonly used, for instance in methods like OASIS [33], where
βt ≡ β and Ht = diag

(
vt ⊙∇2f(xt, zt)vt

)
.
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Despite the presence of Hessians in AdaHessian and OASIS, computing the matrix
of second derivatives is unnecessary; it suffices to compute the gradient ∇f(xt, zt) and
then calculate the gradient of ⟨∇f(xt, zt), vt⟩ (i.e., we just need to perform Hessian-
vector product).

In practice, to avoid division by zero, a positive definite matrix is typically used.
This can be achieved by the following modification to the matrix Dt:

(D̂t)ii = max{α, |Dt
ii|}. (4)

Alternatively, the scaling matrix can be modified by adding α to each diagonal element:
(D̂t)ii = |Dt

ii| + α preserving the core idea of ensuring the preconditioner is positive
definite.

To summarize the approaches, we make the following assumption:
Assumption 4. Assume that D0 and Ht satisfy the expression below with some α > 0
and Γ ≥ α for all t:

αI ⪯ D0 ⪯ ΓI, αI ⪯ Ht ⪯ ΓI,

where I is an identity matrix.
From the above assumption, the following lemma implies:

Lemma 1 (Lemma 1, Beznosikov et al., [41]). Let us assume that D0, and for all t
the Ht is diagonal matrices with elements not greater than Γ in absolute value. Then
for matrices D̂t obtained by rules (2) – (4), the following holds:

1. D̂t are diagonal matrices with non-negative elements and αI ⪯ D̂t ⪯ ΓI;

2. D̂t+1 ⪯
(
1 + (1−βt+1)Γ

2

2α2

)
D̂t for (2);

3. D̂t+1 ⪯
(
1 + 2(1−βt+1)Γ

α

)
D̂t for (3).

It is straightforward to demonstrate (refer to Table 1 and for further details, Lemma
2.1, Sections B, C in [40]) that classical and well-known preconditioners meet the
conditions of Lemma Lemma 1. The results of Lemma Lemma 1 have already been
validated in [41]. However, for a clear convergence analysis, we need to formulate the
following corollary:
Corollary 1. Suppose {x̂t}t=0 are average points generated by Algorithm 1. Moreover,
for any t we have the scaling matrix D̂t respectively. Hence, according to update rules
(2), (3) and (4), we get

∥x̂t+1 − x∗∥2D̂t+1 ≤ (1 + (1− βt+1)C)∥x̂t+1 − x∗∥2D̂t ,

where C depends on the preconditioner update setting. In particular, choosing βt+1 in
a certain way for each setting allows to claim the next result:

∥x̂t+1 − x∗∥2D̂t+1 ≤
(
1 +

γµ

2Γ

)
∥x̂t+1 − x∗∥2D̂t ,
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where C =

{
Γ2

2α2 for (2) ⇒ βt+1 ≥ 1− γµα2

Γ3 ,
2Γ
α for (3) ⇒ βt+1 ≥ 1− γµα

4Γ2 ,

and ∥x∥2D̂t is the squared norm induced by the matrix, i.e. ∥x∥2D̂t =
〈
x, D̂tx

〉
.

Table 1: Γ for various preconditioners. G is the upper bound on the gradient norm.
The presence of G is typical for analysis of RMSProp and Adam [47].

Method Γ

OASIS
√
dL

RMSProp G

Adam G

4.3 Convergence analysis

In the following subsections, we present the convergence results of Algorithm 1 for
different settings: identical and heterogeneous data.

4.3.1 Identical data

Below is the main result for the identical data case.
Theorem 1. Suppose that Assumptions 1, 2 and 4 hold with µ > 0. Then for Algo-
rithm 1 with identical data and a constant stepsize γ > 0 such that γ ≤ α

4L , and H ≥ 1
such that maxp |tp − tp+1| ≤ H, for all T we have

E
[
∥x̂T − x∗∥2

]
= O

((
1− γµ

2Γ

)T Γ

α
∥x0 − x∗∥2 +

γΓσ2

α2µM
+

Lγ2Γ (H − 1)σ2

µα3

)
,

where x̂t
def
= 1

M

M∑
m=1

xm
t .

Using this theorem and properly selecting the parameters, we obtain the following
result, which ensures convergence.
Corollary 2. If we choose γ = Γ

µa with a = 4κ̂ + t, t > 0, where κ̂ = LΓ
µα , and T =

4a log a, then substituting it into Theorem 1 and using the fact that 1− x ≤ exp (−x),
we obtain:

E
[
∥x̂T − x∗∥2

]
= Õ

(
Γ∥x0 − x∗∥2

αT 2
+

Γσ2

αµ2MT
+

κΓσ2(H − 1)

µ2T 2α

)
,
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where x̂t
def
= 1

M

M∑
m=1

xm
t and Õ(·) omits polylogarithmic and constant factors.

4.3.2 Heterogeneous data

Next, we show a convergence guarantees for heterogeneous case.
Theorem 2. Suppose that Assumptions 1, 3 and 4 hold. Then for Algorithm 1 with
heterogeneous setting, M ≥ 2, maxp |tp − tp+1| ≤ H, γ > 0 such that γ ≤ α

10(H−1)L ,

we have

E
[
f(x̄T−1)− f(x∗)

]
≤
(
1− γµ

2Γ

)T Γ∥x0 − x∗∥2

γ
+ γσ2

dif

(
9(H − 1)

2α
+

8

Mα

)
,

where x̂t
def
= 1

M

M∑
m=1

xm
t , wt

def
=

(
1− γµ

2Γ

)−(t+1)
, WT−1

def
=

T−1∑
t=0

wt and x̄T−1
def
=

1
WT−1

T−1∑
t=0

wtx̂t.

Next corollary presents the convergence of Algorithm 1 in heterogeneous case.

Corollary 3. Choosing γ as min
(

α
10(H−1)L ,

2Γ
µT ln

(
max

(
2, µ2∥x0−x∗∥2T 2

4Γc

)))
, where

c
def
= σ2

dif

(
9(H−1)

2α + 8
Mα

)
in the Theorem 2, we claim the result for the convergence

rate:

E
[
f(x̄T−1)− f(x∗)

]
= Õ

(
(H − 1)LΓ

α
∥x0 − x∗∥2 exp

(
− µTα

Γ(H − 1)L

)
+

Γσ2
dif

αµT

(
(H − 1) +

1

M

))
.

5 Discussion

In this section, we discuss the results obtained by Algorithm 1 and qualitatively
compare these results with existing estimates for algorithms of a similar structure.

5.1 Interpretation of our results

For a comprehensive understanding of the results obtained, it’s essential to refer to
both the theoretical analysis (see Section 4.3) and the experiments conducted (see
Section 6).

• Preservation of analysis structure. The structure of the estimates obtained
during our analysis remains consistent with that found in [36], which served as the
foundation for our analysis. Given that the estimates in the original paper [36] are
shown to be optimal, as demonstrated in [39], our estimates also achieve optimal
performance within a specific class of preconditioning matrices.

• Boundary behavior. The primary distinction between our analysis and that of
the unscaled version in [36] lies in the introduction of constants α and Γ into our
estimates. The impact of Γ is generally not significant, often becoming apparent
through certain assumptions or lemmas, as illustrated in [40]. However, α represents
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a parameter that can be adjusted in practice, similar to implementations in Adam
or OASIS. Thus, the sensitivity of our estimates to this parameter, which is typically
quite small, is notably significant.

• The relationship between experiments and theory. The theoretical findings
suggest a less favorable convergence rate for our method compared to classical
Local SGD, attributed to an additional multiplicative factor Γ

α in our estimates.
Conversely, experimental results indicate an enhanced convergence rate for our
method over Local SGD. This discrepancy arises because our theorems rely on
a unified assumption regarding the preconditioning matrix, whereas experiments
employ specific scaling matrix structures. These structures, when incorporated into
the theoretical analysis, could potentially reduce the algorithm’s complexity. Our
findings do not necessarily indicate a theoretical improvement over existing meth-
ods; rather, they confirm that convergence is achievable with the incorporation of
adaptive structures through scaling. This opens avenues for future research, partic-
ularly in the exploration of specific types of preconditioning matrices, an area where
a significant gap exists across all adaptive methods employing scaling.

5.2 Discussion of results from [42]

In this section, we compare our approach with the algorithm (Algorithm 2) developed
in [42]. The following assumptions were made in the paper:

Algorithm 2 FedAdaGrad

1: initialization: x0, v−1 ≥ τ2, decay parameters β1, β2 ∈ [0, 1)
2: for t = 0, · · · , T − 1 do
3: sample subset S of clients
4: xt

i,0 = xt

5: for each client i ∈ S in parallel do
6: for k = 0, · · · ,K − 1 do
7: compute an unbiased estimate gti,k of ∇fi(x

t
i,k)

8: xt
i,k+1 = xt

i,k − ηlg
t
i,k

9: end for
10: ∆t

i = xt
i,K − xt

11: end for
12: ∆t =

1
|S|
∑

i∈S ∆t
i

13: mt = β1mt−1 + (1− β1)∆t

14: vt = vt−1 +∆2
t

15: xt+1 = xt + η mt√
vt+τ

16: end for

Assumption 5. Assume that each fm is L-smooth. That is, for all x, y ∈ Rd

∥∇fm(x)−∇fm(y)∥ ≤ L ∥x− y∥ .

10



Assumption 6. Assume that {fm}Mm=1 satisfy next expressions with zm ∼ Dm

E[∥∇[fm(x, zm)]j − [∇fm(x)]j∥2] ≤ σ2
l,j , (local variance)

1

M

M∑
m=1

∥[∇fm(x)]j − [∇f(x)]j∥2 ≤ σ2
g,j , (global variance)

for all x ∈ Rd and j ∈ [d].
Assumption 7. Assume that fm(x, z) have G-bounded gradients i.e., for any m ∈
[M ], x ∈ Rd and z ∼ Dm

|[∇fm(x, z)]j | ≤ G,

for all j ∈ [d].
Based on these assumptions, the authors of [42] present the following results.

Theorem 3. Suppose that Assumptions 5, 6 and 7 are satisfied. Then, for Algorithm

2 with σ2 def
= σ2

l + 6Kσ2
g and ηl such that

ηl ≤


1

16K min
{

1
L ,

1
T 1/6

[
τ

120L2G

]1/3}
,

1
16K min

{
τηL
2G2 ,

τ
4Lη ,

1
T 1/4

[
τ2

GLη

]1/2}
,

(5)

it follows that for all T

min
0≤t≤T−1

E ∥ ∇f(xt) ∥2≤ O
([

G√
T

+
τ

ηlKT

]
(Ψ + Ψvar)

)
,

where

Ψ =
f(x0)− f(x∗)

η
+

5η3l K
2L2T

2τ
σ2,

Ψvar =
2ηlKG2 + τηL

τ2

[
2η2l KT

m
σ2
l + 10η4l K

3L2Tσ2

]
.

Using Theorem 3, we can set η = const. Let us fix T > 0 and consider the case
when τ tends to zero. Without loss of generality, according to (5), we get ηl ∼ τ .
Substituting such ηl = τηl, we obtain:

min
0≤t≤T−1

E ∥ ∇f(xt) ∥2 ≤ O
([

G√
T

+
τ

ηlKT

]
(Ψ + Ψvar)

)
= O

([
G√
T

+
1

ηlKT

](
f(x0)− f(x∗)

η
+

5τ2η3lL
2K2T

2
σ2

+
2ηlKG2 + ηL

τ

[
2τ2η2lKT

m
σ2
l + 10τ4η4lK

3L2Tσ2

]))
= O

([
G√
T

+
1

ηlKT

](
f(x0)− f(x∗)

η
+ τ

(
5τη3lL

2K2T

2
σ2

11



+ (2ηlKG2 + ηL)

[
2η2lKT

m
σ2
l + 10τ2η4lK

3L2Tσ2

])))
= O

([
G√
T

+
1

ηlKT

](
f(x0)− f(x∗)

η

))
because τ tends to zero.

Hence, the result appears to be independent of σ2
l , suggesting the algorithm oper-

ates at any noise level, which seems impractical. This issue can be related from an
error in the proof of Theorem 1 in [42]. Specifically, at the end of Theorem 1, page
18, the multiplication in lines 3-4 introduces τ3 in the denominator, whereas the final
estimate incorrectly lists τ2. Therefore, a more accurate representation of Ψvar would
therefore be:

Ψvar =
2ηlKG2 + τηL

τ3

[
2η2l KT

m
σ2
l + 10η4l K

3L2Tσ2

]
.

However, even after addressing this error, the analysis still faces challenges. With
Algorithm 2 allowing β1 = 0, and by substituting v−1 = 1 (feasible as τ approaches
zero), we have the chain of conclusions:

1. ηl becomes very small with small τ , leading to minimal changes in xt
i,k+1 − xt

i,k;

2. consequently, ∆t
i is negligible;

3. thus, ∆t is sufficiently small;
4. given β1 = 0, mt is extremely small;
5. also, vt ∼ 1 because of point 3;
6. as a corollary, xt+1 = xt +

mt√
vt+τ ≈ xt, because of 4.

Then, as a direct consequence, the smaller the τ , the more iterations are needed
to converge, since the changes in iterations are becoming smaller during to reduction
of τ . This issue fundamentally arises from neglecting v−1 in the final analysis. The
claim that

√
vt−1,j ≤ ηlKG

√
T (page 16) doesn’t incorporate v−1, affecting the final

convergence estimate. If v−1 ∼ τ2, then ∆t√
vt+τ ∼ const, resolving the issue of minor

changes in xt across iterations.

6 Experiments

In this section, we describe the experimental setups and present the results.

6.1 Setup

Datasets. We utilize the CIFAR-10 dataset [48] in our experiments. We chose the
number of clients M equal to 10 (the same number as the number of classes in the
CIFAR-10 dataset). We divide the data into training and test parts in a percentage
ratio: 90%-10%. We divide the training sample among the devices in equal number.
To realize the heterogeneity of the data for each of the clients we select a ”main” class

12



of 10. We choose 30%, 50%, or 70% of the ”main” class for the corresponding client
and add the rest data evenly from the remaining samples.

Metric. Since we solve the classification problem, we use standard metrics such as
cross-entropy loss and accuracy.

Models. We choose the ResNet18 model [49] for our analysis.

Optimization methods. For our experiments, we implemented three different
preconditioning matrices: the identity matrix (representing pure Local SGD with
momentum), the matrix from Adam [28], and the matrix from OASIS [33]. In the case
of using Adam and OASIS, we study two ways in which the updating of the scaling
matrix works: global (as done in Algorithm 1, where all devices have the same matrix
and update it at the time of synchronization) and local (where each device updates
its own scaling matrix at each iteration – for this approach we do not give theoretical
studies).

For all methods, we chose a heavy-ball momentum β1 equal to 0.9, a scaling momen-
tum β2 to 0.999, a batch size to be 256, and a number of local iterations between
communications as 18 (1 epoch).

6.2 Results

The outcomes of the experiments are shown in Figure 1. The results, contrary to the-
oretical expectations, demonstrated that methods with scaling achieved the required
accuracy faster than those without it. This outcome is both classical and consequen-
tial, as the theoretical framework typically considers a general type of preconditioning
matrix, which does not incorporate the specifics of adaptive scaling. Moreover, the
local scaling (for which we do not provide a theory due to the fact that it is a more
complex case compared to global scaling) works better for Adam than the approach
from Algorithm 1, but for OASIS the global scaling is no worse and sometimes even
better.

7 Conclusion

In this paper, we present a unified convergence analysis of a method that combines
Local SGD with a preconditioning technique. We demonstrate that the theoretical
convergence rate of the method is preserved, except for the introduction of a multiplica-
tive factor, Γ

α . This modification is due to our consideration of a general form for the
scaling matrix. Additionally, we present experiments, showing that Local SGD with
scaling outperforms the version without it. Our paper also identifies areas for future
work, suggesting that one could consider specific types of preconditioning matrices
to demonstrate theoretical improvements in convergence. Also an interesting question
for future research is the construction of a theory of local individual scaling, which in
experiments surpassed global scaling from Algorithm 1.

13
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Fig. 1: Comparison of different federated optimization methods: without scaling (SGD),
Adam (local Adam local and global Adam global scalings) and OASIS (local OASIS
local and global OASIS global scalings). We consider the behaviour of the accuracy
(left) and loss function (right) on the ResNet 18 learning problem on CIFAR-10 with
different degrees of heterogeneity: 30% (top), 50% (middle), 70% (bottom) of the main
class. The horizontal axis defers the synchronization/communication round number.
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A Basic facts and auxiliary lemmas

We use a notation similar to that of [16] and denote the sequence of time stamps when
synchronization happens as (tp)

∞
p=1. Given stochastic gradients g1t , g

2
t , . . . , g

M
t at time

t ≥ 0, we define

gt
def
=

1

M

M∑
m=1

gmt , ḡmt
def
= E [gmt ] =

{
∇f(xm

t ) for identical data,

∇fm(xm
t ) otherwise,

ḡt
def
= E [gt] .

Let us define two definitions, which are crucial for our analysis

Vt
def
=

1

M

M∑
m=1

∥xm
t − x̂t∥2D̂tp

with tp ≤ t < tp+1; x̂t
def
=

1

M

M∑
m=1

xm
t .

Throughout the proofs, we use the variance decomposition that holds for any random
vector X with finite second moment:

E
[
∥X∥2

]
= E

[
∥X − E [X]∥2

]
+ ∥E [X]∥2. (6)

In particular, its version for vectors with finite number of values gives

1

M

M∑
m=1

∥Xm∥2 =
1

M

M∑
m=1

∥∥∥∥∥Xm − 1

M

M∑
i=1

Xi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

M

M∑
m=1

Xm

∥∥∥∥∥
2

. (7)

As a consequence of (6) we have that,

E
[
∥X − E [X]∥2

]
≤ E

[
∥X∥2

]
. (8)

For any convex function f and any vectors x1, . . . , xM we have Jensen’s inequality:

f

(
1

M

M∑
m=1

xm

)
≤ 1

M

M∑
m=1

f(xm). (9)

As a special case with f(x) =∥ x ∥2, we obtain∥∥∥∥∥ 1

M

M∑
m=1

xm

∥∥∥∥∥
2

≤ 1

M

M∑
m=1

∥ xm ∥2 . (10)

We denote the Bregman divergence associated with function f and arbitrary x, y as

Df (x, y)
def
= f(x)− f(y)− ⟨∇f(y), x− y⟩ .
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If f is L-smooth and convex, then for any x and y it holds

∥ ∇f(x)−∇f(y) ∥2≤ 2LDf (x, y). (11)

If f satisfies Assumption 1, then

f(x) + ⟨∇f(y), x− y⟩+ µ

2
∥y − x∥2 ≤ f(y), ∀x, y ∈ Rd. (12)

We also use the following facts:

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2, (13)

2 ⟨a, b⟩ ≤ ζ∥a∥2 + ζ−1∥b∥2, for all a, b ∈ Rd and ζ > 0, (14)(
1− p

2

)−1

≤ (1 + p), for all p ∈ [0, 1] . (15)

B Proof of Corollary 1

Proof. Let us consider two cases:

1. tp ≤ t < tp+1 − 1 for some p ∈ N.
In this case, matrices D̂t and D̂t+1 are equal by construction. Hence, the fact above
is obvious.

2. t = tp+1 − 1 for some p ∈ N.
Here we have a change of the matrix which generates a norm (it becomes new at
the iteration tp+1). But this fact is obvious due to Lemma 1.

Since we can have no more cases, the above ends the proof.

C Proofs for identical data

C.1 Auxiliary lemmas

Lemma 2. Assume that for any t : tp ≤ t < tp+1 we have D̂tp . Under Assumptions
1, 2 and 4, we have for Algorithm 1, which run for identical data with γ ≤ α

2L and
with |tp − tt+1| ≤ H:

E [Vt] ≤ (H − 1)
γ2σ2

α
.

Proof. Let t ∈ N be such that tp ≤ t ≤ tp+1 − 1. Recall that for a time t such that

tp ≤ t < tp+1 we have xm
t+1 = xm

t − γ(D̂tp)−1gmt and x̂t+1 = x̂t − γ(D̂tp)−1gt. Hence,
for the expectation conditional on x1

t , x
2
t , . . . , x

M
t (we use E [·] = E

[
·|x1

t , x
2
t , . . . , x

M
t

]
for brevity) we have:

E
[∥∥xm

t+1 − x̂t+1

∥∥2
D̂tp

]
= E

[∥∥∥xm
t − γ(D̂tp)−1gmt − x̂t + γ(D̂tp)−1gt

∥∥∥2
D̂tp

]
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= ∥xm
t − x̂t∥2D̂tp

+ γ2E
[∥∥∥(D̂tp)−1∇f(xm

t , zm)− (D̂tp)−1gt

∥∥∥2
D̂tp

]
− 2γE

[〈
xm
t − x̂t, (D̂

tp)−1∇f(xm
t , zm)− (D̂tp)−1gt

〉
D̂tp

]
= ∥xm

t − x̂t∥2D̂tp

+ γ2E
[∥∥∥(D̂tp)−1∇f(xm

t , zm)− (D̂tp)−1gt

∥∥∥2
D̂tp

]
− 2γ ⟨xm

t − x̂t,E [∇f(xm
t , zm)− gt]⟩

= ∥xm
t − x̂t∥2D̂tp

+ γ2E
[∥∥∥(D̂tp)−1∇f(xm

t , zm)− (D̂tp)−1gt

∥∥∥2
D̂tp

]
− 2γ ⟨xm

t − x̂t,∇f(xm
t )⟩

+ 2γ ⟨xm
t − x̂t, gt⟩ .

Averaging both sides over M and noting that Vt =
1
M

M∑
m=1

∥xm
t − x̂t∥2D̂tp , we have

E [Vt+1] = Vt +
γ2

M

M∑
m=1

E
[∥∥∥(D̂tp)−1∇f(xm

t , zm)− (D̂tp)−1gt

∥∥∥2
D̂tp

]

− 2γ

M

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩+ 2γ ⟨x̂t − x̂t, gt⟩︸ ︷︷ ︸
=0

= Vt +
γ2

M

M∑
m=1

E
[
∥∇f(xm

t , zm)− gt∥2(D̂tp )−1

]
− 2γ

M

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩ . (16)

Now remark that by expanding the square we have,

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
= E

[
∥∇f(xm

t , zm)− gt + gt − gt∥2(D̂tp )−1

]
= E

[
∥∇f(xm

t , zm)− gt∥
2
(D̂tp )−1

]
+ E

[
∥gt − gt∥2(D̂tp )−1

]
+ 2E

[
⟨∇f(xm

t , zm)− gt, gt − gt⟩(D̂tp )−1

]
. (17)
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We decompose the first term in the last equality again by expanding the square and
using that E [∇f(xm

t , zm)] = ∇f(xm
t ),

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
= E

[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+ ∥∇f(xm

t )− gt∥
2
(D̂tp )−1

+ 2E
[
⟨∇f(xm

t , zm)−∇f(xm
t ),∇f(xm

t )− gt⟩(D̂tp )−1

]
= E

[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+ ∥∇f(xm

t )− gt∥
2
(D̂tp )−1

+ 2 ⟨E [∇f(xm
t , zm)−∇f(xm

t )] ,∇f(xm
t )− gt⟩(D̂tp )−1

= E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+ ∥∇f(xm

t )− gt∥
2
(D̂tp )−1

+ 2 ⟨∇f(xm
t )−∇f(xm

t ),∇f(xm
t )− gt⟩(D̂tp )−1︸ ︷︷ ︸

=0

= E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+ ∥∇f(xm

t )− gt∥
2
(D̂tp )−1 .

Plugging this into (17), we can obtain

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
= E

[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+ ∥∇f(xm

t )− gt∥
2
(D̂tp )−1

+ E
[
∥gt − gt∥2(D̂tp )−1

]
+ 2E

[
⟨∇f(xm

t , zm)− gt, gt − gt⟩(D̂tp )−1

]
.

Averaging over M gives

1

M

M∑
m=1

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
=

1

M

M∑
m=1

E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+

1

M

M∑
m=1

∥∇f(xm
t )− gt∥

2
(D̂tp )−1
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+ E
[
∥gt − gt∥2(D̂tp )−1

]
− 2E

[
∥gt − gt∥2(D̂tp )−1

]
,

where we used the notation gt =
M∑

m=1
∇f(xm

t , zm). Hence,

1

M

M∑
m=1

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
≤ 1

M

M∑
m=1

E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2(D̂tp )−1

]
+

1

M

M∑
m=1

∥∇f(xm
t )− gt∥

2
(D̂tp )−1 . (18)

Now we can note that for the first term in (18) with Assumption 2, using that
∥x∥2(D̂tp )−1 ≤ 1

α∥x∥
2
, we have

E
[
||∇f(xm

t , zm)−∇f(xm
t )||2

(D̂tp )−1

]
≤ 1

α
E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2

]
≤ σ2

α
. (19)

For the second term in (18), we get

||∇f(xm
t )− gt||2(D̂tp )−1 = ∥∇f(xm

t )−∇f(x̂t)∥2(D̂tp )−1

+ ∥∇f(x̂t)− gt∥
2
(D̂tp )−1

+ 2 ⟨∇f(xm
t )−∇f(x̂t),∇f(x̂t)− gt⟩(D̂tp )−1 .

Averaging over M and using the notation ḡt =
1
M

M∑
m=1

∇f(xm
t ), we have

1

M

M∑
m=1

||∇f(xm
t )− gt||2(D̂tp )−1 =

1

M

M∑
m=1

∥∇f(xm
t )−∇f(x̂t)∥2(D̂tp )−1

+ ∥∇f(x̂t)− gt∥
2
(D̂tp )−1

− 2∥∇f(x̂t)− gt∥
2
(D̂tp )−1

≤ 1

M

M∑
m=1

∥∇f(xm
t )−∇f(x̂t)∥2(D̂tp )−1 .
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Then, using the property of matrix D̂tp that ∥x∥2(D̂tp )−1 ≤ 1
α∥x∥

2
, the assumption

about L-smoothness (see Assumption 1) and Jensen’s inequality, we get

1

M

M∑
m=1

||∇f(xm
t )−∇f(x̂t)||2(D̂tp )−1

≤ 1

Mα

M∑
m=1

∥∇f(xm
t )−∇f(x̂t)∥2

(11)

≤ 1

Mα

M∑
m=1

2L(f(x̂t)− f(xm
t )− ⟨x̂t − xm

t ,∇f(xm
t )⟩)

≤ 2L

Mα

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩ . (20)

Plugging (20) and (19) into (18), we obtain

1

M

M∑
m=1

E
[
||∇f(xm

t , zm)− gt||2(D̂tp )−1

]
≤ σ2

α
+

2L

Mα

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩ . (21)

Substituting (21) into (16), we get

E [Vt+1] ≤ Vt +
γ2σ2

α
+

2Lγ2

Mα

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩

− 2γ

M

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩

= Vt +
γ2σ2

α
−
(
1− γL

α

)
2γ

M

M∑
m=1

⟨xm
t − x̂t,∇f(xm

t )⟩

≤ Vt +
γ2σ2

α
+

(
1− γL

α

)
2γ

M

M∑
m=1

(f(x̂t)− f(xm
t )− µ

2
∥xm

t − x̂t∥2)

≤ Vt +
γ2σ2

α
+

(
1− γL

α

)
2γ

M

M∑
m=1

(f(x̂t)− f(xm
t )− µ

2Γ
∥xm

t − x̂t∥2D̂tp )

≤
(
1− γ

(
1− γL

α

)
µ

Γ

)
Vt +

γ2σ2

α
,

where we used µ-strong convexity, the fact that 1
Γ∥x∥

2
D̂tp ≤ ∥x∥2 and the Jensen’s

inequality. Using that γ ≤ α
2L , we can conclude,

E [Vt+1] ≤
(
1− γµ

2Γ

)
Vt +

γ2σ2

α
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≤ Vt +
γ2σ2

α
.

Taking the full expectation and iterating the above inequality,

E [Vt] ≤ E
[
Vtp

]
+

γ2σ2

α
(t− tp)

≤ E
[
Vtp

]
+

γ2σ2

α
(tp+1 − tp − 1)

≤ E
[
Vtp

]
+

γ2σ2

α
(H − 1) .

It remains to notice that by the design of Algorithm 1 we have Vtp = 0.

C.2 Other lemmas

Lemma 3. Let (xm
t )t≥0 be iterates generated by Algorithm 1 run with identical data.

Suppose that f satisfies Assumption 1, D̂tp satisfies Assumption 4 and that γ ≤ α
4L .

Then, for any t : tp ≤ t < tp+1,

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
E∥x̂t − x∗∥2D̂tp +

γ2

α
E∥gt − gt∥

2

− γ

2
E [Df (x̂t, x∗)] +

2γL

α
Vt.

Proof of Lemma 3. From the update rule we get

∥x̂t+1 − x∗∥2D̂tp =
∥∥∥x̂t − γ(D̂tp)−1gt − x∗

∥∥∥2
D̂tp

=
∥∥∥x̂t − γ(D̂tp)−1gt − x∗ − γ(D̂tp)−1gt + γ(D̂tp)−1gt

∥∥∥2
D̂tp

=
∥∥∥x̂t − x∗ − γ(D̂tp)−1gt

∥∥∥2
D̂tp

+ γ2∥gt − gt∥
2
(D̂tp )−1

+ 2γ
〈
x̂t − x∗ − γ(D̂tp)−1gt, gt − gt

〉
. (22)

Observe that

||x̂t − x∗ − γ(D̂tp)−1gt||2D̂tp = ∥x̂t − x∗∥2D̂tp + γ2∥gt∥
2
(D̂tp )−1

− 2γ ⟨x̂t − x∗, gt⟩

= ∥x̂t − x∗∥2D̂tp + γ2∥gt∥
2
(D̂tp )−1

− 2γ

M

M∑
m=1

⟨x̂t − x∗,∇f(xm
t )⟩

≤ ∥x̂t − x∗∥2D̂tp +
γ2

M

M∑
m=1

∥∇f(xm
t )∥2(D̂tp )−1
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− 2γ

M

M∑
m=1

⟨x̂t − xm
t + xm

t − x∗,∇f(xm
t )⟩

= ∥x̂t − x∗∥2D̂tp

+
γ2

M

M∑
m=1

∥∇f(xm
t )−∇f(x∗)∥2(D̂tp )−1

− 2γ

M

M∑
m=1

⟨xm
t − x∗,∇f(xm

t )⟩

− 2γ

M

M∑
m=1

⟨x̂t − xm
t ,∇f(xm

t )⟩ , (23)

where we used the fact that
∥∥∥∑M

m=1 am

∥∥∥2 ≤ M
∑M

m=1 ∥am∥2. With the property of

D̂tp that ∥x∥2(D̂tp )−1 ≤ 1
α∥x∥

2
, we get

∥∇f(xm
t )−∇f(x∗)∥2(D̂tp )−1 ≤ 1

α
∥∇f(xm

t )−∇f(x∗)∥2. (24)

By L-smoothness (Assumption 1, see also (11)),

∥∇f(xm
t )−∇f(x∗)∥2 ≤ 2L(f(xm

t )− f∗) , (25)

and by µ-strong convexity

−⟨xm
t − x∗,∇f(xm

t )⟩ ≤ − (f(xm
t )− f∗)−

µ

2
∥xm

t − x∗∥2 . (26)

To estimate the last term in (23) we use 2 ⟨a, b⟩ ≤ γ∥a∥2 + γ−1∥b∥2, for γ = 2L > 0.
This gives

−2 ⟨x̂t − xm
t ,∇f(xm

t )⟩ ≤ 2L∥x̂t − xm
t ∥2 + 1

2L
∥∇f(xm

t )∥2

= 2L∥x̂t − xm
t ∥2 + 1

2L
∥∇f(xm

t )−∇f(x∗)∥2

≤ 2L∥x̂t − xm
t ∥2 + (f(xm

t )− f∗) , (27)

where we used (25) in the last inequality. By applying (24), (25), (26) and (27) to (23),
we get

||x̂t − x∗−γ(D̂tp)−1gt||2D̂tp

≤ ∥x̂t − x∗∥2D̂tp +
2γL

M

M∑
m=1

∥x̂t − xm
t ∥2
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+
2γ

M

M∑
m=1

((
γL

α
− 1

2

)
(f(xm

t )− f∗)−
µ

2
∥xm

t − x∗∥2
)

. (28)

For γ ≤ α
4L it holds

(
γL
α − 1

2

)
≤ − 1

4 . By applying the Jensen’s inequality to the convex

function
[
a (f(x)− f∗) + b∥x− x∗∥2

]
with a = 1

2 − γL
α ≥ 0, b = µ

2 ≥ 0:

− 1

M

M∑
m=1

(
a(f(xm

t )− f∗) + b∥xm
t − x∗∥2

)
≤ − (a(f(x̂t)− f∗))− b∥x̂t − x∗∥2, (29)

hence we can continue with (28) by substituting (29) and by using that 1
α∥x∥

2
D̂tp ≥

∥x∥2 ≥ 1
Γ∥x∥

2
D̂tp :∥∥∥x̂t − x∗ − γ(D̂tp)−1gt

∥∥∥2
D̂tp

≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp − γ

2
(f(x̂t)− f∗)

+
2γL

Mα

M∑
m=1

∥x̂t − xm
t ∥2D̂tp . (30)

Plugging (30) and taking the full expectation we get

E∥x̂t+1 − x∗∥2D̂tp ≤
(
1− γµ

Γ

)
E∥x̂t − x∗∥2D̂tp + γ2∥gt − gt∥

2
(D̂tp )−1

− γ

2
(f(x̂t)− f∗) +

2γL

Mα

M∑
m=1

∥x̂t − xm
t ∥2D̂tp

≤
(
1− γµ

Γ

)
E∥x̂t − x∗∥2D̂tp +

γ2

α
E∥gt − gt∥

2

− γ

2
E [Df (x̂t, x∗)] +

2γL

Mα

M∑
m=1

E∥x̂t − xm
t ∥2D̂tp . (31)

Using the notation of Vt, we claim the final result.

Lemma 4. Suppose that Assumption 2 holds. Then, if Algorithm 1 runs with identical
data, we have

E
[
∥gt − ḡt∥2

]
≤ σ2

M
.

Proof. Because the stochastic gradients ∇f(xm
t , zm) are independent, according to 2

we have

E
[
∥gt − ḡt∥2

]
= E

∥∥∥∥∥ 1

M

M∑
m=1

∇f(xm
t , zm)−∇f(xm

t )

∥∥∥∥∥
2


27



=
1

M2
E

∥∥∥∥∥
M∑

m=1

∇f(xm
t , zm)−∇f(xm

t )

∥∥∥∥∥
2


=
1

M2

M∑
m=1

E
[
∥∇f(xm

t , zm)−∇f(xm
t )∥2

]
≤ σ2

M
.

C.3 Proof of Theorem 1

Proof. Combining Lemma 3 and Lemma 4, we have

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
E∥x̂t − x∗∥2D̂tp +

γ2σ2

αM

− γ

2
E [Df (x̂t, x∗)] +

2γL

α
Vt. (32)

Using Lemma 2 we can upper bound the E [Vt] term in (32):

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
E∥x̂t − x∗∥2D̂tp +

γ2σ2

αM

− γ

2
E [Df (x̂t, x∗)] +

2γ3L

α2
(H − 1)σ2.

Applying Corollary 1 and using that 1 + γµ
2Γ ≤ 2, we get

E
[
∥x̂t+1 − x∗∥2D̂t+1

]
≤
(
1− γµ

2Γ

)
E∥x̂t − x∗∥2D̂t +

2γ2σ2

αM

− γE [Df (x̂t, x∗)] +
4γ3L

α2
(H − 1)σ2.

Due to E [Df (x̂t, x∗)] ≥ 0, we have

E
[
∥x̂t+1 − x∗∥2D̂t+1

]
≤
(
1− γµ

2Γ

)
E
[
∥x̂t − x∗∥2D̂t

]
+

2γ2σ2

αM
+

4γ3L

α2
(H − 1)σ2.

Running the recursion, we can obtain

E
[
∥x̂T − x∗∥2D̂T

]
≤
(
1− γµ

2Γ

)T
E
[
∥x0 − x∗∥2D̂0

]
+

(
T−1∑
t=0

(
1− γµ

2Γ

)t)(2γ2σ2

αM
+

4γ3L

α2
(H − 1)σ2

)
.
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Using that
T−1∑
t=0

(
1− γµ

2Γ

)t ≤ ∞∑
t=0

(
1− γµ

2Γ

)t
= 2Γ

γµ ,

E
[
∥x̂T − x∗∥2D̂T

]
≤
(
1− γµ

2Γ

)T
E
[
∥x0 − x∗∥2D̂0

]
+

4Γγσ2

µMα
+

8Γγ2L (H − 1)σ2

µα2
.

Using that 1
Γ∥x∥

2
D̂T ≤ ∥x∥2 ≤ 1

α∥x∥
2
D̂T , we get

E
[
∥x̂T − x∗∥2

]
≤
(
1− γµ

2Γ

)T Γ

α
E
[
∥x0 − x∗∥2

]
+

4Γγσ2

µMα2
+

8Γγ2L (H − 1)σ2

µα3
,

which finishes the proof of the theorem.

D Proofs for heterogeneous data

D.1 Auxiliary lemmas

Lemma 5. Suppose that Assumptions 1, 3 and 4 hold with µ ≥ 0. Then, if Algorithm 1
runs for heterogeneous data with M ≥ 2, we have for any t : tp ≤ t < tp+1

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xm
t , zm)

∥∥∥∥∥
2

(D̂tp )−1

 ≤ 2L2

α2
Vt +

8L

α
Df (x̂t, x∗) +

4σ2
dif

Mα
. (33)

Proof. Starting with the left-hand side, we get

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(xm
t , zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]

≤ 2E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xm
t , zm)− 1

M

M∑
m=1

∇fm(x̂t, zm)

∥∥∥∥∥
2

(D̂tp )−1


+ 2E

∥∥∥∥∥ 1

M

n∑
m=1

∇fm(x̂t, zm)

∥∥∥∥∥
2

(D̂tp )−1

 . (34)

To bound the first term in (34), we need to use the L-smoothness of fm(·, zm) and the
fact that ∥x∥2(D̂tp )−1 ≤ 1

α∥x∥
2
,

2E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(xm
t , zm)−∇fm(x̂t, zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]

≤ 2

M

M∑
m=1

E
[
∥(∇fm(xm

t , zm)−∇fm(x̂t, zm))∥2(D̂tp )−1

]
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≤ 2

Mα

M∑
m=1

E
[
∥(∇fm(xm

t , zm)−∇fm(x̂t, zm))∥2
]

≤ 2L2

Mα2

M∑
m=1

∥xm
t − x̂t∥2D̂tp , (35)

where we used Jensen’s inequality and the convexity of the function ∥ x ∥2. For the
second term in (34), we have

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(x̂t, zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]

(6)
= E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(x̂t, zm)−∇fm(x̂t)

∥∥∥∥∥
2

(D̂tp )−1


+

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(x̂t)

∥∥∥∥∥
2

(D̂tp )−1

. (36)

For the first term in (36) by the independence of zi and by the fact that ∥x∥2(D̂tp )−1 ≤
1
α∥x∥

2
, we get

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(x̂t, zm)−∇fm(x̂t)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]

=
1

M2

M∑
m=1

E
[
∥∇fm(x̂t, zm)−∇fm(x̂t)∥2(D̂tp )−1

]
(8)

≤ 1

M2

M∑
m=1

E
[
∥∇fm(x̂t, zm)∥2(D̂tp )−1

]
≤ 2

M2

M∑
m=1

E
[
∥∇fm(x̂t, zm)−∇fm(x∗, zm)∥2(D̂tp )−1

]
+

2

M2

M∑
m=1

E
[
∥∇fm(x∗, zm)∥2(D̂tp )−1

]
≤ 2

M2α

M∑
m=1

E
[
∥∇fm(x̂t, zm)−∇fm(x∗, zm)∥2

]
+

2

M2α

M∑
m=1

E
[
∥∇fm(x∗, zm)∥2

]
(11)

≤ 4L

M2α

M∑
m=1

Dfm(x̂t, x∗) +
2σ2

dif

Mα2
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=
4L

Mα
Df (x̂t, x∗) +

2σ2
dif

Mα
.

Substituting this in (36), one can obtain

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(x̂t, zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]

≤ 4L

Mα
Df (x̂t, x∗) +

2σ2
dif

Mα
+ E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(x̂t)

∥∥∥∥∥
2

(D̂tp )−1


=

4L

Mα
Df (x̂t, x∗) +

2σ2
dif

Mα
+ ∥∇f(x̂t)∥2(D̂tp )−1 . (37)

Now notice that

∥∇f(x̂t)∥2(D̂tp )−1 ≤ 1

α
∥∇f(x̂t)∥2

=
1

α
∥∇f(x̂t)−∇f(x∗)∥2 ≤ 2L

α
Df (x̂t, x∗).

Using this in (37), we get

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(x̂t, zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]
≤ 2L

α

(
1 +

2

M

)
Df (x̂t, x∗) +

2σ2
dif

Mα
.

Since M ≥ 2, we have 1 + 2
M ≤ 2, and hence

E

[∣∣∣∣∣∣∣∣ 1M
M∑

m=1

∇fm(x̂t, zm)

∣∣∣∣∣∣∣∣2
(D̂tp )−1

]
≤ 4L

α
Df (x̂t, x∗) +

2σ2
dif

Mα
. (38)

Combining (35) and (38) in (34), we have

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xm
t , zm)

∥∥∥∥∥
2

(D̂tp )−1

 ≤ 2L2

α2
Vt +

8L

α
Df (x̂t, x∗) +

4σ2
dif

Mα
,

which finishes the proof.

Lemma 6. Suppose that Assumptions 1 and 4 hold with µ ≥ 0. Then, if Algorithm 1
runs with heterogeneous data, we have for any t : tp ≤ t < tp+1

− 2

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩ ≤ −2Df (x̂t, x∗)−

µ

Γ
∥x̂t − x∗∥2D̂tp +

L

α
Vt.
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Proof. Starting with the left-hand side,

−2 ⟨x̂t − x∗,∇fm(xm
t )⟩ = − 2 ⟨xm

t − x∗,∇fm(xm
t )⟩

− 2 ⟨x̂t − xm
t ,∇fm(xm

t )⟩ . (39)

The first term in (39) is bounded by strong convexity:

−⟨xm
t − x∗,∇fm(xm

t )⟩ ≤ fm(x∗)− fm(xm
t )− µ

2
∥xm

t − x∗∥2. (40)

For the second term, we use L-smoothness,

−⟨x̂t − xm
t ,∇fm(xm

t )⟩ ≤ fm(xm
t )− fm(x̂t) +

L

2
∥xm

t − x̂t∥2. (41)

Combining (41) and (40) in (39), we get

−2⟨x̂t − x∗,∇fm(xm
t )⟩ ≤ 2

(
fm(x∗)− fm(xm

t )− µ

2
∥xm

t − x∗∥2
)

+ 2

(
fm(xm

t )− fm(x̂t) +
L

2
∥xm

t − x̂t∥2
)

= 2

(
fm(x∗)− fm(x̂t)−

µ

2
∥xm

t − x∗∥2 +
L

2
∥xm

t − x̂t∥2
)
.

Averaging over M ,

− 2

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩ ≤ − 2 (f(x̂t)− f(x∗))

− µ

M

M∑
m=1

∥xm
t − x∗∥2

+
L

M

M∑
m=1

∥xm
t − x̂t∥2.

Noting that the first term is the Bregman divergence Df (x̂t, x∗), and using Jensen’s

inequality: − 1
M

∑M
m=1 ∥xm

t − x∗∥2 ≤ −∥x̂t − x∗∥2, we have

− 2

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩ ≤ − 2Df (x̂t, x∗)− µ∥x̂t − x∗∥2 +

L

M

M∑
m=1

∥xm
t − x̂t∥2.
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With the fact that 1
Γ∥x∥

2
D̂tp ≤ ∥x∥2 ≤ 1

α∥x∥
2
D̂tp and with the notation of Vt, one can

obtain

− 2

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩ ≤ − 2Df (x̂t, x∗)−

µ

Γ
∥x̂t − x∗∥2D̂tp +

L

α
Vt.

This concludes the proof of the lemma.

Lemma 7. Suppose that Assumptions 1, 3 and 4 hold. Then, if Algorithm 1 runs for
heterogeneous data with supp |tp − tp+1| ≤ H, we get for any t : tp ≤ t ≤ tp+1 − 1 with

γ ≤ α
3L(H−1) and wj

def
=
(
1− γµ

2Γ

)−(j+1)

t∑
j=tp

wjE [Vj ] ≤
36γ2(H − 1)2L

α

t∑
j=tp

wjE [Df (x̂k, x∗)]

+
18γ2(H − 1)2σ2

dif

α

t∑
j=tp

wj .

Proof. Let Gk
def
=
∑M

m=1(D̂
tp)−1∇fm(xm

k , zm). From the notation of Vt, we get

E [Vt] =
1

M

M∑
m=1

E
[
∥xm

t − x̂t∥2D̂tp

]

=
1

M

M∑
m=1

E


∥∥∥∥∥∥
xm

tp − γ

t−1∑
k=tp

(D̂tp)−1∇fm(xm
k , zm)

−

xtp − γ

t−1∑
k=tp

Gk

∥∥∥∥∥∥
2

D̂tp

 .

Using that xtp = xm
tp for all m ∈ [M ],

E [Vt] =
γ2

M

M∑
m=1

E


∥∥∥∥∥∥

t−1∑
k=tp

∇fm(xm
k , zm)− gk

∥∥∥∥∥∥
2

(D̂tp )−1


(10)

≤ γ2 (t− tp)

M

M∑
m=1

t−1∑
k=tp

E
[
∥∇fm(xm

k , zm)− gk∥2(D̂tp )−1

]

≤ γ2 (t− tp)

M

M∑
m=1

t−1∑
k=tp

E
[
∥∇fm(xm

k , zm)∥2(D̂tp )−1

]

≤ γ2 (H − 1)

M

M∑
m=1

t−1∑
k=tp

E
[
∥∇fm(xm

k , zm)∥2(D̂tp )−1

]
, (42)
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where in the third line we used the definition of gk in the following way

1

M

M∑
m=1

E
[
∥∇fm(xm

k , zm)− gk∥2(D̂tp )−1

]
≤ 1

M

M∑
m=1

E
[
∥∇fm(xm

k , zm)∥2(D̂tp )−1

]
,

and in the fourth line we used that t− tp ≤ tp+1 − tp − 1 ≤ H − 1. Decomposing the
gradient norm, one can obtain

E
[
∥∇fm(xm

k , zm)∥2(D̂tp )−1

]
≤ 3E

[
∥∇fm(xm

k , zm)−∇fm(x̂k, zm)∥2(D̂tp )−1

]
+ 3E

[
∥∇fm(x̂k, zm)−∇fm(x∗, zm)∥2(D̂tp )−1

]
+ 3E

[
∥∇fm(x∗, zm)∥2(D̂tp )−1

]
. (43)

For the first term in (43):

E
[∣∣∣∣(∇fm(xm

k , zm)−∇fm(x̂t, zm)
∣∣∣∣2
(D̂tp )−1

]
≤ 1

α
E
[
∥∇fm(xm

k , zm)−∇fm(x̂t, zm)∥2
]

≤ L2

α
E
[
∥xm

k − x̂k∥2
]
. (44)

The second term can be bounded by smoothness and the property of (D̂tp)−1 that
∥x∥2(D̂tp )−1 ≤ 1

α∥x∥
2
:

E
[
∥∇fm(x̂k, zm)−∇fm(x∗, zm)∥2(D̂tp )−1

]
≤ 1

α
E
[
∥∇fm(x̂k, zm)−∇fm(x∗, zm)∥2

]
(11)

≤ 2L

α
E [Dfm(x̂k, x∗)] . (45)

Using (45) and (44) in (43), averaging by M , using that α∥x∥2 ≤ ∥x∥2D̂tp , with the
notation of σ2

dif we have

1

M

M∑
m=1

E
[
∥∇fm(xm

k , zm)∥2(D̂tp )−1

]
≤ 3L2

Mα

M∑
m=1

E
[
∥xm

k − x̂k∥2
]

+
6L

α
E [Df (x̂k, x∗)] +

3σ2
dif

α

≤ 3L2

α2
E [Vk]

+
6L

α
E [Df (x̂k, x∗)] +

3σ2
dif

α
. (46)
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Plugging (46) into (42) and summarizing inequalities with weights wj , we get

t∑
j=tp

wjE [Vj ] ≤
t∑

j=tp

wjγ
2(H − 1)

j−1∑
k=tp

(
3L2

α2
E [Vk] +

6L

α
E [Df (x̂k, x∗)] +

3σ2
dif

α

)

= γ2(H − 1)

t∑
j=tp

j−1∑
k=tp

wj

(
3L2

α2
E [Vk] +

6L

α
E [Df (x̂k, x∗)] +

3σ2
dif

α

)

= γ2(H − 1)

t∑
j=tp

j−1∑
k=tp

wj
3L2

α2
E [Vk]

+ γ2(H − 1)

t∑
j=tp

j−1∑
k=tp

wj
6L

α
E [Df (x̂k, x∗)]

+ γ2(H − 1)

t∑
j=tp

j−1∑
k=tp

wj
3σ2

dif

α
. (47)

Let us consider the sequence {wk}∞k=0. Recall that wk = (1−η)−(k+1), where η
def
= γµ

2Γ .
Then, for j : 0 ≤ j ≤ H − 1 with γ ≤ α

3(H−1)L , we obtain

wk = (1− η)−(k−j+1)(1− η)−j ≤ (1− η)−(k−j+1)(1 + 2η)j

≤ wk−j

(
1 +

γµ

Γ

)j
≤ wk−j

(
1 +

1

3(H − 1)

)j

≤ wk−j exp

(
j

3(H − 1)

)
≤ wk−j exp

(
1

3

)
≤ 2wk−j . (48)

Using the result above, let us bound terms in (47):

t∑
j=tp

j−1∑
k=tp

wjE [Vk] =

t∑
j=tp

j−1∑
k=tp

wk+(j−k)E [Vk]
(48)

≤
t∑

j=tp

j−1∑
k=tp

2wkE [Vk]

=

t∑
j=tp+1

j−1∑
k=tp

2wkE [Vk] ≤ 2(t− tp)

j−1∑
k=tp

wkE [Vk]

≤ 2(H − 1)

t∑
j=tp

wjE [Vj ] . (49)

t∑
j=tp

j−1∑
k=tp

wjE [Df (x̂k, x∗)] =

t∑
j=tp

j−1∑
k=tp

wk+(j−k)E [Df (x̂k, x∗)]
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(48)

≤
t∑

j=tp

j−1∑
k=tp

2wkE [Df (x̂k, x∗)]

=

t∑
j=tp+1

j−1∑
k=tp

2wkE [Df (x̂k, x∗)]

≤ 2(t− tp)

j−1∑
k=tp

wkE [Df (x̂k, x∗)]

≤ 2(H − 1)

t∑
j=tp

wjE [Df (x̂j , x∗)] . (50)

t∑
j=tp

j−1∑
k=tp

wjσ
2
dif =

t∑
j=tp

j−1∑
k=tp

wk+(j−k)σ
2
dif

(48)

≤
t∑

j=tp

j−1∑
k=tp

2wkσ
2
dif

=

t∑
j=tp+1

j−1∑
k=tp

2wkσ
2
dif ≤ 2(t− tp)

j−1∑
k=tp

wkσ
2
dif

≤ 2(H − 1)

t∑
j=tp

wjσ
2
dif . (51)

Substituting (49), (50) and (51) into (47), we can obtain

t∑
j=tp

wjE [Vj ] ≤
6γ2L2(H − 1)2

α2

t∑
j=tp

wjE [Vj ]

+
12γ2(H − 1)2L

α

t∑
j=tp

wjE [Df (x̂j , x∗)]

+
6γ2(H − 1)2σ2

dif

α

t∑
j=tp

wj .

Note that we have the same summands in both parts of the inequality. Then,(
1− 6γ2L2(H − 1)2

α2

) t∑
j=tp

wjE [Vj ] ≤
12γ2(H − 1)2L

α

t∑
j=tp

wjE [Df (x̂j , x∗)]

+
6γ2(H − 1)2σ2

dif

α

t∑
j=tp

wj .
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Since γ ≤ α
3(H−1)L , 1−

6γ2L2(H−1)2

α2 ≥ 1
3 , and we claim

t∑
j=tp

wjE [Vj ] ≤
36γ2(H − 1)2L

α

t∑
j=tp

wjE [Df (x̂j , x∗)]

+
18γ2(H − 1)2σ2

dif

α

t∑
j=tp

wj ,

which ends the proof of the lemma.

Lemma 8. Suppose that Assumptions 1, 3 and 4 hold for Algorithm 1 which runs for
heterogeneous data with M ≥ 2. Then, for any γ ≥ 0 and t : tp ≤ t ≤ tp+1−1 we have

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp +

γL

α

(
1 +

2γL

α

)
Vt

− 2γ

(
1− 4γL

α

)
Df (x̂t, x∗) +

4γ2σ2
dif

Mα
.

In particular, if γ ≤ α
8L , then

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp +

5γL

4α
Vt − γDf (x̂t, x∗) +

4γ2σ2
dif

Mα
.

Proof. First we use the update rule x̂t+1 = x̂t − γ(D̂tp)−1gt:

∥x̂t+1 − x∗∥2D̂tp =
∥∥∥x̂t − γ(D̂tp)−1gt − x∗

∥∥∥2
D̂tp

= ∥x̂t − x∗∥2D̂tp + γ2∥gt∥2(D̂tp )−1 − 2γ ⟨x̂t − x∗, gt⟩

= ∥x̂t − x∗∥2D̂tp + γ2∥gt∥2(D̂tp )−1 −
2γ

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t , zm)⟩ .

Taking the full expectation and using Lemmas 5 and 6,

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤ ∥x̂t − x∗∥2D̂tp + γ2E

[
∥gt∥2(D̂tp )−1

]
− 2γ

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩

≤ ∥x̂t − x∗∥2D̂tp + γ2

(
2L2

α2
Vt +

8L

α
Df (x̂t, x∗) +

4σ2
dif

Mα

)
− 2γ

M

M∑
m=1

⟨x̂t − x∗,∇fm(xm
t )⟩
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≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp +

γL

α

(
1 +

2γL

α

)
Vt

− 2γ

(
1− 4γL

α

)
Df (x̂t, x∗) +

4γ2σ2
dif

Mα
.

This result is the first part of our lemma. If γ ≤ α
8L , then 1− 4γL

α ≥ 1
2 and 1+ 2γL

α ≤ 5
4 ,

and finally

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp +

5γL

4α
Vt − γDf (x̂t, x∗) +

4γ2σ2
dif

Mα
.

D.2 Proof of Theorem 2

Proof. We start with Lemma 8:

E
[
∥x̂t+1 − x∗∥2D̂tp

]
≤
(
1− γµ

Γ

)
∥x̂t − x∗∥2D̂tp + γ

(
5L

4α
Vt −Df (x̂t, x∗)

)
+

4γ2σ2
dif

Mα
.

Applying Corollary 1 and using that 1 + γµ
2Γ ≤ 2, we get

E
[
∥x̂t+1 − x∗∥2D̂t+1

]
≤
(
1− γµ

2Γ

)
∥x̂t − x∗∥2D̂t + γ

(
5L

2α
Vt − 2Df (x̂t, x∗)

)
+

8γ2σ2
dif

Mα
.

Taking the full expectation and summarizing with weights wt, we get

T−1∑
t=0

wtE
[
∥x̂t+1 − x∗∥2D̂t+1

]
≤
(
1− γµ

2Γ

) T−1∑
t=0

wtE
[
∥x̂t − x∗∥2D̂t

]
+ γ

T−1∑
t=0

E
[
5L

2α
wtVt − 2wtDf (x̂t, x∗)

]

+
8γ2σ2

dif

Mα

T−1∑
t=0

wt. (52)

Using that T = tp for some p ∈ N, we can decompose the second term and use
Lemma 7:

T−1∑
t=0

wtE
[
5L

2α
Vt − 2Df (x̂t, x∗)

]
=

p∑
k=1

tk−1∑
t=tk−1

2wtE
[
5L

4α
Vt −Df (x̂t, x∗)

]

≤
p∑

k=1

tk−1∑
t=tk−1

2wt

(
45L2γ2(H − 1)2

α2
− 1

)
E [Df (x̂t, x∗)]
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+
45Lγ2(H − 1)2σ2

dif

α2

p∑
k=1

tk−1∑
t=tk−1

wt.

By assumption on γ that γ ≤ α
10(H−1)L we have 45L2γ2(H−1)2

α2 − 1 ≤ − 1
2 . Using this,

one can obtain

T−1∑
t=0

wtE
[
5L

2α
Vt − 2Df (x̂t, x∗)

]
≤ −

p∑
k=1

tk−1∑
t=tk−1

wtE [Df (x̂t, x∗)]

+
45Lγ2(H − 1)2σ2

dif

α2

p∑
k=1

tk−1∑
t=tk−1

wt

= −
T−1∑
t=0

wtE [Df (x̂t, x∗)]

+
45Lγ2(H − 1)2σ2

dif

α2

T−1∑
t=0

wt.

Plugging this into (52), we get

T−1∑
t=0

wtE
[
∥x̂t+1 − x∗∥2D̂t+1

]
≤
(
1− γµ

2Γ

) T−1∑
t=0

wtE
[
∥x̂t − x∗∥2D̂t

]
− γ

T−1∑
t=0

wtE [Df (x̂t, x∗)]

+

(
45Lγ3(H − 1)2σ2

dif

α2
+

8γ2σ2
dif

Mα

) T−1∑
t=0

wt.

Rearranging terms, we have

γ

T−1∑
t=0

wtE [Df (x̂t, x∗)]

≤
T−1∑
t=0

((
1− γµ

2Γ

)
wtE

[
∥x̂t − x∗∥2D̂t

]
− wtE

[
∥x̂t+1 − x∗∥2D̂t+1

])
+

(
45Lγ3(H − 1)2σ2

dif

α2
+

8γ2σ2
dif

Mα

) T−1∑
t=0

wt.
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Noting WT
def
=

T∑
t=0

wt and dividing both sides by γWT−1, we obtain

1

WT−1

T−1∑
t=0

wtE [Df (x̂t, x∗)]

≤ 1

γWT−1

T−1∑
t=0

((
1− γµ

2Γ

)
wtE

[
∥x̂t − x∗∥2D̂t

]
− wtE

[
∥x̂t+1 − x∗∥2D̂t+1

])
+

1

γWT−1

(
45Lγ3(H − 1)2σ2

dif

α2
+

8γ2σ2
dif

Mα

) T−1∑
t=0

wt.

Let us define x̄T−1
def
= 1

WT−1

T−1∑
t=0

wtx̂t. Using this definition, definition of the Breg-

man divergence, the fact that wt−1 = wt

(
1− γµ

2Γ

)
, the fact that WT−1 ≥ wT−1 =(

1− γµ
2Γ

)−T
, boundary for γ, counting the telescopic sum and applying the Jensen’s

inequality to the left-hand side, we claim the final result:

E
[
f(x̄T−1)− f(x∗)

]
≤ 1

γWT−1

T−1∑
t=0

(
wt−1E

[
∥x̂t − x∗∥2D̂t

]
− wtE

[
∥x̂t+1 − x∗∥2D̂t+1

])
+

1

γWT−1

(
45Lγ3(H − 1)2σ2

dif

α2
+

8γ2σ2
dif

Mα

) T−1∑
t=0

wt

≤
(
1− γµ

2Γ

)T ∥x0 − x∗∥2D̂0

γ
+ γσ2

dif

(
9(H − 1)

2α
+

8

Mα

)
≤
(
1− γµ

2Γ

)T Γ∥x0 − x∗∥2

γ
+ γσ2

dif

(
9(H − 1)

2α
+

8

Mα

)
.

D.3 Proof of Corollary 3

Proof. We start with Theorem 2:

E
[
f(x̄T−1)− f(x∗)

]
≤
(
1− γµ

2Γ

)T Γ∥x0 − x∗∥2

γ
+ γσ2

dif

(
9(H − 1)

2α
+

8

Mα

)
.

With new notation that c
def
= σ2

dif

(
9(H−1)

2α + 8
Mα

)
, we get

E
[
f(x̄T−1)− f(x∗)

]
≤
(
1− γµ

2Γ

)T Γ∥x0 − x∗∥2

γ
+ cγ

≤ exp

(
−γµT

2Γ

)
Γ∥x0 − x∗∥2

γ
+ cγ.

40



The bound for γ from Theorem 2 is γ ≤ α
10(H−1)L . Let us consider two cases:

• α
10(H−1)L ≥ 2Γ

µT ln
(
max

(
2, µ2∥x0−x∗∥2T 2

4Γc

))
.

Hence, choosing γ = 2Γ
µT ln

(
max

(
2, µ2∥x0−x∗∥2T 2

4Γc

))
, we obtain

Õ

(
µ∥x0 − x∗∥2T exp

(
− ln

(
max

(
2,

µ2∥x0 − x∗∥2T 2

4Γc

))))
+ Õ

(
Γc

µT

)
= Õ

(
Γc

µT

)
,

where in case 2 ≥ µ2∥x0−x∗∥2T 2

4Γc it holds µ∥x0 − x∗∥2T ≤ 8Γc
µT .

• α
10(H−1)L ≤ 2Γ

µT ln
(
max

(
2, µ2∥x0−x∗∥2T 2

4Γc

))
.

Then, we choose γ as α
10(H−1)L Hence, we get

10(H − 1)LΓ∥x0 − x∗∥2

α
exp

(
− αµT

20Γ(H − 1)L

)
+

cα

10(H − 1)L

≤ 10(H − 1)LΓ∥x0 − x∗∥2

α
exp

(
− αµT

20Γ(H − 1)L

)

+
2Γc ln

(
max

(
2, µ2∥x0−x∗∥2T 2

4Γc

))
µT

= Õ
(
(H − 1)LΓ

α
∥x0 − x∗∥2 exp

(
− µTα

Γ(H − 1)L

))
+ Õ

(
Γc

µT

)
.

Substituting c and combining results above, we have the following estimate:

E
[
f(x̄T−1)− f(x∗)

]
= Õ

(
(H − 1)LΓ

α
∥x0 − x∗∥2 exp

(
− µTα

Γ(H − 1)L

)
+

Γσ2
dif

αµT

(
(H − 1) +

1

M

))
,

which finishes the proof of the corollary.
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