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Abstract

In this paper, we propose new first-order methods for minimization of a convex
function on a simple convex set. We assume that the objective function is a composite
function given as a sum of a simple convex function and a convex function with inexact
Hölder-continuous subgradient. We propose Universal Intermediate Gradient Method.
Our method enjoys both the universality and intermediateness properties. Following
the ideas of Y. Nesterov (Math.Program. 152: 381-404, 2015) on Universal Gradient
Methods, our method does not require any information about the Hölder parameter and
constant and adjusts itself automatically to the local level of smoothness. On the other
hand, in the spirit of the Intermediate Gradient Method proposed by O. Devolder,
F.Glineur and Y. Nesterov (CORE Discussion Paper 2013/17, 2013), our method is
intermediate in the sense that it interpolates between Universal Gradient Method and
Universal Fast Gradient Method. This allows to balance the rate of convergence of
the method and rate of the oracle error accumulation. Under additional assumption of
strong convexity of the objective, we show how the restart technique can be used to
obtain an algorithm with faster rate of convergence.

1 Introduction
In this paper, we consider first-order methods for minimization of a convex function over a
simple convex set. The renaissance of such methods started more than ten years ago and was
mostly motivated by large-scale problems in data analysis, imaging and machine learning.
Simple black-box oriented methods like Mirror Descent [21] or Fast Gradient Method [23],
which were known in the 1980s, got a new life.

For a long time algorithms and their analysis were, mostly, separate for two main classes
of problems. The first class, with optimal method being Mirror Descent, is the class of
non-smooth convex functions with bounded subgradients. The second is the class of smooth
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convex functions with Lipschitz-continuous gradient, and the optimal method for this class
is Fast Gradient Method. An intermediate class of problems with Hölder-continuous subgra-
dient was also considered and optimal methods for this class were proposed in [20]. However,
these methods require to know the Hölder constant. In 2013, Nesterov proposed a Universal
Fast Gradient Method [22] which is free of this drawback and is uniformly optimal for the
class of convex problems with Hölder-continuous subgradient in terms of black-box informa-
tion theoretic lower bounds [21]. In 2012, Lan proposed a Fast gradient method with one
prox-mapping for stochastic optimization problems [19]. In 2016, Gasnikov and Nesterov
proposed a Universal Triangle Method [15], which possesses all the properties of Universal
Fast Gradient Method, but uses only one proximal mapping instead of two, as opposed to
the previous version. We also mention the work [16], where the authors introduce a method
which is uniformly optimal for convex and non-convex problems with Hölder-continuous sub-
gradient, and the work [26], in which a universal primal-dual method is proposed to solve
linearly constrained convex problems.

Another line of research [4–7, 11] studies first-order methods with inexact oracle. The
considered inexactness can be of deterministic or stochastic nature, it can be connected to
inexact calculation of the subgradient or to inexact solution of some auxiliary problem. As
it was shown in [6], gradient descent has slower rate of convergence, but does not accumulate
the error of the oracle. On the opposite, Fast Gradient Method has faster convergence rate,
but accumulates the error linearly with the iteration counter. Later, in [5] an Intermediate
Gradient Method was proposed. The main feature of this method is that, depending on
the choice of a hyperparameter, it interpolates between Gradient Method and Fast Gradi-
ent Method to exploit the trade-off between the rate of convergence and the rate of error
accumulation.

In this paper, we join the above two lines of research and present Universal Intermediate
Gradient Method (UIGM) for problems with deterministic inexact oracle. Our method
enjoys both the universality with respect to smoothness of the problem and interpolates
between Universal Gradient Method and Universal Fast Gradient Method, thus, allowing
to balance the rate of convergence of the method and rate of the error accumulation. We
consider a composite convex optimization problem on a simple set with convex objective,
which has inexact Hölder-continuous subgradient, propose a method to solve it, and prove
the theorem on its convergence rate. The obtained rate of convergence is uniformly optimal
for the considered class of problems. This method can be used in different applications such
as transport modeling [1, 12], inverse problems [13] and others.

We also consider the same problem under additional assumption of strong convexity of
the objective function and show how the restart technique [10, 14, 18, 20, 21, 23, 25] can be
applied to obtain a faster convergence rate of UIGM. The obtained rate of convergence is
again optimal for the class of strongly convex functions with Hölder-continuous subgradient.

The rest of the paper is organized as follows. In Sect. 2, we state the problem. After that,
in Sect. 3, we present Universal Intermediate Gradient Method and prove a convergence rate
theorem with general choice of controlling sequence of coefficients. In Sect. 4, we analyze
particular choice of controlling sequence of coefficients and prove a convergence rate theorem
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under this choice of coefficients. In Sect. 5, we present UIGM for strongly convex functions
and prove convergence rate theorem under this additional assumption. In Sect. 6, we
introduce another choice of coefficients that don’t need any additional information. In Sect.
7, we present numerical experiments for our method.

2 Problem Statement and Preliminaries
In what follows, we work in a finite-dimensional linear vector space 𝐸. Its dual space, the
space of all linear functions on 𝐸, is denoted by 𝐸*. Relative interior of 𝑄 is denoted as rint
𝑄. For 𝑥 ∈ 𝐸 and 𝑠 ∈ 𝐸*, we denote by ⟨𝑠,𝑥⟩ the value of a linear function 𝑠 at 𝑥. For
the (primal) space 𝐸, we introduce a norm ‖ · ‖𝐸. Then the dual norm is defined in the
standard way:

‖𝑠‖𝐸,* = max
𝑥∈𝐸

{⟨𝑠,𝑥⟩ : ‖𝑥‖𝐸 ≤ 1} .

Finally, for a convex function 𝑓 : dom 𝑓 → 𝑅 with dom 𝑓 ⊆ 𝐸 we denote by ∇𝑓(𝑥) ∈ 𝐸*

one of its subgradients.
We consider the following convex composite optimization problem [24]:

min
𝑥∈𝑄

[︁
𝐹 (𝑥)

def
= 𝑓(𝑥) + ℎ(𝑥)

]︁
, (1)

where 𝑄 is a simple closed convex set, ℎ(𝑥) is a simple closed convex function and 𝑓(𝑥) is a
convex function on 𝑄 with inexact first-order oracle, defined below. We assume that problem
(1) is solvable with optimal solution 𝑥*.

Definition 1. We say that a convex function 𝑓(𝑥) is equipped with a first-order (𝛿,𝐿)–oracle
on a convex set 𝑄 if for any point 𝑥 ∈ 𝑄, (𝛿,𝐿)-oracle returns a pair (𝑓𝛿(𝑥), 𝑔𝛿(𝑥)) ∈ 𝑅×𝐸*

such that
0 ≤ 𝑓(𝑦) − 𝑓𝛿(𝑥) − ⟨𝑔𝛿(𝑥), 𝑦 − 𝑥⟩ ≤ 𝐿

2
‖𝑦 − 𝑥‖2𝐸 + 𝛿, ∀𝑦 ∈ 𝑄. (2)

In this definition, 𝛿 represents the error of the oracle [6]. The oracle is exact with 𝛿 = 0.
Also we can take 𝛿 = 𝛿𝑐 + 𝛿𝑢, where 𝛿𝑐 represents the error, which we can control and make
as small as we would like to. On the opposite, 𝛿𝑢 represents the error, which we can not
control [7]. Note that, by Definition 1,

0 ≤ 𝑓(𝑥) − 𝑓𝛿(𝑥) ≤ 𝛿, ∀𝑥 ∈ 𝑄. (3)

To motivate Definition 1, we consider the following example. Let 𝑓 be a convex function
with Hölder-continuous subgradient. Namely, there exists 𝜈 ∈ [0,1], and 𝑀𝜈 < +∞, such
that

‖∇𝑓(𝑥) −∇𝑓(𝑦)‖𝐸* ≤ 𝑀𝜈‖𝑥− 𝑦‖𝜈𝐸, ∀𝑥,𝑦 ∈ 𝑄.
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In [6], it was proved that, for such function for any 𝛿𝑐 > 0, if

𝐿 ≥ 𝐿(𝛿𝑐) =

[︂
1 − 𝜈

1 + 𝜈
· 1

2𝛿𝑐

]︂ 1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 , (4)

then
𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +

𝐿

2
‖𝑥− 𝑦‖2𝐸 + 𝛿𝑐, ∀𝑥,𝑦 ∈ 𝑄. (5)

We assume also that the set 𝑄 is bounded with max𝑥,𝑦∈𝑄 ‖𝑥−𝑦‖𝐸 ≤ 𝐷. Finally, assume that
the value and subgradient of 𝑓 can be calculated only with some known, but uncontrolled
error. Strictly speaking, there exist 𝛿1, 𝛿2 > 0 such that, for any point 𝑥 ∈ 𝑄, we can
calculate approximations 𝑓(𝑥) and 𝑔(𝑥) with |𝑓(𝑥)− 𝑓(𝑥)| ≤ 𝛿1 and ‖𝑔(𝑥)−∇𝑓(𝑥)‖𝐸* ≤ 𝛿2.

Let us show that, in this example, 𝑓 can be equipped with inexact first-order oracle based
on the pair (𝑓(𝑥), 𝑔(𝑥)), where 𝑓𝛿(𝑥) = 𝑓(𝑥) − 𝛿1 − 𝛿2𝐷 and 𝑔𝛿(𝑥) = 𝑔(𝑥).

Now we prove the first inequality from (2)

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩
≥ 𝑓(𝑥) − 𝛿1 + ⟨𝑔(𝑥), 𝑦 − 𝑥⟩ − 𝛿2𝐷 = 𝑓𝛿(𝑥) + ⟨𝑔𝛿(𝑥), 𝑦 − 𝑥⟩

Using inequality (5) we obtain the second inequality from (2), for any 𝑦 ∈ 𝑄,

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿(𝛿𝑐)

2
‖𝑥− 𝑦‖2𝐸 + 𝛿𝑐

≤ 𝑓(𝑥) + 𝛿1 + ⟨𝑔(𝑥), 𝑦 − 𝑥⟩ + ⟨∇𝑓(𝑥) − 𝑔(𝑥), 𝑦 − 𝑥⟩ +
𝐿(𝛿𝑐)

2
‖𝑥− 𝑦‖2𝐸 + 𝛿𝑐

≤ 𝑓𝛿(𝑥) + ⟨𝑔𝛿(𝑥), 𝑦 − 𝑥⟩ +
𝐿(𝛿𝑐)

2
‖𝑥− 𝑦‖2𝐸 + 2𝛿1 + 2𝛿2𝐷 + 𝛿𝑐.

Thus, (𝑓𝛿(𝑥), 𝑔𝛿(𝑥)) is an inexact first-order oracle with 𝛿𝑢 = 2𝛿1 + 2𝛿2𝐷, 𝛿𝑐, and 𝐿(𝛿𝑐) given
by (4).

To construct our algorithm for problem (1), we introduce, as it is usually done, proximal setup
[2], which consists of choosing a norm ‖ · ‖𝐸, and a prox-function 𝑑(𝑥) which is continuous,
convex on 𝑄 and

1. 𝑑(𝑥) is a continuously differentiable 1-strongly convex on 𝑄 with respect to ‖ · ‖𝐸, i.e.,
for any 𝑥,𝑦 ∈ rint 𝑄,

𝑑(𝑦) − 𝑑(𝑥) − ⟨∇𝑑(𝑥),𝑦 − 𝑥⟩ ≥ 1

2
‖𝑦 − 𝑥‖2𝐸.

2. Without loss of generality, we assume that

min
𝑥∈𝑄

𝑑(𝑥) = 0.

Then if �̄� = argmin
𝑥∈𝑄

𝑑(𝑥), we get

𝑑(𝑦) ≥ 1

2
‖𝑦 − �̄�‖2𝐸, ∀𝑦 ∈ 𝑄. (6)
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The corresponding Bregman divergence is defined as 𝑉 (𝑥,𝑦) = 𝑑(𝑦)−𝑑(𝑥)−⟨∇𝑑(𝑥), 𝑦 − 𝑥⟩
and satisfies

𝑉 (𝑥,𝑦) ≥ 1

2
‖𝑥− 𝑦‖2𝐸, ∀𝑥,𝑦 ∈ 𝑄. (7)

We use prox-function in so called composite prox-mapping, which consists in solving auxiliary
problem

min
𝑥∈𝑄

{⟨𝑔,𝑥⟩ + 𝑑(𝑥) + ℎ(𝑥)} , (8)

where 𝑔 ∈ 𝐸* is given. We allow this problem to be solved inexactly in the following sense.

Definition 2. Assume that 𝛿𝑝 > 0, 𝑔 ∈ 𝐸* are given. We call a point �̃� = �̃�(𝑔,𝛿𝑝) ∈ rint 𝑄
an inexact composite prox-mapping iff we can calculate �̃� and there exists 𝑝 ∈ 𝜕ℎ(�̃�) s.t. it
holds that

⟨𝑔 + ∇𝑑(�̃�) + 𝑝, 𝑢− �̃�⟩ ≥ −𝛿𝑝, ∀𝑢 ∈ 𝑄. (9)

We denote by
�̃� = argmin

𝑥∈𝑄

𝛿𝑝 {⟨𝑔,𝑥⟩ + 𝑑(𝑥) + ℎ(𝑥)} .

one of the possible inexact composite prox-mapping.

Note that if �̃� is an exact solution of (8), inequality (9) holds with 𝛿𝑝 = 0 due to first-order
optimality condition.

We also use the following auxiliary fact

Lemma 2.1. (Lemma 5.5.1 in [2]) Let 𝐹 : 𝑄 → R
⋃︀
{+∞} be a convex function such that

Ψ(𝑥) = 𝐹 (𝑥) + 𝑑(𝑥) is closed and convex on 𝑄. Denote �̃� = argmin
𝑥∈𝑄

𝛿𝑝Ψ(𝑥). Then

Ψ(𝑦) ≥ Ψ(�̃�) + 𝑉 (�̃�,𝑦) − 𝛿𝑝, ∀𝑦 ∈ 𝑄. (10)

Hence, from (7)
Ψ(𝑦) ≥ Ψ(�̃�) − 𝛿𝑝, ∀𝑦 ∈ 𝑄. (11)

3 Universal Intermediate Gradient Method
In this section, we describe a general scheme of Universal Intermediate Gradient Method
(UIGM) and prove general convergence rate. This scheme is based on two sequences 𝛼𝑘, 𝐵𝑘,
𝑘 ≥ 0. From now on, we assume that these sequences satisfy, for all 𝑘 ≥ 0,

0 < 𝛼𝑘+1 ≤ 𝐵𝑘+1 ≤ 𝐴𝑘 + 𝛼𝑘+1, (12)

where the sequence 𝐴𝑘 is defined by recurrence 𝐴𝑘+1 = 𝐴𝑘 +𝛼𝑘+1. Particular choice of these
two sequences and its consequence for the convergence rate are discussed in the next section.
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For Algorithm 1 we combine Algorithm 2 from [5] with Algorithm 1 from [15] to get IGM
with only one prox-mapping instead two as in [5]. After that we improve this method by
techniques from [22] to get UIGM with exact prox-mapping. Last generalization use Lemma
5.5.1 from [2]. As a result we get algorithm that works in wide class of problems, adaptive
and don’t need to know exact Hölder and Lipschitz constants, uses only one prox-mapping
and correctly work with errors of oracle and prox-mapping.
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Algorithm 1 Universal Intermediate Gradient Method (UIGM)
Require: 𝜀 > 0 – desired accuracy, 𝛿𝑢 – uncontrolled oracle error, 𝛿𝑝 – prox-mapping error ,

𝐿𝑠 – initial guess for the Hölder constant, 𝛼𝑘 – choose by some policy, for example (34).
1: Set 𝛿0 = 𝜀

4
+ 𝛿𝑢,

𝑧0 = 𝑥0 = argmin
𝑥∈𝑄

𝛿𝑝𝑑(𝑥), (13)

2: Set 𝑖0 = 0
3: Compute

𝑦0 = argmin
𝑥∈𝑄

𝛿𝑝
{︀
𝑑(𝑥) + (2𝑖0𝐿𝑠)

−1 [⟨𝑔𝛿0(𝑥0), 𝑥− 𝑥0⟩ + ℎ(𝑥)]
}︀
. (14)

4: If
𝑓𝛿0 (𝑦0) ≤ 𝑓𝛿0 (𝑥0) + ⟨𝑔𝛿0 (𝑥0) , 𝑦0 − 𝑥0⟩ +

2𝑖0𝐿𝑠

2
‖𝑦0 − 𝑥0‖2𝐸 + 𝛿0, (15)

go to Step 5. Otherwise, set 𝑖0 = 𝑖0 + 1 and go back to Step 3.
5: Define 𝐿0 = 2𝑖0𝐿𝑠, 𝛼0 = 𝐵0 = 𝐴0 = (𝐿0)

−1.
6: for 𝑘 = 1, . . . do
7: Set 𝑖𝑘 = 0.
8: Set 𝐿𝑘 = 2𝑖𝑘𝐿𝑘−1 and 𝛼𝑘 = 𝛼(𝐿𝑘) by some policy, for example (34),

𝐵𝑘 = 𝛼2
𝑘𝐿𝑘, (16)

𝛿𝑘 =
𝛼𝑘

𝐵𝑘

𝜀

4
+ 𝛿𝑢 (17)

𝑥𝑘 =
𝛼𝑘

𝐵𝑘

𝑧𝑘−1 +
𝐵𝑘 − 𝛼𝑘

𝐵𝑘

𝑦𝑘−1. (18)

𝑧𝑘 = argmin
𝑥∈𝑄

𝛿𝑝

{︃
𝑑(𝑥) +

𝑘∑︁
𝑗=0

𝛼𝑗

[︀
⟨𝑔𝛿𝑗(𝑥𝑗), 𝑥− 𝑥𝑗⟩ + ℎ(𝑥)

]︀}︃
, (19)

𝑤𝑘 =
𝛼𝑘

𝐵𝑘

𝑧𝑘 +
𝐵𝑘 − 𝛼𝑘

𝐵𝑘

𝑦𝑘−1. (20)

9: If
𝑓𝛿𝑘(𝑤𝑘) ≤ 𝑓𝛿𝑘(𝑥𝑘) + 𝛿𝑘 + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑤𝑘 − 𝑥𝑘⟩ +

𝐿𝑘

2
‖𝑤𝑘 − 𝑥𝑘‖2𝐸. (21)

go to Step 10. Otherwise, set 𝑖𝑘 = 𝑖𝑘 + 1 and go back to Step 8.
10: Set

𝐴𝑘 = 𝐴𝑘−1 + 𝛼𝑘, (22)

𝑦𝑘 =
𝐵𝑘

𝐴𝑘

𝑤𝑘 +
𝐴𝑘 −𝐵𝑘

𝐴𝑘

𝑦𝑘−1. (23)
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The next theorem gives an upper bound for 𝐴𝑘𝐹 (𝑦𝑘). Its proof is an adaptation of the
proof of Lemma 1 in [5] and Theorem 3 in [22].

Theorem 3.1. Let 𝑓 be a convex function with inexact first-order oracle, the dependence
𝐿(𝛿𝑐) being given by (4). Then all iterations of UIGM are well defined and, for all 𝑘 ≥ 0 we
have

𝐴𝑘𝐹 (𝑦𝑘) − 𝐸𝑘 ≤ Ψ*
𝑘, (24)

where 𝐸𝑘 = 2

(︃
𝑘∑︀

𝑗=0

𝐵𝑗

)︃
𝛿𝑢 + (2𝑘 + 1)𝛿𝑝 + 𝐴𝑘

𝜀
2
,

Ψ*
𝑘 = min

𝑥∈𝑄

{︃
Ψ𝑘(𝑥) = 𝑑(𝑥) +

𝑘∑︁
𝑗=0

𝛼𝑗

[︀
𝑓𝛿𝑗(𝑥𝑗) + ⟨𝑔𝛿𝑗(𝑥𝑗), 𝑥− 𝑥𝑗⟩ + ℎ(𝑥)

]︀}︃
. (25)

Proof. Let us prove first, that the "line-search" process of steps 6–9 is finite. By (4), (5), if
2𝑖𝑘𝐿𝑘−1 ≥ 𝐿

(︁
𝛼𝑘

𝐵𝑘

𝜀
4

)︁
, from (21) and (3), we get

𝑓𝛿𝑘(𝑤𝑘) − 𝛿𝑘 ≤ 𝑓(𝑤𝑘) ≤ 𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑤𝑘 − 𝑥𝑘⟩ +
2𝑖𝑘𝐿𝑘−1

2
‖𝑤𝑘 − 𝑥𝑘‖2𝐸 + 𝛿𝑘

and the stopping criterion in the inner cycle holds. Thus, we need to show that

2𝑖𝑘𝐿𝑘−1 ≥
[︂
𝛼𝑘

𝐵𝑘

𝜀

]︂− 1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 (26)

for 𝑖𝑘 large enough. Indeed,

2𝑖𝑘𝐿𝑘−1

[︂
𝛼𝑘

𝐵𝑘

]︂ 1−𝜈
1+𝜈 (16)

=
𝐵𝑘

𝛼2
𝑘

[︂
𝛼𝑘

𝐵𝑘

]︂ 1−𝜈
1+𝜈

=

[︂
𝐵𝑘

𝛼𝑘

]︂ 2𝜈
1+𝜈 1

𝛼𝑘

(12)
≥ 1

𝛼𝑘

.

It remains to prove that 𝛼𝑘 → 0 as 𝑖𝑘 → ∞.

𝛼2
𝑘 =

𝐵𝑘

2𝑖𝑘𝐿𝑘−1

(12)
≤ 𝐴𝑘

2𝑖𝑘𝐿𝑘−1

(22)
=

𝐴𝑘−1 + 𝛼𝑘

2𝑖𝑘𝐿𝑘−1

,

⇒ 𝛼2
𝑘 −

𝛼𝑘

2𝑖𝑘𝐿𝑘−1

− 𝐴𝑘−1

2𝑖𝑘𝐿𝑘−1

≤ 0. (27)

Thus, 𝛼𝑘 ∈
[︀
𝛼−
𝑘 ,𝛼

+
𝑘

]︀
, where 𝛼−

𝑘 and 𝛼+
𝑘 are the solutions of

𝛼2
𝑘 −

𝛼𝑘

2𝑖𝑘𝐿𝑘−1

− 𝐴𝑘−1

2𝑖𝑘𝐿𝑘−1

= 0.

The solutions are

𝛼−
𝑘 =

1

2𝑖𝑘+1𝐿𝑘−1

−
(︂

1

4𝑖𝑘+1𝐿2
𝑘−1

+
𝐴𝑘−1

2𝑖𝑘𝐿𝑘−1

)︂1/2

,

𝛼+
𝑘 =

1

2𝑖𝑘+1𝐿𝑘−1

+

(︂
1

4𝑖𝑘+1𝐿2
𝑘−1

+
𝐴𝑘−1

2𝑖𝑘𝐿𝑘−1

)︂1/2

.
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Now from (27) we have that 𝛼−
𝑘 ≤ 𝛼𝑘 ≤ 𝛼+

𝑘 . From 𝛼−
𝑘 → 0, 𝛼+

𝑘 → 0 as 𝑖𝑘 → ∞ we get
𝛼𝑘 → 0.

Let us prove relation (24). For 𝑘 = 0:

Ψ*
0

(25)
= min

𝑥∈𝑄
{𝑑(𝑥) + 𝛼0𝑓𝛿0(𝑥0) + 𝛼0⟨𝑔𝛿0 , 𝑥− 𝑥0⟩ + 𝛼0ℎ(𝑥)}

(11),(14)
≥ 𝑑(𝑦0) + 𝛼0𝑓𝛿0(𝑥0) + 𝛼0⟨𝑔𝛿0(𝑥0), 𝑦0 − 𝑥0⟩ + 𝛼0ℎ(𝑦0) − 𝛿𝑝

(6),(13)
≥ 𝛼0

(︂
1

2𝛼0

‖𝑦0 − 𝑥0‖2𝐸 + 𝑓𝛿0(𝑥0) + ⟨𝑔𝛿0(𝑥0), 𝑦0 − 𝑥0⟩ + ℎ(𝑦0)

)︂
− 𝛿𝑝

= 𝛼0

(︂
2𝑖0𝐿𝑠

2
‖𝑦0 − 𝑥0‖2𝐸 + 𝑓𝛿0(𝑥0) + ⟨𝑔𝛿0(𝑥0), 𝑦0 − 𝑥0⟩ + ℎ(𝑦0)

)︂
− 𝛿𝑝

(15)
≥ 𝛼0

(︁
𝑓𝛿0(𝑦0) −

𝜀

4
− 𝛿𝑢 + ℎ(𝑦0)

)︁
− 𝛿𝑝

(3)
≥ 𝛼0

(︁
𝑓(𝑦0) −

𝜀

2
− 2𝛿𝑢 + ℎ(𝑦0)

)︁
− 𝛿𝑝 = 𝐴0𝐹 (𝑦0) − 𝐸0.

Assume that (24) is valid for certain 𝑘 − 1 ≥ 0. We now prove that it holds for 𝑘.

Ψ*
𝑘

(25)
= min

𝑥∈𝑄
Ψ𝑘(𝑥)

(11),(19)
≥ Ψ𝑘(𝑧𝑘) − 𝛿𝑝

(25)
= Ψ𝑘−1(𝑧𝑘) + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩ + ℎ(𝑧𝑘)] − 𝛿𝑝

(10)
≥ Ψ𝑘−1(𝑧𝑘−1) + 𝑉 (𝑧𝑘−1, 𝑧𝑘) − 2𝛿𝑝 + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩ + ℎ(𝑧𝑘)]

(7)
≥ Ψ*

𝑘−1 +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 − 2𝛿𝑝 + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩ + ℎ(𝑧𝑘)]

(24)
≥ 𝐴𝑘−1𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 +

1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 − 2𝛿𝑝

+ 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩ + ℎ(𝑧𝑘)]

= (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 − 2𝛿𝑝 + (𝐵𝑘 − 𝛼𝑘) 𝑓(𝑦𝑘−1)

+ (𝐵𝑘 − 𝛼𝑘)ℎ(𝑦𝑘−1) + 𝛼𝑘ℎ(𝑧𝑘) + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩]
(20)
≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) +

1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 − 2𝛿𝑝

+ (𝐵𝑘 − 𝛼𝑘) 𝑓(𝑦𝑘−1) + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩]
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≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 − 2𝛿𝑝

+ (𝐵𝑘 − 𝛼𝑘) (𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑦𝑘−1 − 𝑥𝑘⟩) + 𝛼𝑘 [𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑥𝑘⟩ + ℎ(𝑧𝑘)]

= (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸 + 𝐵𝑘𝑓𝛿𝑘(𝑥𝑘)

+ ⟨𝑔𝛿𝑘(𝑥𝑘), (𝐵𝑘 − 𝛼𝑘) (𝑦𝑘−1 − 𝑥𝑘) + 𝛼𝑘(𝑧𝑘 − 𝑥𝑘)⟩ − 2𝛿𝑝.

From (18), we have

(𝐵𝑘 − 𝛼𝑘) (𝑦𝑘−1 − 𝑥𝑘) + 𝛼𝑘 (𝑧𝑘 − 𝑥𝑘) = 𝛼𝑘(𝑧𝑘 − 𝑧𝑘−1).

Therefore,

Ψ*
𝑘 ≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝

+ 𝐵𝑘𝑓𝛿𝑘(𝑥𝑘) + 𝛼𝑘⟨𝑔𝛿𝑘(𝑥𝑘), (𝑧𝑘 − 𝑧𝑘−1)⟩ +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖𝐸

= (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝

+ 𝐵𝑘

[︂
𝑓𝛿𝑘(𝑥𝑘) +

𝛼𝑘

𝐵𝑘

⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑧𝑘−1⟩ +
1

2𝐵𝑘

‖𝑧𝑘 − 𝑧𝑘−1‖2𝐸
]︂
.

As 𝐵𝑘 = 2𝑖𝑘𝐿𝑘−1𝛼
2
𝑘, we have 1

𝐵𝑘
= 2𝑖𝑘𝐿𝑘−1

𝛼2
𝑘

𝐵2
𝑘
and, therefore,

Ψ*
𝑘 ≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝

+ 𝐵𝑘

[︂
𝑓𝛿𝑘(𝑥𝑘) +

𝛼𝑘

𝐵𝑘

⟨𝑔𝛿𝑘(𝑥𝑘), 𝑧𝑘 − 𝑧𝑘−1⟩ +
2𝑖𝑘𝐿𝑘−1𝛼

2
𝑘

2𝐵2
𝑘

‖𝑧𝑘 − 𝑧𝑘−1‖2𝐸
]︂
.

But
𝛼𝑘

𝐵𝑘

(𝑧𝑘 − 𝑧𝑘−1)
(18),(20)

= 𝑤𝑘 − 𝑥𝑘,

and we obtain

Ψ*
𝑘 ≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝

+ 𝐵𝑘

[︂
𝑓𝛿𝑘(𝑥𝑘) + ⟨𝑔𝛿𝑘(𝑥𝑘), 𝑤𝑘 − 𝑥𝑘⟩ +

2𝑖𝑘𝐿𝑘−1

2
‖𝑤𝑘 − 𝑥𝑘‖2𝐸

]︂
(21)
≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝 + 𝐵𝑘

[︂
𝑓𝛿𝑘(𝑤𝑘) − 𝛼𝑘

𝐵𝑘

𝜀

4
− 𝛿𝑢

]︂
(3)
≥ (𝐴𝑘 −𝐵𝑘)𝐹 (𝑦𝑘−1) − 𝐸𝑘−1 + 𝐵𝑘ℎ(𝑤𝑘) − 2𝛿𝑝 + 𝐵𝑘

[︂
𝑓(𝑤𝑘) − 𝛼𝑘

𝐵𝑘

𝜀

2
− 2𝛿𝑢

]︂
(23)
≥ 𝐴𝑘𝐹 (𝑦𝑘) − 𝐸𝑘−1 −𝐵𝑘

[︂
𝛼𝑘

𝐵𝑘

𝜀

2
+ 2𝛿𝑢

]︂
− 2𝛿𝑝

= 𝐴𝑘𝐹 (𝑦𝑘) − 𝐸𝑘.
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We are in position to establish the relation between the rate of growth of {𝐴𝑘}+∞
𝑘=0 with

rate of convergence of UIGM. The proof of the next result is an adaptation of Theorem 2
in [5].

Corollary 3.2. Let 𝑓 be a convex function with inexact first-order oracle, the dependence
𝐿(𝛿𝑐) being given by (4). Then all iterations of UIGM are well defined and, for all 𝑘 ≥ 0,
we have

𝐹 (𝑦𝑘) − 𝐹 * ≤ 𝑑(𝑥*)

𝐴𝑘

+
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑗=0

𝐵𝑗 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2
. (28)

Proof.

Ψ*
𝑘 = min

𝑥∈𝑄

{︃
𝑑(𝑥) +

𝑘∑︁
𝑗=0

𝛼𝑗

[︀
𝑓𝛿𝑗(𝑥𝑗) + ⟨𝑔𝛿𝑗(𝑥𝑗), 𝑥− 𝑥𝑗⟩ + ℎ(𝑥)

]︀}︃

≤ 𝑑(𝑥*) +
𝑘∑︁

𝑗=0

𝛼𝑗

[︀
𝑓𝛿𝑗(𝑥𝑗) + ⟨𝑔𝛿𝑗(𝑥𝑗), 𝑥

* − 𝑥𝑗⟩ + ℎ(𝑥*)
]︀

(2)
≤ 𝑑(𝑥*) +

𝑘∑︁
𝑗=0

𝛼𝑗 [𝑓(𝑥*) + ℎ(𝑥*)] = 𝑑(𝑥*) + 𝐴𝑘𝐹 (𝑥*).

By (24), we have 𝐴𝑘𝐹 (𝑦𝑘) − 𝐸𝑘 ≤ 𝑑(𝑥*) + 𝐴𝑘𝐹 (𝑥*) and so

𝐹 (𝑦𝑘) − 𝐹 * ≤ 𝑑(𝑥*)

𝐴𝑘

+
𝐸𝑘

𝐴𝑘

≤ 𝑑(𝑥*)

𝐴𝑘

+
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑗=0

𝐵𝑗 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2
.

Similarly as UFGM [22], UIGM can be equipped with an implementable stopping cri-
terion. Assume that we know an upper bound 𝐷 for the distance to the solution from the

starting point 𝑉 (𝑥0,𝑥
*) = 𝑑(𝑥*) ≤ 𝐷. Denote 𝑙𝑝𝑑𝑘 (𝑥) =

𝑘∑︀
𝑗=0

𝛼𝑗

[︀
𝑓𝛿𝑗(𝑥𝑗) + ⟨𝑔𝛿𝑗(𝑥𝑗), 𝑥− 𝑥𝑗⟩

]︀
and

𝐹𝑘 = min
𝑥∈𝑄

{︂
1

𝐴𝑘

𝑙𝑝𝑑𝑘 (𝑥) + ℎ(𝑥) : 𝑑(𝑥) ≤ 𝐷

}︂
= min

𝑥∈𝑄
max
𝛽≥0

{︂
1

𝐴𝑘

𝑙𝑝𝑑𝑘 (𝑥) + ℎ(𝑥) + 𝛽(𝑑(𝑥) −𝐷)

}︂
= max

𝛽≥0
min
𝑥∈𝑄

{︂
1

𝐴𝑘

𝑙𝑝𝑑𝑘 (𝑥) + ℎ(𝑥) + 𝛽(𝑑(𝑥) −𝐷)

}︂
𝛽=1/𝐴𝑘

≥ 1

𝐴𝑘

Ψ*
𝑘 −

1

𝐴𝑘

𝐷.

(29)
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Note that by the first inequality from (2) we get 𝐹𝑘 ≤ 𝐹 *. Then

𝐹 (𝑦𝑘) − 𝐹 * ≤ 𝐹 (𝑦𝑘) − 𝐹𝑘

(24),(29)
≤ 𝐷

𝐴𝑘

+
𝐸𝑘

𝐴𝑘

Thus, we can use stopping criterion

𝐹 (𝑦𝑘) − 𝐹𝑘 ≤ 𝜀 +
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑗=0

𝐵𝑗 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

, (30)

which ensures

𝐹 (𝑦𝑘) − 𝐹 * ≤ 𝜀 +
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑗=0

𝐵𝑗 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

, (31)

as far as
𝐴𝑘 ≥

2𝐷

𝜀
. (32)

At the end we get an upper bound of the total number of oracle calls for UIGM with
stopping criterion (30) to get an approximate solution of problem (1) satisfying (31).

Denote by 𝑁(𝑘) the total number of oracle calls after 𝑘 iterations (without 0 iteration).
We don’t take 0 into account because it is some constant that depends on initial guess 𝐿𝑠.
At each iteration we call oracle at points 𝑥𝑚 and 𝑤𝑚 and do it (𝑖𝑚 + 1) times. Then total
number of oracle calls per iteration equal to 2(𝑖𝑚 + 1). Note that 𝐿𝑚 = 2𝑖𝑚𝐿𝑚−1. Therefore,
𝑖𝑚 = log2

𝐿𝑚

𝐿𝑚−1
. Hence,

𝑁(𝑘) =
𝑘∑︁

𝑚=1

2(𝑖𝑚 + 1) =
𝑘∑︁

𝑚=1

2(log2

𝐿𝑚

𝐿𝑚−1

+ 1) =
𝑘∑︁

𝑚=1

[2 + 2(log2 𝐿𝑚 − log2 𝐿𝑚−1)]

= 2𝑘 + 2 log2 𝐿𝑘 − 2 log2 𝐿0.

(33)

Note that

𝐵𝑘

2𝛼2
𝑘

(16)
= 2𝑖𝑘𝐿𝑘−1 = 𝐿𝑘

(4),(26)
≤

⎡⎢⎣1 − 𝜈

1 + 𝜈

1
𝛼𝑘

𝐵𝑘

𝜀

⎤⎥⎦
1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 =

[︂
𝐵𝑘(1 − 𝜈)

𝜀𝛼𝑘(1 + 𝜈)

]︂ 1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 ,

⇒ 𝛼
−1−3𝜈
1+𝜈

𝑘 ≤ 2𝐵
−2𝜈
1+𝜈

𝑘

⎡⎣𝑀 2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈

(︂
1 − 𝜈

1 + 𝜈

)︂ 1−𝜈
1+𝜈

⎤⎦ .

Therefore,

𝐿𝑘 ≤
𝐵𝑘

2

⎛⎝2𝐵
−2𝜈
1+𝜈

𝑘

⎡⎣𝑀 2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈

(︂
1 − 𝜈

1 + 𝜈

)︂ 1−𝜈
1+𝜈

⎤⎦⎞⎠
2(1+𝜈)
1+3𝜈

≤ 2
1−𝜈
1+3𝜈𝐴

1−𝜈
1+3𝜈

𝑘

⎡⎣𝑀 4
1+3𝜈
𝜈

𝜀
2−2𝜈
1+3𝜈

(︂
1 − 𝜈

1 + 𝜈

)︂ 2−2𝜈
1+3𝜈

⎤⎦ .
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Note that (31) holds if (32) holds. Thus, we can assume that, during the iterations,

𝐴𝑘 ≤
2𝐷

𝜀
, 𝑘 ≥ 0.

Hence,

𝐿𝑘+1 ≤ 2
1−𝜈
1+3𝜈

(︂
2𝐷

𝜀

)︂ 1−𝜈
1+3𝜈

⎡⎣𝑀 4
1+3𝜈
𝜈

𝜀
2−2𝜈
1+3𝜈

(︂
1 − 𝜈

1 + 𝜈

)︂ 2−2𝜈
1+3𝜈

⎤⎦ .

Substituting this estimate in the expression (33), we obtain that on average UIGM has
approximately two calls of oracle per iteration.

4 Power policy
In this section, we present particular choice of the two sequences of coefficients {𝛼𝑘}𝑘≥0 and
{𝐵𝑘}𝑘≥0. As it was done in [5], these sequences depend on a parameter 𝑝 ∈ [1,2]. In our
case, the value 𝑝 = 1 corresponds to Universal Dual Gradient Method, and the value 𝑝 = 2
corresponds to Universal Fast Gradient Method. For the smooth case, namely 𝜈 = 1, the
method in [5] has convergence rate

𝐹 (𝑦𝑘) − 𝐹 * ≤ Θ

(︂
𝑑(𝑥*)

𝑘𝑝

)︂
+ Θ

(︀
𝑘𝑝−1𝛿𝑢

)︀
,

where 𝑝 ∈ [1,2]. Our goal to obtain convergence rate for the whole segment 𝜈 ∈ [0,1] and
get the above rate of convergence as a special case.

Given a value 𝑝 ∈ [1,2], we choose sequences {𝛼𝑘}𝑘≥0 and {𝐵𝑘}𝑘≥0 to be given by

𝛼𝑘 =

(︁
𝑘+2𝑝
2𝑝

)︁𝑝−1

2𝑖𝑘
𝐿𝑘−1, 𝑘 ≥ 0 (34)

and, in accordance to (16),

𝐵𝑘 =

(︁
𝑘+2𝑝
2𝑝

)︁2𝑝−2

2𝑖𝑘
𝐿𝑘−1, 𝑘 ≥ 0. (35)

Now we should prove, that power policy can be used in UIGM.

Lemma 4.1. Assume that 𝑓 is a convex function with inexact first-order oracle. Then, the
sequences {𝛼𝑘}𝑘≥0 and {𝐵𝑘}𝑘≥0 given in (34) and (35), respectively, satisfy (12).

Proof. From (34) we get that 𝛼𝑘 > 0 for 𝑘 ≥ 0. To prove that 𝛼𝑘 ≤ 𝐵𝑘 for 𝑘 ≥ 0, we use
(34), (35) and that 𝑝 ∈ [0,1]

𝛼𝑘 =

(︁
𝑘+2𝑝
2𝑝

)︁𝑝−1

2𝑖𝑘𝐿𝑘−1

=

(︁
𝑘
2𝑝

+ 1
)︁𝑝−1

2𝑖𝑘𝐿𝑘−1

≤

(︁
𝑘
2𝑝

+ 1
)︁2𝑝−2

2𝑖𝑘𝐿𝑘−1

= 𝐵𝑘.
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Proof of 𝐴𝑘 ≥ 𝐵𝑘. For 𝑘 = 0 it’s correct by definition. Assume that 𝐴𝑘 ≥ 𝐵𝑘 is valid for
certain 𝑘 − 1 ≥ 0. We now prove that it holds for 𝑘. For 𝑚 ∈ [0,1] and 𝑥,𝑦 ≥ 0 function
𝑓(𝑥,𝑦) = 𝑥𝑚 + 𝑦𝑚 − (𝑥 + 𝑦)𝑚 has minimal value greater or equal to 0, hence,

𝑥𝑚 + 𝑦𝑚 − (𝑥 + 𝑦)𝑚 ≥ 0,

⇒ 𝑥𝑚 + 𝑦𝑚 ≥ (𝑥 + 𝑦)𝑚,

⇒ 𝑥𝑝−1 + 𝑦𝑝−1
𝑚=𝑝−1

≥ (𝑥 + 𝑦)𝑝−1, 𝑝 ∈ [1,2],

⇒
(︀
(𝑘 − 1 + 2𝑝)2

)︀𝑝−1
+ (2(𝑘 + 2𝑝))𝑝−1 ≥

(︀
(𝑘 − 1 + 2𝑝)2 + 2(𝑘 + 2𝑝)

)︀𝑝−1
,

⇒ (𝑘 − 1 + 2𝑝)2(𝑝−1) + (2𝑝(𝑘 + 2𝑝))𝑝−1 ≥
(︀
(𝑘 − 1 + 2𝑝)2 + 2(𝑘 − 1 + 2𝑝) + 2

)︀𝑝−1
,

⇒ (𝑘 − 1 + 2𝑝)2(𝑝−1) + (2𝑝(𝑘 + 2𝑝))𝑝−1 ≥ (𝑘 + 2𝑝)2(𝑝−1) ,

⇒
(︂
𝑘 − 1 + 2𝑝

2𝑝

)︂2(𝑝−1)

+

(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

≥
(︂
𝑘 + 2𝑝

2𝑝

)︂2(𝑝−1)

,

⇒
(︂
𝑘 − 1 + 2𝑝

2𝑝

)︂2(𝑝−1)

≥
(︂
𝑘 + 2𝑝

2𝑝

)︂2(𝑝−1)

−
(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

,

⇒

(︁
𝑘−1+2𝑝

2𝑝

)︁2(𝑝−1)

𝐿𝑘−1

≥

(︁
𝑘+2𝑝
2𝑝

)︁𝑝−1
(︂(︁

𝑘+2𝑝
2𝑝

)︁𝑝−1

− 1

)︂
𝐿𝑘−1

,

⇒

(︁
𝑘−1+2𝑝

2𝑝

)︁2(𝑝−1)

𝐿𝑘−1

≥

(︁
𝑘+2𝑝
2𝑝

)︁𝑝−1
(︂(︁

𝑘+2𝑝
2𝑝

)︁𝑝−1

− 1

)︂
2𝑖𝑘𝐿𝑘−1

,

⇒

(︁
𝑘−1+2𝑝

2𝑝

)︁2(𝑝−1)

𝐿𝑘−1

+

(︁
𝑘+2𝑝
2𝑝

)︁𝑝−1

2𝑖𝑘𝐿𝑘−1

≥

(︁
𝑘+2𝑝
2𝑝

)︁2(𝑝−1)

2𝑖𝑘𝐿𝑘−1

,

⇒ 𝐵𝑘−1 + 𝛼𝑘

(34),(35)
≥ 𝐵𝑘,

⇒ 𝐴𝑘−1 + 𝛼𝑘 ≥ 𝐵𝑘,

⇒ 𝐴𝑘

(22)
≥ 𝐵𝑘.

Now we can obtain the rate of growth of {𝐴𝑘}𝑘 = 0+∞. Combining this rate with
Corollary 3.2, we get the explicit rate of convergence of UIGM under the power policy (34).

Theorem 4.2. Assume that 𝑓 is a convex function with inexact first-order oracle, the de-
pendence 𝐿(𝛿𝑐) being given by (4). Then, for the sequences (34) and (35), for all 𝑘 ≥ 0,

𝐹 (𝑦𝑘) − 𝐹 * ≤ inf
𝜈∈[0,1]

⎛⎝ 16𝑀
2

1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+
32𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝

⎞⎠+ 4𝑘𝑝−1𝛿𝑢 +
𝜀

2
. (36)
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Proof. The proof is divided into three steps. First, we prove a lower bound for 𝛼𝑚 and 𝐴𝑚.
Then, we prove upper bound for 𝐵𝑚. Finally, we use these bounds in Corollary 3.2 and
obtain (36).

Lower bound for 𝛼𝑚 and 𝐴𝑚. Since the inner cycle of UIGM for sure ends when 2𝑖𝑚𝐿𝑚−1 >
𝐿(𝛿𝑚), we have 2𝑖𝑚𝐿𝑚−1 ≤ 2𝐿(𝛿𝑚). Hence,

2𝑖𝑚𝐿𝑚−1

(4),(26)
≤ 2

[︂
𝛼𝑚

𝐵𝑚

𝜀

]︂− 1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 ≤ 2

⎡⎢⎣
(︁

𝑚+2𝑝
2𝑝

)︁𝑝−1

𝜀

⎤⎥⎦
1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈 ,

⇒ 𝛼𝑚 =

(︁
𝑚+2𝑝
2𝑝

)︁𝑝−1

2𝑖𝑚𝐿𝑚−1

≥

(︁
𝑚+2𝑝
2𝑝

)︁ 2𝑝𝜈−2𝜈
1+𝜈

𝜀
1−𝜈
1+𝜈

2𝑀
2

1+𝜈
𝜈

,

⇒ 𝐴𝑘 =
𝑘∑︁

𝑚=0

𝛼𝑚 ≥
𝑘∑︁

𝑚=0

(︁
𝑚+2𝑝
2𝑝

)︁ 2𝑝𝜈−2𝜈
1+𝜈

𝜀
1−𝜈
1+𝜈

2𝑀
2

1+𝜈
𝜈

≥ 𝜀
1−𝜈
1+𝜈

2𝑀
2

1+𝜈
𝜈

𝑘∑︁
𝑚=0

(︂
𝑚 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−2𝜈
1+𝜈

.

Since
𝑘∑︁

𝑚=0

(︂
𝑚 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−2𝜈
1+𝜈

≥
𝑘∫︁

0

(︂
𝑥 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−2𝜈
1+𝜈

𝑑𝑥 + 𝛼0

≥ 2𝑝(1 + 𝜈)

2𝑝𝜈 − 𝜈 + 1

(︂
𝑘 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−𝜈+1
1+𝜈

≥ 2

(︂
𝑘 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−𝜈+1
1+𝜈

,

we have

𝐴𝑘 =
𝑘∑︁

𝑚=0

𝛼𝑚 ≥ 𝜀
1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈

(︂
𝑘 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−𝜈+1
1+𝜈

≥ 𝜀
1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈

(︂
𝑘 + 2

4

)︂ 2𝑝𝜈−𝜈+1
1+𝜈

. (37)

Upper bound for 𝐵𝑚.

𝐵𝑚
(34),(35)

=

(︂
𝑚 + 2𝑝

2𝑝

)︂𝑝−1

𝛼𝑚,

𝑘∑︁
𝑚=0

𝐵𝑚 =
𝑘∑︁

𝑚=0

(︂
𝑚 + 2𝑝

2𝑝

)︂𝑝−1

𝛼𝑚.

Therefore,
𝑘∑︁

𝑚=0

𝐵𝑚 ≤
(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

𝐴𝑘. (38)
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Proof of (36). Now using (28),(37) and (38) we can get convergence rate.

𝐹 (𝑦𝑘) − 𝐹 *
(28)
≤ 𝑑(𝑥*)

𝐴𝑘

+
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑖=0

𝐵𝑖 +
𝜀

2
+

(2𝑘 + 1)𝛿𝑝
𝐴𝑘

(37)
≤ 4

2𝑝𝜈−𝜈+1
1+𝜈 𝑀

2
1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑖=0

𝐵𝑖 +
4

2𝑝𝜈−𝜈+1
1+𝜈 𝑀

2
1+𝜈
𝜈 (2𝑘 + 1)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

𝛿𝑝 +
𝜀

2

≤ 16𝑀
2

1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+
2𝛿𝑢
𝐴𝑘

𝑘∑︁
𝑖=0

𝐵𝑖 +
32𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝 +
𝜀

2

(38)
≤ 16𝑀

2
1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+ 2𝛿𝑢

(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

+
32𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝 +
𝜀

2

≤ 16𝑀
2

1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+ 4𝑘𝑝−1𝛿𝑢 +
32𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝 +
𝜀

2
.

Since UIGM does not use 𝜈 as a parameter, we get

𝐹 (𝑦𝑘) − 𝐹 * ≤ inf
𝜈∈[0,1]

⎛⎝ 16𝑀
2

1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝑝𝜈−𝜈+1
1+𝜈

+
32𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 (𝑘 + 2)

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝

⎞⎠+ 4𝑘𝑝−1𝛿𝑢 +
𝜀

2
.

Corollary 4.3. At each iteration 𝑚 ≥ 0 of UIGM with sequences {𝛼𝑚}, {𝐵𝑚}, 𝑚 ≥ 0
chosen in accordance with (34) and (35), we have, for any 𝑝 ∈ [1,2],

𝛿𝑚 = 𝑂
(︁ 𝜀

𝑚𝑝−1

)︁
+ 𝛿𝑢.

Proof. By (17), we have

𝛿𝑚 − 𝛿𝑢 =
𝜀𝛼𝑚

4𝐵𝑚

=
𝜀

4
(︁

𝑚+2𝑝
2𝑝

)︁𝑝−1 = 𝑂

(︂
𝜀

(𝑚)𝑝−1

)︂
.

From the rate of convergence (36) and the fact that UIGM does not include 𝜈 as a
parameter, we get the following estimation for the number of iterations, which are necessary
for getting first term of (36) smaller than 𝜀/6 we need:

𝑁 = 𝑂

[︃
inf

𝜈∈[0,1]

(︂
𝑀2

𝜈𝑑(𝑥*)1+𝜈

𝜀2

)︂ 1
2𝑝𝜈−𝜈+1

]︃
.
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The dependence of this bound in smoothness parameters is optimal (see [21]).
Let’s compare our method and convergence rate with existing optimal methods. We

assume that 𝑁 the number of iterations, then 𝐹 (𝑦𝑁)−𝐹 * ≤ 𝐵(𝑁) +𝐶(𝑁)𝛿𝑝 +𝐷(𝑁)𝛿𝑢 + 𝜀
2
.

Here 𝐵(𝑁) is an accuracy of our method, 𝐶(𝑁) is a speed of collecting prox-mapping error
and 𝐷(𝑁) is a speed of collecting oracle error. As a result we get next table.

(𝜈, 𝑝) 𝐵(𝑁) 𝐶(𝑁) 𝐷(𝑁)

(0, 1) 𝑂
(︁

𝑀0𝑑(𝑥*)1/2

𝑁1/2

)︁
𝑂
(︀
𝑀0𝑑(𝑥*)1/2𝑁1/2

)︀
𝑂 (1)

(1, 1) 𝑂
(︁

𝑀1𝑑(𝑥*)
𝑁

)︁
𝑂 (𝑀1𝑑(𝑥*)) 𝑂 (1)

(1, 2) 𝑂
(︁

𝑀1𝑑(𝑥*)
𝑁2

)︁
𝑂
(︁

𝑀1𝑑(𝑥*)
𝑁

)︁
𝑂 (𝑁)

For non-smooth functions (𝜈 = 0), the convergence rate of UIGM for any 𝑝 ∈ [1,2] agrees
with rate of convergence of subgradient methods. This methods are robust for oracle error,
but collect prox-mapping error. For smooth functions (𝜈 = 1) and 𝑝 = 1 UIGM has the
same convergence rate as a dual gradient method. This method is robust both for oracle
error and prox-mapping error. And for 𝑝 = 2 UIGM has the same rate as a fast gradient
method. This method collects oracle error but kill prox-mapping error. This table shows
three main regimes for UIGM and how it corresponds with classical methods.

5 Accelerating UIGM for strongly convex functions
In this section, we consider problem (1) with additional assumption of strong convexity of
the objective 𝐹

𝐹 (𝑦) ≥ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥),𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖2𝐸, ∀𝑥,𝑦 ∈ 𝑄,

where the constant 𝜇 > 0 is assumed to be known. We also assume that the chosen prox-
function has quadratic growth

𝑑(𝑥) ≤ Ω

2
‖𝑥‖2𝐸, (39)

where Ω is some dimensional-dependent constant, and that we are given a starting point 𝑥0

and a number 𝑅0 such that
‖𝑥0 − 𝑥*‖2𝐸 ≤ 𝑅2

0, (40)

where 𝑥* is an optimal point in (1).
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Algorithm 2 Restart UIGM
Require: 𝜇 – strong convexity parameter, Ω – quadratic growth constant, 𝜀 – desired ac-

curacy, 𝑥0 – starting point.
1: Set 𝑑0(𝑥) = 𝑑(𝑥− 𝑥0).
2: for 𝑚 = 1, . . . do
3: while 2Ω > 𝜇𝐴𝑘 do
4: Run UIGM with accuracy 𝜀 and prox-function 𝑑𝑚−1(𝑥).
5: Set 𝑥𝑚 = 𝑦𝑘.
6: Set 𝑑𝑚(𝑥) = 𝑑 (𝑥− 𝑥𝑚).

Theorem 5.1. Let 𝐹 be strongly convex with constant 𝜇 and (39), (40) hold. Then, for any
𝑚 ≥ 0 restarts of UIGM with power policy (34), (35),

𝐹 (𝑥𝑚) − 𝐹 (𝑥*) ≤ 𝜇𝑅2
02

−𝑚−1+

+ 2

⎛⎝𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ ,
(41)

‖𝑥𝑚 − 𝑥*‖2𝐸 ≤ 𝑅2
𝑚 = 𝑅2

02
−𝑚+

+
4

𝜇

⎛⎝𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ .
(42)

Proof. From (5), we have

𝜇

2
‖𝑥𝑚 − 𝑥*‖2𝐸 ≤ ⟨∇𝐹 (𝑥*),𝑥𝑚 − 𝑥*⟩ +

𝜇

2
‖𝑥𝑚 − 𝑥*‖2𝐸 ≤ 𝐹 (𝑥𝑚) − 𝐹 (𝑥*).

Then, by the first-order optimality condition,

𝜇

2
‖𝑥𝑚 − 𝑥*‖2𝐸 ≤ 𝐹 (𝑥𝑚) − 𝐹 (𝑥*).

From this fact and (41) we can easily prove (42).
To prove (41), we prove a stronger inequality by induction

𝐹 (𝑥𝑚) − 𝐹 (𝑥*) ≤ 𝜇𝑅2
02

−𝑚−1 + 2
(︀
1 − 2−𝑚

)︀ (︁𝜀
2

+

+2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ .
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For 𝑚 = 1, we have

𝐹 (𝑥1) − 𝐹 (𝑥*)
(28)
≤ 𝑑0(𝑥

*)

𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2

(39)
≤ Ω‖𝑥0 − 𝑥*‖2𝐸

2𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2

(40)
≤ Ω𝑅2

0

2𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2
(38)
≤ Ω𝑅2

0

2𝐴𝑘

+ 2

(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2
.

By the condition on the Step 3 of the algorithm, we have

𝐴𝑘−1 <
2Ω

𝜇
≤ 𝐴𝑘, (43)

and

2Ω

𝜇
≥ 𝐴𝑘−1

(37)
≥ 𝜀

1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈

(︂
𝑘 − 1 + 2𝑝

2𝑝

)︂ 2𝑝𝜈−𝜈+1
1+𝜈

,

⇒ 2
1+𝜈

2𝑝𝜈−𝜈+1 Ω
1+𝜈

2𝑝𝜈−𝜈+1𝑀
2

2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1

≥
(︂
𝑘 − 1 + 2𝑝

2𝑝

)︂
,

⇒ 𝑝2
2𝑝𝜈+2

2𝑝𝜈−𝜈+1 Ω
1+𝜈

2𝑝𝜈−𝜈+1𝑀
2

2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1

+ 1 − 2𝑝 ≥ 𝑘,

⇒ 𝑝2
2𝑝𝜈+2

2𝑝𝜈−𝜈+1 Ω
1+𝜈

2𝑝𝜈−𝜈+1𝑀
2

2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1

+ 1 − 2𝑝 ≥ 𝑘.

Hence, (︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

≤
⌈︂(︂

2𝜈+1Ω𝜈+1𝑀2
𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

, (44)

⇒ 2𝑘 + 1 ≤ 𝑝2
4𝑝𝜈−𝜈+3
2𝑝𝜈−𝜈+1 Ω

1+𝜈
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1

. (45)
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Finally, we have

𝐹 (𝑥1) − 𝐹 (𝑥*)
(44),(45)
≤ Ω𝑅2

0

2𝐴𝑘

+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

4𝑝𝜈−𝜈+3
2𝑝𝜈−𝜈+1 Ω

1+𝜈
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1𝐴𝑘

𝛿𝑝 +
𝜀

2

≤ 𝜇𝑅2
02

−2 + 2
(︀
1 − 2−1

)︀⎛⎝𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ .

So (41) is proved for 𝑚 = 1. Now we assume that (41) holds for 𝑚 and prove that it holds
for 𝑚 + 1.

From (28) we get

𝐹 (𝑥𝑚+1) − 𝐹 (𝑥*)
(28)
≤ 𝑑𝑚(𝑥*)

𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2

(39)
≤ Ω‖𝑥𝑚 − 𝑥*‖2𝐸

2𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2

(42)
≤ Ω𝑅2

𝑚

2𝐴𝑘

+ 2

𝑘∑︀
𝑖=0

𝐵𝑖

𝐴𝑘

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2
(38)
≤ Ω𝑅2

𝑚

2𝐴𝑘

+ 2

(︂
𝑘 + 2𝑝

2𝑝

)︂𝑝−1

𝛿𝑢 +
(2𝑘 + 1)𝛿𝑝

𝐴𝑘

+
𝜀

2

(44),(45)
≤ Ω𝑅2

𝑚

2𝐴𝑘

+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

4𝑝𝜈−𝜈+3
2𝑝𝜈−𝜈+1 Ω

1+𝜈
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

𝜇
1+𝜈

2𝑝𝜈−𝜈+1 𝜀
1−𝜈

2𝑝𝜈−𝜈+1𝐴𝑘

𝛿𝑝 +
𝜀

2

(43)
≤ 𝜇𝑅2

𝑚

4
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝 +
𝜀

2
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(42)
≤ 𝜇𝑅2

02
−𝑚−2 +

4𝜇

4𝜇

(︀
1 − 2−𝑚

)︀(︃𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠+
𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

≤ 𝜇𝑅2
02

−𝑚−2 +
(︀
2 − 2−𝑚

)︀(︃𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠
≤ 𝜇𝑅2

02
−𝑚−2 + 2

(︀
1 − 2−(𝑚+1)

)︀(︃𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢

+
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ .

So we have obtained that (41) holds for m+1 and by induction it holds for all 𝑚 ≥ 1

Corollary 5.2. For getting (𝜀 + 𝐶𝑢)-solution of problem (1), where

𝐶𝑢 = 2

⎛⎝𝜀

2
+ 2

⌈︂(︂
2𝜈+1Ω𝜈+1𝑀2

𝜈

𝜇𝜈+1𝜀1−𝜈

)︂⌉︂ 𝑝−1
2𝑝𝜈−𝜈+1

𝛿𝑢 +
𝑝2

2𝑝𝜈+2
2𝑝𝜈−𝜈+1𝜇

2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1𝑀

2
2𝑝𝜈−𝜈+1
𝜈

Ω
2𝜈(𝑝−1)
2𝑝𝜈−𝜈+1 𝜀

1−𝜈
2𝑝𝜈−𝜈+1

𝛿𝑝

⎞⎠ ,

we need
�̃� =

⌈︂
log

(︂
𝜇𝑅2

0

2𝜀

)︂⌉︂
(46)

restarts and

𝑘 ≤ inf
0≤𝜈≤1

(︂
Ω1+𝜈24𝑝𝜈−𝜈+3𝑀2

𝜈

𝜇1+𝜈𝜀1−𝜈

)︂ 1
2𝑝𝜈−𝜈+1

+ 1

iterations of UIGM per iteration. The total number of UIGM iterations is not more than

𝑁 =

(︃
inf

0≤𝜈≤1

(︂
Ω1+𝜈24𝑝𝜈−𝜈+3𝑀2

𝜈

𝜇1+𝜈𝜀1−𝜈

)︂ 1
2𝑝𝜈−𝜈+1

+ 1

)︃
·
⌈︂

log

(︂
𝜇𝑅2

0

2𝜀

)︂⌉︂
.

Proof.

𝐹 (𝑥�̃�) − 𝐹 (𝑥*)
(41)
≤ 𝜇𝑅2

02
−�̃�−1 + 𝐶𝑢

(46)
≤ 𝜀 + 𝐶𝑢.

21



We now estimate the total number of UIGM iterations, which is sufficient to obtain
(𝜀 + 𝐶𝑢)-solution. First, we estimate the number 𝑘 of UIGM iterations at each restart. By
the stopping condition for the restart, we have

𝐴𝑘 ≥
2Ω

𝜇

(37)
> 𝐴𝑘−1 ≥

𝜀
1−𝜈
1+𝜈

𝑀
2

1+𝜈
𝜈

(︃
𝑘 − 1

4

)︃ 2𝑝𝜈−𝜈+1
1+𝜈

,

⇒ 2Ω 2
4𝑝𝜈−2𝜈+2

1+𝜈 𝑀
2

1+𝜈
𝜈

𝜇 𝜀
1−𝜈
1+𝜈

≥
(︁
𝑘 − 1

)︁ 2𝑝𝜈−𝜈+1
1+𝜈

,

⇒
(︂

Ω1+𝜈24𝑝𝜈−𝜈+3𝑀2
𝜈

𝜇1+𝜈𝜀1−𝜈

)︂ 1
2𝑝𝜈−𝜈+1

≥ 𝑘 − 1.

Since the algorithm does not use any particular choice of 𝜈, we have

𝑘 ≤ inf
0≤𝜈≤1

(︂
Ω1+𝜈24𝑝𝜈−𝜈+3𝑀2

𝜈

𝜇1+𝜈𝜀1−𝜈

)︂ 1
2𝑝𝜈−𝜈+1

+ 1.

Then the total number of UIGM is not more than 𝑁 = 𝑘 · �̃�, and we have

𝑁 =

(︃
inf

0≤𝜈≤1

(︂
Ω1+𝜈24𝑝𝜈−𝜈+3𝑀2

𝜈

𝜇1+𝜈𝜀1−𝜈

)︂ 1
2𝑝𝜈−𝜈+1

+ 1

)︃
·
⌈︂

log

(︂
𝜇𝑅2

0

2𝜀

)︂⌉︂
.

Now we compare our result with existing methods in the same manner as for convex
functions. 𝑢 = 𝐶𝛿𝑝 + 𝐷𝛿𝑢 + 𝜀

2
. Here 𝐶 is a collecting prox-mapping error for given 𝜀,𝜇 and

𝐷 is a collecting oracle error for desired 𝜀,𝜇. As a result we get next table.

(𝜈, 𝑝) 𝑁 𝐶 𝐷

(0, 1) 𝑂
(︁

Ω𝑀2
0

𝜇𝜀
· log

(︁
𝜇𝑅2

0

2𝜀

)︁)︁
𝑂
(︁

𝑀2
0

𝜀

)︁
𝑂 (1)

(1, 1) 𝑂
(︁

Ω𝑀1

𝜇
· log

(︁
𝜇𝑅2

0

2𝜀

)︁)︁
𝑂 (𝑀1) 𝑂 (1)

(1, 2) 𝑂

(︂(︁
Ω𝑀1

𝜇

)︁ 1
2 · log

(︁
𝜇𝑅2

0

2𝜀

)︁)︂
𝑂
(︀
𝜇𝑀1

Ω

)︀ 1
2 𝑂

(︁
Ω𝑀1

𝜇

)︁ 1
2

For non-smooth functions (𝜈 = 0), the convergence rate of Restart UIGM for any 𝑝 ∈ [1,2]
agrees with rate of convergence of subgradient methods. This methods are robust for oracle
error, but collect prox-mapping error. For smooth functions (𝜈 = 1) and 𝑝 = 1 Restart
UIGM has the same convergence rate as a dual gradient method. This method is robust
both for oracle error and prox-mapping error. And for 𝑝 = 2 Restart UIGM has the same
rate as a fast gradient method. This method collects oracle error but kill prox-mapping
error. This table shows three main regimes for Restart UIGM and how it corresponds with
classical methods.

22



6 Switching policy
In this section we describe another variant of coefficient policy. The key observation is that
Fast gradient method(FGM) accumulates the error, but converges faster and Dual gradient
method(DGM) doesn’t accumulate the error, but works slower. That’s why at the begging
we make some steps of FGM until the error reaches some limit and then make only DGM
steps. This policy was introduced in [5]. Now we should understand, what is the limit. If
we want to get the total error equal to 𝜀, then the the error from inexactness should be 𝜀/2.
Now we describe this idea in more details.

Let the switching policy is

𝛼𝑘 =

{︃
𝑘+4
4

· 1
𝐿𝑘

𝑘 = 0, . . . 𝑠 — FGM steps
𝑐𝑘 · 1

𝐿𝑘
𝑘 = 𝑠 + 1, . . . 𝑁 — DGM steps

, (47)

where 𝑠 is the moment of switching and 𝑐𝑘 is some constant, we will describe later how to
choose them.

Firstly, we should prove, that the switching policy can be used in UIGM. Let check the
correctness of inequalities (12) for the switching policy. For FGM steps it is easily follow
from (4.1), because it is the power policy for 𝑝 = 2. For DGM steps we need to prove that

0 < 𝑐𝑘 ·
1

𝐿𝑘

≤ 𝑐2𝑘 ·
1

𝐿𝑘

≤ 𝐴𝑘−1 + 𝑐𝑘 ·
1

𝐿𝑘

First two inequalities are satisfied if 𝑐𝑘 ≥ 1. So we get the first condition for 𝑐𝑘. The second
condition comes from the last inequality because we need to get 𝑐𝑘 such that 𝑐2𝑘 − 𝑐𝑘 −
𝐴𝑘−1𝐿𝑘 ≥ 0. Hence

1 ≤ 𝑐𝑘 ≤
1 +

√
1 + 𝐴𝑘−1𝐿𝑘

2
(48)

So if these two conditions for 𝑐𝑘 are satisfied we prove that the switching policy can be used
in UIGM.

Secondly, we should prove convergence of the switching policy. For that we need to satisfy
two inequalities from (28)

2𝛿𝑢
𝐴𝐾

𝑘∑︁
𝑗=0

𝐵𝑗 ≤
𝜀

6
(49)

(2𝑘 + 1)𝛿𝑝
𝐴𝑘

≤ 𝜀

6
. (50)

Note that from this two inequalities we get three main regimes:

∙ Only FGM steps. In this case, 𝛿𝑢 << 𝜀 and 𝛿𝑝 << 𝜀, and both inequalities (49) and
(50) never fail.

∙ Only DGM steps. In this case, 𝛿𝑢 is rather big and (49) fails on the first step, so we
try our best and do only slow DGM steps.
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∙ Switching on the moment 𝑠. In this case, we do some FGM steps until the moment 𝑠,
when (49) fails at the first time and next do only DGM steps.

First two regimes are easy for understanding but for the last one we write more details. Note
that for FGM steps (50) always true because the left side decreases on each step. Note that

from some moment
𝑘∑︀

𝑗=0

𝐵𝑗/
𝑘∑︀

𝑗=0

𝛼𝑗 starts to increase and at the moment 𝑠 it reaches the limit
𝜀

12𝛿𝑢
. Now we need to check, that for DGM steps (49) will not fail.

𝑘∑︁
𝑗=0

𝐵𝑗 ≤
𝜀

12𝛿𝑢

𝑘∑︁
𝑗=0

𝛼𝑗

𝑘−1∑︁
𝑗=0

𝐵𝑗 + 𝐵𝑘 ≤
𝜀

12𝛿𝑢

(︃
𝑘−1∑︁
𝑗=0

𝛼𝑗 + 𝛼𝑘

)︃
We assume that on previous step (49) was correct, that’s why we need

𝐵𝑘 ≤
𝜀

12𝛿𝑢
𝛼𝑘

𝑐2𝑘
𝐿𝑘

(47)
≤ 𝜀

12𝛿𝑢

𝑐𝑘
𝐿𝑘

So we get the third condition on 𝑐𝑘
𝑐𝑘 ≤

𝜀

12𝛿𝑢
(51)

Hence when when we merge all conditions (48) and (51), we get

𝑐𝑘 = min

(︂
𝜀

12𝛿𝑢
,
1 +

√
1 + 𝐴𝑘−1𝐿𝑘

2

)︂
(52)

As a result, we’ve proved that the switching policy can be used with UIGM. We’ve proved
that UIGM converges, when we do FGM steps until at the moment 𝑠 (49) fails, then switch
DGM with 𝑐𝑘 defined by (52). Note, that now our method needs to know only 𝜀, 𝛿𝑢, 𝛿𝑝 and
doesn’t need 𝑝 as in the power policy, hence it converges as well or better than any 𝑝 for
power policy.

Theorem 6.1. Assume that 𝑓 is a convex function with inexact first-order oracle. Then,
for the sequence (47), the moment 𝑠 is first time when (49) fails and 𝑐𝑘 defined by (52), for
all 𝑘 ≥ 0,

𝐹 (𝑦𝑘) − 𝐹 * ≤ inf
𝑝∈[1,2]

𝑂

⎡⎣ inf
𝜈∈[0,1]

⎛⎝ 𝑀
2

1+𝜈
𝜈 𝑑(𝑥*)

𝜀
1−𝜈
1+𝜈 𝑘

2𝑝𝜈−𝜈+1
1+𝜈

+
𝑀

2
1+𝜈
𝜈

𝜀
1−𝜈
1+𝜈 𝑘

2𝜈(𝑝−1)
1+𝜈

𝛿𝑝

⎞⎠+ 𝑘𝑝−1𝛿𝑢

⎤⎦+
𝜀

2
.

The same argumentation is correct also for strongly convex functions. So now we get
fully adaptive and universal coefficient policy and method.
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7 Numerical illustration
For numerical illustration we choose a Poisson likelihood problems and as an application
Positron Emission Tomography(PET). It plays an important role in medicine for detecting
cancer and metabolic changes in human organ. PET can be treated as a Poisson likelihood
model [3], [17]. The estimation of radioactivity density within an organ corresponds to the
following convex non-smooth optimization problem:

min
𝑥∈Δ𝑛

𝑚∑︁
𝑖=1

[[𝐴𝑥]𝑖 − 𝑤𝑖 log([𝐴𝑥]𝑖)]

where ∆𝑛 is a standard simplex. 𝐴 is a data and refers to the likelihood matrix known from
geometry of detector, and 𝑤 is a data and refers to the vector of detected events, such that
𝑤𝑖 = [𝐴𝑥]𝑖 + 𝑏𝑖, where 𝑏𝑖 is Poisson noise for any 1 ≤ 𝑖 ≤ 𝑚. So we get a regression and
our goal is to find 𝑥 from data. For simplicity, we will not consider any penalty term for
this application.Note that actually this problem has unbounded 𝑀𝜈 because ∇ log 𝑦 = 1/𝑦
is unbounded in 𝑦 = 0. So here we assume that all points of our method are separated from
zero and then 𝑀𝜈 is bounded by some constant.

We assume, that tomographic scanner can have some small random and systematic errors,
so we get inexact data and hence inexact function and gradient. So we get inexact oracle.
If method converges with inexact data it means that we have robust system and even with
errors we will get rather precise tomography.

In this case, the entropy function 𝑑(𝑥) =
∑︀𝑛

𝑖=1 𝑥𝑖 log(𝑥𝑖) is a good choice for the simplex
domain. Moreover, the prox-mapping can be computed by direct formula [5], which means
that we have 𝛿𝑝 =. If we choose another 𝑑(𝑥) it may be worse, because for the finding of the
prox-mapping we need to solve additional optimization subproblem. For example we can
approximately solve it by FGM with 𝛿𝑝 > 0, because this subproblem is strongly convex and
that’s why FGM converges fast.

Code is written in Python 3. We conduct experiments using Ubuntu 14, machine: Intel
Core i7-4510U CPU 2.00GHz 2.60GHz, 8Gb RAM. Matrix 𝐴 ∈ R100×200 and 𝑤 ∈ R100 are
generated unifomly randomly. For simplicity, we calculate inexact oracle as exact oracle plus
the noise 𝛿𝑢. Desired accuracy is 𝜀 = 0.0001

For small inexactness 𝛿 = 0.001𝜀 UIGM give us next graphic.
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Figure 1: Comparison of different power policies and switch policy for small inexactness

From this graphic we can see that, power policy with 𝑝 = 2 and switching policy are the
fastest. For small inexactness all variants don’t collect any noticeable error.

In next graphic, we can see, that for medium error 𝛿 = 𝜀 switching policy starts to work
as power policy with 𝑝 = 1, because all our estimates of error collection come from theory
but the real error in specific point can be less than theoretical estimate. Unfortunately we
can’t measure the real error.
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Figure 2: Comparison of different power policies and switch policy for medium inexactness

For big error 𝛿 = 1000𝜀 the power policy with 𝑝 = 2 collects error and works worse than
the power policy 𝑝 = 1.5. So the method with intermediate rate is the best one, because it
is rather fast and also robust.

Figure 3: Comparison of different power policies and switch policy for big inexactness
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As a result, we get that UIGM for some intermediate 𝑝 can be better, than classical
methods. Also we get that our method get a speed up for non-smooth problem in comparison
with optimal DGM (𝑝 = 1). Unfortunately in practice switching policy may be worse, than
power policy because of uncertainty of real error.

8 Conclusion
In this paper, we present new Universal Intermediate Gradient Method for convex opti-
mization problem with inexact Hölder-continuous subgradient. Our method enjoys both the
universality with respect to smoothness of the problem and interpolates between Universal
Gradient Method and Universal Fast Gradient Method, thus, allowing to balance the rate of
convergence of the method and rate of the error accumulation. Under additional assumption
of strong convexity of the objective, we show how the restart technique can be used to obtain
an algorithm with faster rate of convergence.

We note that Theorem 3.1 is primal-dual friendly. This means that, if UIGM is used
to solve a problem, which is dual to a problem with linear constraints, it generates also
a sequence of primal iterates and the rate for the primal-dual gap and linear constraints
infeasibility is the same. This can be proved in the same way as in Theorem 2 of [8]. Also,
based on the ideas from [9,10,25], UIGM for the strongly convex case can be modified to work
without exact knowledge of strong convexity parameter 𝜇. Finally, similarly to [7, 11, 15],
UIGM can be modified to solve convex problems with stochastic inexact oracle.
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