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Abstract
We consider a network equilibrium model (i.e. a combined model), which was proposed as an

alternative to the classic four-step approach for travel forecasting in transportation networks. This
model can be formulated as a convex minimization program. We extend the combined model to
the case of the stable dynamics (SD) model in the traffic assignment stage, which imposes strict
capacity constraints in the network. We propose a way to solve corresponding dual optimization
problems with accelerated gradient methods and give theoretical guarantees of their convergence.
We conducted numerical experiments with considered optimization methods on Moscow and Berlin
networks.

Keywords: forecasting, combined model, trip distribution, traffic assignment, capacity con-
straints, gradient method

1 Introduction
One of the most popular approaches to travel forecasting in transportation networks is the four-step
procedure (de Dios Ortúzar and Willumsen, 2011): sequential run of trip generation, trip distribution,
modal split, and traffic assignment stages. However, this approach has a number of limitations, e.g.
there is no convergence guarantee (Oppenheim et al., 1995; Boyce et al., 1994; Boyce, 2002).

To overcome this issue, there were proposed network equilibrium models (NE / combined mod-
els) which can be formulated as an optimization or, more generally, a variational inequality problem
(Beckmann et al., 1956; De Cea et al., 2005). In particular, Evans (1976) reduced the problem of
searching equilibrium in the case of one transport mode to a convex optimization problem, combin-
ing trip distribution and route assignment models. Florian and Nguyen (1978) made an extension
to the multi-modal case, where destination and mode are chosen simultaneously with the same value
of a calibration parameter. The first mathematical formulation of a network equilibrium model with
hierarchical destination and mode choices was proposed by Fernández et al. (1994) — the approach
was presented for modelling nested choice structure of trips using several modes (e.g. park’n ride
trips). Abrahamsson and Lundqvist (1999) formulated a nested combined model where mode choice
is conditioned by destination choice and demonstrated its application for the Stockholm region. The
recent works Chu (2018), Liu et al. (2018), and Gao et al. (2022) proposed the extensions of the com-
bined models for the cases of modeling trip frequency, remote park-and-ride, and tourism demand,
respectively.

Finding a solution in trip distribution and traffic assignment problems — whether they are consid-
ered separately in the four-step approach or combined into one network equilibrium problem — relies
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on numerical methods for convex optimization. E.g., a classic choice for the traffic assignment problem
(which is the most computationally expensive part) is the Frank–Wolfe algorithm (Frank and Wolfe,
1956), and for the trip distribution problem it is the Sinkhorn algorithm (Sinkhorn, 1974). A class of
path-based algortihms can be an alternative to the link-based Frank–Wolfe algorithm for solving traffic
assignment problem: Chen et al. (2020), Xie et al. (2017), Babazadeh et al. (2020). A popular choice
for solving an optimization problem in the above-mentioned combined models is a partial linearization
algorithm of Evans (1976) and its modifications for multi-modal and multi-user cases (Abrahamsson
and Lundqvist, 1999; Boyce et al., 1983). Recently, in Yang et al. (2013); Fan et al. (2022); Zarrin-
mehr et al. (2019); Cabannes et al. (2019); Wang et al. (2022), improvements of these algorithms were
presented. Also, in subsequent years there have been developed a lot of new optimization methods,
in particular, accelerated gradient methods (Nesterov, 2004, 2009, 2015), which can be applied to the
described problems.

Another direction of research on travel modelling in recent years is related to capacitated transporta-
tion networks, which allow to overcome some limitations of the standard Beckmann traffic assignment
model (Nesterov and De Palma (2003); Zokaei Aashtiani et al. (2021); De Cea et al. (2005); Wang
et al. (2019); Smith et al. (2019); Anikin et al. (2020); Zhu et al. (2020)).

For the best of our knowledge, there is no works considering the application of accelerated gradient
methods to combined models.

In this paper, we consider:

• an entropy-based trip distribution model with hierarchical choice structure (Wilson, 1969; Fernández
et al., 1994; Abrahamsson and Lundqvist, 1999);

• the Beckmann traffic assignment model with inelastic demand (Beckmann et al., 1956);

• the stable dynamics traffic assignment model, where resulting flow distribution satisfy the net-
work’s capacity constraints (Nesterov and De Palma, 2003);

• an NE model combining all the models mentioned above.

In the last case, we consider the nested combined model proposed in Abrahamsson and Lundqvist
(1999), where transit and road networks are independent, and the transit network has constant travel
costs. We extend it to the case of the stable dynamics model for traffic assignment.

We employ accelerated primal-dual gradient methods to solve corresponding optimization prob-
lems and compare their performances to the classic Sinkhorn, Frank–Wolfe, and generalised Evans
algorithms. Also, we provide theoretical guarantees for their convergence rate.

The main contributions of the paper are the following:

• We propose a way to solve the dual problem of the nested combined model of Abrahamsson and
Lundqvist (1999) with a universal accelerated gradient method USTM (Gasnikov and Nesterov,
2018);

• We extend the nested combined model of Abrahamsson and Lundqvist (1999) to the case of ca-
pacitated networks: namely, we propose a way to solve the dual problem for searching equilibrium
in combined trip distribution model with the nested choice structure and the stable dynamics
traffic assignment model;

• We provide theoretical upper bounds on the complexity of searching network equilibrium by the
USTM algorithm.

• We conducted numerical experiments comparing different algorithms on Moscow and Berlin
transportation networks.

The paper is organized as follows. In Section 2, we give a general problem statement for a combined
trip distribution, modal split, and traffic assignment model. In Section 3, we describe the primal-dual
accelerated method to solve the NE problem and provide its convergence analysis. In Sections 4 and 5,
we describe optimization algorithms that we consider for separate traffic assignment and trip distribu-
tion models. Section 6 presents numerical experiments conducted on Moscow and Berlin transportation
networks.
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2 Problem statement
We start with the description of the Beckmann and the stable dynamics models for searching the road
network user equilibrium. Similarly to Abrahamsson and Lundqvist (1999), we assume the road and
the transit networks are independent, and there is no congestion effects in the transit network (its travel
costs are constant and defined as the costs of the shortest routes). Then, in Subsection 2.2, we describe
the trip distribution model with a hierarchical choice structure of destination and travel mode (by car,
public transport, or on foot). And finally, in 2.3, we consider the combined trip distribution-modal
split-assignment problem and formulate its dual problem.

2.1 Route Assignment Models
Let the urban road network be represented by a directed graph G = (V, E), where vertices V correspond
to intersections or centroids (Sheffi, 1985) and edges E correspond to roads, respectively. Suppose we
are given the travel demands: namely, let dij(veh/h) be a trip rate from origin i to destination j.
We denote by Pij the set of all simple paths from i to j. Respectively, P =

⋃
(i,j)∈OD Pij is the set

of all possible routes for all origin-destination pairs OD. Agents traveling from node i to node j are
distributed among paths from Pij , i.e. for any p ∈ Pij there is a flow xp ∈ R+ along the path p, and∑

p∈Pij
xp = dw. Flows from origin nodes to destination nodes create the traffic in the entire network

G, which can be represented by an element of

X = X(d) =
{
x ∈ R|P |

+ :
∑
p∈Pij

xp = dij , (i, j) ∈ OD
}
. (1)

Note that the dimension of X can be extremely large: e.g. for n×n Manhattan network log |P | = Ω(n).
To describe a state of the network we do not need to know an entire vector x, but only flows on arcs:

fe(x) =
∑
p∈P

δepxp for e ∈ E ,

where δep = 1{e ∈ p}. Let us introduce a matrix Θ such that Θe,p = δep for e ∈ E , p ∈ P , so in vector
notation we have f = Θx. To describe an equilibrium we use both path- and link-based notations
(x, t) or (f, t).

Beckmann model (Beckmann et al., 1956; Patriksson, 2015). One of the key ideas behind
the Beckmann model is that the cost (e.g. travel time, gas expenses, etc.) of passing a link e is the
same for all agents and depends solely on the flow fe along it. In what follows, we denote this cost
for a given flow fe by te = τe(fe). In practice the BPR functions are usually employed (US Bureau of
Public Roads, 1964):

τe(fe) = t̄e

(
1 + ρ

(
fe
f̄e

) 1
µ

)
, (2)

where t̄e are free flow times, and f̄e are road capacities of a given network’s link e. We take these
functions with parameters ρ = 0.15 and µ = 0.25.

Another essential point is a behavioral assumption on agents called the first Wardrop’s principle:
we suppose that each of them knows the state of the whole network and chooses a path p minimizing
the total cost

Tp(t) =
∑
e∈p

te.

The cost functions are supposed to be continuous, non-decreasing, and non-negative. Then (x∗, t∗),
where t∗ = (t∗e)e∈E , is an equilibrium state, i.e. it satisfies conditions

t∗e = τe(f
∗
e ), where f∗ = Θx∗,

x∗pw
> 0 =⇒ Tpij

(t∗) = Tij(t
∗) = min

p∈Pij

Tp(t
∗),
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if and only if x∗ is a minimum of the potential function:

Ψ(x) =
∑
e∈E

∫ fe

0

τe(z)dz︸ ︷︷ ︸
σe(fe)

−→ min
f=Θx, x∈X

⇐⇒ Ψ(f) =
∑
e∈E

σe(fe) −→ min
f=Θx: x∈X

, (B)

and t∗e = τe(f
∗
e ) (Beckmann et al., 1956).

Another way to find an equilibrium numerically is by solving a dual problem. We can construct it
according to Theorem 4 from Nesterov and De Palma (2003), the solution of which is t∗:

Q(t) =
∑

ij∈OD

dijTij(t)−
∑
e∈E

σ∗
e(te)︸ ︷︷ ︸

h(t)

−→ max
t≥t̄

, (DualB)

where

σ∗
e(te) = sup

fe≥0
{tefe − σe(fe)} = f̄e

(
te − t̄e
t̄eρ

)µ
(te − t̄e)

1 + µ

is the conjugate function of σe(fe), e ∈ E .
When we search for the solution to this problem numerically, on every step of an applied method we

can reconstruct primal variable f from the current dual variable t: f ∈ ∂
∑

(i,j)∈OD dijTij(t). Then we
can use the duality gap — which is always nonnegative — for the estimation of the method’s accuracy:

∆(f, t) = Ψ(f)−Q(t).

It vanishes only at the equilibrium (f∗, t∗).
Stable dynamics model. Nesterov and De Palma (2003) proposed an alternative model called

the stable dynamics model, which takes an intermediate place between static and dynamic network
assignment models. Namely, its equilibrium can be interpreted as the stationary regime of some
dynamic process. Its key assumption is that we no longer introduce a complex dependence of the
travel cost on the flow (as in the standard static models), but only pose capacity constraints, i.e. the
flow value on each link imposes the feasible set of travel times

τe(fe) =


t̄e, 0 ≤ fe < f̄e,

[t̄e,∞] , fe = f̄e,

+∞, fe > f̄e.

(3)

Unlike in the Beckmann model, there is no one-to-one correspondence between equilibrium travel times
and flows on the links of the network. There are examples in Nesterov and De Palma (2003) illustrating
the difference. Also, one can find in Chudak et al. (2007) a detailed comparison of equilibria in these
two models conducted for large and small networks.

Hence, an equilibrium state (x∗, t∗) of the stable dynamics model satisfies the next conditions:

t∗e ∈ τe(f
∗
e ),

x∗pij
> 0 =⇒ Tpij

(t∗) = Tij(t
∗).

The above formula can be reformulated in terms of an optimization problem. The pair (f∗, t∗) is
an equilibrium if and only if it is a solution of the saddle-point problem∑

e∈E

[tefe − (te − t̄e)f̄e] −→ min
f=Θx:
x∈X

max
te≥t̄e

, (SaddleSD)

where its primal problem is

Ψ(f) =
∑
e∈E

fet̄e −→ min
f=Θx:

x∈X, fe≤f̄e

, (SD)
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and its dual problem is

Q(t) =
∑

(i,j)∈OD

dijTij(t)− ⟨t− t̄, f̄⟩︸ ︷︷ ︸
h(t)

−→ max
te≥t̄e

. (DualSD)

In contrast with the Beckmann model, the equilibrium state in the stable dynamics model is defined
by pair (f∗, t∗) (in particular, it differs from the system optimum (f∗, t̄) in the model only by the time
value).

In both cases the dual problem has form

Q(t) =
∑

(i,j)∈OD

dijTij(t)− h(t) −→ max
t≥t̄

.

The optimization problem is convex, non-smooth and composite.

2.2 Trip Distribution with Modal Split (D-MS)
Let us further assume that there are several trip purposes (demand layers), travel modes (trans-
portation modes), and agents types. We use the logit model with calibration parameters αam, βam
corresponding to choices of travel mode m by agents of the type a. Further, we consider the case when
αam values are the same for all travel modes of agent type a:

αam := αa.

Necessity of this condition will be explained below.
For example, if we want to make travelling by car (travel mode m1) unavailable for non-car-owners

a1, we can set βa1m1
:= inf to get zero trips da1m1 = 0. Thus, for every agent type a we can implicitly

set its group (nest) of available travel modes.
To define destination choice model, we use the entropy-based trip distribution model of Wilson

(1969). For every trip purpose r (e.g., home-work, home-other) we define calibration parameter γr.
This parameter defines the sensitivity of agents with the trip purpose r to trip length.

According to Abrahamsson and Lundqvist (1999), Fernández et al. (1994), we consider the following
problem:∑

i,j,r,a,m

dramij Tm
ij +

∑
i,j,r,a

1

γr
draij ln draij +

∑
i,j,r,a,m

1

αa
dramij

(
ln

(
dramij

draij

)
+ βam

)
︸ ︷︷ ︸

H(d)

→ min
d∈Π′(l,w)

, (P1)

where

Π′(l, w) =

dramij ≥ 0 :
∑
j,m

dramij = lrai ,
∑
i,a,m

dramij = wr
j

 ,

dramij is a number of trips from zone i to j by travel mode m of agents type a with trip purpose r and
draij =

∑
m dramij ; lrai is a number of production from zone i of agents type a with trip purpose r; wr

j is
a number of attractions to zone j of the trip purpose r.

This is the combined trip distribution-modal split (D-MS) problem, where the choice structure is
nested: travel mode choice is conditioned by destination choice (Abrahamsson and Lundqvist (1999)).
If γr and αa are equal, then (P1) reduces to the problem that also corresponds to D-MS model with
simultaneous choices of destination and travel mode with the same calibration parameters (Florian
and Nguyen, 1978; Abrahamsson and Lundqvist, 1999).

For fixed values draij , it is straightforward to check that the optimal dramij satisfy the following
relation:

probramij =
dramij

draij
=

exp
(
−αaT

m
ij − βam

)∑
m′ exp

(
−αaTm′

ij − βam′
) , (4)

where T am
ij = Tm

ij + βam

αa
, i.e., the modal split corresponds to the logit model. Moreover,

min
dram
ij

 ∑
i,j,r,a,m

dramij T am
ij +

1

αa

∑
i,j,r,a,m

dramij ln
dramij

draij

 = draij

(
− 1

αa
ln
∑
m

exp
(
−αaT

am
ij

))
︸ ︷︷ ︸

Ta
ij

,
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where T a
ij is a composite travel cost for agents of type a.

Substituting dramij = probramij draij we reduce the problem (P1) to

E(d, T ) =
∑
i,j,r,a

draij T
a
ij +

∑
i,j,r,a

1

γr
draij ln draij → min

d∈Π(l,w)
, (E)

where

Π(l, w) =

d ≥ 0 :
∑
j

draij = lrai ,
∑
i,a

draij = wr
j

 ,

and T a
ij = − 1

αa
ln
∑

m exp
(
−αaT

m
ij − βam

)
.

Let us derive its dual problem. In our problem statement, the system of constraints Π′(l, w)
is consistent

∑
i,a l

r,a
i =

∑
j w

r
j . Therefore Gasnikov et al. (2015), we can introduce a tautological

constraint ∑
i,j,a

draij =
∑
i,a

lr,ai =
∑
j

wr
j = Nr. (5)

We will utilize tautological constraint (5) to obtain dual function with bounded subgradient norm.

min
d∈Π(l,w)

∑
i,j,r,a

draij T
a
ij +

∑
i,j,r,a

1

γr
draij ln draij

= min
dra
ij ≥0∑

i,j,a dra
ij =Nr

max
λ≥0

∑
r

1

γ r

∑
i,j,a

draij ln draij +
∑
i,j,a

draij T
a
ij +

∑
i,a

λlrai

∑
j

draij − lrai



+
∑
j

λwrj

∑
i,a

draij − wr
j


= max

λ≥0

∑
r

min
dra
ij ≥0∑

i,j,a dra
ij =Nr

1

γ r

∑
i,j,a

draij ln draij +
∑
i,j,a

draij T
a
ij +

∑
i,a

λlrai

∑
j

draij − lrai



+
∑
j

λwrj

∑
i,a

draij − wr
j

 (6)

= −min
λ≥0

φ(λl, λw, T ),

where by φ(λl, λw, T ) we denoted the negative of the dual function.
Let y be the dual variable for the tautological constraint

∑
i,j,a d

ra
ij = Nr. Then taking the gradient

by d we get one of the optimality conditions for the inner minimization problem:

1

γr

(
ln draij + 1

)
+ T a

ij + λlrai + λwrj + y = 0,

therefore

draij = exp
(
−1− γr

(
T a
ij + λlrai + λwrj + y

))
.

By choosing y such that draij satisfies
∑

i,j,a d
ra
ij = Nr we obtain

draij (λ
l
r, λ

w
r , T ) =

Nr exp
(
−γr

(
T a
ij + λlrai + λwrj

))∑
i,j,a exp

(
−γr

(
T a
ij + λlrai + λwrj

)) . (7)

Substituting this into (6) yields

φ(λl, λw, T ) =
∑
r

Nr

γr
ln

1

Nr

∑
i,j,a

exp
(
−γr

(
T a
ij + λlrai + λwrj

))
+
∑
i,a

λlrail
ra
i +

∑
j

λwrjw
r
j . (8)
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2.3 Combined distribution–modal split–assignment problem (D-MS-A)
Now, we combine the road, the transit, and the pedestrian networks into one multi-modal network,
which we denote again by G = (V, E). Slightly abusing notations, in the same way as in Subsection 2.1
we can define the set of path flows X(d) corresponding to an interzonal trip matrix d ∈ Π′(l, w), and
link flows frame , fme =

∑
r,a f

ram
e , and fe =

∑
m fme .

According to Abrahamsson and Lundqvist (1999), the combined distribution–modal split–assignment
problem can be formulated as follows:

P3(f, d) = Ψ(f) +H(d) → min
f=Θx, x∈X(d)

d∈Π′(l,w)

, (P3)

where

Ψ(f) =
∑
e∈E

(
σe(fe) +

∑
m∈V

cme f
m
e

)
.

Similarly to Subsection 2.1 we obtain from (P3) the saddle-point problem

S′
3(d, t) =

∑
i,j,r,a,m

dramij Tm
ij (t)− h(t) +H(d) → min

d∈Π′(l,w)
max
t≥t̄

, (S3’)

where Tm
ij (t) is the minimal cost of the path from i ∈ O to j ∈ D with the links cost te+cme . According

to Subsection 2.2, the above problem reduces to

S3(d, t) =
∑
i,j,r,a

draij T
a
ij(t) +

∑
i,j,r,a

1

γr
draij ln draij︸ ︷︷ ︸

E(d,T (t))

−h(t) → min
d∈Π(l,w)

max
t≥t̄

, (S3)

where T a
ij(t) = − 1

αa
ln
(∑

m exp
(
−αaT

m
ij (t)− βam

))
.

Respectively, the dual problem is

D3(λ, t) = −φ(λl, λw, T (t))− h(t) −→ max
t≥t̄, λl,λw

. (D3)

Thus, there are several ways to formulate an optimization problem. In this paper, we consider
the following particular formulation of the problem and further provide convergence analysis of the
accelerated gradient method application to it:

D′
3(t) = −φ3(t)− h(t) −→ max

t≥t̄
, (D3’)

where
φ3(t) = min

λ
φ(λ, T (t)) = − min

d∈Π(l,w)
E(d, T (t)).

3 Dual approach for solving the combined model
In Subsection 3.1, we describe the universal gradient method of similar triangles (USTM) for solving
the dual problem (D3’) of the described combined model. And we provide its convergence analysis in
Subsection (3.2).

3.1 Dual method for NE problem
A popular approach for searching equilibrium in combined models is the partial linearization al-

gorithm of Evans (1976) and its modifications for multi-modal and multi-user cases (Abrahamsson
and Lundqvist, 1999; Boyce et al., 1983). The approach is further developed in Yang et al. (2013) by
incorporating better line-search procedures. Note that the algorithm can be viewed as partly dual,
because it is formulated in terms external to the primal problem: it includes cost matrices Tij , which
are the dual variables of the saddle-point problem (S3) (or (S3’)) or the dual problem (D3). But still,
the algorithm is essentially primal, since it optimizes (P3) by flow and trip distribution pair.
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Algorithm 1 Universal Method of Similar Triangles

Input: L0 > 0, starting point t0, accuracy ε > 0
1: u0 := t0, A0 := 0, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do
5: αk+1 := 1

2Lk+1
+
√

1
4L2

k+1
+ Ak

Lk+1
, Ak+1 := Ak + αk+1

6: yk+1 := αk+1u
k+Akt

k

Ak+1

7: uk+1 := argmin
t∈domh

ϕk+1(t)

8: tk+1 := αk+1u
k+1+Akt

k

Ak+1

9: if Φ̃(tk+1) ≤ Φ̃(yk+1) +
〈
∇̃Φ(yk+1), tk+1 − yk+1

〉
+ Lk+1

2

∥∥tk+1 − yk+1
∥∥2
2
+ αk+1

2Ak+1
ε then

10: break
11: else
12: Lk+1 := 2Lk+1

13: end if
14: end while
15: k := k + 1
16: until Stopping criterion is fulfilled

Here we propose an alternative approach based on solving the dual problem (D3’) with the universal
method of similar triangles (USTM), and afterwards we prove the convergence rates for it.

Algorithm 1 provides the pseudocode of USTM with an inexact oracle and the euclidean prox-
structure. Here we used the following notations:

ϕ0(t) =
1

2

∥∥t− t0
∥∥2
2
,

ϕk+1(t) = ϕk(t) + αk+1

[
Φ̃(yk+1) +

〈
∇̃Φ(yk+1), t− yk+1

〉
+ h(t)

]
.

Note that we did not specify the stopping criterion as it can be different for different models (Fan
et al., 2022).

To find a network equilibrium in D-MS-A model, we apply USTM to minimize the composite
objective −D′

3(t) = φ3(t) + h(t) in (D3’), thus we set Φ(t) := φ3(t) in Algorithm 1. Recall that

φ3(t) = − min
d∈Π(l,w)

E(d, T (t)).

Note that at each iteration we need to compute φ3 and ∇φ3 with travel costs yk+1, tk+1. Since this
itself is done by an iterative procedure, we cannot expect to find the exact solution of the subproblem.
Instead, we use the following inexact oracle for φ3:

φ̃3(t) = φ3,δ(t) = −E(d̃(t), T (t)), ∇̃φ3(t) = ∇δφ3(t) = −∇tE(d̃(t), T (t)),

where δ ≥ 0 and d̃(t) = dδ(t) ∈ Π(l, w) (see Subsection 5.4) is a δ-solution of mindE(d, T (t)), i.e.

E(dδ(t), T (t)) ≤ min
d∈Π(l,w)

E(d, T (t)) + δ.

Recall that E(d, T (t)) is concave w.r.t. t, and its superdifferential ∂tE(d, T (t)) is given by

∂tE(d, T (t)) =
∑
i,j,r,a

draij ∂T
a
ij(t).

Further, draij ∂T a
ij(t) =

∑
m dramij ∂Tm

ij (t), and

∂Tm
ij (t) = ∂ min

am
p ∈Pm

ij

⟨t, apm⟩ = Conv
{
amp ∈ Pm

ij : ⟨t, apm⟩ = Tm
ij (t)

}
,

8



where amp ∈ {0, 1}|E| is a binary vector encoding a path p for the travel mode m. Note that several
shortest paths may exist. Finally, we get that

∂tE(d, T (t)) =
∑

i,j,r,a,m

dramij Conv
{
amp ∈ Pm

ij : ⟨t, apm⟩ = Tm
ij (t)

}
, (9)

and any supergradient ∇tE(d, T (t)) is a vector of link flows by shortest paths, corresponding to the
trip distribution d.

Since we solve the dual problem (D3’), we need a way to recover an approximate solution (d, f) of
the primal problem (P3). For any t ≥ 0, given d̃raij (t) and Tm

ij (t), define d′(t) ∈ Π′(l, w) by formula (4).
Then we reconstruct a full correspondence matrix after K iterations of Algorithm 1 as

d̂K =
1

AK

K∑
k=1

αkd
′(yk) ∈ Π′(l, w). (10)

Corresponding link flows can be recovered as (see Kubentayeva and Gasnikov, 2021, f. (18))

[f̂K ]me =
1

AK

K∑
k=1

αk[f
k]me . (11)

where fk are link flows by shortest paths for times yk and correspondence matrix d′(yk), such that∑
m

[fk]me = −
[
∇̃φ3(y

k)
]
e
, e ∈ E .

3.2 Convergence Analysis
Below we derive some properties of the problem and then use them to apply the USTM convergence
theorem, what gives us the convergence rate of our dual algorithm for searching equlibria in combined
model.

The next lemma is a trivial counterpart of f. (5) in Kubentayeva and Gasnikov (2021), following
from (9).

Lemma 3.1. For any d, d′ ∈ Π(l, w), t, t′ ≥ 0, and supergradients ∇tE(d, T (t)), ∇tE(d′, T (t′)) it holds
that ∥∇tE(d, T (t))−∇tE(d′, T (t′))∥2 ≤M =

√
2HN , where H ≤ |V|− 1 is the maximum simple path

length in the network, and N =
∑

rNr is the total number of active agents.

Typically (e.g. for a Manhattan network) H = O(
√
|V|).

Recall the following standard result concerning inexact oracles.

Lemma 3.2. Let for any t, t′ ≥ 0

φ̃3(t
′) + δ ≥ φ3(t

′) ≥ φ̃3(t) + ⟨∇̃φ3(t), t
′ − t⟩.

Proof. Since E(d, T (t)) is concave w.r.t. t,

E(d̃(t), T (t′)) ≤ E(d̃(t), T (t)) + ⟨∇tE(d̃(t), T (t)), t′ − t⟩ = −φ̃3(t)− ⟨∇̃φ3(t), t
′ − t⟩.

Thus,
φ3(t

′) ≥ −E(d̃(t), T (t′)) ≥ φ̃3(t) + ⟨∇̃φ3(t), t
′ − t⟩.

The claim follows.

The following bound is the main tool to prove the convergence rate. It is an analogue of Lemma 2
in Gasnikov and Nesterov (2016) adapted to the case of an inexact oracle.

Lemma 3.3. Assume at the k-th iteration of Algorithm 1 we call an inexact oracle (Φ̃, ∇̃Φ) satisfying

Φ̃(t′) + δk ≥ Φ(t′) ≥ Φ̃(t) + ⟨∇̃Φ(t), t′ − t⟩ ∀t, t′ ∈ domh,

9



with δk = αk+1ε
4Ak+1

. Then for any k > 0

Φ(tk) + h(tk) ≤ 1

Ak
ϕk(u

k) +
3ε

4
≤ 1

Ak
ϕk(t)−

1

2Ak

∥∥t− uk
∥∥2
2
+

3ε

4
∀t ∈ domh.

Moreover,

Φ(tk) + h(tk) +
1

2Ak

∥∥t∗ − uk
∥∥2
2
≤ Φ(t∗) + h(t∗) +

1

2Ak

∥∥t∗ − t0
∥∥2
2
,

where t∗ = argminΦ(t) + h(t).

Proof. We are going to prove by induction that

Ak(Φ(t
k) + h(tk)) ≤ ϕk(u

k) +Ak
3ε

4
.

Note that since ϕk is 1-strongly convex,

ϕk(u
k) ≤ ϕk(t)−

1

2

∥∥t− uk
∥∥2
2

∀t ∈ domh.

The inner stopping criterion yields that

Φ̃(tk+1) ≤ Φ̃(yk+1) + ⟨∇̃Φ(yk+1), tk+1 − yk+1⟩+ Lk+1

2

∥∥tk+1 − yk+1
∥∥2
2
+

αk+1

2Ak+1
ε

= Φ̃(yk+1) +
αk+1

Ak+1

[
⟨∇̃Φ(yk+1), uk+1 − uk⟩+ ε

2

]
+

1

2Ak+1

∥∥uk+1 − uk
∥∥2
2
.

By the assumptions of the lemma,

Φ̃(yk+1) ≤ Φ(tk)− ⟨∇̃Φ(yk+1), tk − yk+1⟩ = Φ(tk) +
αk+1

Ak+1
⟨∇̃Φ(yk+1), uk − tk⟩,

thus

Ak+1Φ̃(t
k+1) ≤ Ak+1Φ̃(y

k+1) + αk+1

[
⟨∇̃Φ(yk+1), uk+1 − uk⟩+ ε

2

]
+

1

2

∥∥uk+1 − uk
∥∥2
2

≤ AkΦ(t
k) + αk+1

[
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − uk +

Ak

Ak+1
(uk − tk)⟩+ ε

2

]
+

1

2

∥∥uk+1 − uk
∥∥2
2

= AkΦ(t
k) + αk+1

[
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩+ ε

2

]
+

1

2

∥∥uk+1 − uk
∥∥2
2
.

Now, using the convexity of h and the definition of δk we obtain that

Ak+1

[
Φ(tk+1) + h(tk+1)

]
≤ Ak+1

[
Φ̃(tk+1) + δk

]
+Akh(t

k) + αk+1h(u
k+1)

= Ak

[
Φ(tk) + h(tk)

]
+ αk+1

[
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩+ h(uk+1) +

3ε

4

]
+

1

2

∥∥uk+1 − uk
∥∥2
2

≤ Akϕk(u
k+1) + αk+1

[
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩+ h(uk+1)

]
+Ak+1

3ε

4

= ϕk+1(u
k+1) +Ak+1

3ε

4
.

The last claim of the lemma follows from the inequality

Φ(t∗) ≥ Φ̃(t) + ⟨∇̃Φ(t), t∗ − t⟩,

what implies

ϕk(t
∗) ≤ Φ(t∗) +

1

2Ak

∥∥t∗ − t0
∥∥2
2
.

10



Now we are ready to prove the main result of this section: a primal-dual convergence rate for USTM
in the combined model. The complexity analysis in the next theorem is similar to Theorems 3 and 4
in Kubentayeva and Gasnikov (2021), where USTM was applied to the route assignment problem.

Theorem 3.4. Assume t0 = t̄, L0 ≤ M2

ε , and at the k-th iteration problem (E) is solved with accuracy
δk = αk+1ε

4Ak+1
. Define

R = ∥t∗ − t̄∥, R̃2 = ρ2N2/µ
∑
e∈E

t̄2e

f̄
2/µ
e

.

Then in the case of Beckmann’s model, after at most

K = 4

(
MR̃

ε

)2

iterations it holds that
0 ≤ P3(d̂

K , f̂K)−D′
3(t

K) ≤ ε.

In the case of Stable Dynamics model, after at most

K = 4

(
MR

ε

)2

iterations it holds that

0 ≤ P3(d̂
K , f̂K)−D′

3(t
K) + ⟨(f̂K − f̄)+, t

∗ − t̄⟩ ≤ ε,

∥(f̂K − f̄)+∥2 ≤ 2ε

R
.

Proof. By Lemma 3.1,

Φ̃(tk+1) ≤ Φ̃(yk+1) + ⟨∇̃Φ(yk+1), tk+1 − yk+1⟩+M∥tk+1 − yk+1∥2.

Then f. (A3) from the proof of Theorem 3 in Kubentayeva and Gasnikov (2021) ensures that for all k

Ak ≥ εk

2M2
.

Recall that f = fk are link flows by shortest paths for times y = yk and interzonal trips d′ = d′(yk).
Then, according to Subsection 2.3,

E(d̃(y), T (y)) =
∑

i,j,r,a,m

dramij Tm
ij (y) +H(d′) =

∑
e,m

fme (ye + cme ) +H(d′),

and for any t

φ̃3(y) +
〈
∇̃φ3(y), t− y

〉
= −E(d̃(y), T (y)) + ⟨∇tE(d̃(y), T (y)), t− y⟩

= −
∑
e,m

fme (ye + cme )−H(d′) +
∑
e,m

fme (ye − te)

= −
∑
e,m

fme (te + cme )−H(d′).

Therefore, due to the convexity of the entropy,

ϕK(t) =

K∑
k=1

αk

(
φ̃3(y

k) +
〈
∇̃φ3(y

K), t− yk
〉
+ h(t)

)
+

1

2

∥∥t− t0
∥∥2
2

= −AK

∑
e,m

[f̂K ]me (te + cme )−
K∑

k=1

αkH(d′(yk)) +AKh(t) +
1

2
∥t− t̄∥22

≤ AK

∑
e

(
σ∗
e(te)− [f̂K ]e −

∑
m

[f̂K ]me c
m
e

)
−AKH(d̂K) +

1

2
∥t− t̄∥22.
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Then by Lemma 3.3,

−D′
3(t

K) ≤
∑
e

(
σ∗
e(te)− [f̂K ]ete −

∑
m

[f̂K ]me c
m
e

)
−H(d̂K) +

1

2AK
∥t− t̄∥22 +

3ε

4
.

The rest of the proof repeats the proofs of Lemmata 1 and 2 in Kubentayeva and Gasnikov (2021),
mutatis mutandis. In the case of the Beckmann model, we substitute te = τe

(
[f̂K ]e

)
, what gives us

the bound

−D′
3(t

K) ≤ −
∑
e

(
σe

(
[f̂K ]e

)
+
∑
m

[f̂K ]me c
m
e

)
−H(d̂K) +

R̃2

2AK
+

3ε

4

= −Ψ(f̂K)−H(d̂K) +
R̃2

2AK
+

3ε

4
≤ −P3(d̂

K , f̂K) +
(MR̃)2

Kε
+

3ε

4
.

In the case of the Stable Dynamics model,

−D′
3(t

K) ≤ min
t≥t̄

{∑
e

(
f̄e(te − t̄e)− [f̂K ]ete −

∑
m

[f̂K ]me c
m
e

)
+

1

2AK
∥t− t̄∥22

}

−H(d̂K) +
3ε

4

= −Ψ(f̂K)−H(d̂K) + min
t≥t̄

(
⟨f̄ − f̂K , t− t̄⟩+ 1

2AK
∥t− t̄∥22

)
+

3ε

4

= −P3(d̂
K , f̂K)− AK

2

∥∥∥(f̂K − f̄)+

∥∥∥2
2
+

3ε

4

≤ −P3(d̂
K , f̂K)− Kε

4M2

∥∥∥(f̂K − f̄)+

∥∥∥2
2
+

3ε

4
.

Since optimal t∗ − t̄ ≥ 0 are Lagrange multipliers for the problem (P3),

P3(d̂
K , f̂K) ≥ P3(d

∗, f∗)− ⟨(f̂K − f̄)+, t
∗ − t̄⟩ = D′

3(t
∗)− ⟨(f̂K − f̄)+, t

∗ − t̄⟩,

and thus

−⟨(f̂K − f̄)+, t
∗ − t̄⟩ ≤ P3(d̂

K , f̂K)−D′
3(t

K) ≤ − Kε

4M2

∥∥∥(f̂K − f̄)+

∥∥∥2
2
+

3ε

4
.

Therefore,
Kε

4M2

∥∥∥(f̂K − f̄)+

∥∥∥2
2
≤ R

∥∥∥(f̂K − f̄)+

∥∥∥
2
+

3ε

4

and, finally, ∥∥∥(f̂K − f̄)+

∥∥∥
2
≤ 4M2R

Kε
+M

√
3

K
,

what yields the result.

4 Frank–Wolfe Variations and USTM in Traffic Assignment
Here, we consider several numerical methods for solving a separate problem of searching user equilib-
rium with inelastic demands. The Frank–Wolfe method and its variations with different line search
strategies effectively solve the Beckmann traffic assignment problem, but due to its primal nature it
cannot be applied to the stable dynamics model. Meanwhile, the primal-dual USTM method can be
applied to both problems. Further, we conduct the experiments for these methods.
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4.1 Frank–Wolfe Variations
In the Beckmann model, searching equilibria reduces to minimization of the potential function (B).
One of the most popular and effective approaches to solve this problem numerically is the famous
Frank–Wolfe method (Frank and Wolfe, 1956; Jaggi, 2013) as well as its numerous modifications
(Fukushima, 1984; LeBlanc et al., 1985; Arezki and Van Vliet, 1990; Chen et al., 2002). Also, one
can apply the primal-dual subgradient methods to optimize the dual problem and then reconstruct a
solution to the primal one. However, our research Kubentayeva and Gasnikov (2021) showed that this
approach demands more parameter adjustments to reach the Frank–Wolfe algorithm’s performance
with standard step size strategy.

In this paper, we test various step size strategies of Frank–Wolfe method. Namely, we consider
some simple decaying step size schedules like standard choice of step size γk = 2

k+1 and γk = 1
k leading

to the averaging of fk, and a number of approaches based on a choice of the optimal step size by
solving auxiliary one-dimensional problem

γk := argmin
γ∈[γmin,γmax]

Ψ((1− γ)fk + γsk).

The variety of these approaches corresponds to the different one-dimensional optimization methods.
We consider the Brent method on a segment γk ∈ [0, 1] Brent (1971) and exponential decreasing of
γk until Armijo rule is satisfied Armijo (1966). The last modification considered is the backtracking
line-search method developed for specific use in Frank–Wolfe algorithms proposed in Pedregosa et al.
(2020).

The Frank–Wolfe method’s theoretical convergence rate for convex objective (with Lipschitz-continuous
gradient) is O(1/ε) (Pedregosa et al., 2020; Jaggi, 2013)

Algorithm 2 Frank–Wolfe algorithm
Input: accuracy ε > 0
1: t0 := t̄, f0 := argmin

s∈{Θx:x∈X}
⟨t0, s⟩, k := 0

2: repeat
3: sk := argmin

s∈{Θx:x∈X}
⟨tk, s⟩, tke := ∂Ψ(fk)

∂fe
= τe(f

k)

4: γk := 2
k+2 , fk+1 := (1− γk)f

k + γks
k

5: k := k + 1
6: until Stopping criterion is fulfilled

4.2 Primal-dual Universal Similar Triangles Method
Let us remind that (DualB) and (DualSD) dual problems of Beckmann and stable dynamics traffic
assignment models have the same structure:

Q(t) =
∑
i,j

dijTij(t)− h(t) −→ max
t≥t̄

.

The optimization problems are convex, non-smooth and composite. We apply the USTM method to
minimize the composite objective Q(t). Here, in the Algorithm 1, we set Φ(t) :=

∑
i,j dijTij(t). As in

Section 3.1, for both models, flows (primal variables) are reconstructed in the following way:

f̂K = − 1

AK

K∑
k=1

αk∇Φ(yk), (12)

where αk is a coefficient of the USTM method on iteration k, and AK =
∑K

k=1 αk. Note that any
element from the set ∂ Φ(t) has form ∇Φ(t) = −f , where f = Θx is a flow distribution on links induced
by x ∈ X concentrated on the shortest paths for given times t (and vice versa: any such f corresponds
to a subgradient of Φ(t)). Hence, weighted f̂K are also induced by flows on the paths.
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For the Beckmann model, we can also use the duality gap to estimate the method’s accuracy:

∆K = Q(tK) + Ψ(f̂K).

For the stable dynamics model, flows reconstruction according to (12) keeps feasibility of f̂K (i.e.
they are induced by flows on the paths), but can violate the networks capacity constraints — so the
duality gap ∆K can be negative. To solve the SD traffic assignment problem with inelastic demand,
Kubentayeva and Gasnikov (2021) proposed a novel way to reconstruct admissible flows — which also
meet capacity constraints – together with a novel computable duality gap, which can be used in a
stopping criterion.

The USTM method requires O(1/ε2) iterations to obtain an ε-solution of primal and dual problems
of Beckmann and SD models (Nesterov, 2015; Kubentayeva and Gasnikov, 2021).

5 Sinkhorn’s Variations for Trip Distribution
Optimization problem of entropy-based trip distribution model of Wilson (1969) coincides with opti-
mal transport (OT) problem with entropy regularizer (Cuturi, 2013). To solve the problem, celebrated
Sinkhorn’s algorithm is used (Subsection 5.1). In Subsections 5.2 and 5.3, we consider accelerated
gradient methods adapted for solving OT problems. These methods achieve better theoretical conver-
gence rates compared to Sinkhorn-like methods in some regimes. Later, in Subsection 6.3, we conduct
experiments to compare performances of the mentioned methods.

5.1 Sinkhorn’s Algorithm
In this section, for the sake of formulas simplicity, we assume a single agent type and travel mode.
Since the problem (8) is separable, without loss of generality, we consider only one trip purpose and
suppose

∑
i,j dij = 1. Thus, equation (8) takes form

φ(λl, λw) =
1

γ
ln
∑
i,j

exp
(
−γ
(
Tij + λli + λwj

))
+
∑
i

λlili +
∑
j

λwj wj . (13)

Following Guminov et al. (2021), we perform a change of variables µl = −γλl, µw = −γλw in (13) and
obtain an equivalent formulation

ϕ(µl, µw) =
1

γ

[
ln
(
1T d

(
µl, µw

)
1
)
− ⟨µl, l⟩ − ⟨µw, w⟩

]
→ min

µl,µw
, (14)

where [
d(µl, µw)

]
i,j

= exp
(
µl
i + µw

j − γTij(t)
)
, (15)

with the primal-dual coupling
d = d(µl, µw)/1T d(µl, µw)1. (16)

Similarly to the well-known Sinkhorn algorithm, the objective in (14) can be alternatively minimized
(see Algorithm 3).

Note that, according to Lemma 9 in Guminov et al. (2021) for the problem (14), partial explicit
minimization is possible via the same formulas as for classical entropy-regularized OT problem Cuturi
(2013) without tautological constraint:

ψ(µl, µw) = 1T d
(
µl, µw

)
1− ⟨µl, l⟩ − ⟨µw, w⟩ → min

µl,µw
, (17)

but the primal-dual coupling formulas are different: (16) for the problem (14) and (15) for the prob-
lem (17).

The argminima of (14) should be implemented using numerically stable computation of the loga-
rithm of the sum of exponents (logsumexp trick), but analytically the argminima are given by

lnµl
k+1 := lnµl

k + ln l − ln
(
d
(
µl
k, µ

w
k

)
1
)
, (18)

lnµw
k+1 := lnµw

k + lnw − ln
(
1T d

(
µl
k, µ

w
k

))
, (19)
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Algorithm 3 Sinkhorn’s Algorithm (dual objective with the tautological constraint)

Input: µl
0 := µw

0 := 0
1: k := 0
2: repeat
3: if k mod 2 = 0 then
4: µl

k+1 := argminξ ϕ(µ
l
k, ξ)

5: µw
k+1 := µw

k

6: else
7: µl

k+1 := µl
k

8: µw
k+1 := argminξ ϕ(ξ, µ

w
k )

9: end if
10: k := k + 1
11: until Stopping criterion is fulfilled

where logarithm is taken element-wisely.
The authors of Gasnikov et al. (2015) pointed out that the objective (14), its gradient

∇µlϕ(µ) = ∂ϕ(µl, µw)/∂µl =
1

γ

(
d
(
µl, µw

)
1

1T d (µl, µw)1
− l

)
, (20)

∇µwϕ(µ) = ∂ϕ(µl, µw)/∂µw =
1

γ

(
d
(
µl, µw

)T
1

1T d (µl, µw)1
− w

)
, (21)

and equation (15) are invariant under transformations

µl → µl + tµl1 (22)
µw → µw + tµw1, (23)

with tµl , tµw ∈ R. That leads to better numerical stability. In our experiments, we present a variant of
Algorithm 3 (labeled as SINKHORN-TAUT-SHIFT) with such invariant transformations, that provide
maximum of the dual variables equals 1, and with numerically stable computations of the logarithm
of the sum of exponents.

5.2 Accelerated Sinkhorn’s Algorithm
Besides the Sinkhorn’s algorithm, accelerated gradient methods are adapted for solving OT problems.
These methods achieve better theoretical convergence rates compared to Sinkhorn-like methods in
some regimes. To the best available knowledge, the first such method was proposed in Gasnikov et al.
(2016), where the authors proposed non-adaptive Accelerated Gradient Descent (AGD) method for
a more general class of entropy-linear programming problems. The algorithmic idea is to run AGD
for solving (14) and equip it with some primal updates to guarantee the convergence rate also for the
primal problem.

In this subsection, Algorithm 1 and Algorithm 2 (its adaptation for trip distribution problem listed
as Algorithm 4) from Guminov et al. (2021) are described. The authors proposed to replace in the
classical AGD methods the gradient step with a step of explicit minimization w.r.t. one of the blocks
of variables. To formalize the latter, suppose that the vector of dual variables can be divided into m
block s.t. µ =

(
µT
1 , . . . , µ

T
m

)T . So that, notations ϕ(µ) and ϕ(µ1, . . . , µm) are equivalent. And suppose
that it is possible to minimize the dual objective (14) over i-th block holding the others variables fixed:

argmin
i

ϕ(µ) := argmin
ξ

ϕ(µ1, . . . , µi−1, ξ, µi+1, · · · , µm). (24)

Introduce also a notation for block gradient

∇iϕ(µ) =
∂ϕ(µ1, . . . , µi−1, ξ, µi+1, · · · , µm)

∂ξ
. (25)
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Algorithm 4 AGM-NONPD
1: Set A0 := a0 := 0, η0 := ζ0 := κ0.
2: k := 0
3: repeat
4: Set βk := argmin

β∈[0,1]

ϕ (ηk + β (ζk − ηk))

5: Set κk := ηk + βk(ζk − ηk) {Extrapolation step}
6: Choose i = argmax

i∈{1,...,m}
∥∇iϕ(κk)∥22

7: Set ηk+1 = argmin
i

ϕ(κk)

8: Find largest ak+1, Ak+1 := Ak + ak from

ϕ(κk)−
a2k+1

2(Ak + ak+1)
∥∇ϕ(κk)∥2 := ϕ(ηk+1)

9: Set ζk+1 = ζk − ak+1∇ϕ(κk) {Update momentum term}
10: k := k + 1
11: until Stopping criterion is fulfilled

The resulting algorithms m times theoretically slower than its gradient counterpart, where m is the
number of blocks of variables used in alternating minimization. But in practice the algorithms work
faster Guminov et al. (2021).

In practice variable transformations (22, 23) (with tξ = −∥ξ∥∞, ξ ∈ {µl, µw}) performed after steps
5 and 7 of Algorithm 4 and can lead to a better numerical stability when γ is big.

For Algorithm 2 from Guminov et al. (2021) constraints residual ∥((d1 − l)T , (1T d − w)T )T ∥2 =

Õ
(

1
k2

)
, but in our experiment it was observed that constraints residual decrease faster for d = d(κk)

(16) than for the theoretically obtained primal variable d using primal-dual property of the algorithm.
We present experiments only on the best performing modifications with d = d(κk) primal variable
reconstruction, labeled as NONPD (since it does not utilizes primal-dual property of the algorithms
considered in this subsection).

According to (Guminov et al., 2021, Theorem 3) the objective of the form (14) can be minimized
with the following rate

ϕ(κk)− ϕ∗ = Õ

(
γ1/2∥T∥∞

k2

)
.

5.3 MIXED AGM
One more natural modification of Algorithm 4 can be obtained by performing several steps of explicit
minimization instead of one. The natural number of steps seems to be equal to the number of blocks
m. But the proof of Algorithm 4 utilizes the following property of a step explicit minimization

ϕ(ηk+1) ≤ ϕ(µk)− 1

2L
∥∇ikϕ(µ

k)∥22

in order to obtain

ϕ(ηk+1) ≤ ϕ(µk)− 1

2nL
∥∇ϕ(µk)∥22. (26)

The latter is true since ik = argmax
i∈{1,...,m}

∥∇ikϕ(µ
k)∥22.

But the inequality (26) can be satisfied if one replaces lines 6 and 7 in Algorithm 4 with the
following Algorithm 5.

Despite the practical performance, this modification has no theoretical guarantees because ∥∇ikϕ(µ
k)∥22

can be greater than
∑J

j ∥∇ϕ(ζj)∥22 for any J > m.
Moreover, Algorithm 4 is non-increasing. But non-increasing property of the algorithm can be

violated (with either the exact minimization given by lines 6 and 7 of Algorithm 4 replaced with
Algorithm 5 or not) due to numerical instabilities. Once it happened, Algorithm 4 is stopped. The
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Algorithm 5 k-th step

1: ζ0 = µk.
2: while j ≤ m and ∥∇ikϕ(µ

k)∥22 ≤
∑

j ∥∇ϕ(ζj)∥22 do
3: Choose ij = argmax

i∈{1,...,m}
∥∇ijϕ(ζj)∥22

4: Set ζj+1 = argmin
i

ϕ(µk)

5: j = j + 1
6: end while

Output: ηk+1 = ζj

computations can be proceeded from the last obtained ηk with Sinkhorn’s iterations. In fact, these
numerical instabilities break monotonicity of Sinkhorn’s iterations too, but in practice the proceeding
of computations with Sinkhorn’s iterations allows to find better minima.

The modification, named MIXED-AGM-NONPD, combines Sinkhorn’s iterations after reaching
the stability limit and the exact minimization given by Algorithm 5.

5.4 Reconstruction of correspondence matrix
Finally, let us discuss a reconstruction of a solution to the primal problem (E). Assume we reconstruct
a solution dk of the primal problem (E) by formula (16) with µl = µl

k, µ
w = µw

k . However, since the
dual problem is only approximately solved, dk in general does not satisfy the marginal constraints. So
obtain a feasible solution, one can use projection Algorithm 2 from Altschuler et al. (2017). According
to (Altschuler et al., 2017, Theorem 4), it has complexity O(|O| · |D|) and returns a correspondence
matrix d̂k ∈ Π(l, w) such that

∥dk − d̂k∥1 ≤ δk = ∥dk1− l∥1 + ∥dTk 1− w∥1.

The error can be estimated following Theorem 8 in Stonyakin et al. (2019):

E(d̂k, T ) ≤ min
d∈Π(l,w)

E(d, T ) + 2δk∥T∥∞ +
4δk
γ

log

(
|O| · |D|
δk

)
. (27)

Consider µl
k, µ

w
k obtained with Sinkhorn’s algorithm. Using (20) and the convexity of ϕ we get

ϕ(µl
k, µ

w
k )− ϕ∗ ≤ ⟨µl

k − µl
∗,∇µlϕ(µl

k, µ
w
k )⟩+ ⟨µw

k − µw
∗ ,∇µwϕ(µl

k, µ
w
k )⟩

=
1

γ

(
⟨µl

k − µl
∗, dk1− l⟩+ ⟨µw

k − µw
∗ , d

T
k 1− w⟩

)
,

where (µl
∗, µ

w
∗ ) is the solution of (15). Then Lemma 3 and Theorem 7 from Stonyakin et al. (2019)

ensure that
ϕ(µl

k, µ
w
k )− ϕ(µl

∗, µ
w
∗ ) ≤

1

2
∥T∥∞

(
∥dk1− l∥1 + ∥dTk 1− w∥1

)
.

Combining the above bounds, we obtain the following bound on the duality gap:

E(d̂k, T ) + ϕ(µl
k, µ

w
k ) ≤

5

2
δk∥T∥∞ +

4δk
γ

log

(
|O| · |D|
δk

)
. (28)

6 Numerical experiments
In our experiments, we consider the morning peak-hour in Moscow transportation network. The city’s
data are provided by Russian University of Transport.

The city and its suburbs are split into 1420 zones. Moscow road network consists of 12970 nodes
and 36905 links, a part of it is visualized on Figure 1. We model the crossings by inserting auxiliary
links for each allowed turn between road links. Resulting graph contains 63073 nodes and 94546 links.

In our four-stage model of Moscow we consider
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Figure 1: Moscow network link loads, obtained for the combined Beckmann model

• two demand layers: home-to-work, and home-to-others;

• two agent types: car owners and non-car-owners;

• and three travel modes: public transport, pedestrian and car.

6.1 Parallel computing
Calculation of flows f is the most expensive part, since we have to find the shortest paths for all pairs
w ∈ OD. We use Dijkstra’s algorithm (Dijkstra et al., 1959) to find the shortest paths, which runs
in O(|E| + |V| log |V|) time; Given the shortest paths tree, flows aggregation have linear performance
O(|V|). Hence, the total complexity of flows calculation is O

(
|O|(|E| + |V| log |V|)

)
. Moreover, flows

reconstruction for every source o ∈ O can be computed in parallel. Table 1 shows the result of running
100 iterations of the Frank–Wolfe method on Moscow road network with the various number of cores
involved (processor’s speed is 3092,72 MHz).

# cores 1 4 8 16 24 32

Total time (sec) 2794 810 470 335 293 274

Table 1: Effect of CPU parallelism

6.2 Frank–Wolfe Algorithm’s Variations
Each of the considered modifications of the Frank–Wolfe algorithm was run up to 2000 iterations for
the traffic assignment task of the classic four-stage model for the Moscow road network. The results
are shown in Figure 2.
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Figure 2: Convergence rate for the different Frank–Wolfe modifications for Moscow network.

6.3 Sinkhorn Algorithm’s Variations
Experiments were run for the Trip distribution stage with dual function adjustment for gradient
methods described in Section 5 for the Moscow road network. The results are shown in Figure 3.

Different formulations of minimized targets for Sinkhorn’s method were considered (for example,
formulation (14) or (17)), but conceptual differences were not identified, therefore only (14) formulation
is shown as SINKHORN-TAUT-SHIFT. Label AAM-NONPD corresponds (Guminov et al., 2021,
Algorithm 3), that can be easily adapted similarly as Algorithm 4 was adapted from (Guminov et al.,
2021, Algorithm 1). One should note that utilized Sinkhorn’s variation has comparable to gradient
methods convergence rate, hence common approach is suitable for solving Trip Distribution problem.
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6.4 Combined Model, Beckmann
Here we compare three algorithms for finding a fixed-point of the four-stage Beckmann traffic model,
namely Four-stage procedure, Evans algorithm and our dual approach via USTM. The difference with
the two-stage model is the addition of mode split and mode cost averaging steps. Mode split step
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Figure 3: Sinkhorn’s algorithm modifications for the Trip Distribution stage.

usually cause wobbling between public transport and car modes when using straightforward Four-
stage procedure: if the road network is free at the first iteration agents start alternating between these
two modes at each iteration. So we applied exponential averaging of modes cost matrices to handle
this problem: Tm

ij [k + 1] = 1
2

(
Tm
ij [new] + Tm

ij [k]
)
.

Figure 4 shows the convergence of the duality gap for all three algorithms considered. It can be
seen that the Four-stage procedure does not tend to converge to zero duality gap: after 5-6 iterations
(about 70 minutes) it reaches its lower value of the duality gap, then it starts to fluctuate around this
value. In order to increase the accuracy of the approximate solution found by Four-stage procedure,
one has to increase the number of inner iterations, which will make each outer iteration slower.

In contrast, Evans method steadily converge to zero duality gap.
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Figure 4: Duality gap convergence

Some intuition about the behavior of the methods can be given by the Figure 5, where two-
dimensional projections of dmij trajectories are depicted. The projections were made by multidimen-
sional scaling method, which tries to preserve pairwise distances while matching points from high-
dimensional space (in our case — correspondence matrices) to points on the plane. As one can see, the
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trajectories start from the same point, since the calculation of the correspondence matrices and the
modal splitting in both methods is the same. After a few iterations the trajectories of the methods
are in the same region again, but the Evans method proceeds with small steps, while the Four-stage
procedure makes long jumps around the point to which Evans method converges. The trajectory of
USTM is similar to the trajectory of the Evans algorithm and is omitted for the sake of readability.
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Figure 5: 2-Dimensional projections of dmij trajectories for the Evans algorithm and the Four-stage
procedure, obtained by multidimensional scaling. The trajectory of the Evans method is sparsified to
50 points. The last point is marked with a large cross

6.5 Combined model, Stable Dynamics
Here we compare the results obtained for the Beckman and the Stable Dynamics models on the
Moscow city transportation model. We use the USTM algorithm to search for the equilibria because
other algorithms are not applicable since the link travel times are not functions of the link flows in the
Stable Dynamics model.

We used the same Moscow network as in previous experiment, but, since Stable Dynamics model is
usually infeasible for peak-hours correspondences, we divided the peak-hour departures lrai and arrivals
wr

j by two.
Convergence trajectories for Stable Dynamics model are shown in Figure 6. We discuss convergence

of Beckmann model in more representative case of peak-hour departures and arrivals in Subsection 6.4,
therefore convergence trajectories for Beckmann model are omitted in this subsection.

We asses the convergence by monitoring two values: constraints violation and function suboptimal-
ity. Since the dual approach allows the flows to exceed the link capacities, the primal variables stay
outside of the feasible region, thus the duality gap could be negative, as shown in Figure 6b. Then
duality gap is negative, the objective function value at that approximate solution (of the minimization
problem) is less than the optimal function value, but the approximate solution is infeasible.

The comparison of the approximate solutions is given in Figure 7. It is evident that Beckmann’s
model is more likely to exceed the link capacity. Figure 7b shows that the travel time on some links
in Stable Dynamics model exceeds the free-flow time by several hundred times. This implies that
some zones are connected to the rest of the network only by low-capacity links, leading to huge traffic
congestion at equilibrium. This result is likely due to inaccuracies in the input data, but if not, these
bottleneck links should be prioritized in the transportation network improvement process.
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Figure 6: Convergence of USTM on the Stable Dynamics model: a) total flow above the link capacity
limits, b) absolute value of the duality gap, the sign is marked by color
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Figure 7: Histograms of the network load: a) histogram of the ratio of the amount of flow on the link
to its capacity, b) histogram of the ratio of the travel time on the link to the travel time on the same
link when it is free

6.6 Traffic Assignment Model: Frank–Wolfe vs USTM for Beckmann model
Experiments were conducted for single trip purpose, agent type and travel mode (by car) for the
Berlin-Center network split into 865 zones with 12981 nodes and 28376 links (for more details see
Transportation Networks for Research Core Team (2023)). As it was shown in the article Kubentayeva
and Gasnikov (2021), performance of the USTM method is better than UGD (Nesterov, 2015) and other
variations of accelerated gradient descent, thus only USTM and conventional Frank–Wolfe methods are
considered. Convergence by primal function and duality gap is presented in Figure 8. It is necessary
to emphasize that the bigger ε, the faster USTM converges to ε accuracy and oscillates. Thereby, it
makes sense to use restarting technique for faster convergence — run method with ε′ and then with
final desired accuracy ε < ε′.
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Figure 8: Convergence of Frank–Wolfe and USTM with different ε for Beckmann model for Berlin-
Center network: a) primal function, b) duality gap
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