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Abstract. In this paper, we analyze gradient-free methods with one-
point feedback for stochastic saddle point problems minx maxy ϕ(x, y).
For non-smooth and smooth cases, we present an analysis in a general
geometric setup with arbitrary Bregman divergence. For problems with
higher order smoothness, the analysis is carried out only in the Euclidean
case. The estimates we have obtained repeat the best currently known
estimates of gradient-free methods with one-point feedback for problems
of imagining a convex or strongly convex function. The paper uses three
main approaches to recovering the gradient through finite differences:
standard with a random direction, as well as its modifications with ker-
nels and residual feedback. We also provide experiments to compare these
approaches for the matrix game.

Keywords: saddle-point problem · zeroth order method · one-point
feedback· stochastic optimization.

1 Introduction

This paper is devoted to solving the saddle-point problem:

min
x∈X

max
y∈Y

ϕ(x, y). (1)

It has many practical applications. These are the already well-known and classic
matrix game and Nash equilibrium, as well as modern machine learning prob-
lems: Generative Adversarial Networks (GANs) [11] and Reinforcement Learning
(RL) [12]. We assume that only zeroth-order information about the function is
available, i.e. only its values, not a gradient, hessian, etc. This concept is called
a Black-Box and arises in optimization [13], adversarial training [7], RL [9]. To
make the problem statement more complex, but close to practice, it is natural
to assume that we have access inexact values of function ϕ(x, y, ξ), for exam-
ple, with some random noise ξ. But even with the help of such an oracle, it is
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possible to recover some estimate of the gradient of a function in terms of finite
differences.

Let us highlight two main approaches to such gradient estimates. The first
approach is more well researched in the literature and is called a two-point
feedback:

n

2τ
(ϕ(x+ τex, y + τey, ξ)− ϕ(x− τex, y − τey, ξ))

(
ex
−ey

)
.

An important feature of this approach is that it is assumed that we were able to
obtain the values of the function in points (x+τex, y+τey) and (x−τex, y−τey)
with the same realization of the noise ξ. From the point of view of theoretical
analysis, such an assumption is strong and gives good guarantees of convergence
[8,16,13]. But from a practical point of view, this is a very idealistic assumption.
Therefore, it is proposed to consider the concept of one-point feedback (which
this paper is about):

n

2τ
(ϕ(x+ τex, y + τey, ξ

+)− ϕ(x− τex, y − τey, ξ−))

(
ex
−ey

)
.

In general ξ+ 6= ξ−. As far as we know, the use of methods with one-point
approximation for saddle-point problems has not been studied at all in the lit-
erature. This is the main goal of our work.

1.1 Related works

Since the use of one-point feedback for saddle-point problems is new in the
literature, we present related papers in two categories: two-point gradient-free
methods for saddle-point problems, and one-point methods for minimization
problems. Partially the results of these works are transferred to Table 1.

Two-point for saddle-point problems. Here, we first highlight work for
non-smooth saddle-point problems [5], as well as work for smooth ones [15]. Note
that in these papers an optimal estimate was obtained in the non-smooth case,
and in the smooth case only for a special class of ”firmly smooth” saddle-point
problems. Also note the work devoted to coordinated methods for matrix games
[6], which is also close to our topic.

One-point for minimization problems. First of all, we present works
that analyze functions with higher order smoothness: [2,1,14]. These works are
united by the technique of special random kernels, which allow you to use the
smoothness of higher orders. Note that there is an error in work [2], therefore
Table 1 shows the corrected result (according to the note from [1]). The special
case of higher order smoothness is also interesting – the ordinary smoothness, it
is also analyzed in [2,1,14], in addition we note the papers [10,17]. A nonsmooth
analysis is presented in [10,17]. Note that in paper [10], not only the Euclidean
setup is analyzed, but also the general case with an arbitrary Bregman diver-
gence, which gives additional advantages in the estimates of the convergence (see
Table 1).
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1.2 Our contribution

In the nonsmooth case, we consider convex-concave and strongly-convex-strongly-
concave problems with bounded ∇xϕ(x, y), ∇yϕ(x, y) on the optimization set.
Our algorithm is modofocation of Mirror Descent with arbitrary Bregman di-
vergence. The estimates we obtained coincide with the estimates for convex op-
timization with one-pointed feedback [10,17]. Using the correct geometry helps
to reduce the contribution of the problem dimension to the final convergence
estimate. In particular, in the entropy setting, convergence depends on the di-
mension of the problem linearly (see Table 1 for more details in convex-concave
case and Table 2 – in strongly-convex-strongly-concave).

In the smooth case we obtained the estimates of the convergence rate with
arbitrary Bregman divergence for convex-concave case and in Euclidean setup
for strongly-convex-strongly-concave case. These estimates also coincide with the
estimates for convex optimization with one-point feedback [10].

To the best of our knowledge this is the first time when exploiting higher-
order smoothness helps to improve performance in saddle-point problems in both
strongly-convex-strongly-concave and convex-concave cases. The results also co-
incide with the estimates for minimization [14,1].

In Tables 1 and 2 one can find a comparison of the oracle complexity of
known results with zeroth-order methods for saddle-point problems in related
works. Factor q depends on geometric setup of our problem and gives a benefit
when we work in the Hölder, but non-Euclidean case (use non-Euclidean prox),
i.e. ‖·‖ = ‖·‖p and p ∈ [1; 2], then ‖·‖∗ = ‖·‖q, where 1/p+1/q = 1. Then q takes
values from 2 to ∞, in particular, in the Euclidean case q = 2, but when the
optimization set is a simplex, q = ∞. In higher-order smooth case we consider
functions satisfying so called generalized Hölder condition with parameter β > 2
(see inequality (20) below). Note that it is prefer to use higher-order smooth
methods rather than smooth methods only if β > 3.

2 Preliminaries

To begin with, we introduce some notation and definitions that we use in the
work.

2.1 Notation

We use 〈x, y〉 def
=
∑n
i=1 xiyi to denote inner product of x, y ∈ Rn where xi is

the i-th component of x in the standard basis in Rn. Then it induces `2-norm

in Rn in the following way ‖x‖2
def
=
√
〈x, x〉. We define `p-norms as ‖x‖p

def
=

(
∑n
i=1 |xi|p)

1/p
for p ∈ (1,∞) and for p = ∞ we use ‖x‖∞

def
= max1≤i≤n |xi|.

The dual norm ‖ · ‖q for the norm ‖ · ‖p is denoted in the following way:

‖y‖q
def
= max {〈x, y〉 | ‖x‖p ≤ 1}. Operator E[·] is full mathematical expectation

and operator Eξ[·] express conditional mathematical expectation.
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Case Oracle Prob. Complexity Reference

non-smooth

two-point SP O
(
n

2
q · ε−2

)
[5]

one-point
Min O

(
n
1+ 2

q · ε−4
)

[10]

SP O
(
n
1+ 2

q · ε−4
)

this paper

smooth

two-point SP O
(

[n
2
q or n] · ε−2

)
[15]

one-point
Min Õ

(
n2 · ε−3

)
[10]

SP Õ
(
n2 · ε−3

)
this paper

higher order smooth one-point
Min Õ

(
n
2+ 2

β−1 · ε−2− 2
β−1

)
[14,1]

SP Õ
(
n
2+ 2

β−1 · ε−2− 2
β−1

)
this paper

Table 1. Comparison of oracle complexity of one-point/two-point 0th-order methods
for non-smooth/smooth convex minimization (Min) and convex-concave saddle-
point (SP) problems under different assumptions. ε means the accuracy of the solution,
n – dimension of the problem, q = 2 for the Euclidean case and q = ∞ for setup of
‖ · ‖1-norm.

Case Oracle Prob. Complexity Reference

non-smooth one-point
Min Õ

(
n2 · ε−3

)
[10]

SP Õ
(
n2 · ε−3

)
this paper

smooth

two-point SP O
(
n · ε−1

)
[15]

one-point
Min Õ

(
n2 · ε−2

)
[10]

SP Õ
(
n2 · ε−2

)
this paper

higher order smooth one-point
Min Õ

(
n
2+ 1

β−1 · ε−
β
β−1

)
[14,1]

SP Õ
(
n
2+ 1

β−1 · ε−
β
β−1

)
this paper

Table 2. Comparison of oracle complexity of one-point/two-point 0th-order methods
for non-smooth/smooth strongly-convex minimization (Min) and strongly-convex-
strongly-concave saddle-point (SP) problems under different assumptions.

Definition 1 (µ-strong convexity). Function f(x) is µ-strongly convex w.r.t.
‖·‖-norm on X ⊆ Rn when it is continuously differentiable and there is a constant
µ > 0 such that the following inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2, ∀ x, y ∈ X .

Definition 2 (Prox-function). Function d(z) : Z → R is called prox-function
if d(z) is 1-strongly convex w.r.t. ‖ · ‖-norm and differentiable on Z.
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Definition 3 (Bregman divergence). Let d(z) : Z → R is prox-function.
For any two points z, w ∈ Z we define Bregman divergence Vz(w) associated
with d(z) as follows:

Vz(w) = d(z)− d(w)− 〈∇d(w), z − w〉.

We denote the Bregman-diameter ΩZ of Z w.r.t. Vz1(z2) as

ΩZ
def
= max{

√
2Vz1(z2) | z1, z2 ∈ Z}.

Definition 4 (Prox-operator). Let Vz(w) Bregman divergence. For all x ∈ Z
define prox-operator of ξ:

proxx(ξ) = arg min
y∈Z

(Vx(y) + 〈ξ, y〉) .

Now we are ready to formally describe the problem statement, as well as the
necessary assumptions.

2.2 Settings and assumptions

As mentioned earlier, we consider the saddle-point problem (1), where ϕ(·, y)
is convex function defined on compact convex set X ⊂ Rnx , ϕ(x, ·) is concave
function defined on compact convex set Y ⊂ Rny . For convenience, we denote

Z = X × Y and then z ∈ Z means z
def
= (x, y), where x ∈ X , y ∈ Y. When we

use ϕ(z), we mean ϕ(z) = ϕ(x, y).

Assumption 1 (Diameter of Z) Let the compact set Z have diameter Ω.

Assumption 2 (M-Lipschitz continuity) Function ϕ(z) is M -Lipschitz con-
tinuous in certain neighbourhood of Z with M > 0 w.r.t. norm ‖ · ‖2 when

|ϕ(z)− ϕ(z′)| ≤M‖z − z′‖2, ∀ z, z′ ∈ Z.

One can prove that for all z ∈ Z we have

‖∇̃ϕ(z)‖2 ≤M. (2)

Assumption 3 (µ-strong convexity–strong concavity) Function ϕ(z) is µ-
strongly-convex-strongly-concave in Z with µ > 0 w.r.t. norm ‖ · ‖2 when ϕ(·, y)
is µ-strongly-convex for all y and ϕ(x, ·) is µ-strongly-concave for all x w.r.t.
‖ · ‖2.

Hereinafter, by ∇̃ϕ(z) we mean a block vector consisting of two vectors
∇xϕ(x, y) and−∇yϕ(x, y). Recall that we do not have access to oracles∇xϕ(x, y)
or∇yϕ(x, y). We only can use an inexact stochastic zeroth-order oracle ϕ̃(x, y, ξ, δ)
at each iteration. Our model corresponds to the case when the oracle gives an
inexact noisy function value. We have stochastic unbiased noise, depending on
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the random variable ξ and biased deterministic noise δ. One can write it the
following way:

ϕ̃(x, y, ξ) = ϕ(x, y) + ξ + δ(x, y). (3)

Note that δ depends on point (x, y), and ξ is generated randomly regardless of
this point.

Assumption 4 (Noise restrictions) Stochastic noise ξ is unbiased with bounded
variance, δ is bounded, i.e. there exists ∆,σ > 0 such that

Eξ = 0, E
[
ξ2
]
≤ σ2, |δ| ≤ ∆. (4)

3 Theoretical results

Since we do not have access to ∇xϕ(x, y) or ∇yϕ(x, y), it is proposed to replace
them with finite differences. We present two variants: using a random euclidean
direction [16,10] in non-smooth case and a kernel approximation [1,14] in smooth.
These two concepts will be discussed in more detail later in the respective sec-
tions. As mentioned earlier, we work with one-point feedback. We use Mirror
Descent as the basic algorithm, but with approximations instead of gradient.

3.1 Non-smooth case

Random euclidean direction. For e ∈ RSn2 (1) (a random vector uniformly

distributed on the Euclidean unit sphere) and some constant τ let ϕ̃(z+τe, ξ)
def
=

ϕ̃(x + τex, y + τey, ξ), where ex is the first part of e size of dimension nx, and
ey is the second part of dimension ny. Then define estimation of the gradient
through the difference of functions:

g(z, e, τ, ξ±) =
n (ϕ̃(z + τe, ξ+)− ϕ̃(z − τe, ξ−))

2τ

 ex

−ey

 , (5)

Algorithm 1 zoopMD

Input: z0, N , γ, τ .
for k = 0, 1, 2, . . . , N do

zk+1 = proxzk (γk · g(zk, ek, τ, ξ
±
k ).

end for
Output: z̄N .

where n = nx + ny. It is important
that ξ+ and ξ− are different variables
– this corresponds to the one-point
concept. Next, we present Algorithm
1 – a modification of Mirror Descent
with (5). Note that any Bregman di-
vergence can be used in the prox op-
erator. This allows us to take into ac-

count the geometric setup of the problem. ek and ξ±k are generated independently

of the previous iterations and of each other. Here z̄N = 1
N+1

∑N
i=0 zi. Below we

give technical facts about (5). Note that we do not provide proofs in the main
part of the paper, they are all in the Appendix.
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Lemma 1 (see Lemma 2 from [4] or Lemma 1 from [5]). For g(z, e, τ, ξ±)
defined in (5) under Assumptions 2 and 4 the following inequality holds:

E
[
‖g(z, e, τ, ξ±)‖2q

]
≤ 3a2q

(
3nM2 +

n2(σ2 +∆2)

τ2

)
, (6)

where a2q is determined by E[‖e‖2q] ≤
√

E[‖e‖4q] ≤ a2q and the following statement

is true

a2q = min{2q − 1, 32 log n− 8}n
2
q−1, ∀n ≥ 3. (7)

Next we define an important object for further theoretical discussion – a
smoothed version of the function ϕ (see [13,16]).

Definition 5. Function ϕ̂(z) defines on set Z satisfies:

ϕ̂(z) = Ee [ϕ(z + τe)] . (8)

To define smoothed version correctly it is important that the function ϕ is
specified not only on an admissible set Z, but in a certain neighborhood of it.
This is due to the fact that for any point z belonging to the set, the point z+ τe
can be outside it.

Lemma 2 (see Lemma 8 from [16]). Let ϕ(z) is µ-strongly-convex-strongly-
concave (convex-concave with µ = 0) and e be from RSn2 (1). Then function ϕ̂(z)
is µ-strongly-convex-strongly-concave and under Assumption 2 satisfies:

sup
z∈Z
|ϕ̂(z)− ϕ(z)| ≤ τM. (9)

Lemma 3 (see Lemma 10 from [16] and Lemma 2 from [4]). Under
Assumption 4 it holds that

∇̃ϕ̂(z) = Ee

n (ϕ(z + τe)− ϕ(z − τe))

2τ

 ex

−ey

 , (10)

‖Ee,ξ[g(z, e, τ, ξ±)]− ∇̃ϕ̂(z)‖q ≤
∆naq
τ

. (11)

Now we are ready to present the main results of this section. Let begin with
convex-concave case (Assumption 3 with µ = 0)

Theorem 1. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle (5). Assume, that the set Z, the convex-concave function ϕ(x, y)
and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2, 4. Denote by N
the number of iterations and γk = γ = const. Then the rate of convergence is
given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+
∆Ωnaq

τ
+ 2τM.
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Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+∆2)

τ2

)
a2q and

εsad(z̄N ) = max
y′∈Y

ϕ(x̄N , y
′)− min

x′∈X
ϕ(x′, ȳN ). (12)

Let analyze the results:

Corollary 1. Under the assumptions of the Theorem 1 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

γ = Θ

(
Ω

n
1
4+

1
2qMN

3
4

)
, τ = Θ

(
σ

M
· n

1
4+

1
2q

N
1
4

)
, ∆ = O

(
ετ

Ωnaq

)
, (13)

then the number of iterations to find ε-solution

N = O

(
n1+

2
q

ε4
[
C4(n, q)M4Ω4 + σ4

])
,

or with

γ = Θ

(
Ω

n
1
qMN

3
4

)
, τ = Θ

(
σ

M
· n

1
2

N
1
4

)
, ∆ = O

(
ετ

Ωnaq

)
,

N = O

(
n

4
qC4(n, q)

ε4
M4Ω4 +

n2

ε4
σ4

)
,

where C(n, q)
def
= min{2q − 1, 32 log n− 8}.

Analyse separately cases with p = 1 and p = 2.

p, (1 6 p 6 2) q, (2 6 q 6∞) N , Number of iterations

p = 2 q = 2 O
(
n2ε−4

)
p = 1 q =∞ O

(
n log4 n · ε−4

)
Table 3. Summary of convergence estimation for non-smooth case: p = 2 and p = 1.

Next we consider µ-strongly-convex-strongly-concave. Here we work
with Vz(w) = 1

2‖z − w‖
2
2.

Theorem 2. Let problem (1) with function ϕ(x, y) be solved using Algorithm
1 with Vz(w) = 1

2‖z − w‖22 and the oracle (5). Assume, that the set Z, the
function ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2,
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3, 4. Denote by N the number of iterations and γk = 1
µk . Then the rate of

convergence is given by the following expression:

E [ϕ(x̄N , y
∗)− ϕ(x∗, ȳN )] ≤ M2

all log(N + 1)

2µ(N + 1)
+
∆nΩ

τ
+ 2τM

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+∆2)

τ2

)
.

From here one can get

Corollary 2. Under the assumptions of the Theorem 2 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

τ = Θ

(
3

√
σ2

µM
· 3

√
n2

N

)
, ∆ = O

( ετ
Ωn

)
,

then the number of iterations to find ε-solution

N = Õ
(
nM2

µε
+
M2n2σ2

µε3

)
.

Random euclidean direction with residual feedback. In this part of
the work we use the technique from [17]. In more detail, in Algorithm 1 we
replace g(zk, ek, τ, ξ

±
k ) with

g̃(zk, zk−1, ek, ek−1, ξk, ξk−1)

=
n (ϕ̃(zk + τek, ξk)− ϕ̃(zk−1 + τek−1, ξk−1))

τ

 (ek)x

−(ek)y

 . (14)

The main advantage of this technique is that it requires only one call to the
oracle per iteration.

We consider only convex-concave case in the Eulidean setup, i.e. Vz(w) =
1
2‖z − w‖

2
2. Let us carry out reasoning similar to the analysis of Theorem 1.

Lemma 4. For g̃k
def
= g̃(zk, zk−1, ek, ek−1, ξk, ξk−1) defined in (14) under As-

sumptions 2 and 4 the following inequalities holds:

E
[
‖g̃k‖22

]
≤ αkE

[
‖g̃0‖22

]
+

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
1

1− α
, (15)

where α = 6γ2n2M2

τ2 < 1.

Lemma 5. Under Assumption 4 it holds that

∇̃ϕ̂(zk) = Eek

n (ϕ(zk + τek)− ϕ(z + τek−1))

τ

 (ek)x

−(ek)y

 , (16)

‖Eek [g̃k]− ∇̃ϕ̂(zk)‖2 ≤
∆n

τ
. (17)
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Theorem 3. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with Vz(w) = 1

2‖z−w‖
2
2 and the oracle (14). Assume, that the set Z, the convex-

concave function ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions
1, 2, 4. Denote by N the number of iterations and γk = γ = const. Then the
rate of convergence is given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γ

2(N + 1)(1− α)
E
[
‖g̃0‖22

]
+

3γ

2(1− α)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
+ 2τM +

∆Ωn

τ
.

Ω is a diameter of Z, α = 6γ2n2M2

τ2 < 1.

Next we analyze the results:

Corollary 3. Under the assumptions of the Theorem 3 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1 with (14). Assume that

γ =

(
Ωτ

6nMN
1
2

)
, τ = Θ

(
σ

M
· n

1
2

N
1
4

)
, ∆ = O

( ετ
Ωn

)
,

then the number of iterations to find ε-solution

N = O
(
n2

ε4
[
M4Ω4 + σ4

])
.

3.2 Smooth case

Assumption 5 (Gradient’s Lipschitz continuity) The gradient ∇ϕ(z) of
the function ϕ is L-Lipschitz continuous in certain neighbourhood of Z with
L > 0 w.r.t. norm ‖ · ‖2 when

|∇ϕ(z)−∇ϕ(z′)| ≤ L‖z − z′‖2, ∀ z, z′ ∈ Z.

Lemma 6 (see Lemma A.3 from [1]). Let ϕ(z) be convex-concave (or µ-
strongly-convex-strongly-concave) and e be from RSn2 (1). Then function ϕ̂(z) is
convex-concave (µ-strongly-convex-strongly-concave) too and under Assumption
5 satisfies:

sup
z∈Z
|ϕ̂(z)− ϕ(z)| ≤ Lτ2

2
. (18)

Theorem 4. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle (5). Assume, that the set Z, the convex-concave function ϕ(x, y)
and its inexact modification ϕ̃(x, y) satisfy Assumptions 1,4,5. Denote by N the
number of iterations and γk = γ = const. Then the rate of convergence is given
by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+
∆Ωnaq

τ
+ Lτ2.



One-Point Gradient-Free Methods for Saddle-Point Problems 11

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+∆2)

τ2

)
a2q.

Let’s analyze the results:

Corollary 4. Under the assumptions of the Theorem 4 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

γ = Θ

(
Ω

n
1
3+

2
3qMN

2
3

)
, τ = Θ

(
σ

M
· n

1
6+

1
3q

N
1
6

)
, ∆ = O

(
ετ

Ωnaq

)
, (19)

then the number of iterations to find ε-solution

N = O

(
n1+

2
q

ε3

[
M3Ω3 +

L3σ3

M3

])
.

Theorem 5. Let problem (1) with function ϕ(x, y) be solved using Algorithm
1 with Vz(w) = 1

2‖z − w‖22 and the oracle (5). Assume, that the set Z, the
function ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 3,
4, 5. Denote by N the number of iterations and γk = 1

µk . Then the rate of
convergence is given by the following expression:

E [ϕ(x̄N , y
∗)− ϕ(x∗, ȳN )] ≤ M2

all log(N + 1)

2µ(N + 1)
+
∆nΩ

τ
+ Lτ2.

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+∆2)

τ2

)
.

Let’s analyze the results:

Corollary 5. Under the assumptions of the Theorem 5 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

τ = Θ

(
4

√
σ2

µL
· n

1
2

N
1
4

)
, ∆ = O

( ετ
Ωn

)
,

then the number of iterations to find ε-solution

N = Õ
(
nM2

µε
+
Ln2σ2

µε2

)
.

3.3 Higher-order smooth case

In this paragraph we study higher-order smooth functions ϕ functions satisfying
so called generalized Hölder condition with parameter β > 2 (see inequality (20)
below).
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Higher order smoothness Let l denote maximal integer number strictly less
than β. Let Fβ(Lβ) denote the set of all functions ϕ : Rn → R which are
differentiable l times and for all z, z0 ∈ Uε0(Z) satisfy Hölder condition:∣∣∣∣∣ϕ(z)−

∑
0≤|m|≤l

1

m!
Dmϕ(z0)(z − z0)m

∣∣∣∣∣ ≤ Lβ‖z − z0‖β , (20)

where Lβ > 0, the sum is over multi-index m = (m1, . . . ,mn) ∈ Nn, we use the
notation m! = m1! · · · · ·mn!, |m| = m1 + · · ·+mn and we defined

Dmϕ(z0)zm =
∂|m|ϕ(z0)

∂m1z1 . . . ∂m
nzn

zm1
1 · · · · · zmnn , ∀z = (z1, . . . , zn) ∈ Rn.

Let Fµ,β(Lβ) denote the set of µ-strongly-convex-strongly-concave functions
ϕ ∈ Fβ(Lβ).

To use the higher-order smoothness we propose smoothing kernel though
this is not the only way. We propose to use Algorithm 2 which uses the kernel
smoothing technique. In fact the Algorithm 2 arises from Algorithm 1 in the
Euclidean setting (Vz(w) = 1

2‖z − w‖
2
2).

Algorithm 2 Zero-order Stochastic Projected Gradient

Requires: Kernel K : [−1, 1]→ R, step size γk > 0, parameters τk.
Initialization: Generate scalars r1, . . . , rN uniformly on [−1, 1] and vectors
e1, . . . , eN uniformly on the Euclidean unit sphere Sn = {e ∈ Rn : ‖e‖ = 1}.
for k = 1, . . . , N do

1. ϕ̃+
k := ϕ(zk + τkrkek) + ξ+k , ϕ̃−

k := ϕ(zk − τkrkek) + ξ−k

2. Define g̃k := n
2τk

(ϕ̃+
k − ϕ̃

−
k )

 (ek)x

−(ek)y

K(rk)

3. Update zk+1 := ΠQ(zk − γkg̃k)
end for
Output: {zk}Nk=1.

To use the higher-order smoothness we propose we need to introduce addi-
tional noise assumption:

Assumption 6 For all k = 1, 2, . . . , N it holds that

1. E[ξ+2
k ] ≤ σ2 and E[ξ−2k ] ≤ σ2 where σ ≥ 0;

2. the random variables ξ+k and ξ−k are independent from ek and rk, the random
variables ek and rk are independent.

In other words we assume that δ(x, y) in (3) is equal to zero. We do not
assume here neither zero-mean of ξ+k and ξ−k nor i.i.d of {ξ+k }Nk=1 and {ξ−k }Nk=1

as item 2 from Assumption 6 allows to avoid that.
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Kernel For gradient estimator g̃k we use the kernel

K : [−1, 1]→ R,

satisfying

E[K(r)] = 0, E[rK(r)] = 1, E[rjK(r)] = 0, j = 2, . . . , l, E
[
|r|β |K(r)|

]
≤ ∞,

(21)
where r is a uniformly distributed on [−1, 1] random variable. This helps us
to get better bounds on the gradient bias ‖g̃k − ∇f(xk)‖ (see Theorem 6 for
details). The examples of possible kernels are presented in Appendix E.

For Theorem 6 and Theorem 7 we need to introduce the constants

κβ =

∫
|u|β |K(u)| du (22)

and

κ =

∫
K2(u) du. (23)

It is proved in [2] that κβ and κ do not depend on n, they depend only on β:

κβ ≤ 2
√

2(β − 1), (24)

κ ≤
√

3β
3/2. (25)

Theorem 6. Let ϕ ∈ Fµ,β(L) with µ, L > 0 and β > 2. Let Assumption 6
hold and let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on the
Euclidean τ1-neighborhood of Z (see τk below).

Then the rate of convergence is given by Algorithm 2 with parameters

τk =

(
3κσ2n

2(β − 1)(κβL)2

) 1
2β

k−
1
2β , αk =

2

µk
, k = 1, . . . , N

satisfies

E [ϕ(xN , y
∗)− ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )]

≤ 1

µ

(
n2−

1
β

A1

N
β−1
β

+A2
n(1 + lnN)

N

)
,

where zN = 1
N

N∑
k=1

zk, A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = 9κG2, κβ and κ are

constants depending only on β, see (22) and (23).

We emphasize that the usage of kernel smoothing technique, measure con-
centration inequalities and the assumption that ξk is independent from ek or
rk (Assumption 6) lead to the results better than the state-of-the-art ones for
β > 2. The last assumption also allows us not to assume neither zero-mean of
ξ+k and ξ−k nor i.i.d of {ξ+k }Nk=1 and {ξ−k }Nk=1.
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Theorem 7. Let ϕ ∈ Fβ(L) with L > 0 and β > 2. Let Assumption 6 hold
and let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on the Eu-
clidean τ1-neighborhood of Z (τk is parameter from Theorem 6 for the regularized

function ϕµ(z) whose description is given below). Let zN denote 1
N

N∑
k=1

zk.

Let’s define N(ε):

N(ε) = max

{(
R
√

2A1

) 2β
β−1 n2+

1
β−1

ε2+
2

β−1

,
(
R
√

2c′A2

)2(1+ρ) n1+ρ

ε2(1+ρ)

}
,

where A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = 9κG2 – constants from Theorem 6, ρ > 0

– arbitrarily small positive number, c′ – constant which depends on ρ.
Then the rate of convergence is given by the following expression:

E [ϕ(xN , y
∗)− ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )] ≤ ε (26)

after N(ε) steps of Algorithm 2 with settings from Theorem 6 for the regularized
function: ϕµ(z) := ϕ(z)+ µ

2 ‖x−x0‖
2− µ

2 ‖y−y0‖
2, where µ ≤ ε

R2 , R = ‖z0−z∗‖,
z0 ∈ Z – arbitrary point.

4 Experiments

In our experiments we consider the classical bilinear problem on a probability
simplex:

min
x∈∆n

max
y∈∆k

[
yTCx

]
, (27)

This problem has many different applications and interpretations, one of the
main ones is a matrix game (see Part 5 in [3]), i.e. the element cij of the matrix
are interpreted as a winning, provided that player X has chosen the ith strategy
and player Y has chosen the jth strategy, the task of one of the players is to
maximize the gain, and the opponent’s task – to minimize.

The step of our algorithms can be written as follows (see [5]):

[xk+1]i =
[xk]i exp(−γk[gx]i)
n∑
j=1

[xk]j exp(−γk[gx]j)
, [yk+1]i =

[yk]i exp(γk[gy]i)
n∑
j=1

[yk]j exp(γk[gy]j)
,

where under gx, gy we mean parts of g which are responsible for x and for y. Note
that we do not present a generalization of Algorithm 2 in an arbitrary Bregman
setup, but we want to check in practice.

We take matrix 50 × 50. All elements of the matrix are generated from the
uniform distribution from 0 to 1. Next, we select one row of the matrix and
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generate its elements from the uniform from 5 to 10. Finally, we take one element
from this row and generate it uniformly from 1 to 5. Finally, the matrix is
normalized. Further, with each call of the function value yTCx we add stochastic
noise with constant variance (which is on average 5% or 10% of the function
value).

The main goal of our experiments is to compare three gradient-free ap-
proaches: Algorithm 1 with (5) and (14) approximations, as well as Algorithm
2. We also added a first order method for comparison. Parameters γ and τ are
selected with the help of grid-search so that the convergence is the fastest, but
stable. See Figure 1 for results.

0 10000 20000 30000 40000
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Comparison of ZO algorithms in the stochastic case
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(a) noise 5% (b) noise 10%

Fig. 1. Algorithm 1 with (5) (ZO Std) and (14) (ZO RF) approximations, Algorithm
2 (ZO Ker) and Mirror Descent (FO) applied to solve saddle-problem (27) with noise
level: (a) 5%, (b) 10%.

Based on the results of the experiments, we note that the gradient-free meth-
ods converge more slowly than the first-order method – which is predictable. The
convergence of zeroth-order methods is approximately the same, the only thing
that can be noted is that the method with a kernel is subject to larger fluctua-
tions.
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A General facts

Lemma 7 (see inequality 5.3.18 from [3]). Let d(z) : Z → R is prox-
function and Vz(w) define Bregman divergence associated with d(z). The follow-
ing equation holds for x, y, u ∈ X:

〈∇d(x)−∇d(y), u− x〉 = Vy(u)− Vx(u)− Vy(x). (28)

Lemma 8 (Fact 5.3.2 from [3]). Given norm ‖ · ‖ on space Z and prox-
function d(z), let z ∈ Z, w ∈ Rn and z+ = proxz(w). Then for all u ∈ Z

〈w, z+ − u〉 6 Vz(u)− Vz+(u)− Vz(z+). (29)
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Lemma 9. For arbitrary integer n ≥ 1 and arbitrary set of positive numbers
a1, . . . , an we have (

m∑
i=1

ai

)2

≤ m
m∑
i=1

a2i . (30)

Lemma 10 (Lemma 9 from [16]). For any function g which is M -Lipschitz
with respect to the `2-norm, it holds that if e is uniformly distributed on the
Euclidean unit sphere, then

√
E[(g(e)− Eg(e))4] ≤ 3M2

n
.

B Proofs for Section 3.1

Lemma 11. For g(z, e, τ, ξ±) defined in (5) under Assumptions 2 and 4 the
following inequality holds:

E
[
‖g(z, e, τ, ξ±)‖2q

]
≤ 3a2q

(
3nM2 +

n2(σ2 +∆2)

τ2

)
,

where a2q is determined by E[‖e‖2q] ≤
√

E[‖e‖4q] ≤ a2q and the following statement

is true

a2q = min{2q − 1, 32 log n− 8}n
2
q−1, ∀n ≥ 3.

Proof. Using a simple fact (30), we obtain the following inequalities:

E
[
‖g(z, e, τ, ξ±)‖2q

]
= E

[∥∥∥ n
2τ

(
ϕ̃(z + τe, ξ+)− ϕ̃(z − τe, ξ−)

)
e
∥∥∥2
q

]
= E

[∥∥∥ n
2τ

(
ϕ(z + τe) + ξ+ + δ(z + τe)− ϕ(z − τe)− ξ− − δ(z − τe)

)
e
∥∥∥2
q

]
≤ 3n2

4τ2
E
[
‖(ϕ(z + τe)− ϕ(z − τe)) e‖2q

]
+

3n2

4τ2
E
[∥∥(ξ+ − ξ−) e

∥∥2
q

]
+

3n2

4τ2
E
[
‖(δ(z + τe)− δ(z − τe)) e‖2q

]
≤ 3n2

4τ2
E
[
(ϕ(z + τe, ξ)− ϕ(z − τe, ξ))2 ‖e‖2q

]
+

3n2

2τ2
E
[(

(ξ+)2 + (ξ−)2
)
‖e‖2q

]
+

3n2

2τ2
E
[(

(δ(z + τe))2 + (δ(z − τe))2
)
‖e‖2q

]
.
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By independence of ξ± and e, we have

E
[
‖g(z, e, τ, ξ±)‖2q

]
≤ 3n2

4τ2
Eξ
[
Ee

[
(ϕ(z + τe)− α− ϕ(z − τe) + α)

2 ‖e‖2q
]]

+
3n2

2τ2
Ee

[
Eξ
[(

(ξ+)2 + (ξ−)2
)
‖e‖2q

]]
+

3n2

2τ2
E
[(

(δ(z + τe))2 + (δ(z − τe))2
)
‖e‖2q

]
≤ 3n2

2τ2
Eξ
[
Ee

[(
(ϕ(z + τe)− α)

2
+ (ϕ(z − τe)− α)

2
)
‖e‖2q

]]
+

3n2

2τ2
Ee

[
Eξ
[(

(ξ+)2 + (ξ−)2
)
‖e‖2q

]]
+

3n2

2τ2
E
[(

(δ(z + τe))2 + (δ(z − τe))2
)
‖e‖2q

]
.

Taking into account the symmetric distribution of e and Cauchy–Schwarz in-
equality:

E
[
‖g(z, e, τ, ξ±)‖2q

]
≤ 3n2

τ2
Eξ
[
Ee

[
(ϕ(z + τe)− α)

2 ‖e‖2q
]]

+
3n2

2τ2
Ee

[
Eξ
[(

(ξ+)2 + (ξ−)2
)
‖e‖2q

]]
+

3n2

2τ2
E
[(

(δ(z + τe))2 + (δ(z − τe))2
)
‖e‖2q

]
≤ 3n2

τ2
Eξ

[√
Ee

[
(ϕ(z + τe, ξ)− α)

4
]√

Ee

[
‖e‖4q

]]

+
3n2

2τ2
Ee

[
Eξ
[(

(ξ+)2 + (ξ−)2
)
‖e‖2q

]]
+

3n2

2τ2
E
[(

(δ(z + τe))2 + (δ(z − τe))2
)
‖e‖2q

]
≤

3n2a2q
τ2

Eξ

[√
Ee

[
(ϕ(z + τe, ξ)− α)

4
]]

+
3n2a2q(σ

2 +∆2)

τ2
.

In the last inequalities we use (4) and (7). Substituting α = E [ϕ(z + τe)], ap-
plying Lemma 10 with the fact that ϕ(z+ τe) is τM -Lipschitz w.r.t. e in terms
of the ‖ · ‖2-norm we get

E
[
‖g(z, e, τ, ξ±)‖2q

]
≤ 3a2q

(
3nM2 +

n2(σ2 +∆2)

τ2

)
.

�

Lemma 12. Let ϕ(z) is µ-strongly-convex-strongly-concave (convex-concave with
µ = 0) and e be from RSn2 (1). Then function ϕ̂(z) is µ-strongly-convex-strongly-
concave and under Assumption 2 satisfies:

sup
z∈Z
|ϕ̂(z)− ϕ(z)| ≤ τM.
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Proof. Using definition (8) of ϕ̂:∣∣ϕ̂(z)− ϕ(z)
∣∣ =

∣∣Ee[ϕ(z + τe)]− ϕ(z)
∣∣ = |Ee [ϕ(z + τe)− ϕ(z)]| .

Since ϕ(z) is M -Lipschitz, we get

|Ee [ϕ(z + τe)− ϕ(z)]| ≤ |Ee [M‖τe‖2]| ≤Mτ.

�

Lemma 13. Under Assumption 4 it holds that

∇̃ϕ̂(z) = Ee

n (ϕ(z + τe)− ϕ(z − τe))

2τ

 ex

−ey

 , (31)

‖Ee,ξ[g(z, e, τ, ξ±)]− ∇̃ϕ̂(z)‖q ≤
∆naq
τ

.

Proof. The proof of (31) is given in [16] and follows from the Stokes’ theorem.
Then

Ee,ξ[g(z, e, τ, ξ±)]− ∇̃ϕ̂(z) = Ee

n (δ(z + τe)− δ(z − τe))

2τ

 ex

−ey

 .
Using inequalities (4) and definition of aq completes the proof.

�

Theorem 1. Let problem (1) with function ϕ(x, y) be solved using Algorithm
1 with the oracle (5). Assume, that the set Z, the convex-concave function ϕ(x, y)
and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2, 4. Denote by N
the number of iterations and γk = γ = const. Then the rate of convergence is
given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+
∆Ωnaq

τ
+ 2τM.

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+∆2)

τ2

)
a2q and

εsad(z̄N ) = max
y′∈Y

ϕ(x̄N , y
′)− min

x′∈X
ϕ(x′, ȳN ).

Proof. We divided the proof into three steps.

Step 1. Let gk
def
= γg(zk, ek, τ, ξ

±
k ). By the step of Algorithm 1, zk+1 =

proxzk(gk). Taking into account (29), we get that for all u ∈ Z

〈gk, zk+1 − u〉 = 〈gk, zk+1 − zk + zk − u〉 ≤ Vzk(u)− Vzk+1
(u)− Vzk(zk+1).
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By simple transformations:

〈gk, zk − u〉 ≤ 〈gk, zk − zk+1〉+ Vzk(u)− Vzk+1
(u)− Vzk(zk+1)

≤ 〈gk, zk − zk+1〉+ Vzk(u)− Vzk+1
(u)− 1

2
‖zk+1 − zk‖2p.

In last inequality we use the property of the Bregman divergence: Vx(y) ≥ 1
2‖x−

y‖2p. Using Hölder’s inequality and the fact: ab− b2/2 6 a2/2, we have

〈gk, zk − u〉 ≤ ‖gk‖q‖zk − zk+1‖p + Vzk(u)− Vzk+1
(u)− 1

2
‖zk+1 − zk‖2p

≤ Vzk(u)− Vzk+1
(u) +

1

2
‖gk‖2q. (32)

Summing (32) over all k from 0 to N and by the definitions of gk and Ω (diameter
of Z): ∀u ∈ Z

γ

N∑
k=0

〈g(zk, ek, τ, ξ
±
k ), zk − u〉 ≤

Ω2

2
+
γ2

2

N∑
k=0

‖g(zk, ek, τ, ξ
±
k )‖2q. (33)

Let ∆k
def
= g(zk, ek, τ, ξ

±
k )−∇̃ϕ̂(zk) and D(u)

def
=
∑N
k=0 γ〈∆k, u− zk〉. Substitut-

ing the definition of D(u) in (33), we have for all u ∈ Z

γ

N∑
k=0

〈∇̃ϕ̂(zk), zk − u〉 ≤
Ω2

2
+
γ2

2

N∑
k=0

‖g(zk, ek, τ, ξ
±
k )‖2q +D(u). (34)

By ∇̃ϕ̂(z) we mean a block vector consisting of two vectors ∇xϕ̂(x, y) and
−∇yϕ̂(x, y).

Step 2. We consider a relationship between functions ϕ̂(z) and ϕ(z). Com-
bining (12) and (9) we get

εsad(z̄N ) ≤ max
y′∈Y

ϕ̂(x̄N , y
′)− min

x′∈X
ϕ̂(x′, ȳN ) + 2τM.

Then, by the definition of x̄N and ȳN (see (12)), Jensen’s inequality and convexity-
concavity of ϕ̂:

εsad(z̄N ) ≤ max
y′∈Y

ϕ̂

(
1

N + 1

(
N∑
k=0

xk

)
, y′

)
− min
x′∈X

ϕ̂

(
x′,

1

N + 1

(
N∑
k=0

yk

))
+2τM

≤ max
y′∈Y

1

N + 1

N∑
k=0

ϕ̂(xk, y
′)− min

x′∈X

1

N + 1

N∑
k=0

ϕ̂(x′, yk) + 2τM.

Given the fact of linear independence of x′ and y′:

εsad(z̄N ) ≤ max
(x′,y′)∈Z

1

N + 1

N∑
k=0

(ϕ̂(xk, y
′)− ϕ̂(x′, yk)) + 2τM.
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Using convexity and concavity of the function ϕ̂:

εsad(z̄N ) ≤ max
(x′,y′)∈Z

1

N + 1

N∑
k=1

(ϕ̂(xk, y
′)− ϕ̂(x′, yk)) + 2τM

= max
(x′,y′)∈Z

1

N + 1

N∑
k=1

(ϕ̂(xk, y
′)− ϕ̂(xk, yk) + ϕ̂(xk, yk)− ϕ̂(x′, yk))

+2τM

≤ max
(x′,y′)∈Z

1

N + 1

N∑
k=1

(〈∇yϕ̂(xk, yk), y′ − yk〉+ 〈∇xϕ̂(xk, yk), xk − x′〉)

+2τM

≤ max
u∈Z

1

N + 1

N∑
k=0

〈∇̃ϕ̂(zk), zk − u〉+ 2τM. (35)

Step 3. Combining expressions (34), (35), (6) and taking full mathematical
expectation, we get

E [εsad(z̄N )] ≤ Ω2

2γ(N + 1)
+
γM2

all

2
+

1

γ(N + 1)
E
[
max
u∈Z

D(u)

]
+ 2τM. (36)

Let’s estimate D(u). For this we prove the following lemma:

Lemma 14 (see Lemma 5.3.2 from [3]).

E
[
max
u∈Z

D(u)

]
≤ Ω2 +

γ(N + 1)∆Ωnaq
τ

+ γ2M2
all(N + 1), (37)

where M2
all

def
= 3

(
cnM2 + n2(σ2+∆2)

τ2

)
a2q is from Lemma 1.

Proof. Let define sequence v: v1
def
= z1, vk+1

def
= proxvk(−ργ∆k) for some ρ > 0:

D(u) = γ

N∑
k=0

〈−∆k, zk − u〉

= γ

N∑
k=0

〈−∆k, zk − vk〉+ γ

N∑
k=0

〈−∆k, vk − u〉. (38)

By the definition of v and an optimal condition for the prox-operator, we have
for all u ∈ Z

〈−γρ∆k −∇d(vk+1) +∇d(vk+1), u− vk+1〉 ≥ 0.

Rewriting this inequality, we get

〈−γρ∆k, vk − u〉 ≤ 〈−γρ∆k, vk − vk+1〉+ 〈∇d(vk+1)−∇d(vk), u− vk+1〉.
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Using (28):

〈−γρ∆k, vk − u〉 ≤ 〈−γρ∆k, vk − vk+1〉+ Vvk(u)− Vvk+1
(u)− Vvk(vk+1).

Bearing in mind the Bregman divergence property 2Vx(y) ≥ ‖x− y‖2p:

〈−γρ∆k, vk − u〉 ≤ 〈−γρ∆k, vk − vk+1〉+ Vvk(u)− Vvk+1
(u)− 1

2
‖vk+1 − vk‖2p.

Using the definition of the conjugate norm:

〈−γρ∆k, vk − u〉 ≤ ‖γρ∆k‖q · ‖vk − vk+1‖p + Vvk(u)− Vvk+1
(u)− 1

2
‖vk+1 − vk‖2p

≤ ρ2γ2

2
‖∆k‖2q + Vvk(u)− Vvk+1

(u).

Summing over k from 0 to N :

N∑
k=0

γρ〈−∆k, vk − u〉 ≤ Vv1(u)− VvN+1
(u) +

ρ2γ2

2

N∑
k=0

‖∆k‖2q.

Notice that Vx(y) ≥ 0 and Vv1(u) ≤ Ω2
/2:

N∑
k=0

γ〈−∆k, vk − u〉 ≤
Ω2

2ρ
+
ργ2

2

N∑
k=0

‖∆k‖2q. (39)

Substituting (39) into (38):

D(u) ≤
N∑
k=0

γ〈∆k, vk − zk〉+
Ω2

2ρ
+
ργ2

2

N∑
k=0

‖∆k‖2q.

The right side is independent of u, then

max
u∈Z

D(u) ≤
N∑
k=0

γ〈∆k, vk − zk〉+
Ω2

2ρ
+
ργ2

2

N∑
k=0

‖∆k‖2q. (40)

Taking the full expectation:

E
[
max
u∈Z

D(u)

]
≤ E

[
N∑
k=1

γ〈∆k, vk − zk〉

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆k‖2q

]
.

Using the independence of e1, . . . , eN , ξ
±
1 , . . . , ξ

±
N , we have

E
[
max
u∈Z

D(u)

]
≤ E

[
N∑
k=0

γEek,ξk [〈∆k, vk − zk〉]

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆k‖2q

]
.
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Note that vk − zk does not depend on ek, ξk. Then

E
[
max
u∈Z

D(u)

]
≤ E

[
N∑
k=0

γ〈Eek,ξk [∆k] , vk − zk〉

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆k‖2q

]
.

By (11) and definition of diameter Ω we get

E
[
max
u∈Z

D(u)

]
≤ ∆Ωnaq

τ

N∑
k=0

γ +
Ω2

2ρ
+
ργ2

2

N∑
k=0

E
[
‖∆k‖2q

]
.

To prove the lemma, it remains to estimate E
[
‖∆k‖2q

]
:

E
[
‖∆k‖2q

]
≤ E

[
‖g(zk, ek, τ, ξ

±
k , δ

±
k )− ∇̃ϕ̂(zk)‖2q

]
≤ 2E

[
‖g(zk, ek, τ, ξ

±
k , δ

±
k )‖2q

]
+ 2E

[
‖∇̃ϕ̂(zk)‖2q

]
≤ 2E

[
‖g(zk, ek, τ, ξ

±
k , δ

±
k )‖2q

]
+ 2E

[∥∥∥∥n (ϕ(z + τe)− ϕ(z − τe))

2τ
e

∥∥∥∥2
q

]
.

Using Lemma 1, we have E
[
‖∆k‖2q

]
≤ 4M2

all, whence

E
[
max
u∈Z

D(u)

]
≤ Ω2

2ρ
+
γ(N + 1)∆Ωnaq

τ
+ 2ργ2M2

all(N + 1).

Taking ρ = 1/2 ends the proof of lemma.

�

(36) with this lemma gives

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+
∆Ωnaq

τ
+ 2τM.

This completes the proof of the theorem.

�

Theorem 2. Let problem (1) with function ϕ(x, y) be solved using Algorithm
1 with Vz(w) = 1

2‖z−w‖
2
2 and the oracle (5). Assume, that the set Z, the function

ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2, 3, 4. Denote
by N the number of iterations and γk = 1

µk . Then the rate of convergence is
given by the following expression:

E [ϕ(x̄N , y
∗)− ϕ(x∗, ȳN )] ≤ M2

all log(N + 1)

2µ(N + 1)
+
∆nΩ

τ
+ 2τM
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Proof. We start this proof from substituting definition of gk and u = z∗ in (32):

2γk〈g(zk, ek, τ, ξ
±
k ), zk − z∗〉 ≤ ‖zk − z∗‖2 − ‖zk+1 − z∗‖2 + γ2k‖g(zk, ek, τ, ξ

±
k )‖2.

With small rearrangement

2γk〈∇̃ϕ̂(zk), zk − z∗〉 ≤ ‖zk − z∗‖2 − ‖zk+1 − z∗‖2 + γ2k‖g(zk, ek, τ, ξ
±
k )‖2

+2γk〈∇̃ϕ̂(zk)− g(zk, ek, τ, ξ
±
k ), zk − z∗〉.

On the other hand with (9) and Lemma 3 we get

ϕ(xk, y
∗)− ϕ(x∗, yk) = ϕ̂(xk, y

∗) + |ϕ(xk, y
∗)− ϕ̂(xk, y

∗)|
−ϕ̂(x∗, yk) + |ϕ(x∗, yk)− ϕ̂(x∗, yk)|

≤ ϕ̂(xk, y
∗)− ϕ̂(x∗, yk) + 2τM

≤ ϕ̂(xk, y
∗)− ϕ̂(xk, yk) + ϕ̂(xk, yk)− ϕ̂(x∗, yk) + 2τM

≤ 〈−∇yϕ̂(xk, yk), yk − y∗〉 −
µ

2
‖yk − y∗‖2

+〈−∇xϕ̂(xk, yk), xk − x∗〉 −
µ

2
‖xk − x∗‖2 + 2τM

= 〈∇̃ϕ̂(zk), zk − z∗〉 −
µ

2
‖zk − z∗‖2 + 2τM.

By connecting we have

2γk(ϕ(xk, y
∗)− ϕ(x∗, yk)) ≤ (1− µγk)‖zk − z∗‖2 − ‖zk+1 − z∗‖2 + γ2k‖g(zk, ek, τ, ξ

±
k )‖22

+2γk〈∇̃ϕ̂(zk)− g(zk, ek, τ, ξ
±
k ), zk − z∗〉+ 4γkτM.

Taking the total expectation and taking into account that zk − z∗ does not
depend on ek, ξk:

E[ϕ(xk, y
∗)− ϕ(x∗, yk)] ≤

(
1

2γk
− µ

2

)
E‖zk − z∗‖2

− 1

2γk
E‖zk+1 − z∗‖2 +

γk
2
E‖g(zk, ek, τ, ξ

±
k )‖22

+E〈Eek,ξk [∇̃ϕ̂(zk)− g(zk, ek, τ, ξ
±
k )], zk − z∗〉+ 2τM.

With (6), (11) with aq = 1 (Euclidean case) we get

E[ϕ(xk, y
∗)− ϕ(x∗, yk)] ≤

(
1

2γk
− µ

2

)
E‖zk − z∗‖2 −

1

2γk
E‖zk+1 − z∗‖2

+
γkM

2
all

2
+
∆nΩ

τ
+ 2τM.
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Summing over all k from 0 to N , we have

E

[
N∑
k=0

ϕ(xk, y
∗)−

N∑
k=0

ϕ(x∗, yk)

]
≤
N−1∑
k=1

(
1

2γk
− 1

2γk−1
− µ

2

)
E‖zk − z∗‖2

+

(
1

2γ0
− µ

2

)
‖z0 − z∗‖2 +

M2
all

2

N∑
k=0

γk

+
∆nΩ(N + 1)

τ
+ 2τM(N + 1).

With γk = 1
µ(k+1) we get

E

[
N∑
k=0

ϕ(xk, y
∗)−

N∑
k=0

ϕ(x∗, yk)

]
≤ M2

all log(N + 1)

2µ
+
∆nΩ(N + 1)

τ
+ 2τM(N + 1).

It remains only to apply Jensen’s inequality to the left-hand side:

E [ϕ(x̄N , y
∗)− ϕ(x∗, ȳN )] ≤ M2

all log(N + 1)

2µ(N + 1)
+
∆nΩ

τ
+ 2τM.

�

Lemma 15. For g̃k
def
= g̃(zk, zk−1, ek, ek−1, ξk, ξk−1) defined in (14) under As-

sumptions 2 and 4 the following inequalities holds:

E
[
‖g̃k‖22

]
≤ αkE

[
‖g̃0‖22

]
+

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
1

1− α
,

where α = 6γ2n2M2

τ2 < 1.

Proof.

E
[
‖g̃(zk, zk−1, ek, ek−1, ξk, ξk−1)‖22

]
=
n2

τ2
E
[
(ϕ̃(zk + τek, ξk)− ϕ̃(zk−1 + τek−1, ξk−1))

2
]

=
n2

τ2
E
[
(ϕ(zk + τek) + ξk + δ(zk + τek)− ϕ(zk−1 + τek−1)− ξk−1 − δ(zk−1 + τek−1))

2
]
.

With a simple fact (30), we get

E
[
‖g̃k‖22

]
≤ 6n2

τ2
E
[
ξ2k + δ2(zk + τek) + ξ2k−1 + δ2(zk−1 + τek−1)

]
+

6n2

τ2
E
[
(ϕ(zk + τek)− ϕ(zk−1 + τek))2

]
+

6n2

τ2
E
[
(ϕ(zk−1 + τek−1)− ϕ(zk−1 + τek))2

]
.
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Next we use (2) and (4) and have

E
[
‖g̃k‖22

]
≤ 12n2(σ2 +∆2)

τ2
+

6n2M2

τ2
E
∥∥zk − zk−1‖22]+ 6n2M2E

[
‖ek−1 − ek‖22

]
≤ 12n2(σ2 +∆2)

τ2
+

6n2M2

τ2
E
∥∥zk − zk−1‖22]+ 12n2M2.

Considering the step of Algorithm 1 we can rewrite as follows:

E
[
‖g̃k‖22

]
≤ 12n2(σ2 +∆2)

τ2
+

6γ2n2M2

τ2
E
∥∥g̃k−1‖22]+ 12n2M2.

Then we run recursion

E
[
‖g̃k‖22

]
≤
(

6γ2n2M2

τ2

)k
E
∥∥g̃0‖22]+

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

) k−1∑
i=0

(
6γ2n2M2

τ2

)i
.

With α = 6γ2n2M2

τ2 < 1

E
[
‖g̃k‖22

]
≤ αkE

∥∥g̃0‖22]+

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
1

1− α
.

�

Theorem 3. Let problem (1) with function ϕ(x, y) be solved using Algo-
rithm 1 with Vz(w) = 1

2‖z − w‖
2
2 and the oracle (14). Assume, that the set Z,

the convex-concave function ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy
Assumptions 1, 2, 4. Denote by N the number of iterations and γk = γ = const.
Then the rate of convergence is given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γ

2(N + 1)(1− α)
E
[
‖g̃0‖22

]
+

3γ

2(1− α)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
+ 2τM +

∆Ωn

τ
.

Ω is a diameter of Z, α = 6γ2n2M2

τ2 < 1.
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Proof. We begin our proof right away by obtaining the inequality similarly to
(36) but by (15), not (6)

E [εsad(z̄N )] ≤ Ω2

2γ(N + 1)
+

γ

2(N + 1)
E
[
‖g̃0‖22

] N∑
k=0

αk

+
γ

2(1− α)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
+

1

γ(N + 1)
E
[
max
u∈Z

D̃(u)

]
+ 2τM

≤ Ω2

2γ(N + 1)
+

γ

2(N + 1)(1− α)
E
[
‖g̃0‖22

]
+

γ

2(1− α)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
+

1

γ(N + 1)
E
[
max
u∈Z

D̃(u)

]
+ 2τM, (41)

where D̃(u)
def
=
∑N
k=0 γ〈∆̃k, u− zk〉 with ∆̃k

def
= g̃k−∇̃ϕ̃(zk). Let estimate D̃(u).

For this we prove the following lemma:

Lemma 16.

E
[
max
u∈Z

D̃(u)

]
≤ γ(N + 1)∆Ωn

τ
+Ω2 +

γ2

1− α
‖g̃0‖22

+
γ2(N + 1)

1− α

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
. (42)

Proof. Let’s start with (40). All other steps are done in the same way.

max
u∈Z

D̃(u) ≤
N∑
k=0

γ〈∆̃k, vk − zk〉+
Ω2

2ρ
+
ργ2

2

N∑
k=0

‖∆̃k‖22.

Taking the full expectation:

E
[
max
u∈Z

D̃(u)

]
≤ E

[
N∑
k=1

γ〈∆̃k, vk − zk〉

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆̃k‖22

]
.

Using the independence of e1, . . . , eN , ξ
±
1 , . . . , ξ

±
N , we have

E
[
max
u∈Z

D(u)

]
≤ E

[
N∑
k=0

γEξk
[
〈∆̃k, vk − zk〉

]]
+ E

[
N∑
k=0

γEek

[
〈∆k − ∆̃k, vk − zk〉

]]

+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆k‖22

]
.



28 A. Beznosikov, V. Novitskii, A. Gasnikov

Note that vk − zk does not depend on ek, ξk and Eξk∆̃k = 0. Then

E
[
max
u∈Z

D̃(u)

]
≤ E

[
N∑
k=0

γ〈Eek

[
∆̃k

]
, vk − zk〉

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆̃k‖22

]

= E

[
N∑
k=0

γ〈Eek

[
∆̃k

]
, vk − zk〉

]
+
Ω2

2ρ
+
ργ2

2
E

[
N∑
k=0

‖∆̃k‖22

]
.

By (11) and definition of diameter Ω we get

E
[
max
u∈Z

D̃(u)

]
≤ ∆Ωn

τ

N∑
k=0

γ +
Ω2

2ρ
+
ργ2

2

N∑
k=0

E
[
‖∆̃k‖22

]
.

To prove the lemma, it remains to estimate E
[
‖∆̃k‖22

]
:

E
[
‖∆̃k‖22

]
≤ 2E

[
‖g̃k‖22

]
+ 2E

[∥∥∥∥n (ϕ(z + τe)− ϕ(z − τe))

2τ
e

∥∥∥∥2
2

]
.

Using Lemma 4, we have

E
[
max
u∈Z

D̃(u)

]
≤ ∆Ωn

τ

N∑
k=0

γ +
Ω2

2ρ
+ 2ργ2

N∑
k=0

αkE
[
‖g̃0‖22

]
+2ργ2(N + 1)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
1

1− α
.

Taking ρ = 1/2 ends the proof of lemma.

�

(41) with this lemma gives

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γ

2(N + 1)(1− α)
E
[
‖g̃0‖22

]
+

3γ

2(1− α)

(
12n2(σ2 +∆2)

τ2
+ 12n2M2

)
+ 2τM +

∆Ωn

τ
.

This completes the proof of the theorem.

�

C Proofs for Section 3.2

The proofs of the Theorems 4 and 5 copy the proofs of the Theorems 1 and 2
except for the usage Lemma 6 instead of Lemma 2. So the term 2Mτ in Theorems
1 and 2 is replaced by the term Lτ2 in Theorems 4 and 5.
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D Proofs for Section 3.3

Theorem 6. Let ϕ ∈ Fµ,β(L) with µ, L > 0 and β > 2. Let Assumption 6
hold and let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on the
Euclidean τ1-neighborhood of Z (see τk below).

Then the rate of convergence is given by Algorithm 2 with parameters

τk =

(
3κσ2n

2(β − 1)(κβL)2

) 1
2β

k−
1
2β , αk =

2

µk
, k = 1, . . . , N

satisfies

E [ϕ(xN , y
∗)− ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )]

≤ 1

µ

(
n2−

1
β

A1

N
β−1
β

+A2
n(1 + lnN)

N

)
,

where zN = 1
N

N∑
k=1

zk, A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = 9κG2, κβ and κ are

constants depending only on β, see (22) and (23).

Proof. Step 1. Fix an arbitrary z ∈ Z. As zk+1 is the Euclidean projection we
have ‖zk+1 − z‖2 ≤ ‖zk − γkg̃k − z‖2 which is equivalent to

〈g̃k, zk − z〉 ≤
‖zk − z‖2 − ‖zk+1 − z‖2

2γk
+
γk
2
‖g̃k‖2. (43)

Using the strong convexity-concavity and combining x and y parts of the
argument z together we have

ϕ(xk, y)− ϕ(x, yk) =ϕ(xk, y)− ϕ(xk, yk) + ϕ(xk, yk)− ϕ(x, yk)

≤〈−∇yϕ(xk, yk), yk − y〉 −
µ

2
‖yk − y‖2

+〈−∇xϕ(xk, yk), xk − x〉 −
µ

2
‖xk − x‖2

=〈∇̃ϕ(zk), zk − z〉 −
µ

2
‖zk − z‖2.

(44)

Combining the last two inequations we obtain

ϕ(xk, y)− ϕ(x, yk) ≤〈∇̃ϕ(zk)− g̃k, zk − z〉+
‖zk − z‖2 − ‖zk+1 − z‖2

2γk

+
γk
2
‖g̃k‖2 −

µ

2
‖zk − z‖2.

(45)

Taking conditional expectation given zk with respect to rk, ξ+k and ξ−k we
obtain

ϕ(xk, y)− ϕ(x, yk) ≤〈∇̃ϕ(zk)− E [g̃k|zk] , zk − z〉+
γk
2
E
[
‖g̃k‖2|zk

]
+
‖zk − z‖2 − E

[
‖zk+1 − z‖2|zk

]
2γk

− µ

2
‖zk − z‖2.

(46)



30 A. Beznosikov, V. Novitskii, A. Gasnikov

Step 2 (Bounding bias term). Our aim is to bound the first term in (46),

namely 〈∇̃ϕ(zk)− E [g̃k|zk] , zk − z〉. Using the Taylor expansion we have

ϕ (zk + τkrkek) =ϕ(zk) + 〈∇ϕ(zk), τkrkek〉

+
∑

2≤|m|≤l

(τkrk)|m|

m!
D(m)ϕ(zk)emk +R(τkrkek),

(47)

where by assumption |R(τkrkek)| ≤ L‖τkrkek‖β = L(τk · |rk|)β . Thus,

g̃k =
(
〈∇ϕ(xk), τkrkek〉+

∑
2≤|m|≤l,|m| odd

(τkrk)|m|

m!
D(m)ϕ(zk)emk

+
1

2
R(τkrkek)− 1

2
R(−τkrkek) + ξ+k − ξ

−
k

) n
τk
K(rk)

 (ek)x

−(ek)y

 .

(48)

Using the properties of the smoothing kernel K, independence of ek and rk
(Assumption 6) and the fact that E

[
eke

T
k

]
= 1

n In×n we obtain

Eek,rk

〈∇ϕ(zk), τkrkek〉
n

τk
K(rk)

 (ek)x

−(ek)y

∣∣∣∣∣∣zk
 = ∇̃ϕ(zk). (49)

Using the fact that E
[
r
|m|
k K(rk)

]
= 0 if 2 ≤ |m| ≤ l or |m| = 0 and

Assumption 6 we have

E

( ∑
2≤|m|≤l,|m| odd

(τkrk)|m|

m!
D(m)ϕ(zk)emk + ξ+k − ξ

−
k

) n
τk
K(rk)

 (ek)x

−(ek)y

∣∣∣∣∣∣xk
 = 0.

(50)
Substituting (48), (49) and (50) in the first term in (46) and using the defi-

nition of κβ (see (22)) we obtain∣∣∣〈∇̃ϕ(zk)− E [g̃k|zk] , zk − z〉
∣∣∣ =

=

∣∣∣∣∣∣E
(1

2
R(τkrkek)− 1

2
R(−τkrkek)

)
n

τk
K(rk)

〈 (ek)x

−(ek)y

 , zk − z

〉∣∣∣∣∣∣zk
∣∣∣∣∣∣

≤ Lτβ−1k · Erk
[
|rk|βK(rk)

]
· n |Eek [〈ek, zk − z〉|zk]|

≤ κβL
√
nτβ−1k ‖zk − z‖,

(51)

where in the last two inequalities the symmetry of Euclidean sphere and the fact

from concentration measure theory that |Ee [〈e, s〉]|2 ≤ Ee
[
〈e, s〉2

]
= ‖s‖2

n were
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used . Applying the inequality ab ≤ 1/2(a2 + b2) to the last expression in (51) we
finally get∣∣∣〈∇̃ϕ(zk)− E [g̃k|zk] , zk − z〉

∣∣∣ ≤ (κβL)2

µ
nτ

2(β−1)
k +

µ

4
‖zk − z‖2. (52)

Step 3 (Bounding second moment of gradient estimator). Our aim
is to estimate E

[
‖g̃k‖2|zk

]
which is the second term in (46). The expectation

here is with respect to rk, ξ+k and ξ−k . To lighten the presentation and without
loss of generality we drop the lower script k in all quantities.

We have

‖g̃‖2 =
n2

4τ2

∥∥∥∥∥∥(ϕ(z + τre)− ϕ(z − τre) + ξ+ − ξ−)K(r)

 ex

−ey

∥∥∥∥∥∥
2

=
n2

4τ2
(
(ϕ(z + τre)− ϕ(z − τre) + ξ+ − ξ−)

)2
K2(r).

(53)

Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and Assumption 6 we get

E
[
‖g̃‖2|z

]
≤ 3n2

4τ2
(
E
[
(ϕ(z + τre)− ϕ(z − τre))2K2(r)

∣∣z]+ 2κσ2
)
. (54)

Using the symmetry of Euclidean unit sphere and the inequality (a+ b)2 ≤
2(a2 + b2) we obtain

E
[
(ϕ(z + e)− ϕ(z − e))2

∣∣∣z] = Ee
[
(ϕ(z + e)− ϕ(z − e))2

]
≤ Ee

[
((ϕ(z + e)− Ee[ϕ(z + e)])− (ϕ(z − e)− Ee[ϕ(z − e)]))2

]
≤ 2Ee

[
(ϕ(z + e)− Ee[ϕ(z + e)])

2
]

+ 2Ee
[
(ϕ(z − e)− Ee[ϕ(z − e)])2

]
≤ 2

√
Ee
[
(ϕ(z + e)− Ee[ϕ(z + e)])

4
]

+ 2

√
Ee
[
(ϕ(z − e)− Ee[ϕ(z − e)])4

]
≤ 12M2

n
, (55)

where in the last inequality Lemma 10 was used, so we have

E
[
(ϕ(z + τre)− ϕ(z − τre))2

∣∣∣z] ≤ 12(τr)2M2

n
≤ 12τ2M2

n
. (56)

By substituting (56) into (54), using independence of e and r and returning
the lower script k we finally get

E
[
‖g̃k‖2|zk

]
≤ κ

(
9nM2 +

3(nσ)2

2τ2k

)
. (57)
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Step 4. Let ρ2k denote full expectation E[‖zk − z‖2]. Substituting (52) and
(57) into (46), taking full expectation we obtain

E[ϕ(xk, y)− ϕ(x, yk)] ≤ (κβL)2

µ
nτ

2(β−1)
k +

γk
2
κ

(
9nM2 +

3(nσ)2

2τ2k

)
+
ρ2k − ρ2k+1

2γk
−
(µ

2
− µ

4

)
ρ2k.

(58)

Using the convexity-concavity of ϕ and (58) we have

E [ϕ (xN , y)− ϕ (x, yN )] ≤ 1

N

N∑
k=1

ϕ (xk, y)− 1

N

N∑
k=1

ϕ (x, yk)

≤ 1

N

N∑
k=1

(
(κβL)2

µ
nτ

2(β−1)
k +

γk
2
κ

(
9nM2 +

3(nσ)2

2τ2k

))

+
1

N

N∑
k=1

(
ρ2k − ρ2k+1

2γk
− µ

4
ρ2k

)
.

(59)

Let ρ2N+1 = 0. Then setting γk =
2

γk
yields

N∑
k=1

(
ρ2k − ρ2k+1

2γk
− µ

4
ρ2k

)
≤ ρ21

(
1

2γ1
− µ

4

)
+

N+1∑
k=2

ρ2k

(
1

2γk
− 1

2γk−1
− µ

4

)

= ρ21

(µ
4
− µ

4

)
+

N+1∑
k=2

ρ2k

(µ
4
− µ

4

)
= 0.

(60)

Substituting (60) into (58) with γk = 2
µk we obtain

E[ϕ (xN , y)− ϕ (x, yN )]

≤ 1

µN

N∑
k=1

(
(κβL)2nτ

2(β−1)
k + κ

(
9nM2 +

3(nσ)2

2τ2k

)
1

k

)

=
1

µN

N∑
k=1

([
n · (κβL)2τ

2(β−1)
k + n2 · 3κσ2

2kτ2k

]
+

9κnM2

k

)
.

(61)

If σ > 0 then τk =

(
3κσ2n

2(β − 1)(κβL)2

) 1
2β

k−
1
2β is the minimizer of square

brackets. Plugging this τk in (61) and using two inequalities: for the expression

in square brackets
N∑
k=1

k−1+1/β ≤ βN 1/β (if β > 2) and for the term after square
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brackets
N∑
k=1

1
k ≤ 1 + lnN we get

E[ϕ (xN , y)− ϕ (x, yN )] ≤ 1

µ

(
n2−

1
β

A1

N
β−1
β

+A2
n(1 + lnN)

N

)
.

with A1 and A2 from the formulation of Theorem 6.

Taking the minimum over x and the maximum over y we finally obtain

E [ϕ(xN , y
∗)− ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )]

≤ 1

µ

(
n2−

1
β

A1

N
β−1
β

+A2
n(1 + lnN)

N

)
.

�

Theorem 7. Let ϕ ∈ Fβ(L) with L > 0 and β > 2. Let Assumption 6
hold and let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on
the Euclidean τ1-neighborhood of Z (τk is parameter from Theorem 6 for the
regularized function ϕµ(z) whose description is given below). Let zN denote

1
N

N∑
k=1

zk.

Let’s define N(ε):

N(ε) = max

{(
R
√

2A1

) 2β
β−1 n2+

1
β−1

ε2+
2

β−1

,
(
R
√

2c′A2

)2(1+ρ) n1+ρ

ε2(1+ρ)

}
,

where A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = 9κG2 – constants from Theorem 6, ρ > 0

– arbitrarily small positive number, c′ – constant which depends on ρ.

Then the rate of convergence is given by the following expression:

E [ϕ(xN , y
∗)− ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )] ≤ ε (62)

after N(ε) steps of Algorithm 2 with settings from Theorem 6 for the regularized
function: ϕµ(z) := ϕ(z)+ µ

2 ‖x−x0‖
2− µ

2 ‖y−y0‖
2, where µ ≤ ε

R2 , R = ‖z0−z∗‖,
z0 ∈ Z – arbitrary point.

Proof. Step 1. Let z∗ = (x∗, y∗) and z∗µ = (x∗µ, y
∗
µ) denote the solutions of the

saddle-point problems for functions ϕ(z) and ϕµ(z) respectively. Setting µ = ε
R2

and using the inequality ϕµ (xN , y
∗)− ϕµ (x∗, yN ) ≤ ϕµ

(
xN , y

∗
µ

)
− ϕµ

(
x∗µ, yN

)
we obtain
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E [ϕ(xN , y
∗)]− E [ϕ(x∗, yN )] ≤ max

y∈Y
E [ϕ(xN , y)]−min

x∈X
E [ϕ(x, yN )]

= max
x∈X ,y∈Y

E
[
ϕµ (xN , y)− ϕµ (x, yN )− µx2N

2
+
µy2

2
+
µx2

2
− µy2N

2

]
≤ max
x∈X ,y∈Y

E
[
ϕµ (xN , y)− ϕµ (x, yN ) +

µz2

2

]
≤ max
x∈X ,y∈Y

E [ϕµ (xN , y)− ϕµ (x, yN )] +
ε

2

= max
y∈Y

E [ϕµ(xN , y)]−min
x∈X

E [ϕµ(x, yN )] +
ε

2

(63)

Step 2. Now we apply Theorem 6 for ϕµ(z) until function error is not greater
than ε

2 :

max
y∈Y

E [ϕµ(xN , y)]−min
x∈X

E [ϕµ(x, yN )] ≤ 1

µ

(
n2−

1
β

A1

N
β−1
β

+A2
n(1 + lnN)

N

)
≤ ε

2
.

(64)
Using that µ = ε

R2 the inequality (64) is done if

max

{
n2−

1
β

A1

N
β−1
β

, A2
n(1 + lnN)

N

}
≤ µε

2
=

ε2

2R2
. (65)

It is true that 1 + lnN ≤ c′N
ρ
ρ+1 for some c′ > 0. So the inequality (65)

holds if

N ≥ max

{(
R
√

2A1

) 2β
β−1 n2+

1
β−1

ε2+
2

β−1

,
(
R
√

2c′A2

)2(1+ρ) n1+ρ

ε2(1+ρ)

}
. (66)

The inequalities (63) and (64) yield (62).

�

E Kernel examples

A weighted sum of Legendre polynoms is an example of such kernels:

Kβ(r) :=

l(β)∑
m=0

p′m(0)pm(r), (67)

where l(β) is maximal integer number strictly less than β and pm(r) =
√

2m+ 1Lm(r),
Lm(u) is Legendre polynom. We have

E [pmpm′ ] = δ(m−m′).



One-Point Gradient-Free Methods for Saddle-Point Problems 35

As {pm(r)}jm=0 is a basis for polynoms of degree less than or equal to j we

can represent uj :=
j∑

m=0
bmpm(r) for some integers {bm}jm=0 (they depend on

j).
Let’s calculate the expectation

E
[
rjKβ(r)

]
=

j∑
m=0

bmp
′
m(0) = (rj)′|r=0 = δ(j − 1),

here δ(0) = 1 and δ(x) = 1 if x 6= 0. We proved that the presented Kβ(r) satisfies
(21). We have the following kernels for different betas (see Figure 2):

Kβ(r) = 3r, β ∈ [2, 3],

Kβ(r) =
15r

4
(5− 7r2), β ∈ (3, 5],

Kβ(r) =
105r

64
(99r4 − 126r2 + 35), β ∈ (5, 7].

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
r

30

20

10

0

10

20

30

K(
r)

= 3
= 5
= 7
= 11

Fig. 2. Examples of kernels from (67)
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