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1. Introduction

Saddle-point optimization problems have many applications in different areas of mod-
eling and optimization. The most classical example is, perhaps, two-player zero-sum 
games [25,26], including differential games [15]. More recent examples include imag-
ing problems [4] and machine learning problems [36], where primal-dual saddle-point 
representations of large-scale optimization problems are constructed, and primal-dual 
first-order methods are used for their efficient solution. Many non-smooth optimization 
problems, such as �∞ or �1 regression admit a saddle-point representation, which allows 
one to propose methods [31,27] having faster convergence than the standard subgradient 
scheme.

Recently saddle-point problems started to attract more attention from the machine 
learning community motivated by applications to generative adversarial networks train-
ing [5,23], where the training process consists of a competition of a generator of non-real 
images and a discriminator which tries to distinguish between real and artificial images. 
Another application example is equilibrium problems in two-stage congested traffic flow 
models [8,11].

From the algorithmic viewpoint, the most studied setting deals with saddle-point 
problems having bilinear structure [31,27,3,37,42], where the cross term between the 
primal and dual variable is linear with respect to each variable. The extensions include 
bilinear problems with prox-friendly (i.e., admitting a proximal operator in closed form) 
composite terms [4,19]. A related line of research studies variational inequalities [27,19]
since any convex-concave saddle-point problem can be reformulated as a variational 
inequality problem with a monotone operator. In this area, lower bounds for first-order 
methods are known [28] and many optimal methods exist [27,32,33,6,19,39,38]. Notably, 
these works do not rely on the bilinear structure and allow to solve convex-concave saddle-
point problems with Lipschitz-continuous gradients, including differential games [7]. An 
alternative approach, which mostly inspired this paper, is based on a representation of a 
saddle-point problem minx maxy F̃ (x, y) as either a primal minimization problem with 
an implicitly given objective ĝ(x) = maxy F̃ (x, y) or a dual maximization problem with 
an implicitly given objective g̃(y) = minx F̃ (x, y). This approach was used in [31,30]
for problems with bilinear structure and later extended in [13] for general saddle-point 
problems. Such connection to optimization turned out to be quite productive since it 
allows for the exploitation of accelerated optimization methods. In particular, recent 
advances in this direction are due to an observation [9,2,14,22] that primal and dual 
problems can have different condition numbers, which opens up a possibility to obtain 
theoretically faster algorithms, including accelerated near-optimal algorithms [22].

In this paper, we focus on strongly-convex-strongly-concave and convex-concave 
saddle-point problems with the finite-sum structure1 and prox-friendly composite terms:

1 Algorithms for general infinite-expectation saddle-point problems can be found in [43] and references 
therein.
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min
x∈Rdx

max
y∈Rdy

{f(x) + G(x, y) − h(y)} , G(x, y) := 1
m

m∑
i=1

Gi(x, y), (1.1)

with the assumption that G(x, y) is L-average-smooth (precise definition will be given 
below in (1.8)), f(x), h(y) are prox-friendly and μx-, μy-(strongly)-convex respectively 
with μx, μy ≥ 0. Our goal is to develop accelerated first-order stochastic variance-reduced 
algorithms that find an (ε, σ)-solution, where ε > 0 is the desired accuracy in terms of 
the duality gap and σ ∈ (0, 1) is a confidence level, i.e., the duality gap is guaranteed to 
be smaller than ε with probability at least 1 − σ.

Recently, the authors of [12] proved the lower complexity bounds for stochastic first-
order algorithms for the problem

min
x∈X

max
y∈Y

1
m

m∑
i=1

Gi(x, y), (1.2)

where G(x, y) is assumed to be L-average-smooth and (μx, μy)-(strongly)-convex-
(strongly)-concave, with μx ≥ 0 and μy ≥ 0, diam(X ) ≤ Dx, diam(Y) ≤ Dy, where 
diam(·) denotes the diameter of a set, i.e., maximum distance between its two points. 
Their lower bounds for finding an ε-solution in terms of the expectation of the duality 
gap are ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω
(√

m

√(√
m + L

μx

)(√
m + L

μy

)
ln 1

ε

)
, μx > 0, μy > 0;

Ω
(
m + Dxm

3
4

√
L
ε +

√
mLDx√
μyε

+ m
3
4

√
L
μy

ln 1
ε

)
, μx = 0, μy > 0;

Ω
(
m +

√
mLDxDy

ε + (Dx + Dy)m
3
4

√
L
ε

)
, μx = 0, μy = 0.

(1.3)

These results raised the question of whether these “accelerated” lower bounds can be 
achieved by some algorithms.

When an optimization problem has the finite-sum structure, also known as the empir-
ical risk minimization problem, stochastic variance-reduced methods, see, e.g., [17,19], 
allow for faster convergence rates. For optimization problems, such methods are well 
developed and achieve lower complexity bounds [41]. On the contrary, the literature on 
variance-reduced methods for saddle-point problems is quite scarce. To our knowledge, 
first, such techniques were applied to saddle-point problems in [34], but the obtained 
bounds did not have separation between μx and μy, and there was no acceleration. 
Recently, these bounds were improved in [1], where an algorithm was proposed with 
non-accelerated complexity.

Õ

(
m +

√
m

(
L

μx
+ L

μy

))
for (μx, μy)-strongly-convex-strongly-concave setting with μx, μy > 0. Moreover, for 
convex-concave setting their algorithm has complexity
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O

(
m +

√
m
L(Dx

2 + Dy
2)

ε

)
.

Despite these bounds are optimal in the particular cases μx = μy (strongly-convex-
strongly-concave setting) or Dx = Dy (convex-concave setting), the theoretical gap 
between the lower and upper bounds still remains when μx �= μy or Dx �= Dy. This is 
especially important if, e.g., μx � μy since then the lower bound becomes much smaller 
than the upper bound. Moreover, the case when μx � μy highlights the benefits of sepa-
ration between μx and μy. Indeed, under additional assumption that L/μx, L/μy � √

m, 
the non-separated bound [34] is then Õ

(
L
√
m

min{μx,μy}

)
which is much worse than the 

separated bound Õ
(

L
√
m√

μxμy

)
. Thus, we focus on the case when the strong convexity 

parameters (or diameters of the sets) are different.
Our contribution. In this paper, we continue the line of research [2,10] by exploring 

additional properties of problem (1.1), namely, the finite-sum structure and the presence 
of prox-friendly composite terms. Since the problem class (1.1) contains the problem 
class (1.2), the lower bounds (1.3) are also valid for solving problem (1.1) by stochastic 
first-order methods. Our main contribution in this paper is, to a large extent, theoreti-
cal. We propose accelerated stochastic first-order variance-reduced algorithms that have 
nearly-optimal complexity, i.e., their complexity coincides with the bounds (1.3) up to 
logarithmic factors:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O
((

m + m
3
4

√
L
μx

+ m
3
4

√
L
μy

+ L
√
m√

μxμy

)
ln3 1

ε

)
, μx > 0, μy > 0;

O
((

m + m
3
4Rx

√
L
ε + m

3
4

√
L
μy

+ RxL
√
m√

εμy

)
ln3 1

ε

)
, μx = 0, μy > 0;

O
((

m + (Rx + Ry)m
3
4

√
L
ε + RxRyL

√
m

ε

)
ln3 1

ε

)
, μx = 0, μy = 0,

where in the absence of strong convexity and/or strong concavity, we assume that there 
exists a saddle point (x∗, y∗) for problem (1.1) satisfying ‖x∗‖ ≤ Rx, ‖y∗‖ ≤ Ry. Im-
portantly, our algorithms guarantee the accuracy ε with high probability, rather than in 
expectation. To the best of our knowledge, these are the first nearly-optimal algorithms 
for this setting.2 Our algorithms have multi-loop structure and provide a conceptual 
understanding that the lower complexity bounds (1.3) are achievable. Efficient imple-
mentation and/or loop-less algorithms achieving lower bounds are left for the future 
work.

Notation and definitions. We introduce some notation and necessary definitions used 
throughout the paper. We denote by ‖x‖ and ‖y‖ the standard Euclidean norms for 
x ∈ Rdx and y ∈ Rdy respectively. This leads to the Euclidean norm on Rdx×Rdy defined 
as ‖(x1, y1) − (x2, y2)‖2 = ‖x1 − x2‖2 + ‖y1 − y2‖2, x1, x2, ∈ Rdx , y1, y2 ∈ Rdy . B2(θ0, R)
denotes the Euclidean ball with center at θ0 and radius R, i.e., 

{
θ ∈ Rdθ : ‖θ − θ0‖ ≤ R

}
.

2 The first version of our results appeared as a part of the preprint [40]. We believe that Algorithm 1 from 
[1] can be accelerated to achieve optimal complexity bounds.
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We say that a function f is μf -strongly-convex if, for some μf > 0 and for any its 
subgradient ∇f(x1), it holds that

f(x2) ≥ f(x1) + 〈∇f(x1), x2 − x1〉 + μf

2 ‖x1 − x2‖2, x1, x2 ∈ domf.

Note that when μf = 0, we also say that f is convex. We say that a function f is 
L-smooth if its gradient is Lipschitz-continuous, i.e., ‖∇f(x1) − ∇f(x2)‖ ≤ ‖x1 − x2‖, 
x1, x2 ∈ domf . We say that a function f is prox-friendly if it admits a tractable proximal 
operator [24]. This means that the evaluation of the point

proxλ
f (x̄) = arg min

x∈domf

{
λf(x) + 1

2‖x− x̄‖2
}

(1.4)

for some fixed x̄ ∈ Rdx and λ > 0 can be made either in closed form or numerically very 
efficiently up to machine precision.

For an optimization problem minx f(x), we say that a random point x̂ is an (ε, σ)-
solution to this problem for some ε > 0 and σ ∈ (0, 1), if

f(x̂) − min
x

f(x) ≤ ε with probability at least 1 − σ. (1.5)

We refer to ε as accuracy and to σ as confidence level.
We say that a function G(x, y) is (strongly)-convex-(strongly)-concave if the func-

tion G(·, y) is (strongly)-convex for any fixed y and the function G(x, ·) is (strongly)-
concave for any fixed x. For a strongly-convex-strongly-concave saddle-point problem 
minx maxy G(x, y) a point (x̂, ŷ) is called an (ε, σ)-solution for some ε > 0 and σ ∈ (0, 1), 
if

max
y

G(x̂, y) − min
x

G(x, ŷ) ≤ ε with probability at least 1 − σ. (1.6)

Note that since the saddle-point problem is strongly-convex-strongly-concave, the quan-
tity in the l.h.s. of (1.6) is correctly defined.

Notation Õ(·) hides constant and polylogarithmic in ε−1 and σ−1 factors. More pre-
cisely, ψ1(ε, σ) = Õ(ψ2(ε, σ)) if there exist constants C > 0, a, b such that, for all ε > 0, 
σ ∈ (0, 1), ψ1(ε, σ) ≤ Cψ2(ε, σ) lna 1

ε lnb 1
σ . We use O(·)-notation when a = b = 0. For a 

function ξ (ε), where ε ∈ R+ we write ξ (ε) = poly (ε) if ξ (·) = Õ(f(ε)), where f(ε) is 
a polynomial function of ε with non-negative, possibly fractional powers. For a function 
ξ (ε, σ), where ε, σ ∈ R+ we write ξ (ε, σ) = poly (ε, σ) if ξ (·, σ) is a polynomial function 
of ε and ξ (ε, ·) is a polynomial function of σ.

Problem formulation. The main problem formulation, we are interested in, is the 
composite strongly-convex-strongly-concave saddle-point problem:

min
x∈Rdx

max
y∈Rdy

{f(x) + G(x, y) − h(y)} , G(x, y) := 1
m

m∑
Gi(x, y). (1.7)
i=1
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We postpone the consideration of convex-strongly-concave and convex-concave problems 
until Section 5, where these cases will be considered by reduction to the strongly-convex-
strongly-concave setting. For now, we make the following assumption.

Assumption 1.

1. f(x) is μx-strongly-convex, h(y) is μy-strongly-convex, where μx, μy > 0;
2. Each function Gi(x, y), i ∈ 1, . . . , m is continuously differentiable, convex-concave and 

G(x, y) is L-average-smooth, i.e., for each (x1, y1), (x2, y2) ∈ Rdx ×Rdy

1
m

m∑
i=1

‖∇Gi(x1, y1) −∇Gi(x2, y2)‖ ≤ L‖(x1, y1) − (x2, y2)‖; (1.8)

3. f(x), h(y) are prox-friendly (smoothness is not required).

Remark 1. As an example of composite terms f and h we can consider the elastic net 
regularization [44]: f(x) = λ1,x‖x‖1 + λ2,x‖x‖2, h(y) = λ1,y‖y‖1 + λ2,y‖y‖2, where 
‖ · ‖1 denotes the �1-norm of a vector. We also can “move” strong convexity between 
the coupling term G and the composites f, h. For that, assume that G(x, y) is (μx, μy)-
strongly-convex-strongly-concave and f , h are just convex. Then, we can define Ĝ(x, y) =
G(x, y) − μx

2 ‖x‖2 + μy

2 ‖y‖2, f̂(x) = f(x) + μx

2 ‖x‖2, ĥ(y) = h(y) + μy

2 ‖y‖2. It is easy 
to see that f̂(x) is μx-strongly-convex and ĥ(y) is μy-strongly-convex, and, since f, h
are prox-friendly [35], so are the new functions f̂(x), ̂h(y). Thus, in general, we can 
consider any convex prox-friendly composite terms, e.g., indicator functions of convex 
sets, regularizers, etc.

Paper organization. We start with describing two building blocks for our algorithm: 
the Catalyst framework [20] adapted and slightly generalized for our setting and variance-
reduced algorithm SAGA proposed in [34] which we also adapt to our setting (Section 2). 
The former algorithm is an optimization algorithm, the latter is designed for saddle-point 
problems, and we use these algorithms in the system of inner-outer loops, each of which 
is designed to solve a special optimization subproblem up to a chosen accuracy. To be 
able to connect the output of an inner loop with the requirement of an outer loop, we 
prove several technical lemmas (Section 3). After that, we collect all the pieces together 
and describe the loops of our algorithm as well as present its complexity theorem for 
the strongly-convex-strongly-concave case (Section 4). Finally, we present the regulariza-
tion idea and complexity theorem for convex-strongly-concave and convex-concave cases 
(Section 5).

2. Algorithmic building blocks

In this section, we describe two algorithms that are used as building blocks in our 
algorithm to find an (ε, σ)-solution to problem (1.7) under Assumption 1. Namely, we 
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describe the Catalyst Meta-Algorithm [20,21] and the SAGA algorithm [34]. For each 
algorithm, we describe the problem that is solved by this algorithm under certain as-
sumptions, describe the algorithm itself, and formulate convergence rate and complexity 
theorems.

2.1. Catalyst meta-algorithm [20,21]

In this subsection, we focus on the optimization problem of the form

min
x∈Rdx

F (x) := ϕ(x) + ψ(x) (2.1)

under the following assumption:

Assumption 2. ϕ(x) is μ-strongly-convex with μ > 0 and ψ(x) is Lψ-smooth and convex.

We denote by x∗ the solution to this problem. Assume that problem (2.1) can be 
solved by a linearly convergent method M. One way to accelerate this method is to 
apply the Catalyst algorithm [20,21] with the inner method M, which is a special case 
of Accelerated Proximal Point Algorithm where the proximal step is computed inex-
actly by the inner method M. The resulting algorithm is listed below as Algorithm 1. 
Each iteration k of this algorithm requires to find an approximate solution to a special 
optimization problem with accuracy εk. Below, in Theorem 1, we show how to choose 
the sequence (εk)k≥0 in order to guarantee that Algorithm 1 outputs an ε-solution to 
problem (2.1) (cf. (1.5)). Further, to be able to use a randomized method as the inner 
method M, we study the case when the auxiliary problem in each iteration k of Algo-
rithm 1 is solved inexactly with the required accuracy, but only with some probability 
given by a confidence level σk. The total complexity of Algorithm 1 with a randomized 
inner method M together with sufficient conditions on (εk)k≥0 and (σ)k≥0 are given in 
Theorem 2, which is the main theorem of this subsection.

As said, we start with the result on a sufficient accuracy of the solution to the auxiliary 
problem in each iteration of Algorithm 1.

Theorem 1. Let us define q = μ/(μ + H) and consider Algorithm 1 satisfying

εk = 2
9(F (x0) − F (x∗))(1 − ρ)k with ρ = 0.9√q, k ≥ 0. (2.2)

Then, after at most N = Õ
(√

1 + H
μ

)
iterations of Algorithm 1, we get xN such that 

F (xN ) − F (x∗) ≤ ε.

Proof. Recall that ρ = 0.9√q = 0.9
√
μ/(μ + H) and define C = 8/(√q − ρ)2. Choosing
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Algorithm 1 Catalyst [20,21].
1: Input: Starting point x0 ∈ Rdx , algorithm parameters H, α0 > 0, strong convexity parameter μ, opti-

mization method M and a sequence (εk)k≥0.
2: Initialize xmd

0 = x0, q = μ
μ+H .

3: for k = 0, 1, . . . do
4: Find an approximate solution of the following problem by M

xk ≈ arg min
x∈Rdx

{
Sk(x) := F (x) +

H

2
‖x − x

md
k−1‖

2
}

such that Sk(xk) − Sk(x∗
k) ≤ εk, where x∗

k = arg min
x∈Rdx

Sk(x);

5: Update αk ∈ (0, 1) from equation α2
k = (1 − αk)α2

k−1 + qαk;
6: Compute xmd

k using Nesterov’s extrapolation step

x
md
k = xk + βk(xk − xk−1) with βk =

αk−1(1 − αk−1)
α2

k−1 + αk

.

7: end for
8: Output: xk (final estimate).

N =
⌈

1
ρ

ln C(1 − ρ)(F (x0) − F (x∗))
ε

⌉
=
⌈

1
ρ

ln 8(1 − ρ)(F (x0) − F (x∗))
(√q − ρ)2ε

⌉

=
⌈√

μ + H

0.9√μ
ln

8(1 − 0.9
√
μ/(μ + H))(F (x0) − F (x∗))(H + μ)

0.01με

⌉

= Õ

(√
1 + H

μ

)
, (2.3)

using the choice of εk according to (2.2), by Theorem 3.1 in [20], we obtain

F (xN ) − F (x∗) ≤ C(1 − ρ)N+1(F (x0) − F (x∗))

≤ C(1 − ρ)e−ρN (F (x0) − F (x∗)) ≤ ε. �
The following theorem is the main theorem of this subsection. It gives sufficient condi-

tions for the accuracy of solution to the auxiliary problem in each iteration of Algorithm 1
and its overall complexity.

Theorem 2. Let us define q = μ/(μ + H) and let Assumption 2 hold. Assume also that 
at each iteration k ≥ 0 of Algorithm 1 we find xk such that Sk(xk) − Sk(x∗

k) ≤ εk with 
probability at least 1 − σk, where

0 < εk ≤ 2
9(F (x0) − F (x∗))(1 − ρ)k = poly(ε) with ρ = 0.9√q, (2.4)

0 < σk ≤ σa = σ
√
μ+H√ ln 8(1−0.9

√
μ/(μ+H))(F (x0)−F (x∗))(H+μ)

= poly(ε, σ). (2.5)

0.9 μ 0.01με
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Then, after

N = Õ

(√
1 + H

μ

)

iterations, Algorithm 1 finds an (ε, σ)-solution to problem (2.1), i.e., (1.5) holds.

Proof. We start by showing that εk = poly(ε) for all k = 0, ..., N . Indeed,

εk = 2
9(F (x0) − F (x∗))(1 − ρ)k ≤ 2

9(F (x0) − F (x∗))e−ρk

= 2
9(F (x0) − F (x∗))e−ρN k

N

(2.3)
≤ 2

9(F (x0) − F (x∗))
(

ε

C(1 − ρ)(F (x0) − F (x∗))

) k
N

= 2
9
ε

k
N (F (x0) − F (x∗))N−k

N

C
k
N (1 − ρ) k

N
.

Since k ≤ N , we have that εk = poly(ε).
To show the theorem result, we notice that, by the theorem assumptions on εk, at 

each iteration of Algorithm 1 condition (2.2) is satisfied with probability at least 1 −σk, 
where σk is given in (2.5). Thus, by the union bound, after N iterations, where N is 
given in (2.3), condition (2.2) is satisfied in all the N iterations with probability at least 
N∏
i=1

(1 − σi). Combining (2.3), (2.5), we obtain that

N∏
i=1

(1 − σi) ≥ (1 − σa)N =
(
1 − σ

N
)N

≥ 1 − σ.

Thus, with probability at least 1 −σ the conditions of Theorem 1 are satisfied, which guar-
antees that F (xN ) −F (x∗) ≤ ε with probability at least 1 −σ, where N = Õ

(√
1 + H

μ

)
is given in (2.3). �

In contrast to the Catalyst algorithm in [20,21], we analyze Algorithm 1 in the setting 
when the auxiliary problem is step 4 is solved inexactly with some probability. In partic-
ular, we estimate how to choose this probability to guarantee that the point returned by 
the algorithm is an (ε, σ)-solution to (2.1) and show that the total complexity remains 
the same.
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2.2. SAGA algorithm [34]

In this subsection, we focus on the optimization problem of the form

min
x∈Rdx

max
y∈Rdy

{K(x, y) + M(x, y)} (2.6)

under the following assumption.

Assumption 3.

1. M is (μx, μy)-strongly-convex-strongly-concave and has tractable proximal operator

proxλ
M (x′, y′) = arg min

x∈Rdx
max
y∈Rdy

{
λM(x, y) + μx

2 ‖x− x′‖2 − μy

2 ‖y − y′‖2
}

;

2. K is convex-concave;
3. The vector-valued function B(x, y) = (∇xK(x, y), −∇yK(x, y)) ∈ Rdx+dy may be 

split into a family of vector-valued functions as B =
∑
i∈J

Bi, where Bi(x, y) =

(∇xKi(x, y), −∇yKi(x, y)), and B is L-average-smooth.

Under Assumption 3.3, problem (2.6) has the finite-sum structure, motivating the 
use of stochastic variance-reduced methods. Instead of expensive calculation of the full 
operator B in each iteration, such methods pick at random one Bi and only rarely 
calculate the full operator B. In particular, problem (2.6) under Assumption 3 can be 
solved by the SAGA algorithm proposed in [34] and listed below as Algorithm 2. Next, 
we, first, show in Lemma 1 that a problem with the form (1.7) satisfies Assumption 3. 
After that, in the main theorem of this subsection (Theorem 3), we give the complexity 
of the SAGA algorithm.

Algorithm 2 SAGA: online stochastic variance reduction for saddle points [34].
1: Input: Function M , operators (Bi)mi=1, probabilities (πi)mi=1, smoothness constants L̄(π) (see (2.11)) and 

L, starting point z0 = (x0, y0), number of iterations t, number of updates per iteration (mini-batch 
size) s.

2: Set λ =
(
max

{
3|J |
2s − 1, L2 + 3L̄2

s

})−1
;

3: Initialize wi = Bi(x0, y0) for all i ∈ J and W =
∑

i∈J
wi;

4: for l = 1 to t do
5: Sample i1, . . . , is ∈ J from the probability vector (πi)mi=1 with replacement;
6: Compute vk = Bik (xl, yl) for k ∈ {1, . . . , s};
7: (xl, yl)

= proxλ
M

{
(xl−1, yl−1) − λ

( 1
μx

0

0 1
μy

)(
W + 1

s

∑s
k=1

{
1

πik

vk − 1
πik

wik
})}

;

8: Replace W = W −
∑s

k=1{w
ik − vk} and wik = vk for k ∈ {1, . . . , s}.

9: end for
10: Output: Approximate solution zt = (xt, yt).
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Lemma 1. Consider the following special case of problem (2.6) with M(x, y) = f̃(x) −
h̃(y), K(x, y) = 1

m

∑m
i=1 Gi(x, y):

min
x∈Rdx

max
y∈Rdy

{
f̃(x) + 1

m

m∑
i=1

Gi(x, y) − h̃(y)
}
, (2.7)

where f̃(x) is prox-friendly μ̃x-strongly-convex, h̃(y) is prox-friendly μ̃y-strongly-
convex, each function Gi(x, y) is continuously differentiable, convex-concave, and 
1
m

∑m
i=1 Gi(x, y) is L-average-smooth. Under these assumptions, problem (2.7) satisfies 

Assumption 3.

Proof. 1. Since f̃(x) is μ̃x-strongly-convex, −h(y) is μ̃y-strongly-concave, M(x, y) is 
(μ̃x, μ̃y)-strongly-convex-strongly-concave. Moreover,

proxλ
M (x′, y′)

= arg min
x∈Rdx

max
y∈Rdy

{
λM(x, y) + μ̃x

2 ‖x− x′‖2 − μ̃y

2 ‖y − y′‖2
}

= arg min
x∈Rdx

max
y∈Rdy

{
λ(f̃(x) − h̃(y)) + μ̃x

2 ‖x− x′‖2 − μ̃y

2 ‖y − y′‖2
}

=
(

arg min
x∈Rdx

{
λf̃(x) + μ̃x

2 ‖x− x′‖2
}
, arg max

y∈Rdy

{
−λh̃(y) − μ̃y

2 ‖y − y′‖2
})

=
(
prox

λ/μ̃x

f̃
(x′), proxλ/μ̃y

h̃
(y′)
)
.

Thus, since f̃(x), ̃h(y) are prox-friendly, 
(
prox

λ/μ̃x

f̃
(x′), proxλ/μ̃y

h̃
(y′)
)

is easy to compute, 
proxλ

M (x′, y′) is easy to compute as well, and Assumption 3.1 holds.
2. Assumption 3.2 holds since K(x, y) = 1

m

∑m
i=1 Gi(x, y) is convex-concave.

3. Defining Bi(x, y) = 1
m (∇xGi(x, y), −∇yGi(x, y)), we see that

B(x, y) = (∇xK(x, y),−∇yK(x, y))

=
(
∇x

1
m

m∑
i=1

Gi(x, y),−∇y
1
m

m∑
i=1

Gi(x, y)
)

= 1
m

m∑
i=1

(∇xGi(x, y),−∇yGi(x, y)) =
m∑
i=1

Bi(x, y).

Since 1
m

∑m
i=1 Gi(x, y) is L-average-smooth, we have, for all (x1, y1), (x2, y2),

m∑
i=1

‖Bi(x1, y1) −Bi(x2, y2)‖ = 1
m

m∑
i=1

‖∇Gi(x1, y1) −∇Gi(x2, y2)‖

≤ L‖(x1, y1) − (x2, y2)‖.
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Thus, Assumption 3.3 holds. �
In the next theorem, we state the iteration complexity of Algorithm 2 to find an (ε, σ)-

solution to problem (2.7). Note that this is in contrast to [34], where the result is stated in 
terms of expectation. Let R0 be a number such that for the solution z∗ = (x∗, y∗) of (2.7)
and starting point z0 = (x0, y0) of Algorithm 2 it holds that ‖z0−z∗‖ ≤ R0. Since f̃ and 
h̃ are convex, by Theorem 3.1.8 in [29], the function f̃(x) + h̃(y) is Lipschitz-continuous 
with constant Mf̃+h̃ on the ball B2(z0, 2R0). More precisely, for z1 = (x1, y1), z2 =
(x2, y2) ∈ B2(z0, 2R0),∣∣f̃(x1) + h̃(y1) − f̃(x2) − h̃(y2)

∣∣ ≤ Mf̃+h̃‖z1 − z2‖. (2.8)

Theorem 3. Let the assumptions of Lemma 1 hold and let ε′, σ′ > 0 satisfy

ε′ ≤ min

⎧⎨⎩ε,R2
0,

ε(
2L + L2

μ̃y
+ L2

μ̃x

) , ε2

4Mf̃+h̃
2

⎫⎬⎭ = poly(ε), σ′ ≤ σ = poly(σ), (2.9)

where ε > 0, σ ∈ (0, 1). Then, after

N = 6
(
m + L2

(min{μ̃x, μ̃y})2
)

ln 2R2
0

ε′σ′ = Õ

(
m + L2

(min{μ̃x, μ̃y})2
)

(2.10)

iterations, Algorithm 2 (with s = 1, πi = 1
m for i = 1, ..., m) finds an (ε, σ)-solution to 

problem (2.7), i.e., (1.6) holds.

Proof. The proof is organized in three steps and relies on the complexity Theorem 2 
in [34]. The first step is to estimate several constants that are used in that complexity 
theorem. The second step is to apply that theorem and show that the output zN of 
Algorithm 2 is sufficiently close to the solution z∗. The final step is to show that ẑ = zN
also satisfies (1.6).

Step 1. The goal is to define and estimate for problem (2.7) the constants LA2 (in [34]
this constant is denoted as L), L̄, μ that are used in Appendix A, D.2 of [34]. We start 
by defining the operators A1(x, y), A2(x, y) that are used in Appendix A of [34]:

A1 =
(

1
μ̃x

∂f̃(x), 1
μ̃y

∂h̃(y)
)
, and A2(x, y) =

(
1
μ̃x

∇xG(x, y),− 1
μ̃y

∇yG(x, y)
)
.

Clearly,

A2(x, y) = 1
m

m∑
i=1

(
1
μ̃x

∇xGi(x, y),−
1
μ̃y

∇yGi(x, y)
)

=:
m∑
i=1

Ai
2(x, y).

The constants μ, LA2 , L̄ are defined as follows.
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(a) μ is the strong monotonicity constant of the operator A1. Using that f̃(x) is 
μ̃x-strongly-convex, h̃(y) is μ̃y-strongly-convex, we have:

(A1(z) −A1(z′))T (z − z′)

= 1
μ̃x

(∂f̃(x) − ∂f̃(x′))(x− x′) + 1
μ̃y

(∂h̃(y) − ∂h̃(y′))(y − y′)

≥ ‖x− x′‖2 + ‖y − y′‖2 ≥ ‖z − z′‖2.

Thus, A1(x, y) is μ-strongly-monotone with μ = 1.
(b) LA2 is the Lipschitz constant of A2(x, y) with respect to the Euclidean norm. 

Taking arbitrary z = (x, y), z′ = (x′, y′) ∈ Rdx+dy , we have

‖A2(x, y) −A2(x′, y′)‖

≤ 1
m

m∑
i=1

(
1
μ̃x

‖∇xGi(x, y) −∇xGi(x′, y′)‖ + 1
μ̃y

‖∇yGi(x, y) −∇yGi(x′, y′)‖
)

≤ L

(
1
μ̃x

+ 1
μ̃y

)
‖z − z′‖ ≤ 2L

min{μ̃x, μ̃y}
‖z − z′‖

by the L-average-smoothness of G(x, y). Thus, LA2 ≤ 2L
min{μ̃x,μ̃y} .

(c) The constant L̄2 = L̄2(π) is defined as follows:

L̄2 := sup
z,z′∈Rdx+dy

1
‖z − z′‖2

m∑
i=1

1
πi

∥∥Ai
2(x, y) −Ai

2(x′, y′)
∥∥2 (2.11)

= sup
z,z′∈Rdx+dy

1
‖z − z′‖2

m∑
i=1

m
∥∥Ai

2(x, y) −Ai
2(x′, y′)

∥∥2

= sup
z,z′∈Rdx+dy

1
‖z − z′‖2

m∑
i=1

m

m2
1
μ̃2
x

‖∇xGi(x, y) −∇xGi(x′, y′)‖2

+ 1
‖z − z′‖2

m∑
i=1

m

m2
1
μ̃2
y

‖∇yGi(x, y) −∇yGi(x′, y′)‖2

≤ sup
z,z′∈Rdx+dy

1
‖z − z′‖2L

2
(

1
μ̃2
x

+ 1
μ̃2
y

)
‖z − z′‖2 ≤ 2L2

min{μ̃x, μ̃y}2

by the L-average-smoothness of G(x, y). Thus, L̄2 ≤ 2L2

min{μ̃x,μ̃y}2 . Step 2. By Lemma 1, 
problem (2.7) satisfies Assumption 3 and, by Theorem 2 in [34], after t iteration of the 
SAGA Algorithm 2 with s = 1, πi = 1

m for i = 1, ..., m, we have

E‖zt − z∗‖2 ≤ 2
(

1 − 1
4

(
max

{
3|J |

2 , 1 +
L2
A2

μ2 + 3L̄2

μ2

})−1)t

‖z0 − z∗‖2,
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where |J | = m and μ, LA2 , L̄ are defined above. Defining

η =
(

max
{

3|J |
2 , 1 +

L2
A2

μ2 + 3L̄2

μ2

})−1

=
(

max
{

3m
2 ,

5L̄2

min{μ̃x, μ̃y}2

})−1

and taking t = N , where N is defined in (2.10), we get (x̂, ŷ) = ẑ = zN s.t.

E‖ẑ − z∗‖2 = E‖zN − z∗‖2 ≤ 2
(
1 − η

4

)N
‖z0 − z∗‖2 ≤ 2e−

η
4NR2

0 ≤ ε′σ′.

Since ‖ẑ − z∗‖2 ≥ 0, by the Markov’s inequality, we have

P (‖ẑ − z∗‖2 ≤ ε′) ≥ 1 − E‖ẑ − z∗‖2

ε′
≥ 1 − σ′,

and with probability at least 1 − σ′, (x̂, ŷ) = ẑ satisfies

‖x̂− x∗‖2 + ‖ŷ − y∗‖2 = ‖ẑ − z∗‖2 ≤ σ′ε′ ≤ ε′. (2.12)

Step 3. By (2.12), since, by (2.9), ε′ ≤ R2
0, with probability at least 1 − σ′

‖ẑ − z0‖2 ≤ 2(‖ẑ − z∗‖2 + ‖z∗ − z0‖2) ≤ 4R2
0.

Thus, with probability at least 1 − σ′, ẑ, z∗ ∈ B2(z0, 2R0) and, by (2.8),∣∣f̃(x̂) + h̃(ŷ) − f̃(x∗) − h̃(y∗)
∣∣ ≤ Mf̃+h̃‖ẑ − z∗‖. (2.13)

Since L-average-smoothness of G(x, y) implies its L-smoothness, the function u(x) =
maxy∈Rdy {G(x, y) − h̃(y)} is 

(
L + L2

μ̃y

)
-smooth by Lemma 2, and the function w(y) =

− minx∈Rdx {f̃(x) + G(x, y)} = maxx∈Rdx {−f̃(x) − G(x, y)} is 
(
L + L2

μ̃x

)
-smooth by 

Lemma 2. Thus, with probability at least 1 − σ′
(2.9)
≥ 1 − σ

max
y∈Rdy

{
f̃(x̂) + G(x̂, y) − h̃(y)

}
− min

x∈Rdx

{
f̃(x) + G(x, ŷ) − h̃(ŷ)

}
= max

y∈Rdy

{
f̃(x̂) + G(x̂, y) − h̃(y)

}
− {f̃(x∗) + G(x∗, y∗) − h̃(y∗)}

+ {f̃(x∗) + G(x∗, y∗) − h̃(y∗)} − min
x∈Rdx

{
f̃(x) + G(x, ŷ) − h̃(ŷ)

}
= f̃(x̂) − f̃(x∗) + u(x̂) − u(x∗) + h̃(ŷ) − h̃(y∗) + w(ŷ) − w(y∗)
(2.13)
≤ Mf̃+h̃‖ẑ − z∗‖ + 1

2

(
L + L2

μ̃y

)
‖x̂− x∗‖2 + 1

2

(
L + L2

μ̃x

)
‖ŷ − y∗‖2

≤ Mf̃+h̃‖ẑ − z∗‖ + 1
(

2L + L2
+ L2)

‖ẑ − z∗‖2

2 μ̃y μ̃x



E. Borodich et al. / EURO Journal on Computational Optimization 10 (2022) 100048 15
(2.12)
≤ Mf̃+h̃

√
ε′ + 1

2

(
2L + L2

μ̃y
+ L2

μ̃x

)
ε′

(2.9)
≤ ε.

Thus, (x̂, ŷ) is an (ε, σ)-solution to problem (2.7) (i.e., (1.6) holds). Moreover, (x̂, ŷ) is 
found at most after N iterations, where N is defined in (2.10). �
3. Preliminaries

In this section, we provide several technical results necessary for the analysis of our 
main algorithm. First, in Lemma 2 we state the properties of an implicit function given as 
a solution to parametric maximization problem. After that, we give three lemmas related 
to reformulations of saddle-point problems in the form of nested optimization problems: 
outer minimization and inner maximization problems. Namely, the saddle-point problem 
1) minx∈Rdx maxy∈Rdy F̃ (x, y), where F̃ (x, y) has similar structure to the objective in 
(1.7), can be reformulated in two ways:

2) min
x∈Rdx

{
ĝ(x) = max

y∈Rdy
F̃ (x, y)

}
, and 3) min

y∈Rdx

{
−g̃(y) = max

x∈Rdx
(−F̃ (x, y))

}
,

and the main goal of the three technical lemmas is to relate to each other (ε, σ)-solutions 
to these reformulations. We show that an approximate solution to 2) is an approximate 
solution to 1) (Lemma 3); that an approximate solution to 3) is an approximate solution 
to 2) (Lemma 4); that an approximate solution to 1) is an approximate solution to 3) 
(Lemma 5).

Lemma 2. Let us consider the function

p(x) = max
y∈Rdy

{
Ŝ(x, y) = F (x, y) − q(y)

}
, (3.1)

where F (x, y) is convex in x, concave in y and is LF -smooth as a function of (x, y), 
q(y) is μq-strongly-convex. Then, p(x) is Lp-smooth with Lp = LF + L2

F

μq
and y∗(·) is (

LF

μq

)
-Lipschitz continuous, where the point y∗ is defined as

y∗(x) := arg max
y∈Rdy

Ŝ(x, y), ∀x ∈ Rdx .

Proof. The function Ŝ(x, ·) is μq-strongly-concave, and Ŝ(·, y) is differentiable. Therefore, 
by the Demyanov–Danskin’s theorem, we have

∇p(x) = ∇xŜ(x, y∗(x)) = ∇xF (x, y∗(x)), ∀x ∈ Rdx . (3.2)

To prove that ∇p(·) is Lp–Lipschitz with Lp = LF + L2
F

μq
, we first prove the Lipschitz 

condition for y∗(·). Since Ŝ(x, ·) is μq-strongly-concave, we have, for arbitrary x1, x2 ∈
Rdx ,
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‖y∗(x1) − y∗(x2)‖2 ≤ 2
μq

(
Ŝ(x1, y

∗(x1)) − Ŝ(x1, y
∗(x2))

)
,

‖y∗(x2) − y∗(x1)‖2 ≤ 2
μq

(
Ŝ(x2, y

∗(x2)) − Ŝ(x2, y
∗(x1))

)
. (3.3)

At the same time,

Ŝ(x1, y
∗(x1)) − Ŝ(x1, y

∗(x2)) + Ŝ(x2, y
∗(x2)) − Ŝ(x2, y

∗(x1))

= Ŝ(x1, y
∗(x1)) − Ŝ(x1, y

∗(x2)) − Ŝ(x2, y
∗(x1)) + Ŝ(x2, y

∗(x2))
(3.1)= (F (x1, y

∗(x1)) − F (x1, y
∗(x2))) − (F (x2, y

∗(x1)) − F (x2, y
∗(x2)))

=
1∫

0

〈∇xF (x1 + t(x2 − x1), y∗(x1)) −∇xF (x1 + t(x2 − x1), y∗(x2)), x2 − x1〉dt

≤ ‖∇xF (x1 + t(x2 − x1), y∗(x1)) −∇xF (x1 + t(x2 − x1), y∗(x1))‖ · ‖x2 − x1‖
≤ LF ‖y∗(x1) − y∗(x2)‖ · ‖x2 − x1‖. (3.4)

Thus, (3.3) and (3.4) imply the inequality

‖y∗(x2) − y∗(x1)‖ ≤ LF

μq
‖x2 − x1‖, (3.5)

i.e., the function y∗(·) satisfies Lipschitz condition with the constant LF

μq
. Next, from 

(3.2), we obtain

‖∇p(x1) −∇p(x2)‖ = ‖∇xF (x1, y
∗(x1)) −∇xF (x2, y

∗(x2))‖ =

= ‖∇xF (x1, y
∗(x1)) −∇xF (x1, y

∗(x2)) + ∇xF (x1, y
∗(x2)) −∇xF (x2, y

∗(x2))‖
≤ ‖∇xF (x1, y

∗(x1)) −∇xF (x1, y
∗(x2))‖

+ ‖∇xF (x1, y
∗(x2)) −∇xF (x2, y

∗(x2))‖

≤ LF ‖y∗(x1) − y∗(x2)‖ + LF ‖x2 − x1‖
(3.5)
≤
(
LF + L2

F

μq

)
‖x2 − x1‖.

Thus, p(x) has Lipschitz gradient with the constant Lp = LF + L2
F

μq
. �

As mentioned above, we next consider different reformulations of saddle-point prob-
lems. First, we consider the reformulation of the strongly-convex-strongly-concave prob-
lem

min
x∈Rdx

max
y∈Rdy

{
f̃(x) + G(x, y) − h̃(y)

}
(3.6)

as an equivalent minimization problem:
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min
x∈Rdx

{
f̃(x) + max

y∈Rdy
{G(x, y) − h̃(y)}

}
. (3.7)

Our goal is to show that if x̂ is an (εx, σx)-solution to the outer problem in (3.7) and ŷ
is an (εy, σy)-solution to the inner problem maxy∈Rdy {G(x̂, y) − h̃(y)}, then (x̂, ŷ) is an 
(ε, σ)-solution to problem (3.6), where the dependencies εx(ε), εy(ε), σx(σ), σy(σ) are 
polynomial. Let Ry be a number such that R2

y ≥ ε > 0 and for the solution z∗ = (x∗, y∗)
of (3.6) it holds that ‖y∗‖ ≤ Ry. Since h̃ is convex, by Theorem 3.1.8 in [29], h̃(y) is 
Lipschitz-continuous with constant Mh̃ on the ball B2(0, 2Ry).

Lemma 3. Assume, that in (3.6) f̃(x) is μ̃x-strongly-convex, h̃(y) is μ̃y-strongly-convex, 
and Assumption 1.2 holds. Let an approximate solution (x̂, ŷ) for (3.7) satisfy

1. x̂ is an (εx, σx)-solution to the outer problem in (3.7), i.e., (1.5) holds for the objective 
f̃(x) + maxy∈Rdy {G(x, y) − h̃(y)};

2. ŷ is an (εy, σy)-solution to the inner problem maxy∈Rdy {G(x̂, y) − h̃(y)},

where

εy ≤ min

⎧⎨⎩ μ̃yε

8 ,
ε2μ̃y

72M2
h̃

,
εμ̃y

12
(
L + L2

μ̃x

)
⎫⎬⎭ = poly(ε), (3.8)

εx ≤ min
{
εyμ̃xμ̃y

L2 ,
ε

3

}
= poly(ε), max{σx, σy} ≤ σ

2 = poly(σ) (3.9)

for some ε > 0, σ ∈ (0, 1). Then, (x̂, ŷ) is an (ε, σ)-solution to problem (3.6), i.e., (1.6)
holds.

Proof. Under the lemma assumptions, problems (3.6) and (3.7) have the unique solution 
(x∗, y∗). We denote Ψ(x) = f̃(x) + maxy∈Rdy {G(x, y) − h̃(y)} and notice that Ψ(x) is 
μ̃x-strongly-convex and has the minimum at x∗. Thus, by condition 1. of the lemma, 
with probability at least 1 − σx,

‖x̂− x∗‖2 ≤ 2
μ̃x

(Ψ(x̂) − Ψ(x∗)) ≤ 2εx
μ̃x

.

We denote y∗(x) = arg maxy∈Rdy {G(x, y) − h̃(y)} and notice that, since L-average-
smoothness of G(x, y) implies its L-smoothness, by Lemma 2, y∗(x) is 

(
L
μy

)
-Lipschitz 

continuous. Since G(x̂, y) − h̃(y) is μ̃y-strongly-concave, by condition 2. of the lemma, 
we obtain that with probability at least 1 − σx − σy,

‖ŷ − y∗‖2 ≤ 2‖ŷ − y∗(x̂)‖2 + 2‖y∗(x̂) − y∗(x∗)‖2 ≤ 4εy + 2
(

L
)2

‖x̂− x∗‖2

μ̃y μ̃y
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≤ 4εy
μ̃y

+ 4
(

L

μ̃y

)2
εx
μ̃x

(3.9)
≤ 8εy

μ̃y

(3.8)
≤ ε. (3.10)

Further, with probability at least 1 − σx − σy, since R2
y ≥ ε > 0, we have ‖ŷ‖2 ≤

2(‖ŷ−y∗‖2 +‖y∗‖2) ≤ 4R2
y and, hence, y∗, ŷ ∈ B2(0, 2Ry). Thus, since h̃(y) is Lipschitz-

continuous with constant Mh̃ on B2(0, 2Ry) (see the justification before the statement 
of this lemma), we have with probability at least 1 − σx − σy that 

∣∣h̃(ŷ) − h̃(y∗)
∣∣ ≤

Mh̃‖ŷ − y∗‖. Further, since L-average-smoothness of G(x, y) implies its L-smoothness, 
by Lemma 2, w(y) = − minx∈Rdx {f̃(x) +G(x, y)} is 

(
L + L2

μ̃x

)
-smooth. Thus, for Φ(y) =

minx∈Rdx {f̃(x) + G(x, y)} − h̃(y), with probability at least 1 − σx − σy we have:

0 ≤ Φ(y∗) − Φ(ŷ) = h̃(ŷ) − h̃(y∗) + w(ŷ) − w(y∗)

≤ Mh̃‖ŷ − y∗‖ + 1
2

(
L + L2

μ̃x

)
‖ŷ − y∗‖2

(3.10)
≤ Mh̃

√
8εy
μ̃y

+ 1
2

(
L + L2

μ̃x

)(
8εy
μ̃y

)
(3.8)
≤ Mh̃

√
8ε2μ̃y

μ̃y72M2
h̃

+ 1
2

(
L + L2

μ̃x

)⎛⎝ 8εμ̃y

μ̃y12
(
L + L2

μ̃x

)
⎞⎠ = 2ε

3 . (3.11)

Finally, with probability at least 1 − σx − σy

(3.9)
≥ 1 − σ

max
y∈Rdy

{
f̃(x̂) + G(x̂, y) − h̃(y)

}
− min

x∈Rdx

{
f̃(x) + G(x, ŷ) − h̃(ŷ)

}
= max

y∈Rdy

{
f̃(x̂) + G(x̂, y) − h̃(y)

}
− {f̃(x∗) + G(x∗, y∗) − h̃(y∗)}

+ {f̃(x∗) + G(x∗, y∗) − h̃(y∗)} − min
x∈Rdx

{
f̃(x) + G(x, ŷ) − h̃(ŷ)

}
= Ψ(x̂) − Ψ(x∗) + Φ(y∗) − Φ(ŷ)

(3.11)
≤ εx + 2ε

3
(3.9)
≤ ε. �

Second, we reformulate problem (3.7) as an equivalent problem

− min
y∈Rdy

{
h̃(y) + max

x∈Rdx

{
−G(x, y) − f̃(x)}

}}
. (3.12)

Our goal is to show that if ŷ is an (εy, σy)-solution to the outer problem in (3.12) and 
x̂ is an (εx, σx)-solution to the inner problem maxx∈Rdx {−G(x, ŷ) − f̃(x)}, then x̂ is an 
(ε′x, σ′

x)-solution to the outer problem in (3.7) and ŷ is an 
(
ε′y, σ

′
y

)
-solution to the inner 

problem maxy∈Rdy {G(x̂, y) − h̃(y)} in (3.7), where the dependencies εx (εx), εy
(
ε′x, ε

′
y

)
, 

σx (σ′
x), σy

(
σ′
x, σ

′
y

)
are polynomial. Let Rx, Ry be numbers such that R2

x ≥ ε′x > 0, 
R2

y ≥ ε′y > 0 and for the solution z∗ = (x∗, y∗) of (3.12) it holds that ‖x∗‖ ≤ Rx and 
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‖y∗‖ ≤ Ry. Since f̃ , h̃ are convex, by Theorem 3.1.8 in [29], f̃(x) is Lipschitz-continuous 
with constant Mf̃ on the ball B2(0, 2Rx) and h̃(y) is Lipschitz-continuous with constant 
Mh̃ on the ball B2(0, 2Ry).

Lemma 4. Assume, that in (3.12) f̃(x) is μ̃x-strongly-convex, h̃(y) is μ̃y-strongly-convex, 
and Assumption 1.2 holds. Let an approximate solution (x̂, ŷ) for (3.12) satisfy

1. ŷ is an (εy, σy)-solution to the outer problem in (3.12), i.e., (1.5) holds for the objective 
h̃(y) + maxx∈Rdx

{
−G(x, y) − f̃(x)}

}
;

2. x̂ is an (εx, σx)-solution to the inner problem maxx∈Rdx {−f̃(x) −G(x, ŷ)},

where

εx ≤ min

⎧⎨⎩ μ̃xε
′
x

8 ,
ε′ 2x μ̃x

32M2
f̃

,
ε′xμ̃x

8
(
L + L2

μ̃y

)
⎫⎬⎭ = poly(ε′x), (3.13)

εy ≤ min
{
μ̃yε

′
y

2 ,
εxμ̃xμ̃y

L2 ,
ε′ 2y μ̃y

8M2
h̃

,
ε′yμ̃y

2L

}
= poly(ε′x, ε′y), (3.14)

σx ≤ σ′
x

2 = poly(σ′
x), σy ≤ min

{
σ′
x

2 , σ′
y

}
= poly(σ′

x, σ
′
y) (3.15)

for some ε > 0, σ ∈ (0, 1). Then, x̂ is an (ε′x, σ′
x)-solution to the outer problem in (3.7)

and ŷ is an (ε′y, σ′
y)-solution to the inner problem in (3.7) maxy∈Rdy {G(x̂, y) − h̃(y)}.

Proof. We first prove that x̂ is an (ε′x, σ′
x)-solution to the outer problem in (3.7). Under 

the lemma assumptions, problems (3.7) and (3.12) have the unique solution (x∗, y∗). We 
denote Φ(y) = h̃(y) + maxx∈Rdx {−G(x, y) − f̃(x)} and notice that Φ(y) is μ̃y-strongly-
convex and has the minimum at y∗. Thus, by condition 1. of the lemma, with probability 
at least 1 − σy,

‖ŷ − y∗‖2 ≤ 2
μ̃y

(Φ(ŷ) − Φ(y∗)) ≤ 2εy
μ̃y

. (3.16)

We denote x∗(y) = arg maxx∈Rdx {−G(x, y) − f̃(x)} and notice that, since L-average-
smoothness of G(x, y) implies its L-smoothness, by Lemma 2, x∗(y) is 

(
L
μx

)
-Lipschitz-

continuous. Since −G(x, ŷ) −f̃(x) is μ̃x-strongly-concave, using condition 2. of the lemma, 
we obtain that with probability at least 1 − σx − σy,

‖x̂− x∗‖2 ≤ 2‖x̂− x∗(ŷ)‖2 + 2‖x∗(ŷ) − x∗(y∗)‖2 ≤ 4εx
μ̃x

+ 2
(

L

μ̃x

)2

‖ŷ − y∗‖2

≤ 4εx
μ̃x

+ 4
(

L

μ̃x

)2
εy
μ̃y

(3.14)
≤ 8εx

μ̃x

(3.13)
≤ ε′x. (3.17)
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Further, with probability at least 1 − σx − σy, since R2
x ≥ ε′x > 0, we have ‖x̂‖2 ≤

2(‖x̂−x∗‖2+‖x∗‖2) ≤ 4R2
x and, hence, x∗, ̂x ∈ B2(0, 2Rx). Thus, since f̃(x) is Lipschitz-

continuous with constant Mf̃ on B2(0, 2Rx) (see the justification before the statement 
of this lemma), we have with probability at least 1 − σx − σy that 

∣∣f̃(x̂) − f̃(x∗)
∣∣ ≤

Mf̃‖x̂−x∗‖. Further, since L-average-smoothness of G(x, y) implies its L-smoothness, by 

Lemma 2, g(x) = maxy∈Rdy {G(x, y) −h̃(y)} is 
(
L + L2

μ̃y

)
-smooth. Thus, with probability 

at least 1 − σx − σy

(3.15)
≥ 1 − σ′

x:

f̃(x̂) + max
y∈Rdy

{G(x̂, y) − h̃(y)} − min
x∈Rdx

{f̃(x) + max
y∈Rdy

{G(x, y) − h̃(y)}}

= f̃(x̂) − f̃(x∗) + g(x̂) − g(x∗)

≤ Mf̃‖x̂− x∗‖ + 1
2

(
L + L2

μ̃y

)
‖x̂− x∗‖2

(3.17)
≤ Mf̃

√
8εx
μ̃x

+ 1
2

(
L + L2

μ̃y

)(
8εx
μ̃x

)
(3.13)
≤ Mf̃

√
8ε′ 2x μ̃x

μ̃x32M2
f̃

+ 1
2

(
L + L2

μ̃y

)⎛⎝ 8ε′xμ̃x

μ̃x8
(
L + L2

μ̃y

)
⎞⎠ = ε′x,

justifying that x̂ is an (ε′x, σ′
x)-solution to the outer problem in (3.7).

Next, we prove that ŷ is an (ε′y, σ′
y)-solution to the inner problem in (3.7), i.e., 

maxy∈Rdy {G(x̂, y) − h̃(y)}. With probability at least 1 − σy, from (3.16) and (3.14), we 

have that ‖ŷ− y∗‖2 ≤ 2εy
μ̃y

≤ ε′y ≤ R2
y, which implies ‖ŷ‖2 ≤ 2(‖ŷ− y∗‖2 + ‖y∗‖2) ≤ 4R2

y

and, hence, y∗, ŷ ∈ B2(0, 2Ry). Thus, since h̃(y) is Lipschitz-continuous with constant 
Mh̃ on B2(0, 2Ry) (see the justification before the statement of this lemma), we have 
with probability at least 1 − σy that 

∣∣h̃(ŷ) − h̃(y∗)
∣∣ ≤ Mh̃‖ŷ − y∗‖. Further, L-average-

smoothness of G(x, y) implies its L-smoothness.

Thus, with probability at least 1 − σy

(3.15)
≥ 1 − σ′

y:

(
G(x̂, y∗) − h̃(y∗)

)
−
(
G(x̂, ŷ) − h̃(ŷ)

)
= h̃(ŷ) − h(y∗) + G(x̂, y∗) −G(x̂, ŷ)

≤ Mh̃‖ŷ − y∗‖ + L

2 ‖ŷ − y∗‖2
(3.16)
≤ Mh̃

√
2εy
μ̃y

+ L

2
2εy
μ̃y

(3.14)
≤ Mh̃

√
2ε′ 2y μ̃y

μ̃y8M2
h̃

+ L

2
ε′yμ̃y

Lμ̃y
= ε′y.

Hence, ŷ is an (ε′y, σ′
y)-solution to the inner problem in (3.7), i.e., maxy∈Rdy {G(x̂, y) −

h̃(y)}. �
Finally, we reformulate problem (3.12) as an equivalent strongly-convex-strongly-

concave saddle-point problem (3.6). Our goal is to show that if (x̂, ŷ) is an (ε, σ)-solution 
to problem (3.6), then ŷ is an (εy, σy)-solution to the outer problem in (3.12) and x̂ is 
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an (εx, σx)-solution to the inner problem maxx∈Rdx {−G(x, ŷ) − f̃(x)} in (3.12), where 
the dependencies ε(εx, εy), σ(σx, σy) are polynomial. Let Rx be a number such that 
R2

x ≥ εx > 0 and for the solution z∗ = (x∗, y∗) of (3.6) it holds that ‖x∗‖ ≤ Rx. Since f̃
is convex, by Theorem 3.1.8 in [29], f̃ is Lipschitz-continuous with constant Mf̃ on the 
ball B2(0, 2Rx).

Lemma 5. Assume, that in (3.6) f̃(x) is μ̃x-strongly-convex, h̃(y) is μ̃y-strongly-convex, 
and Assumption 1.2 holds. Let (x̂, ŷ) be an (ε, σ)-solution to the saddle-point problem 
(3.6), i.e., (1.6) holds, where

ε ≤ min
{
εy,

εxμ̃x

2 ,
εxμ̃x

2L ,
ε2
xμ̃x

8M2
f̃

}
= poly(εx, εy), σ ≤ min {σx, σy} = poly(σx, σy)

(3.18)
for some εx, εy > 0, σx, σy ∈ (0, 1). Then,

1. ŷ is an (εy, σy)-solution to the outer problem in (3.12), i.e., (1.5) holds for the objective 
h̃(y) + maxx∈Rdx {−G(x, y) − f̃(x)};

2. x̂ is an (εx, σx)-solution to the inner problem maxx∈Rdx {−G(x, ŷ) − f̃(x)}.

Proof. Since (x̂, ŷ) is an (ε, σ)-solution to the saddle-point problem (3.6), i.e., (1.6) holds, 
we have with probability at least 1 − σ

h̃(ŷ) + max
x∈Rdx

{−G(x, ŷ) − f̃(x)} − min
y∈Rdy

{h̃(y) + max
x∈Rdx

{−G(x, y) − f̃(x)}}

≤ − min
x∈Rdx

{f̃(x) + G(x, ŷ) − h̃(ŷ)} + {f̃(x∗) + G(x∗, y∗) − h̃(y∗)}

+ max
y∈Rdy

{f̃(x̂) + G(x̂, y) − h̃(y)} − {f̃(x∗) + G(x∗, y∗) − h̃(y∗)}

= max
y∈Rdy

{f̃(x̂) + G(x̂, y) − h̃(y)} − min
x∈Rdx

{f̃(x) + G(x, ŷ) − h̃(ŷ)} ≤ ε. (3.19)

Since ε ≤ εy, σ ≤ σy, this immediately gives that ŷ is an (εy, σy)-solution to the outer 
problem in (3.12).

Repeating similar steps as in (3.19), we obtain that x̂ is an (ε, σ)-solution to the 
problem minx∈Rdx {Ψ(x) = f̃(x) + maxy∈Rdy {G(x, y) − h̃(y)}}. Ψ(x) is μ̃x-strongly-
convex and has the minimum at x∗, whence, with probability at least 1 − σ

‖x̂− x∗‖2 ≤ 2
μ̃x

(Ψ(x̂) − Ψ(x∗)) ≤ 2ε
μ̃x

(3.18)
≤ εx. (3.20)

Further, with probability at least 1 − σ, since R2
x ≥ εx > 0, we have ‖x̂‖2 ≤ 2(‖x̂ −

x∗‖2 + ‖x∗‖2) ≤ 4R2
x and, hence, x∗, ̂x ∈ B2(0, 2Rx). Thus, since f̃(x) is Lipschitz-

continuous with constant Mf̃ on B2(0, 2Rx) (see the justification before the statement of 
this lemma), we have with probability at least 1 − σ that 

∣∣f̃(x̂) − f̃(x∗)
∣∣ ≤ Mf̃‖x̂− x∗‖.
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Thus, using that G(x, y) is L-smooth by its L-average-smoothness, we get with prob-

ability at least 1 − σ
(3.18)
≥ 1 − σx

{
−G(x∗, ŷ) − f̃(x∗)

}
−
{
−G(x̂, ŷ) − f̃(x̂)

}
= f̃(x̂) − f(x∗) + G(x̂, ŷ) −G(x∗, ŷ)

≤ Mf̃‖x̂− x∗‖ + L

2 ‖x̂− x∗‖2
(3.20)
≤ Mf̃

√
2ε
μ̃x

+ L

2
2ε
μ̃x

(3.18)
≤ Mf̃

√
2ε2

xμ̃x

8μ̃xM2
f̃

+ L

2
εxμ̃x

Lμ̃x
= εx,

which implies that x̂ is an (εx, σx)-solution to the inner problem in (3.12), i.e., 
maxx∈Rdx {−G(x, ŷ) − f̃(x)}. �
4. Accelerated variance-reduced method for saddle-point problems

In this section, we describe in detail the structure of our three-loop algorithm, listed 
below as Algorithm 3, and prove the main complexity Theorem 4. The main idea is to 
accelerate SAGA algorithm (Algorithm 2) using extrapolation steps in x and in y as in 
the Catalyst algorithm (Algorithm 1). Therefore, in the first two loops, we apply Algo-
rithm 1 and, in the third loop, we apply Algorithm 2. Each loop takes as input some 
outer problem and its required accuracy ε and confidence level σ. This outer problem 
is reformulated in the loop and the reformulation is solved either by Algorithm 1 or by 
Algorithm 2 with the accuracy ε′ and confidence level σ′ guaranteeing, by the results 
of Section 3, that for the outer problem we have an (ε, σ)-solution. Moreover, the algo-
rithm used in each loop requires to solve some auxiliary problem with some accuracy 
and confidence level, which are then used as input for the next loop. After the loops’ 
description, we summarize the complexity of each loop to obtain the total complexity of 
the algorithm in Theorem 4.

Loop 1 This loop starts at line 3 and ends at line 12. The goal of this loop is to accelerate 
SAGA Algorithm 2 in x using the Catalyst Algorithm 1. To that end, we reformulate 
the saddle-point problem (1.7) as the minimization problem

min
x∈Rdx

{
f(x) + max

y∈Rdy
{G(x, y) − h(y)}

}
. (4.1)

Let 
(
ε
(1)
x , σ

(1)
x

)
= (poly(ε),poly(σ)) , 

(
ε
(1)
y , σ

(1)
y

)
= (poly(ε),poly(σ)) satisfy (3.8) and 

(3.9) with f and h playing the role of f̃ and h̃ respectively, meaning that μ̃x = μx, 
μ̃y = μy. If we find x̂ that is an 

(
ε
(1)
x , σ

(1)
x

)
-solution to the outer problem (4.1), and ŷ

that is an 
(
ε
(1)
y , σ

(1)
y

)
-solution to the inner problem
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max
y∈Rdy

{G(x̂, y) − h(y)}, (4.2)

then, by Lemma 3, the pair (x̂, ŷ) is an (ε, σ)-solution to problem (1.7).

Algorithm 3 Accelerated variance-reduced algorithm for SPPs.
1: Input: Starting point x0 ∈ Rdx , algorithmic parameters H1 > 0, H2 > 0, αx0 > 0, αy0 > 0, strong 

convexity and strong concavity parameters μx, μy, and sequences of accuracies and confidence levels (
ε
(3)
k,n, σ

(3)
k,n

)
k,n≥0

.

2: Initialize xmd
0 = x0, qx = μx

μx+H1
;

3: for k = 0, 1, . . . do
4: ymd

k0
= yk0 , qy = μy

μy+H2
;

5: for n = 0, 1, . . . do
6: By the SAGA Algorithm 2 find an (ε(3)

k,n, σ
(3)
k,n)-solution

(xk, yk,n) ≈ min
x∈Rdx

max
y∈Rdy

Sk,n(x, y), where

Sk,n(x, y) := f(x) + H1
2 ‖x − xmd

k−1‖2 + G(x, y) − h(y) − H2
2 ‖y − ymd

k,n−1‖2;
7: Find αyk,n

∈ (0, 1) from equation α2
yk,n

= (1 − αyk,n
)α2

yk,n−1
+ qyαyk,n

;
8: Compute ymd

k,n using Nesterov’s extrapolation step

y
md
k,n = yk,n + βyk,n

(yk,n − yk,n−1) with βyk,n
=

αyk,n−1 (1 − αyk,n−1 )
α2

yk,n−1
+ αyk,n

.

9: end for
10: Find αxk

∈ (0, 1) from equation α2
xk

= (1 − αxk
)α2

xk−1
+ qxαxk

;
11: Compute xmd

k using Nesterov’s extrapolation step

x
md
k = xk + βxk

(xk − xk−1) with βxk
=

αxk−1 (1 − αxk−1 )
α2

xk−1
+ αxk

.

12: end for
13: Output: xk, yk,n (final estimate).

To find such pair (x̂, ŷ) with target parameters ε(1)
x , σ(1)

x , ε(1)
y , σ(1)

y , we solve problem 
(4.1) using Algorithm 1 with parameter H1 to be chosen later. The outer objective in 
(4.1) satisfies Assumption 2 with ϕ(x) = f(x) which is μx-strongly-convex and ψ(x) =
maxy∈Rdy {G(x, y) − h(y)} which is 

(
L + L2

μy

)
-smooth. The latter holds by Lemma 2

since L-average smoothness of G(x, y) implies that G(x, y) is L-smooth as a function of 
(x, y).

In each iteration k of Algorithm 1 applied to (4.1), the problem

xk = arg min
x∈Rdx

{
f(x) + max

y∈Rdy
{G(x, y) − h(y)} + H1

2 ‖x− xmd
k−1‖2

}
(4.3)

needs to be solved inexactly. Assume that, for each k ≥ 0, we can find an 
(
ε
(1)
xk , σ

(1)
xk

)
-

solution to this problem, where ε(1)
xk and σ(1)

xk satisfy respectively (2.4) and (2.5) with 
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ε
(1)
x , σ(1)

x , μx, H1 playing the role of ε, σ, μ, H respectively. The latter also implies 
that ε(1)

xk = poly
(
ε
(1)
x

)
= poly (ε) and σ

(1)
xk = poly

(
ε
(1)
x , σ

(1)
x

)
= poly (ε, σ). Applying 

Theorem 2, and using that ε(1)
x = poly(ε), σ(1)

x = poly(σ), we obtain that in N1 =
Õ
(√

1 + H1
μx

)
iterations Algorithm 1 finds an (ε(1)

x , σ(1)
x )-solution x̂ to problem (4.1) and 

an (ε(1)
y , σ(1)

y )-solution ŷ to problem (4.2), which, by the choice of ε(1)
x , σ(1)

x , ε(1)
y , σ(1)

y , are 
also an (ε, σ)-solution to problem (1.7).

It remains to show how to find 
(
ε
(1)
xk , σ

(1)
xk

)
-solution to problem (4.3) in each iter-

ation of Algorithm 1. This is organized in Loop 2 below. Importantly, 
(
ε
(1)
xk , σ

(1)
xk

)
=

(poly(ε),poly(ε, σ)).

Loop 2 This loop starts at line 5 and ends at line 9. The goal of this loop is to accelerate 
SAGA Algorithm 2 in y using the Catalyst Algorithm 1 while finding an 

(
ε
(1)
xk , σ

(1)
xk

)
-

solution to problem (4.3). To that end, we reformulate the minimization problem in x
(4.3) as the minimization problem in y:

min
y∈Rdy

{
h(y) + max

x∈Rdx

{
−f̂k(x) −G(x, y)

}}
, (4.4)

where f̂k(x) = f(x) + H1
2 ‖x −xmd

k−1‖2 is (μx +H1)-strongly-convex and prox-friendly [35]
since f is prox-friendly.

Set 
(
ε
(1)
yk , σ

(1)
yk

)
=
(
ε
(1)
xk , σ

(1)
xk

)
and let 

(
ε
(2)
xk , σ

(2)
xk

)
=
(
poly

(
ε
(1)
xk

)
,poly

(
σ

(1)
xk

))
=

(poly(ε),poly(ε, σ)), 
(
ε
(2)
yk , σ

(2)
yk

)
=
(
poly

(
ε
(1)
yk , ε

(1)
xk

)
,poly

(
σ

(1)
xk , σ

(1)
yk

))
=
(
poly(ε),

poly(ε, σ)
)

satisfy (3.13), (3.14), and (3.15) with ε(1)
xk , σ(1)

xk , ε(1)
yk , σ(1)

yk playing the role 
of ε′x, σ′

x, ε′y, σ′
y respectively, and f̂k and h playing the role of f̃ and h̃ respectively, 

meaning that μ̃x = μx +H1, μ̃y = μy. If we find ŷk that is an 
(
ε
(2)
yk , σ

(2)
yk

)
-solution to the 

outer problem (4.4) and x̂k that is an 
(
ε
(2)
xk , σ

(2)
xk

)
-solution to the inner problem

max
x∈Rdx

{
−f̂k(x) −G(x, ŷk)

}
, (4.5)

then, by Lemma 4, x̂k is an 
(
ε
(1)
xk , σ

(1)
xk

)
-solution to the outer problem in (4.3) and ŷk is 

an 
(
ε
(1)
yk , σ

(1)
yk

)
-solution to the inner problem in (4.3) and the goal of Loop 2 is achieved.

To find such pair (x̂k, ŷk) with target parameters ε(2)
xk , σ

(2)
xk , ε

(2)
yk , σ(2)

yk , we solve problem 
(4.4) using Algorithm 1 with parameter H2 to be chosen later. The outer objective in (4.4)
satisfies Assumption 2 with μy-strongly-convex function h(y) playing the role of ϕ(·) and (
L + L2

μx+H1

)
-smooth function maxx∈Rdx

{
−f̂k(x) −G(x, y)

}
playing the role of ψ(·). 

The smoothness holds by Lemma 2 since L-average smoothness of G(x, y) implies that 
G(x, y) is L-smooth as a function of (x, y) and since f̂k(x) is (μx +H1)-strongly-convex.
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In each iteration n of Algorithm 1 applied to (4.4), the problem

yk,n = arg min
y∈Rdy

{
h(y) + max

x∈Rdx

{
−G(x, y) − f̂k(x)

}
+ H2

2 ‖y − ymd
k,n−1‖2

}
(4.6)

needs to be solved inexactly. Assume that, for each n ≥ 0, we can find an 
(
ε
(2)
yk,n , σ

(2)
yk,n

)
-

solution to this problem, where ε(2)
yk,n and σ(2)

yk,n satisfy respectively (2.4) and (2.5) with 

ε
(2)
yk , σ(2)

yk , μy, H2 playing the role of ε, σ, μ, H respectively. The latter also implies 
that ε(2)

yk,n = poly
(
ε
(2)
yk

)
= poly (ε) and σ

(2)
yk,n = poly

(
ε
(2)
yk , σ

(2)
yk

)
= poly (ε, σ). Applying 

Theorem 2, and using that ε(2)
yk = poly(ε), σ(2)

yk = poly(ε, σ), we obtain that in N2 =
Õ
(√

1 + H2
μy

)
iterations Algorithm 1 finds an (ε(2)

yk , σ
(2)
yk )-solution ŷk to problem (4.4)

and an (ε(2)
xk , σ

(2)
xk )-solution x̂k to problem (4.5), and, by the choice of ε(2)

xk , σ
(2)
xk , ε

(2)
yk , σ

(2)
yk , 

x̂k is also an 
(
ε
(1)
xk , σ

(1)
xk

)
-solution to problem (4.3).

It remains to show how to find 
(
ε
(2)
yk,n , σ

(2)
yk,n

)
-solution to problem (4.6) in each iter-

ation of Algorithm 1. This is organized in Loop 3 below. Importantly, 
(
ε
(2)
yk,n , σ

(2)
yk,n

)
=

(poly(ε),poly(ε, σ)).

Loop 3 This loop is made inside step 6, where Algorithm 2 is applied. The goal of this 
loop is to find an 

(
ε
(2)
yk,n , σ

(2)
yk,n

)
-solution to problem (4.6).

To that end, we reformulate the minimization problem in y (4.6) as the saddle-point 
problem

min
x∈Rdx

max
y∈Rdy

{
f̂k(x) + G(x, y) − ĥk,n(y)

}
, (4.7)

where ĥk,n(y) = h(y) + H2
2 ‖y − ymd

k,n−1‖2 is (μy +H2)-strongly-convex and prox-friendly 
[35] since h is prox-friendly.

Set 
(
ε
(2)
xk,n , σ

(2)
xk,n

)
=
(
ε
(2)
yk,n , σ

(2)
yk,n

)
and let ε(3)

k,n = poly
(
ε
(2)
xk,n , ε

(2)
yk,n

)
= poly(ε), σ(3)

k,n =

poly
(
σ

(2)
xk,n , σ

(2)
yk,n

)
= poly(ε, σ) satisfy (3.18) with ε(2)

xk,n , σ(2)
xk,n , ε(2)

yk,n , σ(2)
yk,n playing the 

role of εx, σx, εy, σy respectively, and f̂k and ĥk,n playing the role of f̃ and h̃ respectively, 
meaning that μ̃x = μx + H1, μ̃y = μy + H2. If we find a pair (x̂k,n, ŷk,n) that is an 
(ε(3)

k,n, σ
(3)
k,n)-solution to the saddle-point problem (4.7), then, by Lemma 5, ŷk,n is an (

ε
(2)
yk,n , σ

(2)
yk,n

)
-solution to the outer problem in (4.6) and x̂k,n is an 

(
ε
(2)
x , σ

(2)
x

)
-solution 

to the inner problem in (4.6).
To find such pair (x̂k,n, ŷk,n) with target parameters ε(3)

k,n, σ
(3)
k,n, we solve problem (4.7)

using Algorithm 2 with

M(x, y) = f̂k(x) − ĥk,n(y), K(x, y) = G(x, y).
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This problem satisfies the assumptions of Lemma 1 with f̃(x) = f̂k(x), h̃(y) = ĥk,n(y), 
μ̃x = μx +H1, μ̃y = μy +H2 since f̂k(x), ĥk,n(y) are strongly-convex and prox-friendly, 
and since G(x, y) is L-average smooth. Therefore, by Lemma 1, Assumption 3 holds, 
which allows us to apply Algorithm 2 to solve problem (4.7) using the following param-
eters: πi = 1

m , i = 1, ..., m, L̄ = 2L
min{μx+H1,μy+H2} , s = 1. We set (ε(3)

k,n)′ and (σ(3)
k,n)′

to satisfy (2.9) with ε(3)
k,n, σ(3)

k,n playing the role of ε, σ respectively, and μ̃x = μx + H1, 
μ̃y = μy + H2, which implies also that (ε(3)

k,n)′ = poly
(
ε
(3)
k,n

)
= poly (ε) and (σ(3)

k,n)′ =

poly
(
σ

(3)
k,n

)
= poly (ε, σ). Applying Theorem 3, and using that (ε(3)

k,n)′ = poly(ε), 

(σ(3)
k,n)′ = poly(ε, σ), we obtain that in N3 = Õ

(
m + L2

min{μx+H1,μy+H2}

)
iterations Al-

gorithm 2 finds an (ε(3)
k,n, σ

(3)
k,n)-solution (x̂k,n, ŷk,n) to problem (4.7), and, by the choice 

of ε(3)
k,n, σ

(3)
k,n, ŷk,n is also an 

(
ε
(2)
yk,n , σ

(2)
yk,n

)
-solution to problem (4.6).

The total complexity of these three loops is summarized in the next result, which is 
the main result of the paper.

Theorem 4. Let Assumption 1 hold. Then, Algorithm 3 after

O

((
m + m

3
4

√
L

μx
+ m

3
4

√
L

μy
+ L

√
m

√
μxμy

)
ln3 1

εσ

)
(4.8)

evaluations of stochastic gradients ∇xGi(x, y), ∇yGi(x, y) and proximal operators of 
f(x) and h(y) (see (1.4)) finds an (ε, σ)-solution to problem (1.7).

Proof. We evaluate stochastic gradients ∇xGi(x, y), ∇yGi(x, y) and proximal operators 
for the functions f(x), h(y) (when we evaluate the proximal operators for f̂k(x), ĥk,n(y)) 
only in Loop 3, where Algorithm 2 is used. Multiplying the number of iterations N1, N2, 
N3 in each loop, we obtain that the total number of these basic operations is

N = Õ

(√
1 + H1

μx

)
· Õ
(√

1 + H2

μy

)
· Õ
(
m + L2

min(H1 + μx, H2 + μy)2

)
.

Choosing H1 = max
{
μx,

L√
m

}
, H2 = max

{
μy,

L√
m

}
, we obtain

N ≤ Õ

(
1 +

√
L

μx
√
m

)
· Õ
(

1 +

√
L

μy
√
m

)
· Õ
(
m + L2 max

(
1
H1

,
1
H2

)2
)

≤ Õ

(
1 +

√
L

μx
√
m

)
· Õ
(

1 +

√
L

μy
√
m

)
· Õ
(
m + L2 m

L2

)

= Õ

(
1 +

√
L

μx
√
m

)
· Õ
(

1 +

√
L

μy
√
m

)
· Õ (m)
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= Õ

(
m + m

3
4

√
L

μx
+ m

3
4

√
L

μy
+ L

√
m

√
μxμy

)
,

where in the second inequality we used that 1
H1

, 1
H2

≤
√
m
L . Since each loop gives one 

logarithmic term, we have the third power of the logarithm in (4.8). �
5. Convex-strongly-concave and convex-concave cases

In this section, we consider problem (1.1) in the convex-strongly-concave and convex-
concave settings under the following assumption.

Assumption 4.

1. f(x) is convex (μx = 0) and h(y) is μy-strongly-convex with μy ≥ 0;
2. There exists a solution (x∗, y∗) to problem (1.1) such that ‖x∗‖ ≤ Rx and, if μy = 0, 

‖y∗‖ ≤ Ry;
3. Assumption 1.2 and 1.3 hold.

The main idea is to use a reduction technique based on regularization. When lacking 
strong convexity/concavity w.r.t. one of the variables, we add a quadratic regularization 
for this variable, which reduces the problem to problem (1.7) under Assumption 1 and 
we can apply Algorithm 3. The following result shows that a solution to such-regularized 
problems gives is a solution to the original problem (1.1) when the regularization pa-
rameter is sufficiently small.

Lemma 6. Under Assumption 4:

if μx = 0, μy > 0 and (x̂, ŷ) is an 
( 2ε

3 , σ
)
-solution to problem:

min
x∈Rdx

max
y∈Rdy

{
f(x) + ε

12R2
x

‖x‖2 + G(x, y) − h(y)
}

;

or if μx = 0, μy = 0 and (x̂, ŷ) is an 
(
ε
2 , σ
)
-solution to the problem:

min
x∈Rdx

max
y∈Rdy

{
f(x) + ε

16R2
x

‖x‖2 + G(x, y) − h(y) − ε

16R2
y

‖y‖2
}
,

then, (x̂, ŷ) is an (ε, σ)-solution to problem (1.1).

Proof. If μx = 0, μy > 0, then, with probability at least 1 − σ

2ε ≥ max
dy

{
f(x̂) + ε

2 ‖x̂‖
2 + G(x̂, y) − h(y)

}

3 y∈R 12Rx
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− min
x∈Rdx

{
f(x) + ε

12R2
x

‖x‖2 + G(x, ŷ) − h(ŷ)
}

≥ max
‖y‖≤2Ry

{
f(x̂) + ε

12R2
x

‖x̂‖2 + G(x̂, y) − h(y)
}

− min
‖x‖≤2Rx

{
f(x) + ε

12R2
x

‖x‖2 + G(x, ŷ) − h(ŷ)
}

≥ max
‖y‖≤2Ry

{f(x̂) + G(x̂, y) − h(y)} + ε

12R2
x

‖x̂‖2

− min
‖x‖≤2Rx

{f(x) + G(x, ŷ) − h(ŷ)} − ε

12R2
x

4R2
x

≥ max
‖y‖≤2Ry

{f(x̂) + G(x̂, y) − h(y)}

− min
‖x‖≤2Rx

{f(x) + G(x, ŷ) − h(ŷ)} − ε

3 ,

and (x̂, ŷ) is an (ε, σ)-solution to the problem

min
‖x‖≤2Rx

max
‖y‖≤2Ry

{f(x) + G(x, y) − h(y)} .

This problem is equivalent to problem (1.1) under assumption ‖x∗‖ ≤ Rx.
If μx = 0, μy = 0, then with probability at least 1 − σ

ε

2 ≥ max
y∈Rdy

{
f(x̂) + ε

16R2
x

‖x̂‖2 + G(x̂, y) − h(y) − ε

16R2
y

‖y‖2
}

− min
x∈Rdx

{
f(x) + ε

16R2
x

‖x‖2 + G(x, ŷ) − h(ŷ) − ε

16R2
y

‖ŷ‖2
}

≥ max
‖y‖≤2Ry

{
f(x̂) + ε

16R2
x

‖x̂‖2 + G(x̂, y) − h(y) − ε

16R2
y

‖y‖2
}

− min
‖x‖≤2Rx

{
f(x) + ε

16R2
x

‖x‖2 + G(x, ŷ) − h(ŷ) − ε

16R2
y

‖ŷ‖2
}

≥ max
‖y‖≤2Ry

{f(x̂) + G(x̂, y) − h(y)} + ε

16R2
x

‖x̂‖2 − ε

16R2
y

4R2
y

− min
‖x‖≤2Rx

{f(x) + G(x, ŷ) − h(ŷ)} − ε

16R2
x

4R2
x + ε

16R2
y

‖ŷ‖2

≥ max
‖y‖≤2Ry

{f(x̂) + G(x̂, y) − h(y)} − ε

4

− min
‖x‖≤2Rx

{f(x) + G(x, ŷ) − h(ŷ)} − ε

4 ,

and (x̂, ŷ) is an (ε, σ)-solution to the problem
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min
‖x‖≤2Rx

max
‖y‖≤2Ry

{f(x) + G(x, y) − h(y)} .

This problem is equivalent to problem (1.1) under assumption ‖x∗‖ ≤ Rx, ‖y∗‖ ≤
Ry. �

We are now in a position to apply Algorithm 3 to problems stated in the previous 
Lemma and obtain the corresponding complexity bounds for problem (1.1) as a corollary 
of Theorem 4.

Corollary 1. Let Assumption 4 hold. Then, Algorithm 3 after (in convex-strongly-concave 
case)

O

((
m + m

3
4Rx

√
L

ε
+ m

3
4

√
L

μy
+ RxL

√
m

√
εμy

)
ln3 1

εσ

)
,

or (in convex-concave case)

O

((
m + (Rx + Ry)m

3
4

√
L

ε
+ RxRyL

√
m

ε

)
ln3 1

εσ

)

evaluations of stochastic gradients ∇xGi(x, y), ∇yGi(x, y) and proximal operators of 
f(x) and h(y) finds an (ε, σ)-solution to problem (1.1).

Proof. We regularize problem (1.1) as proposed in Lemma 6, obtain strongly-convex-
strongly-concave problem with constants either μx = ε

12R2
x
, μy or μx = ε

16R2
x
, μy =

ε
16R2

y
, and solve it by Algorithm 3. The result follows by substituting these values of the 

parameters to the complexity bound in Theorem 4. �
6. Conclusions and future work

In this paper, we propose accelerated variance-reduced methods for saddle-point prob-
lems with finite-sum structure and composite terms. For these methods, we propose 
complexity estimates that up to constant and logarithmic factors coincide with the lower 
bounds [12] for this class of problems. Our algorithms are based on several nested loops 
and to make them more practical it is desired to propose their loop-less counterparts. 
The recent progress in this field [18] gives a hope of the possibility to construct a di-
rect optimal method without auxiliary loops and logarithmic factors in the complexity 
bounds. Future research includes also oracle complexity separation [16,40] techniques 
for the setting when f(x) and h(y) are not prox-friendly and their gradients need to be 
evaluated.
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