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Inspired by recent advances in distributed algorithms for approximating Wasserstein
barycenters, we propose a novel distributed algorithm for this problem. The main
novelty is that we consider time-varying computational networks, which are moti-
vated by examples when only a subset of sensors can make an observation at each
time step, and yet, the goal is to average signals (e.g., satellite pictures of some
area) by approximating their barycenter. We embed this problem into a class of non-
smooth dual-friendly distributed optimization problems over time-varying networks,
and develop a first-order method for this class. We prove non-asymptotic accelerated
in the sense of Nesterov convergence rates and explicitly characterize their depen-
dence on the parameters of the network and its dynamics. In the experiments, we
demonstrate the efficiency of the proposed algorithm when applied to the Wasserstein
barycenter problem.
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1 Introduction

Optimal transport (OT) [1, 2] is getting more and more attention from the machine
learning and optimization community motivated by a long list of applications such as
unsupervised learning, semi-supervised learning, clustering, text classification, image
retrieval, and others, see [3] and references therein. Given a basis space (e.g., pixel
grid) and a transportation cost function (e.g., squared Euclidean distance), the OT
approach defines a distance between two objects (e.g., images), modeled as two prob-
ability measures on the basis space, as the minimal cost of transportation of the
first measure to the second. Such distances, in particular, the Wasserstein distance,
naturally capture the geometry of the data since they are invariant to shifts and rota-
tions. In particular, the Freché mean with respect to the Wasserstein distance, called
Wasserstein barycenter (WB) [4], allows [5, 6] to reconstruct a template image from
its random observations obtained by random shifts and rotations.

The benefits of the use of WB in real-world applications are sometimes outweighted
by the large computational burden introduced by their definition. The computation of
the Wasserstein distance is already a large-scale optimization problem, and to calcu-
late the WB, one introduces a second optimization level as the WB minimizes the sum
of Wasserstein distances to a set of probability measures. At this point, distributed
optimization algorithms turned out to be efficient to scale-up the computations of the
WB when the data is distributedly stored by a computational network [7–14]. On the
other hand, the nature of the data-generating process may be distributed itself. In par-
ticular, it may be impossible to collect the data even in one datacenter, especially if
the data processing has to respect the privacy of the individual data. Another example
is a network of sensors that measure signals following some distributions and for the
analysis purposes the whole network needs to find the WB of these distributions by
peer-to-peer communications. In this case, decentralized algorithms are especially use-
ful. Moreover, algorithms adapted to time-varying networks of sensors or computing
devices are required. For example, some nodes of the network may be disconnected due
to failures or, e.g., when the node is a satellite that observes certain area, the observa-
tion is available only for a certain period of time. At the same time, the development
of decentralized distributed algorithms for general optimization problems is important
on its own since the WB problem represents only one, yet important, example where
such algorithms are efficient.

Summarizing, the WB problem is important for applications, yet requires to solve
a large-scale optimization problem. For that problem, and other large-scale problems,
decentralized distributed optimization algorithms on time-varying networks has to
be developed. In this paper, we develop a general decentralized accelerated gradient
method on time-varying networks and apply it to the WB problem.

1.1 Related work

In general, decentralized distributed optimization is an emerging and actively devel-
oped branch of optimization, see the recent survey [15]. Our main focus in this paper is
on the setting of decentralized methods working on time-varying networks, for which
in the smooth and strongly convex case efficient algorithms were recently proposed in
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[16–18] (primal oracle) and [19] (dual oracle). Unfortunately, these methods are not
directly applicable in our case since the WB problem is not smooth, not strongly con-
vex, and has simple constraints. At the same time, the WB problem has tractable dual
oracle, which motivated us to extend the ADOM algorithm of [19] to the non-smooth,
non-strongly convex setting with simple constraints.

Starting with [8, 9] it was observed that decentralized methods with dual oracle
are well suited for the WB problem. In the cycle of subsequent papers [9–13] differ-
ent decentralized accelerated (randomized) algorithms were proposed for dual WB
problem. In [20] the authors propose to reformulate the WB problem as a bilinear
saddle-point problem (SPP). Decentralized algorithm for this problem was proposed
in [14]. Unfortunately, all these algorithms are designed for static networks that do
not change over time.

Moreover, their extensions to time-varying networks seem to be hardly possible.
At the core of these algorithms lies the reformulation of the WB problem as a problem
with linear constraints ensuring the consensus between the network nodes, and then
solving the dual for that problem. If communication network changes over time, then
the affine-consensus constraints also change over time, and so does the dual problem.
This essentially requires to solve a family of dual problems, which is not possible by
the accelerated gradient methods or the Mirror-Prox algorithm as in [9–14].

The recent work [21] considers the WB problem on time-varying networks and
analyses a simple consensus method. The main difference with our paper is that they
prove asymptotic convergence rather than convergence rates, and they consider pos-
sibly continuous measures on R unlike our setting of discrete measures on Rn. The
paper [22] proposes Fenchel dual gradient methods for distributed convex optimiza-
tion over time-varying networks. The main difference is that we propose an accelerated
algorithm with better complexity, yet under a stronger assumption on the network
(they assume the B-connectivity of the network).

1.2 Our contributions

Since the WB problem has an efficient dual oracle, a natural idea is to use ADOM [19]
that is an optimal decentralized algorithm for smooth strongly convex unconstrained
problems for time-varying networks with dual oracle. ADOM can be considered as
projected accelerated algorithm with inexact consensus-based projection applied to
specific dual reformulation of the distributed optimization problem. Since the WB
problem

• (Smoothness) is not smooth;
• (Constraints) is not unconstrained; as the space of probability measures has simple
constraints;

• (Strongly convex) is not strongly convex;

the direct application of ADOM to the WB problem is not possible. Moreover, not
only WB problem, but also general non-smooth, non-strongly-convex constrained
optimization problems lack efficient algorithms on time-varying networks.
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The first main result of this paper is a generalization of ADOM for general γ
strongly convex decentralized optimization problems with simple constraints on time-

varying networks; solving it numerically requires O
(

λmax

λ+
min

1√
γε ln

1
γε

)
iterations. The

second contribution is the application to the WB problem on time-varying networks;
where the corresponding iteration number becomes O

(
1
ε ln

1
ε

)
. The main ideas are

the following. To obtain the strong convexity we use the regularization of the primal
problem by the entropy [3]. To deal with the constraints and non-smoothness, we use
special regularization of the dual problem. This regularization goes back to [23, 24]
and by infimal convolution can be considered as the Moreau–Yosida smoothing of the
primal problem [25, 26]. We emphasize that the proposed dual regularization (primal
smoothing) was earlier investigated only for non time-varying networks [27]. For time-
varying networks and problems with simple constraints the analysis is different.

Paper organization

Section 2 presents preliminaries and basic definitions for a general distributed opti-
mization problem. Section 3 states our main results, i.e. the method, convergence
rates and the parameter estimation. Section 4 introduces the Wasserstein barycenter
problem and specifies main results for the particular case. Section 5 shows numeri-
cal experiments that illustrate and verify the theoretical results. All the proofs are in
Appendices.

Notation

We utilize the following dimensions:

• m for the number of individual devices (nodes),
• d for the dimension of a data in each device.

We use bold or normal font (x or x) for different spaces x ∈ (Rd)m, x ∈ Rd. The l-th
component of a vector x ∈ Rd is denoted by [x]l and l-th component of x ∈ (Rd)m is
denoted by [x]l which is the corresponding vector from Rd.

Let 1 denote a column vector with all entries equal to 1. The d-dimensional simplex
is denoted S1(d), that means S1(d) := {p ∈ [0, 1]d | p⊤1 = 1}. For matrices A and B,
A◦B and A/B stands for the element-wise product and division, respectively. Another

product we define as follows ⟨M,X⟩ :=
∑d

i=1

∑d
j=1 MijXij .

Abbreviation WB means Wasserstein barycenter and ADOM refers to Accelerated
Decentralized Optimization Method proposed in [19].

2 Decentralized optimization

2.1 Decentralized computation problem

Decentralized computation simulates computation on distributed individual devices.
The devices are considered as nodes of an undirected connected graph called a com-
munication network. It means that each node can perform computations based only
on its local data and the data of its neighbors in communication network. For a con-
vex closed set S and convex functions fi decentralized computation of the following
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optimization problem

min
x∈S

m∑
i=1

fi(x) (1)

requires numerical computation assuming that each function fi is stored on the cor-
responding node i ∈ [m] := {1, 2, . . . ,m}. Such approach brings us to an effective
reformulation of the optimization problem.

2.1.1 Consensus condition

Since each computational node carries its own local data approximation, we can sub-
stitute formally different variables xi for the mutual argument x in (1) assuming that
they belong to the so-called consensus space. It means the new variables xi must
eventually coincide with each other and with the wanted barycenter. We obtain an
equivalent optimization problem in the following form:

min
x∈S

F (x) = min
x∈S

m∑
i=1

fi([x]i), (2)

where S = {x = ([x]1, . . . , [x]m) ∈ (S)m | [x]1 = . . . = [x]m} .

Here i-th component [x]i is a corresponding d-dimensional vector.

2.1.2 Time-varying communication network

We consider m distributed devices that seek to reach a consensus solution of an opti-
mization problem. The devices are connected via an m-node network that changes
over time. At each time step n we denote Laplacian of the corresponding network by
Ŵn. In general, it suffices to take any Ŵn satisfying the following:

1. Ŵn is symmetric and positive semi-definite,
2. [Ŵn]i,j ̸= 0 if and only if (i, j) are connected by the network,

3. ker Ŵn = {(x1, . . . , xm) | x1 = . . . = xm}.

Further we use communication matrix that is the block matrix Wn = Ŵn⊗Id. Hence,
decentralized communication of each vector xi stored on the i-th node at a time step n
can be represented by multiplication of the md-dimensional vector (x1, . . . , xm) and
matrix Wn: indeed, if y = Wnx, then it yields

[y]i =

m∑
j=1

[Ŵn]i,j [x]j =
∑
j∈Ni

[Ŵn]i,j [x]j ,

where Ni is the set of the neighboring nodes for the node i according to the com-
munication network at n-th iteration. Thus, for each node i, vector [y]i is a linear
combination of vectors [x]j , stored at the neighboring nodes j ∈ Ni.

The considered algorithms require these communication matrices Wn to have con-
ditional numbers bounded for all n ∈ {0, 1, 2 . . .}. Namely, we utilize the following
assumption.
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Assumption 1. Let there exist constants 0 < λ+
min < λmax such that

λ+
min ≤ λ+

min(Wn) ≤ λmax(Wn) ≤ λmax ∀n,

where λ+
min(Wn) is the smallest positive eigenvalue of Wn and λmax(Wn) is the biggest

one.
A condition number of the matrix Wn is given as λmax(Wn)

λ+
min(Wn)

and relates to the

connectivity of a network; it appears in convergence rates of many decentralized
algorithms.

3 Main results

One of our main features is that general convex functions of optimization problem
can be defined on a convex set S ⊆ Rd instead of the entire Rd, that was crucial for
duality of (10) and (11). First of all, we study the case of strongly convex functions
(Theorem 1). Then we see that similarly we can approximate convex functions (Corol-
lary 1). We obtain an important Theorem 2 by applying Theorem 1 to the Wasserstein
barycenter problem; in this particular setup one can estimate parameters more pre-
cisely. In the next sections we introduce necessary definitions, state Theorem 2, and
provide related numerical experiments. All the proofs are in the Appendices.

Consider γ strongly convex case, i.e. the following decentralized optimization
problem

x∗
γ = argmin

x∈S
F γ(x) = argmin

x∈S

m∑
i=1

fγ
i ([x]i) = argmin

x∈S

m∑
i=1

fγ
i (x), (3)

where S = {x = ([x]1, . . . , [x]m) ∈ (S)m ⊂ (Rd)m | [x]1 = . . . = [x]m},

functions fγ
i are γ strongly convex, differentiable, and defined on a convex set S. Recall

that i-th component [x]i is a corresponding d-dimensional vector.
Theorem 1. Let S ⊂ Rd be a convex set, let functions fγ

i : S → R of the problem (3)
be γ strongly convex and differentiable, let Wn be the n-th communication matrix
satisfying Assumption 1 for some λ+

min, λmax > 0. For any r > 0, after n iterations of
Algorithm 1 we obtain xn

r,γ = ∇H∗(zng ) that provides:

1. consensus condition approximation: for each i and j

∥∥∥[xn
r,γ

]
i
−
[
xn
r,γ

]
j

∥∥∥2
2
≤ C1

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

; (4)

2. value approximation:

F γ(xn
r,γ)−min

x∈S
F γ(x) ≤ r

2(1 + rγ)
mK2 + C2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

; (5)
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where K is such that ∥∇fγ
i (x)∥2 < K for each i and for all x from ε/γ-

neighborhood of the solution argmin
x∈S

m∑
i=1

fγ
i (x). The parameters are C1 = (1+rγ)2

2γ2 ,

C2 = m(1+rγ)K√
2γ

√
λmax

λ+
min

+ m(1+rγ)2

4rγ2 .

Proof. See Appendix B.

Remark 1. To reach ε approximation of (4) and (5) it suffices to take r ≤ ε
2mK2 .

Then the rate of the number of iterations is

n = O
(
λmax

λ+
min

√
1 + rγ

rγ
ln

C2

ε

)
= O

(
λmax

λ+
min

1
√
γε

ln
1

ε

)
.

Proof. See Appendix B.5.

Algorithm 1 Modified ADOM

1: input: r > 0, for i = 1, . . . ,m: fγ
i : S → R, (fγ

i )
∗(z) = sup{⟨z, x⟩− fγ

i (x) | x ∈ S}
2: define ∇h∗

i ([z]i) = ∇(fγ
i )

∗([z]i) + r[z]i
3: define ∇H∗(z) = (∇h∗

1([z]1), . . . ,∇h∗
m([z]m))

⊤

4: set α = r
2 , η =

2λ+
min

√
γ

7λmax

√
r(1+rγ)

, θ = γ
λmax(1+rγ) , σ = 1

λmax
, τ =

λ+
min

7λmax

√
rγ

1+rγ

5: set z0 = 0, z0f = z0, m0 = 0
6: for n = 0, 1, 2, . . . do
7: zng = τzn + (1− τ)znf
8: ∆n = σWn(m

n − η∇H∗(zng ))
9: mn+1 = mn − η∇H∗(zng )−∆n

10: zn+1 = zn + ηα(zng − zn) + ∆n

11: zn+1
f = zng − θWn∇H∗(zng )

12: end for
13: output: xn

r,γ = ∇H∗(zng )

Corollary 1. Let S be a convex set in Rd, let fi : S → R be differentiable convex
functions for i = 1, . . . ,m, and let Wn be the n-th communication matrix satisfying
Assumption 1 for some λ+

min, λmax > 0. Decentralized convex optimization problem
minx∈S

∑m
i=1 fi(x) over time-varying communication networks can be ε approximated

numerically by Algorithm 1 applied for γ strongly convex regularizing functions1 fγ
i (x)

that satisfy

0 ≤ min
x∈S

m∑
i=1

fi(x)−min
x∈S

m∑
i=1

fγ
i (x) ≤ ε/2 (6)

1e.g., one can take fγ
i (x) = fi(x) +

γ
2 ∥x∥

2
2
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if r < ε
4mK2 where K is such that ∥∇fγ

i (x)∥2 < K for each i and for all x from ε/γ-
neighborhood of the solution argmin

x∈S

∑m
i=1 f

γ
i (x). Moreover, if γ =

√
ε, then the rate

of the number of iterations is

n = O
(
λmax

λ+
min

1

ε
ln

1

ε

)
.

Proof. The condition r < ε
4mK2 follows that the right-hand side of the inequality (5)

is less or equal ε/2, i.e.

m∑
i=1

fγ
i ([x

n
r,γ ]i)−min

x∈S

m∑
i=1

fγ
i (x) ≤ ε/2.

Combining it with (6) we obtain ε approximation of the convex constrained optimiza-

tion problem min
x∈S

m∑
i=1

fi(x).

4 Wasserstein Barycenter Problem

Wasserstein barycenter problem is a motivating and challenging convex constrained
optimization problem that is convex, but not smooth and not strongly-convex. The
problem belongs to the optimal transport theory which recently got various application
in, e.g., texture mixing [28], statistical estimation of template models [29], graphics and
machine learning (for regression, classification and generative modeling) [3]. Further
we consider WB problem as a decentralized convex optimization problem and propose
a computation method in Theorem 2.

4.1 Wasserstein distance

We provide here only necessary definitions and take into consideration only finite-
supported distributions since we deal with numerical experiments. General theory,
that begins with Wasserstein distance, can be found in [30].

Recall that we denote d-dimensional simplex by S1(d) and it represents a set of

possible probabilities distributions as S1(d) = {p ∈ [0, 1]d |
∑d

i=1[p]i = 1}. Consider
two probability distributions p, q ∈ S1(d) with support on a finite set of points {ωi ∈
Rn}di=1 such that p(ωi) = pi and q(ωi) = qi. Then, a cost (loss) matrix M is such that
its element [M ]ij ∈ R+ represents the cost of moving a unit mass from ωi to ωj . So
M is a non-negative symmetric matrix with zeros on the diagonal. It is often taken as
the Euclidean distances matrix, i.e. [M ]ij = ∥ωi − ωj∥22. The set of transport plans is
defined as

U(p, q) :=
{
X ∈ Rd×d

+

∣∣ X1 = p,XT1 = q
}
,

i.e. the set of probabilities measures on Rd×d
+ with margins p and q. Wasserstein dis-

tance between two probability distributions defines as the following minimum among
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component-wise multiplication of the cost matrix and transport plans:

W(p, q) := min
X∈U(p,q)

⟨M,X⟩.

4.2 Wasserstein barycenter

Wasserstein barycenter of a set of probability distributions q1, . . . , qm is a probability
distribution itself that is defined as the solution to the following optimization problem

min
p∈S1(d)

m∑
i=1

Wqi(p), (7)

where Wqi(p) := W(qi, p). In distributed approach, each device (node) possesses its
original distribution qi and the corresponding function fi(·) = Wqi(·). The goal of the
whole system is, by communicating with each other, to approximate the barycenter
by an iterative algorithm. At each iteration each node computes a new guess for the
barycenter distribution using current guesses from its neighbors. Typically, the first
guess coincide with the original distribution qi and the resulting distributions reach a
consensus. It is known (see e.g. [5]) that the WB captures the mean structure of given
data. On example of a dataset of hand-written digits ‘4’ of MNIST 784 [31] Figure 1
shows how local nodes’ guesses change and tend to global barycenter, which resembles
a digit ‘4’ as well. That visually illustrates our theoretical result, Theorem 2. In this
experiment communication networks are Erdős–Rényi random networks and change
every 5 iterations.

4.3 Resulting algorithm for WB problem

To apply the proposed numerical scheme we use entropy regularization of Wasserstein
distance W and make the following assumption on the initial data.
Assumption 2. Let vectors qi ∈ S1(d) ⊂ Rd be such that

min
i=1,...,m
l=1,...,d

[qi]l = δ > 0.

It is not too restrictive as it only excludes zero probabilities of states, which can be
done by a little distortion. The entropy regularized Wasserstein distance is defined as

Wγ,q(p) := Wγ(q, p) = min
X∈U(p,q)

{
⟨M,X⟩+ γ

d∑
i=1

d∑
j=1

Xij lnXij

}
, (8)

where x lnx is assumed to equal zero if x = 0.
Theorem 2. Let initial distributions qi satisfy Assumption 2 and let p∗ be their
Wasserstein barycenter, i.e. p∗ minimizes the problem (7). Let communication matri-
ces Wn satisfy Assumption 1 for some λ+

min, λmax > 0. If Algorithm 1 is applied for

9



(a) initial data samples

(b) iteration 10

(c) iteration 50

(d) iteration 100

(e) iteration 200

Fig. 1: Evolution of local data converging to Wasserstein barycenter of the hand-
written digit 4 of the MNIST784 dataset for a subset of 7 nodes out of 50 over Erdős–
Rényi random networks varying each 5 iterations; regularization parameters are γ =
0.03, r = 0.001

entropy regularized Wasserstein distance functions fγ
i = Wγ,qi , then functions ∇h∗

i (z)
are defined as

∇h∗
i (z) =

r
2z +

m∑
j=1

[q]j
exp( 1

γ ([z]l−Mlj))
m∑

i=1

exp( 1
γ ([z]i−Mij))

,

∇(Hr,γ)∗(z) = (∇h∗
1([z]1), . . . ,∇h∗

m([z]m))⊤,

(9)
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and it suffices to take γ = 1
8ε ln d, K

2 =
d∑

j=1

(
2γ ln d+ infi supl |Mjl −Mil| − γ ln δ

2}
)2
,

and r = ε
4mK2 to ε approximate the solution p∗ as follows∣∣∣∣∣

m∑
i=1

Wqi([x
n
r,γ ]i)−

m∑
i=1

Wqi(p
∗)

∣∣∣∣∣
≤ 2γ ln d+

r

4(1 + rγ)
mK2 + C

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ε.

Thus, a sufficient number of iterations of Algorithm 1 is

n = O
(
λmax

λ+
min

√
1 + rγ

rγ
ln

C

ε

)
= O

(
λmax

λ+
min

1

ε
ln

1

ε

)
.

5 Numerical Experiments

We provide numerical experiments to demonstrate performance of the proposed
method. We can fruitfully test our method on WB problem with an artificial set
of univariate, discrete and truncated Gaussian distributions. For such a dataset, the
resulting distribution (the zero-entropy Wasserstein barycenter) is described by an
analytic formula. Namely, the barycenter is a Gaussian distribution which mean is the
arithmetic average of the means of the given Gaussians and the standard deviation
of the barycenter is the arithmetic average of the standard deviations of the given
Gaussians.

For all figures of this section we generated a dataset of truncated Gaussians. Each
distribution size is 100, while a size of a dataset (i.e. the number of nodes) differs
and is indicated at each figure. For entropy regularized Wasserstein distance we use
normalized Euclidean cost matrix and entropy regularization parameter γ = 0.01. The
regularization parameter r of the method is r = 0.001.

5.1 Comparison with other methods

To the best of our knowledge, we can compare our method (called here ADOM) with
local barycenters method (LB) proposed in [21] and Fenchel dual gradient method
(FDGM) proposed in [22]. They all are applicable for the WB problem on time-
varying networks. Regardless of the analytical form of the LB algorithm, in order to
implement it we need either to solve an optimization problem at each iteration or to use
approximations, e.g. methods of [32]. Note that, for any particular setup, realization
of FDGM is quite a problem, since the method is sensitive to the step size αn. ADOM
negotiates limitations described above and reveals relatively stable convergence as it
is presented at Figures 2–3, where we test the methods on cycle networks that change
every iteration.
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Fig. 2: 1
m

(
m∑
i=1

W(qi, [x
n
r,γ ]i)−

m∑
i=1

W(qi, p
∗)

)
-convergence comparison on cycle net-

works changing every iteration

Fig. 3: Consensus condition comparison of methods on cycle networks changing every
iteration
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5.2 Performance rate

We can see the difference in error value, i.e. in 1
m

(
m∑
i=1

W(qi, [x
n
r,γ ]i)−

m∑
i=1

W(qi, p
∗)

)
,

in two opposite cases: Figure 4a presents evolution of errors computed for constant
networks of different topologies, while at Figure 4b networks change every iterations
within indicated topology; the exception is complete network that cannot change. One
natural way to sample a random network is to independently sample each edge with
a probability p. Such networks are called Erdős–Rényi network or (m, p)-Erdős–Rényi
network, where m is the number of nodes and p is the probability of an edge. Let
us notice also that star, cycle and minimum spanning tree (of (m, 0.9)-Erdős–Rényi)
networks have m − 1,m, and m + 1 edges respectively in contrast to the complete
network withm(m−1)/2 edges and (m, 0.5)-Erdős–Rényi network that hasm(m−1)/4
edges in average.
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(a) Constant networks (b) Time-varying networks

Fig. 4: Different network topologies: error over time

For the two ‘most efficient’ topologies that prove themselves at Figures 4a–4b we
compute at Figure 5 the error evolution for different frequency of the networks varying.
We indicate the lengths of epoch, i.e. number of iteration between network changing.
Notice that the evolution for constant networks, computed above, matches to infinite
epoch length. The number of iterations remain the same on all figures despite it is
insufficient for convergence on cycle networks. Nonetheless one can see the trends of
convergence and notice that there is no monotonicity with respect to frequency of
networks varying.
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(a) Cycle networks

(b) (m, 0.9)-Erdős–Rényi networks

Fig. 5: Different number of iteration between network changing: errors over time
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A ADOM and its assumptions

The state of the art numerical computation method for time-varying networks, called
ADOM, is developed in [19] and this subsection is to present its main objects. It has
natural restrictions on the class of suitable problems and, e.g., Wasserstein barycenter
problem lies beyond the requirements of this algorithm. So we modify ADOM to solve

18



more general optimization problems with restrictions. For the sake of consistency, we
slightly change original notation and adduce below the results from [19].

In [19], optimization problem with the consensus condition is

min
x∈R

H(x) = min
x∈R

m∑
i=1

hi([x]i), (10)

where R =
{
x = ([x]1, . . . , [x]m) ∈ (Rd)m | [x]1 = . . . = [x]m

}
,

where functions hi : Rd → R are assumed to be smooth and strongly convex.
Problem (10) is equivalent to the following:

min
z∈R⊥

H∗(z), (11)

where R⊥ =

{
z = ([z]1, . . . , [z]m) ∈ (Rd)m

∣∣∣ m∑
i=1

[z]i = 0

}
,

where H∗ is the Fenchel transform of the function H and R⊥ is the orthogonal
complement of R, that exists since S = Rd here.
Theorem 3 ([19, Theorem 1]). Let functions hi : Rd → R be L smooth and µ strongly
convex, x∗ be the solution of the optimization problem (10), Wn be a communication
matrix at the n-th iteration satisfying Assumption 1. Set parameters α, η, θ, σ, τ of

Algorithm 2 to α = 1
2L , η =

2λ+
min

√
µL

7λmax
, θ = µ

λmax
, σ = 1

λmax
, and τ =

λ+
min

7λmax

√
µ
L . Then

there exists C > 0, such that for Fenchel conjugate function H∗(z) from (11)

∥∥∇H∗(zng )− x∗∥∥2
2
≤ C

(
1− λ+

min

7λmax

√
µ

L

)n

. (12)

Remark 2. Addressing details of the proof of Theorem 1 of [19] we see that there is
a particular choice of the constant C, namely

C = max

{
2τ

µ2
,

τ(1− τ)L

η(1− ηα)µ2

}
=

1

µ2
max

{
2λ+

min

√
µ

7λmax

√
L
,
1

2

}
=

1

2µ2
. (13)

It means that the actual convergence rate is n = O
(

λmax

λ+
min

√
L
µ ln 1

µ2ε

)
.
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Algorithm 2 ADOM: Accelerated Decentralized Optimization Method

1: input: ∇H∗ : (Rd)m → R, z0 ∈ R⊥,m0 ∈ (Rd)V , α, η, θ, σ>0, τ ∈(0, 1)
2: set z0f = z0

3: for k = 0, 1, 2, . . . do
4: zng = τzn + (1− τ)znf
5: ∆n = σWn(m

n − η∇H∗(zng ))
6: mn+1 = mn − η∇H∗(zng )−∆n

7: zn+1 = zn + ηα(zng − zn) + ∆n

8: zn+1
f = zng − θWn∇H∗(zng )

9: end for

B Proof of Theorem 1

All the arguments below are applied under assumptions of Theorem 1, i.e. we assume
that S ⊂ Rd is a convex set, x ∈ S is equivalent to [x]i ∈ S for all i = 1, . . . ,m,
functions fγ

i : S → R are γ strongly convex, and the output of Algorithm 1 is xn
r,γ =

∇(Hr,γ)∗(zng ). Denote also

x∗
γ = (x∗

γ , . . . , x
∗
γ) = argmin

x∈S
F γ(x) = argmin

x∈S

m∑
i=1

fγ
i (x).

B.1 Derivation of (Hr,γ)∗

In brief, in this subsection we show that functions hr,γ
i from (14) are 1

r smooth, γ
1+rγ

strongly convex, and such that ∇(Hr,γ)∗ from Line 3 of Algorithm 1 is the gradient

of the conjugate function (Hr,γ)∗ of Hr,γ =
m∑
i=1

hr,γ
i from (14). Then the consensus

condition (4) becomes a corollary of Theorem 3 with L = 1
r and µ = γ

1+rγ .

From now on let functions hr,γ
i : Rd → R and Hr,γ : (Rd)m → R be

Hr,γ(x) =
m∑
i=1

hr,γ
i ([x]i), where

hr,γ
i (x) = inf

y∈S

{
fγ
i (y) +

1
2r∥y − x∥22

}
.

(14)

Define their conjugate as (hr,γ
i )∗ and (Hr,γ)∗.

Lemma 1. If functions hr,γ
i and Hr,γ are defined by (14), then their Fenchel conjugate

functions (hr,γ
i )∗ and (Hr,γ)∗ : (Rd)m → R are

(Hr,γ)∗(z) =
m∑
i=1

(hr,γ
i )∗([z]i), where

(hr,γ
i )∗(z) = (fγ

i )
∗(z) + r

2∥z∥
2
2.

Moreover, its conjugate (Hr,γ)∗∗ coincides with Hr,γ .
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Proof. The definition (14) is similar to Moreau–Yosida smoothing, but the tricky point
is that the functions fγ

i are defined on a convex set S instead of the Rd. Let us

introduce functions f̃γ
i with domain Rd as follows:

f̃γ
i (x) =

{
fγ
i (x) if x ∈ S

+∞, otherwise.
(15)

Such f̃γ
i are γ strongly convex as well. Moreover, substitution f̃γ

i for fγ
i affect neither

primal hr,γ
i :

hr,γ
i (x) = inf

y∈S

{
fγ
i (y) +

1

2r
∥y − x∥22

}
= inf

y∈Rd

{
f̃γ
i (y) +

1

2r
∥y − x∥22

}
,

nor (fγ
i )

∗(z) + r
2∥z∥

2
2:

(fγ
i )

∗(z) +
r

2
∥z∥22 = max

x∈S
{⟨z, x⟩ − fγ

i (x)}+
r

2
∥z∥22

= max
x∈Rd

{
⟨z, x⟩ − f̃γ

i (x)
}
+

r

2
∥z∥22 = (f̃γ

i )
∗(z) +

r

2
∥z∥22.

For each i one can see that (hr,γ
i )∗ = (fγ

i )
∗(z) + r

2∥z∥
2
2 is the Fenchel conjugate of

hr,γ
i and vice versa. Indeed, for proper, convex and lower semicontinuous g1, g2 : Rd →

R we have (g1 + g2)
∗(x) = g∗1□g∗2 and (g1□g2)

∗ = g∗1 + g∗2 , where (g1□g2)(x) means
the convolution inf{g1(y) + g2(x− y) | y ∈ Rd}.

Hence the Fenchel conjugate for the function Hr,γ will be

sup
x∈(Rd)m

{⟨z,x⟩ −Hr,γ(x)}

= sup
x∈(Rd)m

{
m∑
i=1

(⟨[z]i, [x]i⟩ − hr,γ
i ([x]i))

}
(16)

=

m∑
i=1

sup
[x]i∈Rd

{⟨[z]i, [x]i⟩ − hr,γ
i ([x]i)}

=

m∑
i=1

(hr,γ
i )∗([z]i) = (Hr,γ)∗(z).

In the same way one can see that Hr,γ and (Hr,γ)∗∗ coincide.

Remark 3. For each i the function (hr,γ
i )

∗
from (14) is

(
1
γ + r

)
smooth and r strongly

convex by definition, so we have hr,γ
i = (hr,γ

i )∗∗ being 1
r smooth and γ

1+rγ strongly
convex. In addition

∇(hr,γ
i )∗(z) = ∇(fγ

i )
∗(z) + z

as stated in Line 3 of Algorithm 1. Then we can apply Algorithm 2 for L = r−1

smooth and µ = γ
1+rγ strongly convex functions hr,γ

i and get the values of ∇(hr,γ
i )∗(z)

as output.
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Thus we construct a relaxation minx∈R Hr,γ(x) of the constrained convex opti-
mization problem minx∈S F γ(x).
Corollary 2. Let a function Hr,γ be defined in (14) and let x∗

r,γ = argmin
x∈R

Hr,γ(x).

Then applying Algorithm 2 for

∇(hr,γ
i )∗(z) = (fγ

i )
∗(z) + rz

we get by Theorem 3

∥∥x∗
r,γ − xn

r,γ

∥∥2
2
≤ C

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

, (17)

where xn
r,γ = ∇(Hr,γ)∗(zng ) and

C =
(1 + rγ)2

2γ2
.

Moreover, since x∗
r,γ ∈ R, i.e. [x∗

r,γ ]i = [x∗
r,γ ]j for all i and j, the consensus condition

is approximated as follows

∥∥∥[xn
r,γ

]
i
−
[
xn
r,γ

]
j

∥∥∥2
2
≤ 2C

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

.

B.2 Value bounds on Hr,γ

Despite we defined hr,γ
i for all Rd, some properties hold true on the initial set S only.

Lemma 2. Let functions hr,γ
i be defined in (14). If x ∈ S, then for any r > 0, for

each i = 1, . . . ,m we have

fγ
i (x)− r

2(1+rγ) ∥∇fγ
i (x)∥

2
2 ≤ hr,γ

i (x) ≤ fγ
i (x). (18)

Proof. The second inequality directly follows from the definition (14). To prove the
first one we recall that fγ

i is γ strongly convex and the following holds:

hr,γ
i (x) = inf

y∈S

{
fγ
i (y) + (2r)−1∥x− y∥22

}
= inf

y: (x−y)∈S

{
fγ
i (x− y) + (2r)−1∥y∥22

}
≥ inf

y: (x−y)∈S

{
fγ
i (x) + ⟨∇fγ

i (x),−y⟩+ γ/2∥y∥22 + (2r)−1∥y∥22
}

≥ inf
y∈Rd

{
fγ
i (x) + ⟨∇fγ

i (x),−y⟩+ γ/2∥y∥22 + (2r)−1∥y∥22
}
,

which reaches its minimum at y = r
1+rγ∇fγ

i (x) and so equals to

fγ
i (x) +

r

1 + rγ
⟨−∇fγ

i (x),∇fγ
i (x)⟩+

r

2(1 + rγ)
∥∇fγ

i (x)∥
2
2
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= fγ
i (x)−

r

2(1 + rγ)
∥∇fγ

i (x)∥
2
2.

B.3 Convergence in argument

Lemma 3 shows convergence in argument in the following sense: if the regularization
parameter r tends to zero, the argminimum x∗

r,γ ∈ R of Hr,γ tends to the argminimum

x∗
γ ∈ S of F γ . By Corollary 2 we have x∗

r,γ ∈ R approximated by xn
r,γ ∈ (Rd)m for a

sufficient number of iterations n.
Lemma 3. Let x∗

r,γ = argminx∈R Hr,γ(x) for Hr,γ defined in (14). Let

∥∇F γ(x)∥22 ≤ mK2
ζ ∀x ∈ {y ∈ S | ∥y − x∗

γ∥2 ≤ ζ}. (19)

If r is such that ∥x∗
r,γ − x∗

γ∥2 ≤ ζ, then

∥x∗
r,γ − x∗

γ∥2 ≤
√

rm

2γ
Kζ . (20)

Proof. Using (18) and strong convexity of F γ and Hr,γ we have

F γ(x∗
γ) ≥ Hr,γ(x∗

γ) =
∑

hr,γ
i ([x∗

γ ]i)

≥
m∑
i=1

(
hr,γ
i (x∗

r,γ) +
γ

2(1 + rγ)
∥[x∗

r,γ ]i − [x∗
γ ]i∥22

)
= Hr,γ(x∗

r,γ) +
γ

2(1 + rγ)
∥x∗

r,γ − x∗
γ∥22

≥ F γ(x∗
r,γ)−

r

2(1 + rγ)
∥∇F γ(x∗

r,γ)∥22 +
γ

2(1 + rγ)
∥x∗

r,γ − x∗
γ∥22

≥ F γ(x∗
r,γ)−

r

2(1 + rγ)
mK2

ζ +
γ

2(1 + rγ)
∥x∗

r,γ − x∗
γ∥22

≥ F γ(x∗
γ) + γ/2∥x∗

r,γ − x∗
γ∥22 −

r

2(1 + rγ)
mK2

ζ +
γ

2(1 + rγ)
∥x∗

r,γ − x∗
γ∥22

≥ F γ(x∗
γ) +

γ

1 + rγ
∥x∗

r,γ − x∗
γ∥22 −

r

2(1 + rγ)
mK2

ζ .

Then γ
1+rγ ∥x

∗
r,γ − x∗

γ∥22 − r
2(1+rγ)mK2

ζ ≤ 0 and hence ∥x∗
r,γ − x∗

γ∥22 ≤ rm
2γ K

2
ζ .

Combining Lemma 3 with Corollary 2 we get the following.
Remark 4. Let ζ > 0 and let Kζ be such that (19) holds. If

√
rm

2γ
Kζ +

√
C1

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ζ,

where C1 = (1+rγ)2

2γ2 , then both ∥x∗
r,γ − x∗

γ∥2 ≤ ζ and ∥xn
r,γ − x∗

γ∥2 ≤ ζ hold.
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B.4 Value approximation

Let x∗
r,γ ∈ R be the only argminimum of Hr,γ on the consensus space R, i.e.

x∗
r,γ = argmin

x∈S
Hr,γ(x). (21)

In order to prove the value approximation (5) let us separate it into parts and estimate
each of them:

F γ(xn
r,γ)− F γ(x∗

γ) (22a)

≤ F γ(xn
r,γ)−Hr,γ(xn

r,γ) (22b)

+Hr,γ(xn
r,γ)−Hr,γ(x∗

r,γ) (22c)

+Hr,γ(x∗
r,γ)− F γ(x∗

γ). (22d)

The last addend is negative and can be eliminated:

Hr,γ(x∗
r,γ)− F γ(x∗

γ) ≤ Hr,γ(x∗
γ)− F γ(x∗

γ) ≤ 0.

The rest are estimated in Lemmas 4 and 5 under additional assumptions.
Lemma 4. Let ∥xn

r,γ − x∗
γ∥2 ≤ ζ. If (19) holds, then

F γ(xn
r,γ)−Hr,γ(xn

r,γ) ≤
r

2(1 + rγ)
mK2

ζ . (23)

Proof. We cannot declare a uniform K instead of Kζ because F γ is not smooth.
Nonetheless, assuming xn

r,γ belong to ζ-neighborhood of x∗
γ , we immediately obtain

from (18) and (19) that

F γ(xn
r,γ)−Hr,γ(xn

r,γ) ≤
r

2(1 + rγ)
∥∇F γ(xn

r,γ)∥22 ≤ r

2(1 + rγ)
mK2

ζ .

Lemma 5. Let (19) holds. Then

Hr,γ(xn
r,γ)−Hr,γ(x∗

r,γ) ≤ C2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

,

where C2 =
m(1 + rγ)Kζ√

2γ

√
λmax

λ+
min

+
m(1 + rγ)2

4rγ2
.

Proof. By m
r smoothness of Hr,γ

Hr,γ(xn
r,γ)−Hr,γ(x∗

r,γ) ≤ ⟨∇Hr,γ
(
x∗
r,γ

)
,xn

r,γ − x∗
r,γ⟩+ m

2r∥x
n
r,γ − x∗

r,γ∥22
≤ ⟨∇Hr,γ

(
∇(Hr,γ)∗(z∞g )

)
,∇(Hr,γ)∗(zng )− x∗

r,γ⟩+ m
2r∥x

n
r,γ − x∗

r,γ∥22
≤ ⟨z∞g ,∇(Hr,γ)∗(zng )− x∗

r,γ⟩+ m
2r∥x

n
r,γ − x∗

r,γ∥22,
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where z∞g is the limit of zng and so it is the argminimum of (Hr,γ)∗ on R⊥. By (17)
we have

m

2r
∥xn

r,γ−x∗
r,γ∥22 ≤ m

2r
C1

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

=
m(1 + rγ)2

4rγ2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

Let us introduce an orthogonal projection matrix P onto the subspace R⊥, i.e., it
holds Pv = argminz∈R⊥{v − z} for an arbitrary v ∈ (Rd)n. Then matrix P is

P =

(
In − 1

n
1n1

⊤
n

)
⊗ Id, (24)

where In denotes n × n identity matrix, 1n = (1, . . . , 1) ∈ Rn, and ⊗ is a Kronecker
product. Note that P⊤P = P.

Since z∞g ∈ R⊥ and x∗
r,γ ∈ R, the first part simplifies to ⟨z∞g ,P∇(Hr,γ)∗(zng )⟩. We

may use Lemma 2 in [19] to get the following estimation

∥P∇(Hr,γ)∗(zng )∥22 = ∥∇(Hr,γ)∗(zng )∥2P ≤ 2
θλ+

min

(
(Hr,γ)∗(zng )− (Hr,γ)∗(zn+1

f )
)
.

As zn+1
f is a non-optimal point of Algorithm 1, this is not greater than

2

θλ+
min

(
(Hr,γ)∗(zng )− (Hr,γ)∗(z∗)

)
≤ m(1 + rγ)

γθλ+
min

∥∥zng − z∗
∥∥2
2
=

m(1 + rγ)2

γ2

λmax

λ+
min

∥∥zng − z∗
∥∥2
2

≤ m(1 + rγ)2

2γ2

λmax

λ+
min

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

and the latter ones follow from the m(1+rγ)
γ smoothness of (Hr,γ)∗ and from the fact

that the proof of [19, Theorem 1] actually covers the following chain of inequalities:

∥∥∇H∗(zng )− x∗∥∥2
2
≤ 1

µ2

∥∥zng − z∗
∥∥2
2
≤ C

(
1− λ+

min

7λmax

√
µ

L

)n

=
1

2µ2

(
1− λ+

min

7λmax

√
µ

L

)n

.

By our assumption ∥z∞g ∥2 = ∥∇Hr,γ(x∗
r,γ)∥2 <

√
mKζ . Thus, we obtain

(Hr,γ)∗(xn
r,γ)− (Hr,γ)∗(x∗

r,γ)

≤
√
mKζ

√
m(1+rγ)√

2γ

√
λmax

λ+
min

(
1− λ+

min

7λmax

√
rγ

1+rγ

)n/2

+ m(1+rγ)2

4rγ2

(
1− λ+

min

7λmax

√
rγ

1+rγ

)n

≤
(

m(1+rγ)Kζ√
2γ

√
λmax

λ+
min

+ m(1+rγ)2

4rγ2

)(
1− λ+

min

7λmax

√
rγ

1+rγ

)n/2

.

= C2

(
1− λ+

min

7λmax

√
rγ

1+rγ

)n/2

.
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B.5 Final compilation

This section completes the proof of Theorem 1 and shows Remark 1.

Recall that where C1 = (1+rγ)2

2γ and

C2 =
m

2r
C1 +

m(1 + rγ)Kζ√
2γ

λmax

λ+
min

=
m(1 + rγ)2

4rγ
+

m(1 + rγ)Kζ√
2γ

λmax

λ+
min

.

By Remark 4 and Lemmas 4, 5 we see that F γ(xn
r,γ)− F γ(x∗

γ) < ε if

∀x ∈ {y ∈| ∥y − x∗
γ∥2 < ζ} ∥∇F γ(x)∥22 < mK2

ζ , (25)√
rm

2γ
Kζ +

√
C1

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ζ, (26)

r

2(1 + rγ)
mK2

ζ ≤ ε/2, (27)

C2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ε/2. (28)

Let ζ =
√

ε/γ and let r ≤ ε
2mK2

ζ
. Then (27) holds. If (28) fulfills, then (26) follows

from (27) and (28) as
√

rm
2γ Kζ ≤

√
ε
2γ ≤ ζ/

√
2 and

√
C1

(
1− λ+

min

7λmax

√
rγ

1+rγ

)n/2

≤ ζ/2

since 1 ≤
√
C1 ≤ C1 ≤ C2 and ε ≤

√
ε/γ = ζ. Thus, it suffices to assume

∀i ∀x ∈ {y ∈ S | ∥y − x∗
γ∥22 ≤ ε/γ} ∥∇fγ

i (x)∥2 ≤ K,

r ≤ ε

2mK2
,

C2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ε/2.

So ε approximation requires a number of iteration

O
(
λmax

λ+
min

√
1 + rγ

rγ
ln

C2

ε

)
= O

(
λmax

λ+
min

1
√
γε

ln
1

ε

)
.

C Proof of Theorem 2

To prove Theorem 2 we combine proved Theorem 1 with features of the entropy
regularization of the Wasserstein barycenter problem.

C.1 Entropy regularized WB problem

Recall that for a fixed cost matrix M we define the set of transport plans as

U(p, q) :=
{
X ∈ Rd×d

+ | X1 = p,XT1 = q
}
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and Wasserstein distance between two probability distributions p and q as

W(p, q) := min
X∈U(p,q)

⟨M,X⟩.

The entropy regularized (or smoothed) Wasserstein distance is defined as

Wγ(p, q) := min
X∈U(p,q)

{⟨M,X⟩ − γE(X)} , (29)

where γ > 0 and

E(X) := −
d∑

i=1

d∑
j=1

e(Xij),

where e(x) =

{
x lnx if x > 0
0 if x = 0.

(30)

So it seeks to minimize the transportation costs while maximizing the entropy.
Moreover Wγ(p, q) → W(p, q) as γ → 0.

Then the convex optimization problem (7) can be relaxed to the following γ
strongly convex optimization problem

min
p∈S1(d)

m∑
i=1

Wγ,qi(p), (31)

whereWγ,qi(p) = Wγ(qi, p). The argminimum of (31) is called the uniformWasserstein
barycenter [4, 5] of the family of q1, . . . , qm. Moreover, problem (31) admits a unique
solution and approximates unregularized WB problem as follows.
Remark 5. Let γ ≤ ε

4 ln d. If vectors p̂i ∈ S1(d) are such that

m∑
i=1

Wγ,qi(p̂i)− min
p∈S1(d)

m∑
i=1

Wγ,qi(p) ≤
ε

2
,

then
m∑
i=1

Wqi(p̂i)− min
p∈S1(d)

m∑
i=1

Wqi(p) ≤ ε.

Indeed, as entropy is bounded we have Wqi(p) ≤ Wγ,qi(p) ≤ Wqi(p)+2γ ln d for all

i and p. Then, for p∗ = argmin
p∈S1(d)

m∑
i=1

Wqi(p) and p∗γ = argmin
p∈S1(d)

m∑
i=1

Wγ,qi(p) it holds that

m∑
i=1

Wqi(p̂i)−
m∑
i=1

Wqi(p
∗)

≤
m∑
i=1

Wγ,qi(p̂)−
m∑
i=1

Wγ,qi(p
∗) + 2γ ln d
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≤
m∑
i=1

Wγ,qi(p̂)−
m∑
i=1

Wγ,qi(p
∗
γ) +

ε

2
≤ ε.

C.2 Legendre transforms

One particular advantage of entropy regularization of the Wasserstein distance is that
it yields closed-form representations for the dual function W∗

γ,q(·) and for its gradient.
Recall that the Fenchel-Legendre transform of (29) is defined as

W∗
γ,q(z) := max

p∈S1(d)
{⟨z, p⟩ −Wγ,q(p)} . (32)

Theorem 4 ([33][Theorem 2.4]). For γ > 0, the Fenchel-Legendre dual function
W∗

γ,q(z) is differentiable

W∗
γ,q(z) = γ (E(q) + ⟨q, lnKα⟩)

= −γ ⟨q, ln q⟩+ γ
m∑
j=1

[q]j ln

(
m∑
i=1

exp
(

1
γ ([z]i −Mji)

))
(33)

and its gradient ∇W∗
γ,q(z) is 1/γ-Lipschitz in the 2-norm with

∇W∗
γ,q(z) = α ◦ (K · q/(Kα)) ∈ S1(d),[

∇W∗
γ,q(z)

]
l
=

m∑
j=1

[q]j
exp( 1

γ ([z]l−Mlj))
m∑

i=1

exp( 1
γ ([z]i−Mij))

. (34)

where z ∈ Rn and for brevity we denote α = exp(z/γ) and K = exp (−M/γ).
Notice that to get back and obtain the approximated barycenter we can employ

the following result (with λi = 1).
Theorem 5 ([33][Theorem 3.1]). The barycenter p∗ solving (31) satisfies

∀i = 1, . . . ,m p∗ = ∇W∗
γ,qi(z

∗
i ),

where the set of z∗i constitutes any solution of any smoothed dual WB problem:

min
z1,...,zm∈Rd

m∑
i=1

λiW∗
γ,qi(zi) s.t.

m∑
i=1

λizi = 0.

Thus we can apply Theorem 1 for the problem (31) with explicitly defined ∇W∗
γ,qi

and obtain xn
r,γ that satisfies

m∑
i=1

Wγ,qi([x
n
r,γ ]i)− min

p∈S1(d)

m∑
i=1

Wγ,qi(p)

≤ r

4(1 + rγ)
mK2 +

1

2
C2

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n/2

≤ ε/2.
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By Remark 5 it proves ∣∣∣∣∣
m∑
i=1

Wqi([x
n
r,γ ]i)−

m∑
i=1

Wqi([p
∗]i)

∣∣∣∣∣
≤ 2γ ln d+

r

4(1 + rγ)
mK2 + C

(
1− λ+

min

7λmax

√
rγ

1 + rγ

)n

/2 ≤ ε,

for C = 1
2C2 =

(1+rγ)mKζ

2
√
2γ

√
λmax

λ+
min

+ (1+rγ)2

8rγ2 .

C.3 Parameter estimation

It remains to assign ζ > 0 and K = Kζ satisfying (25). Due to Assumption 2 such ζ
and K exist.
Proposition 1. Let a set {qi}mi=1 satisfies Assumption 2, let p∗γ be the uniform

Wasserstein barycenter of {qi}mi=1, and let ζ ∈
(
0,min{ 1

e , mini,l[qi]l}
)
. For each i =

1, . . . ,m the norm of the gradient ∥∇Wγ,qi(·)∥22 is uniformly bounded over {p ∈ S1(d) |
∥p− p∗γ∥22 ≤ ζ}; and the bound Kρ is given in (35) for ρ ≤ min{ 1

e , mini,l[qi]l} − ζ.
We obtain Proposition 1 as a combination of Lemma 6 from [34] and proved below

Lemma 7.
Lemma 6 ([34, Lemma 3.5]). For any ρ ∈ (0, 1), q ∈ S1(d), and p ∈ {x ∈ S1(d) |
minl xl ≥ ρ} there is a bound: ∥∇Wγ,q(p)∥22 ≤ Kρ, where

Kρ =

d∑
j=1

(
2γ ln d+ inf

i
sup
l

|Mjl −Mil| − γ ln ρ

)2

. (35)

Lemma 7. Let a set {qi}mi=1 satisfies Assumption 2, let p∗γ be the uniform Wasserstein
barycenter of {qi}mi=1. All components k of p∗γ have a uniform positive lower bound:

[p∗γ ]k ≥ min{ 1
e , mini,l[qi]l}.

Proof. Let X∗
i denote the optimal transport plan between p∗γ and qi. Assume the

contrary: there is k such that [p∗γ ]k < min{ 1
e , mini,l[qi]l}. Then there is another

component n such that [p∗γ ]n > mini[qi]n > mini,l[qi]l. Consider the vector p that
consists of [p]i = [p∗γ ]i except for the components [p]n = [p∗γ ]n + δ and [p]l = [p∗γ ]l − δ,
where δ > 0 is less than mini,a̸=b[X

∗
i ]a,b of the optimal transport plans X∗

i between p∗γ
and qn. Because of the entropy, all these optimal transport plans contain only positive
non-diagonal elements, so such a δ exists.

Construct now non-optimal transport plans between p and each of qi in order to
get the contradiction with the assumption. Initially we have Wγ,qi(p

∗
γ) = ⟨C,X∗

i ⟩ −
γX∗

i lnX
∗
i . Consider the matrix Xi that differs from X∗

i only at four elements:

[Xi]kk = [X∗
i ]kk +

1

2
δ, [Xi]kn = [X∗

i ]kn +
1

2
δ,

[Xi]nn = [X∗
i ]nn +

1

2
δ, [Xi]nk = [X∗

i ]nk +
1

2
δ.
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Then Xi is a transport plan between p and qi since its elements are positive and also
Xi1 = p and X⊤

i 1 = qi. Using the monotonicity of entropy on the interval (0, 1
e ) and

the assumption that diagonal elements of the cost matrix C are zero, we get for each i:

Wγ,qi(p) ≤ ⟨C,Xi⟩ − γXi lnXi

= ⟨C,X∗
i ⟩ − γX∗

i lnX
∗
i + 1

2δCkn − 1
2δCnk

+ ([Xi]kk ln[Xi]kk − [X∗
i ]kk ln[X

∗
i ]kk)

+ ([Xi]kn ln[Xi]kn − [X∗
i ]kn ln[X

∗
i ]kn)

+ ([Xi]nk ln[Xi]nk − [X∗
i ]nk ln[X

∗
i ]nk)

+ ([Xi]nn ln[Xi]nn − [X∗
i ]nn ln[X

∗
i ]nn)

< ⟨C,X∗
i ⟩ − γX∗

i lnX
∗
i + 1

2δCkn − 1
2δCnk

= ⟨C,X∗
i ⟩ − γX∗

i lnX
∗
i = Wγ,qi(p

∗
γ).

The obtained inequalities Wγ,qi(p) < Wγ,qi(p
∗
γ) contradict to the fact that p∗γ is the

barycenter; this proves the lemma.
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