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ABSTRACT

High-probability analysis of stochastic first-order optimization methods under
mild assumptions on the noise has been gaining a lot of attention in recent years.
Typically, gradient clipping is one of the key algorithmic ingredients to derive
good high-probability guarantees when the noise is heavy-tailed. However, if
implemented naively, clipping can spoil the convergence of the popular methods
for composite and distributed optimization (Prox-SGD/Parallel SGD) even in the
absence of any noise. Due to this reason, many works on high-probability analysis
consider only unconstrained non-distributed problems, and the existing results for
composite/distributed problems do not include some important special cases (like
strongly convex problems) and are not optimal. To address this issue, we propose
new stochastic methods for composite and distributed optimization based on the
clipping of stochastic gradient differences and prove tight high-probability conver-
gence results (including nearly optimal ones) for the new methods. Using similar
ideas, we also develop new methods for composite and distributed variational
inequalities and analyze the high-probability convergence of these methods.

1 INTRODUCTION

Many recent works on stochastic optimization have the ultimate goal of bridging the theory and
practice in machine learning. This is mostly reflected in the attempts at the theoretical analysis of
optimization methods under weaker assumptions than the standard ones. Moreover, some phenomena
cannot be explained using classical in-expectation convergence analysis (see the motivating example
from (Gorbunov et al., 2020a)) that results in the growing interest in more accurate ways to the
analysis of stochastic methods, for example, high-probability convergence analysis.

However, despite the significant attention to this topic (Nazin et al., 2019; Davis et al., 2021; Gorbunov
et al., 2020a; 2022a; Cutkosky & Mehta, 2021; Sadiev et al., 2023; Nguyen et al., 2023b; Liu &
Zhou, 2023; Liu et al., 2023), several important directions remain unexplored. In particular, all
mentioned works either consider unconstrained problems or consider general composite/constrained
minimization/variational inequality problems but have some noticeable limitations, such as bounded
domain assumption, extra logarithmic factors in the complexity bounds, not optimal (not accelerated)
convergence rates, or no analysis of (quasi-) strongly convex (monotone) case. The importance of
composite/constrained formulations for the machine learning community can be justified in many
ways. For example, composite optimization and distributed optimization have a lot of similarities,
i.e., one can view a distributed optimization problem as a special composite optimization problem
(Parikh & Boyd, 2014). Due to the large sizes of modern machine learning models and datasets, many
important problems can be solved in a reasonable time only via distributed methods. Next, composite
formulations are very useful for handling different regularizations popular in machine learning and
statistics (Zou & Hastie, 2005; Shalev-Shwartz & Ben-David, 2014; Beck, 2017). Finally, variational
inequalities are usually considered with constraints as well.

The discrepancy between the importance of composite/constrained formulations and the lack of
high-probability convergence results in this setup can be partially explained as follows. SOTA high-
probability convergence results are derived for the algorithms that use gradient clipping (Pascanu
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et al., 2013), i.e., the clipping operator defined as clip(z,A) = min{1,/|=(/}z for z # 0 and
clip(0,\) = 0 with some clipping level A > 0 is applied to the stochastic gradients. If X is too
small, then naive Proximal Gradient Descent with gradient clipping is not a fixed point method, i.e.,
the method escapes the solution even if it is initialized there (see a technical explanation in Section 2).
This fact implies that one has either to increase the clipping level or to decrease the stepsize to
converge to the exact solution asymptotically; the latter approach leads to a slower convergence
rate. On the other hand, even in the unconstrained case, the existing results with acceleration/linear
convergence are derived for the methods using decreasing clipping level (Gorbunov et al., 2020a;
Sadiev et al., 2023). Therefore, new algorithms and analyses are required to handle this issue.

In this work, we close this gap by proposing new stochastic methods for composite and distributed
problems via the clipping of gradient differences that converge to zero with high probability. This
allows us to achieve the desirable acceleration and linear convergence. Before we move on to the
presentation of the main contributions, we need to introduce the problem settings formally.

1.1 SETUP

Notation. The standard Euclidean norm of vector x € R is denoted as ||z|| = \/(z,z). Bg(z) =
{y € R?| ||y — || < R} is the ball centered at = with radius R. Bregman divergence w.r.t. function

f is denoted as D (x,y) & flx) = fly) = (Vf(y),z — y). In O(-), we omit the numerical factors,

and in O(-), we omit numerical and logarithmic factors. For natural n > 1 the set {1,2,...,n} is
denoted as [n]. Finally, we use E¢[-] to denote the expectation w.r.t. the randomness coming from &.

Considered problems. The first class of problems we consider in this work is stochastic composite
minimization problems:
min {®(z) = f(z) + ¥(z)}, (1)
z€R?
where f(z) = E¢up[fe(x)] is a differentiable function satisfying some properties to be defined
later and W (x) is a proper, closed, convex function (composite/regularization term). The examples
of problem (1) arise in various applications, e.g., machine learning (Shalev-Shwartz & Ben-David,
2014), signal processing (Combettes & Pesquet, 2011), image processing (Luke, 2020). We also
consider variational inequality problems, see Appendix C.

The distributed version of (1) has the following structure of f:

£@) =+ Y {fi(e) = Bem [fe @]} @

In this case, there are n workers connected in a centralized way with some parameter server; worker ¢
can query some noisy information (stochastic gradients/estimates) about f;.

In-expectation and high-probability convergence. In-expectation convergence guarantees provide
the upper bounds on the number of iterations/oracle calls K=K () for a method needed to find point
2¥ such that E[C(2%)] < ¢ for given convergence criterion C(z) (e.g., C(x) can be f(x) — f(z*),
lz — z*||% [|[Vf(x)|*) and given accuracy e > 0. High-probability convergence guarantees give
the upper bounds on the number of iterations/oracle calls K = K (e, 8) for a method needed to
find point = such that P{C(z%) < ¢} > 1 — 3, where 8 € (0, 1) is a confidence level. It is worth
noting that Markov’s inequality implies P{C(2%) > ¢} < E[C(+™)]/c, meaning that it is sufficient
to take K = K(Be) = K: P{C(zX) > ¢} < Elc=™))/- < B. However, this typically leads to
the polynomial dependence on 1/s that significantly spoils the complexity of the method when £ is
small. Therefore, we focus on the high-probability convergence guarantees that depend on 1/3 poly-
logarithmically. Moreover, such high-probability results are more sensitive to the noise distribution
(and, thus, more accurate) than in-expectation ones (Gorbunov et al., 2020a; Sadiev et al., 2023).

Proximal operator. We assume that function ¥(x) has a relatively simple structure such that one
can efficiently compute proximal operator: prox.,q () = arg min,cra{7¥(y) + 3ly — z||*}. For
the properties of the proximal operator and examples of functions W () such that prox. ¢ () can be
easily computed, we refer the reader to (Beck, 2017).
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Bounded central a-th moment. We consider the situation when f; and F; are accessible through
the stochastic oracle calls. The stochastic estimates satisfy the following assumption. '

Assumption 1. There exist some set Q C R? and values o > 0, o € (1,2] such that for all x € Q
we have EﬁiNDi [vf& (‘T)] =V/i (.’1?) and

Ve, (x) = Vfi(x)]|*] < 0. A3)

EﬁiNDi [

For oo = 2, Assumption 1 reduces to the bounded variance assumption, and for o € (1, 2) variance of
the stochastic estimator can be unbounded, e.g., the noise can have Lévy a-stable distribution (Zhang
et al., 2020b), which is heavy-tailed.

Assumptions on f;. We assume that functions { f; };c[n) are L-smooth.

Assumption 2. We assume that there exist some set () C R% and constant L > 0 such that for all
x,y € Q,i € [n] and for all x* € arg min, cpa P(x)

IVfi(x) =Vl < Lllz—yl, Q)
IVfix) = Vi) < 2L(fix) = fila") = (Vfi(z"),z —27)). ®)

As noted in Appendix B from (Sadiev et al., 2023), (5) is satisfied on the set Q # R if (4) holds on
a slightly larger set in the case of ¥ = 0, n = 1 (unconstrained single-node case). For simplicity, we
assume that both (4) and (5) hold on Q. This is always the case for L-smooth functions on @ = R?
when ¥ = 0, n = 1. In a more general situation, condition (5) can be viewed as an assumption on the
structured non-convexity of { f; }ie[n). Finally, if { f;};c[,,) are convex and L-smooth on the whole
domain of the problem (1), then Assumption 2 holds.

Next, for each particular result about the convergence of methods for (1), we make one of the
following assumptions.

Assumption 3. There exist some set Q C R and constant 1 > 0 such that f is pu-strongly convex:

) = f(@)+ (Vf(@)y o) + Slly —2* Yoy e Q. ©)
When 1 = 0, function f is called convex on Q.

This is a standard assumption for optimization literature (Nesterov et al., 2018). We also consider a
relaxation of strong convexity.

Assumption 4. There exist some set Q C R? and constant . > 0 such that f1,. .., fn are (u,x*)-
quasi-strongly convex for all * € argmin, cpa P(z):

filz®) > filz) + (Vfi(z), 2" —z) + ng —z*|? VzeQ,ic[n] @)
Condition (7) is weaker than (6) and holds even for some non-convex functions (Necoara et al., 2019).

1.2  OUR CONTRIBUTIONS

e Methods with clipping of gradient differences for distributed composite minimization. We
develop two stochastic methods for composite minimization problems — Proximal Clipped SGD with
shifts (Prox-clipped-SGD-shift) and Proximal Clipped Similar Triangles Method with shifts (Prox-
clipped-SSTM-shift). Instead of clipping stochastic gradients, these methods clip the difference
between the stochastic gradients and the shifts that are updated on the fly. This trick allows us
to use decreasing clipping levels, and, as a result, we derive the first accelerated high-probability
convergence rates and tight high-probability convergence rates for the non-accelerated method in the

lFollowing (Sadiev et al., 2023), we consider all assumptions only on some bounded set ) C Rd; the
diameter of Q depends on the starting point. We emphasize that we do not assume boundedness of the domain
of the original problem. Instead, we prove via induction that the iterates of the considered methods stay in some
ball around the solution with high probability (see the details in Section 3). Thus, it is sufficient for us to assume
everything just on this ball, though our analysis remains unchanged if we introduce all assumptions on the whole
domain.
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Table 1: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed smooth optimization
problem (1). Column “Setup” indicates the assumptions made in addition to Assumptions 1 and 2. All assumptions are made only on some
ball around the solution with radius ~ R > ||z” — 2™||. Complexity is the number of stochastic oracle calls (per worker) needed for a
method to guarantee that P{Metric < €} > 1 — B forsomee > 0, 8 € (0, 1] and “Metric” is taken from the corresponding column.
Numerical and logarithmic factors are omitted for simplicity. Column “C?” shows whether the problem (1) is composite, “D?” indicates whether
the problem (1) is distributed. Notation: L = Lipschitz constant; o = parameter from Assumption 1; R = any upper bound on H:EO —z*|;
L5 NV fi(z))I2s R*=R (BR+ L™ (2no + ||V £(z°)|))) for some i > 0 (for the result from (Nguyen et al., 2023a);
one can show that R? = (—)(l?,2 + R« /L) when n = 1, see the discussion after Theorem 2.3); pu = (quasi-)strong convexity parameter. The
results of this paper are highlighted in blue.

[ Setup | Method Metric Complexity C?  D? |
(Sa?iliigx? o f,c;gm F@) — 1) masc { L2, (21) 55T | o
(Sudn ot 202) F@™) = @) max { VEE, (22) @ } XX
; n.e _, o
As.3 <Ngfﬂi’f ifdlswzlgz;:) ) *@E") — 2() max { L6, (22) =71 | o
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(1) All assumptions are made on the whole domain.

@ The authors additionally assume that for a chosen point  from the domain and for n > 0 one can compute an estimate g such that
P{||g — Vf(&)|| > no} < e. Such an estimate can be found using geometric median computed over O (In e~ 1) samples (Minsker,
2015).

© The authors assume that ¥ f(z™) = 0, which is not true for general composite optimization.

quasi-strongly convex case. We also generalize the proposed methods to the distributed case (DProx-
clipped-SGD-shift and DProx-clipped-SSTM-shift) and prove that they benefit from parallelization.
To the best of our knowledge, our results are the first showing linear speed-up under Assumption 1.

e Methods with clipping of gradient differences for distributed composite VIPs. We also apply
the proposed trick to the methods for variational inequalities. In particular, we propose DProx-
clipped-SGDA-shifts and DProx-clipped-SEG-shifts and rigorously analyze their high-probability
convergence. As in the minimization case, the proposed methods have provable benefits from
parallelization.

o Tight convergence rates. As a separate contribution, we highlight the tightness of our analysis:
in the known special cases (W = 0 and/or n = 1), the derived complexity bounds either recover or
outperform previously known ones (see Table 1 and also Table 2 in the appendix). Moreover, in
certain regimes, the results have optimal (up to logarithms) dependencies on ¢. This is achieved under
quite general assumptions.

1.3 CLOSELY RELATED WORK

We discuss closely related work here and defer additional discussion to Appendix A.

High-probability bounds for unconstrained convex problems. Standard high-probability conver-
gence results are obtained under the so-called light-tails assumption (sub-Gaussian noise) (Nemirovski
et al., 2009; Juditsky et al., 2011; Ghadimi & Lan, 2012). The first work addressing this limitation is
(Nazin et al., 2019), where the authors derive the first high-probability complexity bounds for the case
of minimization on a bounded set under bounded variance assumption. In the unconstrained case,
these results are extended and accelerated by Gorbunov et al. (2020a) for smooth convex and strongly
convex minimization problems. Gorbunov et al. (2021) tightens them and generalizes to the case of
problems with Holder-continuous gradients and Gorbunov et al. (2022a) derives high-probability
convergence rates in the case of VIPs. Sadiev et al. (2023) relaxes the assumption of bounded variance
to Assumption 1 for all problem classes mentioned above, and the results under the same assumption
are also derived for clipped-SGD (without acceleration) by Nguyen et al. (2023b) in the convex and
non-convex cases.
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High-probability bounds for composite convex problems. Nazin et al. (2019) propose a trun-
cated version of Mirror Descent for convex and strongly convex composite problems and prove
non-accelerated rates of convergence under bounded variance and bounded domain assumptions.
Accelerated results under bounded variance assumption for strongly convex composite problems are
proven by Davis et al. (2021), who propose an approach based on robust distance estimation. Since
this approach requires solving some auxiliary problem at each iteration of the method, the complexity
bound from Davis et al. (2021) contains extra logarithmic factors independent of the confidence
level. Finally, in their very recent work, Nguyen et al. (2023a) prove high-probability convergence
for Clipped Stochastic Mirror Descent (Clipped-SMD) for convex composite problems. Moreover,
the authors also propose Accelerated Clipped-SMD (Clipped-ASMD) and show that the algorithm
is indeed accelerated but only under the additional assumption that ¥V f (x*) = 0.

2 MAIN RESULTS FOR COMPOSITE DISTRIBUTED MINIMIZATION PROBLEMS
In this section, we consider problem (1) and methods for it.

Failure of the naive approach. For simplicity, consider a non-stochastic case with strongly
convex f(z), n = 1. The standard deterministic first-order method for solving problems like (1)
is Proximal Gradient Descent (Prox-GD) (Combettes & Pesquet, 2011; Nesterov, 2013): zF+1 =
Prox. g (x% — yV f(2*)). Due to the good interplay between the structure of the problem, properties
of the proximal operator, and the structure of the method, Prox-GD has the same (linear) convergence
rate as GD for minimization of f(x). One of the key reasons for that is that any solution z* of problem
(1) satisfies * = prox, ¢ (z* — vV f(z")), i.e., the solutions of (1) are fixed points of Prox-GD (and
vice versa), which is equivalent to —V f(2*) € 0¥ (z*), where 9P (z*) is a subdifferential of ¥ at
x*. However, if we apply gradient clipping to Prox-GD naively

a" ! = prox. g (z" — yc1ip(Vf(2"), V), ®

then the method loses a fixed point property if ||V f(x*)|] > A, because in this case,
—clip(Vf(z*),\) does not necessarily belongs to O¥(z*) and x* # prox,g(z* —
~vclip(Vf(z*),\)) in general. Therefore, for such A, one has to decrease the stepsize 7y to achieve
any accuracy of the solution. This approach slows down the convergence making it sublinear even
without any stochasticity in the gradients. To avoid this issue, it is necessary to set A large enough.
This strategy works in the deterministic case but becomes problematic for a stochastic version of the
method from (8):

zhtl = Prox. g (xk —vclip(V fex (xk), )\k)) , 9)

where £F is sampled independently from previous iterations. The problem comes from the fact the
existing analysis in the unconstrained case (which is a special case of the composite case) requires
taking decreasing A; (Gorbunov et al., 2021; Sadiev et al., 2023) that contradicts the requirement that
clipping level has to be large enough. Therefore, more fundamental algorithmic changes are needed.

Non-implementable solution. Let us reformulate the issue: (i) to handle the heavy-tailed noise, we
want to use decreasing clipping level A, (ii) but the method should also converge linearly without
the noise, i.e., when V fer (2%) = E¢r [V fer (2*)] = V f(2*). In other words, the expectation of the
vector that is clipped in the method should converge to zero with the same rate as \j,. The method
should converge, i.e., with high probability, we should have V f(z*) — V f(2*). These observations
lead us to the following purely theoretical algorithm that we call Prox-clipped-SGD-star?:

" = prox g (¥ —7g"), where §* = Vf(z*) + clip (Vfe (2¥) = Vf(2*),Ac) . (10)

The method is non-implementable since V f(x*) is unknown in advance. Nevertheless, as we explain
in the next subsection, the method is useful in designing and analyzing implementable versions. The
following theorem gives the complexity of Prox-clipped-SGD-star.

’The idea behind and the name of this method is inspired by SGD-star proposed by Gorbunov et al. (2020b);
Hanzely & Richtérik (2019).
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Theorem 2.1. Let n = 1 and Assumptions 1, 2, and 4 with p > 0 hold for Q = Bag(z*),
R > ||2° — 2|, for some® 2 € argmin, cpa ®(z). Assume that K > 1, 3 € (0,1), A=1n %,

. 1 In(Bk) (K + 1" R
O<meO - MPK) . Br=60 ¢ 2, ’
<7y <IIIH1 { A /J(K T 1) }) K (max { " g2 A2 D/ a 1112(3[() )

M= 6 <e><p(“,¢i%+ k/‘z))R) _

Then to guarantee |z — z*||? < & with probability > 1 — /3 Prox-clipped-SGD-star requires

- L [ o2\ @D
O | max ;, (,u%) iterations/oracle calls. (11)

Sketch of the proof. Following Gorbunov et al. (2020a); Sadiev et al. (2023), we prove by induction®
that ||2* — z*||? < 2exp(—~yuk)R? with high probability. This and L-smoothness imply that
|V f(z*) =V f(x*)|| ~ exp(—r#k/2) and ||V f(zF) — V f(2*)|| < »/2 with high probability. These
facts allow us to properly clip the heavy-tailed noise without sacrificing the convergence rate. See the
complete formulation of Theorem 2.1 and the full proof in Appendix D. O

The above complexity bound for Prox-clipped-SGD-star coincides with the known one for clipped-
SGD for the unconstrained problems under the same assumptions (Sadiev et al., 2023) — similarly as
the complexity of Prox-GD coincides with the complexity of GD for unconstrained smooth problems.

Prox-clipped-SGD-shift. As mentioned before, the key limitation of Prox-clipped-SGD-star
is that it explicitly uses shift V f(x*), which is not known in advance. Therefore, guided by the
literature on variance reduction and communication compression (Gorbunov et al., 2020b; Gower
et al., 2020; Mishchenko et al., 2019), it is natural to approximate V f(z*) via shifts h¥. This leads
us to a new method called Prox-clipped-SGD-shift: as before 2% = proxq, (2% —~g*) but now

GF=hF+ AR RRP = pF L pAR D AR = clip (Ve (%) — BF 0 (12)
where v > 0 is a stepsize for learning shifts. Similar shifts are proposed by Mishchenko et al. (2019)
in the context of distributed optimization with communication compression. Since Prox-clipped-

SGD-shift is a special case of its distributed variant, we continue our discussion with the distributed
version of the method.

Distributed Prox-clipped-SGD-shift. We propose a generalization of Prox-clipped-SGD-shift to
the distributed case (2) called Distributed Prox-clipped-SGD-shift (DProx-clipped-SGD-shift):

N ISR R SR A
= prox,y (2 —9g*), where g* =~ g, g =hi+ AL (13)
i=1
BEFL = BE 4 vAE, AF = clip (Ve () = hE M) (14)
where ¢¥, ... ¢F are sampled independently from each other and previous steps. In this method,

worker 7 updates the shift h¥ and sends clipped vector A¥ to the server. Since g¥ = hF +1 377 Ak

and hF*1 = pk 4+ 257" Ak where h* = 1 7" | h¥, workers do not need to send h¥ to the server
for k£ > 0. We notice that even when ¥ = (), i.e., the problem is unconstrained, individual gradients
{V fi(2*)}icpn of the clients’ function at the solution of problem (1) are not necessary zero, though
their sum equals to zero. However, if applied without any shifts to the local (stochastic) gradients,
then, similarly to the case of non-distributed Prox-GD (8), the clipping operation also breaks the
fixed point property, since + >°" | c1ip(V fi(x*), ) # 0 for small values of . This highlights the

n
importance of the shifts for distributed unconstrained case.

For the proposed method, we derive the following result.

31f all of our results, one can use any solution z*, e.g., one can take z* being a projection of z* on the
solution set.

“We use the induction to apply Bernstein’s inequality for the estimation of the sums appearing due to the
stochasticity of the gradients. We refer to Section 3 for the details.
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Theorem 2.2 (Convergence of DProx-clipped-SGD-shift: quasi-strongly convex case). Let K > 1,
e (0,1), A=1n 487"([3&. Let Assumptions 1, 2, and 4 with p > 0 hold for Q = By, szp(x"),

where R > ||20 — z*||2. Assume that §, = /£ 57" | |V fi(a*) |2,

r-8(2). v<r-ofem {5800 ).

B =0 (max {2 (B 4 )" o pPn™ T B2 }) A =0 (neXp(_’W’(l + k/Q))R>
7 02 A*=V/> In?(By) vA ‘

Then to guarantee ||z — x*||? < & with probability > 1 — 3 DProx-clipped-SGD-shift requires

~ L ¢ 1/ 02\ @D
O [ max ¢ —, \f i <2> iterations/oracle calls per worker. (15)
wo/nuR n \ pie

Sketch of the proof. The proof follows similar steps to the proof of Theorem 2.1 up the change of the
Lyapunov function: by induction, we prove that V}, < 2 exp(—vyuk)V with high probability, where

Vi = ||lz% — 2*||2 + % S ||hE — Y f;(z*)||*. The choice of the Lyapunov function reflects
the importance of the “quality” of shifts {h¥};c(,, i.e., their proximity to {V fi(z*)};c[,,). Moreover,
we increase the clipping level n times to balance the bias and variance of §”; see Appendix B. This

allows us to reduce the last term in the complexity bound n times. See the complete formulation of
Theorem 2.2 and the full proof in Appendix E. O

The next theorem gives the convergence result in the convex case.
Theorem 2.3 (Convergence of DProx-clipped-SGD-shift: convex case). Ler K > 1, 5 € (0,1),
A =1In %. Let Assumptions 1, 2, and 3 with u = 0 hold for QQ = B\/ﬁ(x*), where

R > |2 — 2| Assume that v =0, G = /L S0 [V fi() |12

) 1 nR n"“ VR nR
0<y=0 (mm{LA., AC, oKV A }) , A=A=0 (’YA) :

Then to guarantee ®(z%) — ®(a*) < e for 8 = %ﬂ Zi{:o x* with probability > 1 — 3 DProx-
clipped-SGD-shift requires

~ LR? R(. 1 (oR\"1
@) (max {, ¢ , — <0> }) iterations/oracle calls per worker. (16)
e Tyne'n \ e

Discussion of the results for DProx-clipped-SGD-shift. Up to the difference between V' and
||z° — 2*||?, in the single-node case, the derived results coincide with ones known for clipped-SGD in
the unconstrained case (Sadiev et al., 2023). In the composite non-distributed case (n = 1), the result
of Theorem 2.2 is the first known of its type, and Theorem 2.3 recovers (up to logarithmic factors) the
result from (Nguyen et al., 2023a) for a version of Stochastic Mirror Descent with gradient clipping
(Clipped-SMD), see Table 1. Indeed, parameter R = R (3R+ L™(2no + ||V f(2°)]])) for some
n > 0 from the result by Nguyen et al. (2023a) equals © (O (R? + 1¢+/L)), when 1 is sufficiently small

(otherwise R can be worse than ©(R? + E¢-/1)), which can be seen from the following inequalities
following smoothness: [[V ()| < [V f(a")[[+ [V £(a%) =V f(z*)| < [IVf(a*) |+ L]2® —a*]|
and |V (2*)| < V7| |V /(2®) - V)] < [V ()] + L~ 27]|. Since in this
work we do not focus on the logarithmic factors, we do not show them in the main text and provide
the complete expressions in the appendix. Nguyen et al. (2023a) has better dependencies on the
parameters under logarithms than our results. We conjecture that adjusting the proof technique from
(Nguyen et al., 2023a) one can improve the logarithmic factors in our results as well.

It is worth mentioning that shifts are not needed in the convex case because the method does not
have fast enough convergence, which makes it work with a constant clipping level, i.e., the method in
the convex case requires less tight gradient estimates and is more robust to the bias than in strongly
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convex. In the quasi-strongly convex case, the shifts’ stepsize is chosen as v ~ ©(1/4) and it does
not explicitly affect the rate since yu = ©(1/4a), see the details in Section 3 and Appendix E.

Next, as expected for a distributed method, the terms in the complexity bounds related to the
noise improve with the growth of n. More precisely, the terms depending on the noise level o are
proportional to /n, i.e., our results show so-called linear speed-up in the complexity — a desirable
feature for a stochastic distributed method. This aspect highlights the benefits of parallelization.
To the best of our knowledge, the results for the distributed methods proposed in our work are the
only existing ones under Assumption 1 (even if we take into account the in-expectation convergence
results). In the special case of @ = 2, our results match (up to logarithmic factors) the SOTA
ones from (Gorbunov et al., 2021) since parallelization with linear speed-up follows for free under
the bounded variance assumption, if the clipping is applied after averaging as it should be in the
parallelized version of methods from (Gorbunov et al., 2021) to keep the analysis from (Gorbunov
et al., 2021) unchanged. Indeed, when {V f¢, () };c[, are independent stochastic gradients satisfying
Assumption 1 with parameters o > 0 and o = 2, then % Zle[n] V fe, (x) also satisfies Assumption 1
with parameters o//n and o = 2. However, when o < 2 achieving linear speed-up is not that
straightforward. If {V f¢, (7)};e[,, are independent stochastic gradients satisfying Assumption 1
with parameters o > 0 and a < 2, then the existing results (Wang et al., 2021, Lemma 7) give a

weaker guarantee: - Z, e vV fe, () satisfies Assumption 1 with parameters dil which is

dimension dependent, and the same «. Therefore, if one applies this result to the known ones from
(Sadiev et al., 2023; Nguyen et al., 2023a), then the resulting complexity will have an extra factor

1 _a . .
of d==T " 2(a=T) in the term that depends on ¢. For large-scale or even medium-scale heavy-tailed

problems, this factor can be huge, e.g., when d = 1000 and o = g this factor is 10006~3 >
10003 = 10°.

To avoid these issues, we apply gradient clipping on the workers and then average clipped vectors,
not vice versa. This is also partially motivated by the popularity of gradient clipping for ensuring
differential privacy guarantees (Abadi et al., 2016; Chen et al., 2020) in Federated Learning (Kone¢ny
et al., 2016; Kairouz et al., 2021). Therefore, the proposed distributed methods can be useful for
differential privacy as well, though we do not study this aspect in our work.

Acceleration. Next, we propose a distributed version of clipped Stochastic Similar Triangles
Method (Gorbunov et al., 2020a; Gasnikov & Nesterov, 2016) for composite problems (DProx-
Cllpped-SSTM-Shlft) f— yO = ZO, AO =q9 =0, A1 = %, Ak+1 = A + Qi1 and

ApyF 4 a1 2*

ghtl = 2R T ORH1Z ke = prox,, v (2 — ars1g(=")) 17)

Akt *

n
k‘-‘rl Z k‘-‘rl k-‘rl) _ hk: + Ak (18)
WY =nf + A, A =clip (Vfgls (") — By, Ak) , (19)
A k +a Zk-',—l
yk+1 _ kY - k+1 (20)
E+1

where £F ..., ¢F are sampled independently from each other and previous steps. For the proposed

method, we derive the following result.
Theorem 2.4 (Convergence of DProx-clipped-SSTM-shift). Let Assumptions 1, 2, and 3 with

p = 0 hold for Q@ = Bg s, p(x*), where R > || — 2*||*. Let ¢, = \/% Yo IV fi(z)]|?
C = O(4/ym), Ko = O(A?), where K > 1, 3 € (0,1), A=In % Assume that

L, if k > Ko, AV A3, oKVl AL
o {(k+3)2 J v a=0 (max {2 — O }) ,

»

42" ik < Ko, | "n ' LynR~ LRn" e

C2(Ko+2)%n
nR
A, =0 .
’ (%HA)
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Then to guarantee ®(y*) — ®(a*) < e with probability > 1 — 3 DProx-clipped-SSTM-shift
requires

~ [LR? |R¢, 1 (0R\77
@) (max { _ ¢ , — (U> }) iterations/oracle calls per worker. 21
€ Vne'n \ e

Sketch of the proof. The proof of this result resembles the proof for clipped-SSTM from (Sadiev
et al., 2023) but has some noticeable differences. In addition to handling the extra technical challenges
appearing due to the composite structure (e.g., one cannot apply some useful formulas like z* —
2+l = . 41G(2F 1) that hold in the unconstrained case), we use a non-standard potential function
M, defined as My, = ||z% — 2% + (CPekor1/n) Yoy [|RF — V fi(2*)]|? for k < Ky and My, =

2 2
2% — 2|2 + % S |hE =V fi(z*)||? for k > K,. We elaborate on this and provide the
complete proof in Appendix F. O

When n = 1, the derived result has optimal dependence on ¢ (up to logarithmic factors) (Nemirovskij
& Yudin, 1983; Zhang et al., 2020b). In contrast to the result from (Nguyen et al., 2023a), we do not
assume that V f(z*) = 0. Moreover, as DProx-clipped-SGD-shift, DProx-clipped-SSTM-shift
benefits from parallelization since the second term in (21) is proportional 1/n. When n is sufficiently
large, the effect of acceleration can become significant even for large o. In Appendix F.2, we also
provide the convergence results for the restarted version of DProx-clipped-SSTM-shift assuming
additionally that f is strongly convex and one can compute starting shifts hY as V f;(x°).

3 ON THE PROOFS STRUCTURE

In this section, we elaborate on the proofs structure of our results and highlight additional challenges
appearing due to the presence of the composite term and distributed nature of the methods. The
proof of each result consist of two parts: optimization/descent lemma and the analysis of the sums
appearing due to the stochasticity and biasedness of the updates (due to the clipping). In the first part,
we usually follow some standard analysis of corresponding deterministic method without clipping
and separate the stochastic part from the deterministic one (though for DProx-clipped-SSTM-shift
we use quite non-standard Lyapunov function, which can be interesting on its own). For example, in
the analysis® of DProx-clipped-SGD-shift under Assumption 4, we prove the following inequality:

K n
Viern £ (1= o+ 20573 (1= )< H Gk — ot = A(T6H) - V), win)

k=0 i=1
72 K n K
o > D (=) will® 97 DD = ) e,
k=0 i=1 =
where Vj, = [|2% —z*||* + % S, ||k — V fi(2*)||? for some numerical constant C' > 0 and

vectors w; = V f;(z*) — G¥ represent the discrepancy between the full gradients and their estimates.
Moreover, to use this inequality for some K = T > 0 we need to show that {z* }H_, belong to
the set where the assumptions hold (in this particular case, to By, 5 (™)) with high probability.
We do it always by induction. More precisely, we prove that P{Ey} > 1 — k8/(x+1) for the
—1
%22:1 W?,t—1H <
exp(—u(t=1)/2)\/R*/2 hold for t = 0,1,...,kand r = 1,2,...,n simultaneously, where wily =
E¢t[g;] — g; and E¢: [] denotes an expectation w.r.t. §f. To prove this, we use Bernstein inequality
for martingale difference (see Lemma B.1). However, to apply Bernstein inequality we need to
circumvent multiple technical difficulties related to the estimation of the norm of the clipped vector
(that involves derivations related to the shifts {hf’}ie[n]), proper choice of the clipping level to
control the bias and variance and achieve desired linear speed-up (see Lemma B.3 and the following

discussion). Moreover, when n > 1 (distributed case), we also need to apply additional induction
over clients to estimate sums like ® from (265).

probability event E}, defined as follows: inequalities V; < 4 exp(—vyut)R? and

5In the appendix, we analyze this case in the generality of variational inequalities. Here we provide a
simplified version for minimization.
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A EXTRA RELATED WORK

Non-convex case. Li & Orabona (2020) analyze the high-probability convergence rate of SGD
for finding first-order stationary points for smooth non-convex unconstrained problems. The first
high-probability result under Assumption 1 for the same class of functions is derived by Cutkosky &
Mehta (2021). However, the result of Cutkosky & Mehta (2021) relies on the additional assumption
that the gradients are bounded. Sadiev et al. (2023) remove the bounded gradient assumption but
derive a slightly worse rate. Nguyen et al. (2023b) improve the result and achieve the same rate as in
(Cutkosky & Mehta, 2021) without assuming boundedness of the gradients. It is worth mentioning
that Cutkosky & Mehta (2021); Sadiev et al. (2023); Nguyen et al. (2023b) derive their main results
for the methods that use gradient clipping.

Gradient clipping is a very useful algorithmic tool in the training of deep neural networks (Pascanu
etal., 2013; Goodfellow et al., 2016). Gradient clipping also has some good theoretical properties, e.g.,
it can be useful for minimization of (Lg, L1 )-smooth functions (Zhang et al., 2020a), in differential
privacy (Abadi et al., 2016), Byzantine-robustness (Karimireddy et al., 2021). Moreover, as we
already mentioned, almost all existing high-probability results that do not rely on the light-tailed noise
assumption are derived for the methods with clipping. Recently, Sadiev et al. (2023) theoretically
showed that SGD has worse high-probability convergence than clipped-SGD even when the noise
in the gradient has bounded variance.

14
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B AUXILIARY AND TECHNICAL RESULTS

Bernstein inequality. In the final stages of our proofs, we need to estimate certain sums of random
variables. The main tool that we use to handle such sums is Bernstein inequality for martingale
differences (Bennett, 1962; Dzhaparidze & Van Zanten, 2001; Freedman et al., 1975).

Lemma B.1. Ler the sequence of random variables {X;}i>1 form a martingale difference se-
quence, ie. B[X; | X;—1,...,X1] = 0 for all i > 1. Assume that conditional variances

01-2 @‘E [XZQ | Xi—1,..., X 1] exist and are bounded and also assume that there exists deterministic
constant ¢ > 0 such that | X;| < ¢ almost surely for all i > 1. Then forallb > 0, G > 0andn > 1

2
i=1 =1

Impact of clipping on the bias and variance. The following lemma also helps to handle the
aforementioned sums of random variables.

Lemma B.2 (Lemma 5.1 from Sadiev et al. (2023)). Let X be a random vector in R% and X =
c1ip(X,\). Then, | X — E[X]|| < 2\. Moreover; if for some o > 0 and o € (1,2] we have
E[X] =z € RY E[| X — z||%] < 0%, and ||z|| < ¥/2, then

o] = 2%
E[H)?—E[)?]HQ] < 18A27%gC, (24)

Intuition behind the choice of clipping level in the distributed case. To better illustrate why we

increase clipping level n times, we prove the following lemma.

Lemma B.3. Let X1, Xo, ..., X, be independent random vectors in R% and )N(Z = clip(X;, A) for

all’i € [n]. Then, for X = L 3" | X; we have | X —E[X]|| < 2)\. Moreover, if for some o > 0 and

a € (1,2] we have E[X;] = x; € RY E[| X; — 24]|*] < 02, and ||z;|| < M2 for all i € [n], then for
1 n . . ..

r = ;> .., x; the following inequalities hold

2%

[ex-o| < 5 (25)
~ ~ 112 1 )\27(1 a
E[HX—IE[X]H] < 18T (26)
n
Proof. From Lemma B.2 we have for all i € [n] that || X; — E[X;]|| < 2\ and
> 2%0“
HE[Xi]_«Ti < Na—17 27
~ ~ 2
E[HXi—IE[XZ-] } < 18A27%gC, (28)
Jensen’s inequality implies
~ ~ 1</~ ~ 1 <~
X—EXH = = (XI—IEX1> <2 HXZ»—]EXl <2\
|X - Ex) > X)| <22 %| <
- I - I - @7 2%
|BL%] - 2| = n;(E[Xi]—xi) <n;HE[XZ]—Iz < oot
Finally, using the independence of X [ ,)?n, we derive
E||% - Ex)| Elnf(JE)?anE)?E)?Q
|x-m3] - P2 (FER)| | = 5y % - =]
28  18A\2~@g®
S -
n
that concludes the proof. O
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From (25)-(26), we see that number of workers n appears differently in the bound on bias and
variance. However, if we replace A with n\, then both bounds will transform to (23)-(24) respectively
with 0% = % /n>=1 (in other words, bias and variance will have the same dependence on n). These
observations hint that the complexity bounds for distributed methods should be similar to the ones
proven for non-distributed methods (in the unconstrained case) by Sadiev et al. (2023) up to the
replacement of o® with ©®/n>~1. Nevertheless, our analysis of the distributed case does not rely on
Lemma B.3 and has some important differences with the single-node case (even when ¥ = 0).

Useful inequality related to prox-operator. In the analysis of DProx-clipped-SGDA-shift, we
use the following standard result.

Lemma B.4 (Theorem 6.39 (iii) from (Beck, 2017)). Let U be a proper lower semicontinuous convex
function and v+ = ProX.g (x). Then for all y € R? the following inequality holds:

(zF =,y —a™) >y (V(aT) - U(y)).

16
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Table 2: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed variational
inequality problem (29). Column “Setup” indicates the assumptions made in addition to Assumptions 1. All assumptions are made only on
some ball around the solution with radius ~ R > Hrco — || (for the results from (Sadiev et al., 2023)) or radius ~ V'V (Theorems C.1
and C.2). Complexity is the number of stochastic oracle calls(per worker) needed for a method to guarantee that P{Metric < e} > 1 — 3
for some e > 0, B € (0, 1] and “Metric” is taken from the corresponding column. Numerical and logarithmic factors are omitted for
simplicity. Column “C‘7” shows whether the problem (1) is composlte “D?” mdlcates whether the problem (1) is distributed. Notation:
malfg = K+1 Zk 0 Z* (for SEG-type methods), X = K+1 Zk 0 x* (for SGDA-type methods); L = Lipschitz constant; o =

avg

parameter from Assumption 1; R = any upper bound on ||z® — z* || (for the results from (Sadiev et al., 2023)); V' = any upper bound on
2 4 409600~2 1n2 % 12
|20 — ™| = Soiy [1Fi(x™)]|* (for the results of this paper); p = quasi-strong monotonicity parameter; £ =

71
star- cocoercwny parameter. The results of this paper are highlighted in blue.

[ Setup [ Method Metric Complexity C?  D? |

woer | gt e ECHE]
Theorem H.1 Gapﬁ(i‘:‘(’g) max { LEV’ % (U SV o } / Y
R LR (o CO R NI,
Theorem H.2 Hmk 7I*H2 max{%, % (:25) et } 7 7

- - > =
As. T&9 & 10 DPr(oi%lgi)eE:gdisg(g:-)shift ) e 5 () a—; "
Theorem G.1 Gapﬁ(z‘:‘(’g) max {%’ % (a\y) o } / Y
NI ot LR GO NI
Theorem G.2 HIK B z*”z max {ﬁ’ % (;25) e } / v

C COMPOSITE DISTRIBUTED VARIATIONAL INEQUALITIES
In this section, we provide an overview of the obtained results for variational inequalities.

C.1 SETUP

In addition to the minimization problems, we also consider stochastic composite variational inequality
problems (VIPs):

find z* € R? suchthat (F(z*),z — z*) + ¥(z) — ¥(z*) > 0, (29)

where the assumptions on operator F/(z) = E¢p[F¢(z)] : R? — R? will be specified later and, as
in the case of minimization, ¥(z) is a proper, closed, convex function. When f(z) is convex problem
(1) is a special case of (29) with F'(z) = V f(z). For the examples of problems of type (29), we refer
to (Alacaoglu & Malitsky, 2022; Beznosikov et al., 2023).

The distributed version of (29) has the following structure of F':

= 13 {A@) = Eeen R @)} 0)

In this case, there are n workers connected in a centralized way with some parameter server; worker ¢
can query some noisy information (stochastic gradients/estimates) about Fj.

C.2 ASSUMPTIONS

Bounded central o-th moment. We consider the situation when F; are accessible through the
stochastic oracle calls. The stochastic estimates satisfy the following assumption.®

Assumption 5. There exist some set Q C R% and values o > 0, a € (1,2] such that for all x € Q
we have B¢, .p,[F¢,(z)] = Fi(x) and

EEiNDi [

(z) — Fi(x)||”] < o™ 31)

°Following (Sadiev et al., 2023), we consider all assumptions only on some bounded set ) C Rd; the
diameter of Q depends on the starting point.
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Assumptions on F;. We make standard assumptions on { F; };c[,,. The first one is Lipschitzness.
Assumption 6. There exist some set Q C R® such that operators F; are L-Lipschitz:
[Fi(z) — Fi(y)| < Lllz =yl Vz,y€Q,i€[n]. (32)

Next, for each particular result, we make one or two of the following assumptions.
Assumption 7. There exist some set Q C R? such that F is monotone on Q:
(F(z) = F(y),z—y) >0 Vz,yeQ. (33)
Assumption 8. There exist some set Q C R? such that F is (j, 2*)-quasi strongly monotone on Q
for some p > 0 and any solution x* of (29):
(F(x) = F(a*),x —a*) > pllz —a*|?, VzeqQ. (34)

Assumption 9. There exist some set Q C R® such that {F;};c () are (£, z*)-star-cocoercive on Q
for some £ > 0 and any solution x* of (29):

|Fi(z) = Fi(z*)|? < UFi(x) = Fi(2*), 2 —2%), VeeQ,icn]. (35)
Assumption 10. There exist some set Q C R? such that F is {-cocoercive on Q for some £ > 0:
|F(z) = F(y)lI” < {F(x) = Fy),z —y), Ya,yeQ. (36)

Assumption 7 is a standard assumption for the literature on VIPs. Quasi-strong monotonicity
(Mertikopoulos & Zhou, 2019; Song et al., 2020; Loizou et al., 2021) is weaker than standard strong
monotonicity’ and star-cocoercivity is weaker than standard cocoercivity (Assumption 10), which
implies monotonicity and Lipschitzness but not vice versa. Both conditions (34) and (35) imply
neither monotonicity nor Lipschitzness (Loizou et al., 2021).

C.3 DPROX-CLIPPED-SGDA-SHIFT

For composite variational inequalities, we start with Distributed Prox-clipped-SGDA-shift
(DProx-clipped-SGDA-shift) that is defined in (13)-(14) with the following change: Af =
clip (F gk (zF) — hf, )\k) , where ¢F ... ¢F are sampled independently from each other and previ-
ous steps. For the proposed method, we derive the following result.

Theorem C.1 (Convergence of DProx-clipped-SGDA-shift). Ler K > 1, 8 € (0,1),
A=n BEED Y > g0 — o |2 4 B 5 |Fy (a2

Case 1. Let Assumptions 1, 8 with > 0, and 9 hold for Q = By s7(v*). Assume
that 0 < v = O(/yma), 0 < ~v = O (min{l/vnay, ea, n(Bx)/uk+1)}), Bx =
© (max{2, (K+1)° 72207y o y20- a2, 01) | Ay, = O(nexp(—u(1+5/2))VV /4 4).
Case 2. Let Assumptions 1, 7, and 9 hold for Q = Bgﬁ(az*). Assume that v = 0,
0 <y = O(min{l/ea,n "™V VV /g e p@re}) N = X = O(nVV/54).

Then to guarantee |[z* — a*||> < ¢ in Case 1 and Gap 7 (zk,) =
MaXyep - (s+) {(F(y),xafgg —y)+ ‘l/(acgg) — \I/(y)} < ¢ in Case 2 with a?gg = ﬁ Z?:o xk
with probability > 1 — 3 DProx-clipped-SGDA-shift requires

- ¢ 1 0.2 2(aa—1)
Casel: O | max< —,— (2> iterations/oracle calls per worker, 37
won \ p’e
. E 1 / a(il
Case 2: O | max —V, — (g V) iterations/oracle calls per worker. (38)
e'n €

As in the case of minimization, in the single-node case, the derived results coincide with ones known
for clipped-SGD in the unconstrained case (Sadiev et al., 2023) Up to the difference between V and
||#° — 2*||2. In the distributed case, we also observe the benefits of parallelization.

"Operator F is called p-strongly monotone on Q if (F(z) — F(y),z —y) > ullz — />
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C.4 DPROX-CLIPPED-SEG-SHIFT

Finally, we propose a distributed version of clipped-SEG for composite VIPs (DProx-clipped-SEG-
shift):

" = proxy (2 —~g"), g* Zgl, gF =hE+ A, BT =R+ vAF (39)

P = proxy (2F —95%), §* Zgz LG =hE AL R =RE+rAT @)
where AF = clip(FEic,i(a:k) — Bk, AR = clip(Fg (@%) - h¥, Ax) and
&y &8, 65, ... &b, are sampled independently from each other and previous steps. For

the proposed method, we derive the following result.

Theorem C.2 (Convergence of DProx-clipped-SEG-shift). Ler K > 1, 8 € (0,1),
A=1In 4871,(g(+1), V> on . 95*||2 + 40960:272,42 2?21 HFz(CU*)HZ

Case 1. Let Assumptions 1, 6, and 8 with ;1 > 0 hold for Q = By p(2%). As-
sume that v = ~u, 0 < ~v = O(min{Y/ua? L, vn/La,n(Bx)/u(k+1)}), Bgx =
e (max{27 (KJrl)z(ail)/a“z"Q(ui1)/av/02A2(a_1)/" 1n2(BK)})’ g = O(nexp(—u(1+¥/0))VV /.y 4),
Case 2. Let Assumptions 1, 6, and 7 hold for Q = B4n\/V($*)' Assume that v = 0,
0 <y = O(min{l/La,n" VT [or o ACDI}), Ny = X = O(nV/ra).

Then to guarantee |z% — x*|? S e in Case 1 and Gapf( avg) =

maxye o (o) L{F(Y), Tavg — ¥) + U(Tirg) — V(y)} < ¢ in Case 2 with Tly, = 5 S E
with probability > 1 — 3 DProx-clipped-SEG- Shlft requires
~ L1 o2\ 2D
Case 1: O | max <2> iterations/oracle calls per worker,  (41)
p'n \ p2e
~ LV 1 Vy®
Case2: (O | max ~n <0[> iterations/oracle calls per worker. 42)

The main properties of the above result are similar to the ones of the result for DProx-clipped-SGDA-
shift. The only difference is that the methods (DProx-clipped-SGDA/SEG-shift) are analyzed
for different classes of problems and, thus, complement each other. According to the known lower
bounds, our upper bound (41) has optimal dependence on ¢ up to logarithmic factors.

19



Under review as a conference paper at ICLR 2024

D MISSING PROOFS FOR Prox-clipped-SGD-star

This section provides the complete formulations of our results for Prox-clipped-SGD-star and
rigorous proofs. We start with the following result — a generalization of Lemma E.7 from (Sadiev
et al., 2023) to the composite distributed problems.

Lemma D.1. Consider differentiable function f : R* — R having a finite-sum structure (2). If f
satisfies Assumption 4 on some set Q) with parameter p and D¢ (z,x*) > 0 for all® x € Q, then
operator F(x) = V f(x) satisfies Assumption 8 on Q with parameter /2. If fi,..., fn satisfy
Assumption 2 and 4 with 1, = 0 on some set Q, then operator F(x) = V f(z) satisfies Assumption 9
on Q with { = 2L.

Proof. Let Assumption 4 hold on some set () and Dy(x,x*) > 0 for all z € (). Then, averaging
inequalities (7), we get that for all x € Q)

f(@®) = f(x) +(V[(z),2" —z) + %le — 7|,
implying for F(x) = V f(x) that
(F(x) = F(a*),x —a%) > Dywa")+ Sl —a|? 2 Sl — |,
meaning that Assumption 8 is satisfied with parameter #/2.

It remains to show the second part of the lemma. Let Assumptions 2 and 4 with p = 0 hold on some
set Q. We need to show that operators F;(z) = V f;(x), ¢ = 1,...,n satisfy Assumption 9 on @
with £ = 2L. Guided by (Gorbunov et al., 2022b, Lemma C.6) and (Sadiev et al., 2023, Lemma E.7),
we derive

* 1 * _ * |12 2 *
v = ZEE@) =R = le—a|? = 2o - o Flw) - Fia)
o lIF() = B @3)
= o=~ 2o - 27, Vi(w) - Vi)

5 IV file) - V)P

S le-w I Lo VAW
2 *
+E (fz(l') — fi(x ))
) *(|12
< e — a2 (44)

From (43) and (44) we get

* 2 * * 1 * *
lz = 2™|? = (2 — 2", Fi(w) = Fi(@")) + 25 [1Fi(w) = Fi(@") || < flo — 27|

that is equivalent to (35) with ¢ = 2L. O

Therefore, for smooth quasi-strongly convex f such that Dy (z,2*) > 0 (n = 1) we can consider
operator F'(x) = V f(x) and VI formulation instead. In this case, the method is equivalent to
Prox-clipped-SGDA-star:

a* = prox g (2" —4g"), §" = F(z*) + clip (Fer (") — F(z%), M)
§" = clip (Fer(2¥) — F(z%),\r) .

The following lemma is the main “optimization” part of the analysis of Prox-clipped-SGDA-star.

) = 0. We notice that Assumption 2 implies

8For example D (z,2*) > 0 when f is convex or when ¥ (z
*) after averaging.

Dy (z,2") > 0 since the right-hand side of (5) equals D (z, z
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Lemma D.2. Let n = 1, Assumptions 8, 9 hold for Q = Bagr(x*), where R > Ry & |2° — z* ||,

and 0 < v < Yo If 2¥ lies in Bog(z*) forallk = 0,1,..., K for some K > 0, then the iterates
produced by Prox-clipped-SGDA-star satisfy

K

[ =2t < (=) =2 A D (1 = ) 2
k=0
K
+29) (1= ) @b — 2t — y(F(a%) — F(a%)),wr),  (45)
k=0
def k * ~k
wpy = F(a¥) - F(*)-3" (46)

Proof. Using the update rule of Prox-clipped-SGDA-star, we obtain

lzF+ — 2% = | prox g (¢ —~g") — prox g (z* —7F(z%)) ||

S R (A A G
= o =P = 2y(a® -2t ) + 20|
(46) * * * *
=l =2t = 2@t -2 Fa*) - F(a®)) = 203(F(a") = F(2*),wi)
+2y(z" — 2", wi) + | F () = F(@)|? + 7% lwel?
(35)
<l =P 2y (et - 2t wn) = 29%(F(a) = F(2"), wi)
e . .
~2y (1= B ) 0t - ot PR = Pt 4l
(34)7’Y§% k * (|2 k * k *
< 2 =2t + 29" — 2t =y (F(2") — F(27)), wr)
e "
—2 (1= )l = o 47l
1=t k 2 k k 2 2
< (=yp)llat = a7+ 2y(a" — 2" —y(F(2") = F(27)),wi) + 7" [we .
Unrolling the recurrence, we obtain (45). O]

Theorem D.1. Let n = 1, Assumptions 8, 9, hold for Q = Baor(z*) = {z € R? | ||z — 2*|| < 2R}
for any x € Bag(x*), where R > ||2° — x*||, and

. 1 IH(BK)
< 47
0<y < mm{400£1n4(K6+1),u(K+1)}, 47

(K +1)" 12R?
2(a—1)

Bx = max[ 2, n e, 2T KD 5
4-102120" <« o02In" « =5 ) In"(Bk)

(48)

2a—1

K~ o p?R?

)
2(a—1) 2a=l oo
o2ln” = (%)ln2 max 2,%
Y (5)

exp(—yu(l +*/2))R
Ay = CESI (50
120+ In -5

= O | max{ 2,

(49)

for some K > 0and B € (0,1] such that In % > 1. Then, after K iterations the iterates
produced by Prox-clipped-SGDA-star with probability at least 1 — (3 satisfy

a5+t — 2% |2 < 2exp(—yu(K + 1))R2. (51)
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In particular, when v equals the minimum from (47), then the iterates produced by Prox-clipped-
SGDA-star after K iterations with probability at least 1 — (3 satisfy

_ 2a—1
2T (B) In? (max 2, g toR
2 2 ps ot o (%)
R7 = O | max{ Rexp | — , , (52)

K 2a—1
f]nf K™= ,LL2

meaning that to achieve R%, = ||z® — x*||? < & with probability at least 1 — 3 Prox-clipped-SGDA-

star requires
¢ R2 ¢ R2 02 Fa—T1 1 0.2 a1 o
K = —In{—|In{ —=In— — In{—=|— In=-T (B, 53
O(un<€)n<uﬂn6)’<u26> n<ﬁ<u26> )n ( )> oY

iterations/oracle calls, where

B, = max { 2, ——
e (3 () ™)
B\ u2e

Proof. Let Ry, = ||x* — x*|| for all k > 0. Our proof is induction-based: by induction, we show that
the iterates of the method stay in some ball around the solution with high probability. To formulate
the statement rigorously, we introduce probability event Ey, foreach k = 0,1,..., K + 1 as follows:
inequalities

R} < 2exp(—vyut)R? (54)

hold for ¢t = 0, 1, ..., k simultaneously. We will prove by induction that P{FEy} > 1 — k¥8/(k+1) for
allk =0,1,..., K + 1. The base of the induction follows immediately by the definition of R. Next,
assume that for k = T'— 1 < K the statement holds: P{Er_1} > 1 — (T-1)8/(kx+1). Given this, we
need to prove P{Er} > 1 —T8/(k+1). Since R} < 2exp(—yut)R? < 2R?, we have 2! € Bag(z*)

fort =0,1,...,T — 1, where operator F' is {-star-cocoercive. Thus, Fp_q implies

1P - Pl < dat - o) S Vatep(-wR ST A 69)
and

ol < 2t - )P + 2 € G € RO (56)

forallt =0,1,...,T — 1, where we use that ||a + b|*> < 2||al|? + 2||b]|? holding for all a, b € R®.
This means that we can apply Lemma D.2 and (1 — yu)T < exp(—vyuT): E7_; implies

T-1

R% < exp(—yuT)R* + 2y Z(l — )T et — o — y(F(ah) — F(z%)),wy)
t=0

T—1
97 (=)
t=0

Before we proceed, we introduce a new notation:

o' — " —y(F(2') = F(a")), if ]l < V2(1 + 70) exp(=744/2)R,

Nt = e (57)
0, otherwise,
fort =0,1,...,T — 1. Random vectors {n; }_, are bounded almost surely:
Inell < V2(1 + 7€) exp(—#t/2) R (58)
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forallt = 0,1,...,T—1. We also notice that E7_ 1 implies || F'(z!)— F (z*)|| < v/2€ exp(—71t/2)R
(due to (55)) and
lo" — 2" —=y(F(") = F@)Il < |2 =" +9|F@") - F")|

(5<5) V2(1 + 4€) exp(—1t/2) R

fort = 0,1,...,T — 1. Therefore, Er_; implies n, = z' — z* — v(F(z!) — F(z*)) for all
t=0,1,...,7 — 1 and from Er_; it follows that
T-1
Ry < exp(—yuT)R* +2y > (1 =) (n, )
t=0

T—1
7Y (=) e
t=0

For convenience, we define unbiased and biased parts of wy:

wi EEe [§] -9, wf EF(') - F(a*) — e 3], (59)

forallt =0,...,T — 1. By definition we have w; = w +w? forallt = 0,...,T — 1. Therefore,
ET,1 1mplles

T—1
Ry < exp(—ypuT)R?+2v Y (1 —yu)" ' s, wf)
t=0
@
T—1
+2VZ — )" W) + 297 ) (1= )T B [l )]
t=0
@ ®
T—1
+29° ) (1 =) (Jwp | - Eee [Jlwil?])
t=0
@
T—1
+297 ) (1 =) T w12 (60)
t=0

®

where we also use inequality |la + b||? < 2||a||? + 2]|b||? holding for all a,b € R¢ to upper bound
llwt ||, To derive high- probability bounds for @, @, ®, @, ® we need to establish several useful
inequalities related to w;'y, f’f First, by definition of clipping

[Jwi' (| < 2. 61)

Next, Er_1 implies that | F'(z?) — F(a*)|| < A¢/2forallt =0,1,...,T — 1 (see (55)). Therefore,
from Lemma B.2 we also have that E_; implies

2¢
Jtll < Aflv (6
Ee [||w?]’] < 1833720, (63)
Eee [l ] < 18320, (64)

forallt=0,1,...,7 — 1.

)

Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

Eer [29(1 — )" 1 (e, wi)] = 0.
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Next, the summands are bounded:
VT i wi)| < 2yexp(—yu(T — 1 =) [Inel] - [Joof|
5
< 4V2y(1+ ) exp(—yu(T — 1 - t/2))R);
(47),(50) exp( ’}//,LT)RQ def
51n (KB'H) B

291 —yp

(65)

Finally, conditional variances 0? & E. [472(1 = yp)?T=2724(n;, w})?] of the summands are

bounded:
o7 < Ee [4y% exp(—yp(2T — 2 = 28))Ine|1? - llwi'|1?]

(58)
< 82 (1+70)% exp(—yu(2T — 2 — 1)) R*Eee [[lwi']|’]

@ 1072 —vu(2T — t))R’E |2 66
< 107% exp(—yu( ) R*Ege [[lwi %] - (66)

Applying Bernstein’s inequality (Lemma B.1) with X; = 2y(1 — yu)T =1 (n;, w®), constant c
4
defined in (65), b = % exp(—yuT)R%, G = % we get

150 In
1 f < OXP (—2yuT)R* b?
IP’{|®| > 5exp( yuT)R z; < 15014(K;'1)} < 2exp <_2F+2d’/3>
_B
2K +1)
The above is equivalent to P{Ep} > 1 — 2(%11) for
f exp (—2yuT)R* 1 5
Ey {elther z; W or @< 5exp(—fyuT)R } . (67)
Moreover, Ep_; implies
T
Z 2 € 10y exp(—2yuT) R? ; m
(64), T<K+1 150 5 s K )\27(1
2 exp(—2yul) R*o Z m
(50) 180y exp(—2yuT)R**0*(K + 1) exp(%)
- 12020~ 2D
(2) exp(—2yuT)R* (68)

150 In 2EE0

Upper bound for @. Probability event E'r_; implies

el - [l I
® < 2
< y exp(— Zexp )
T—1
(58),(62)
< 2'V2y(1 + 70) exp(—yu(T Z

A 1exp (—1t/2)

(50), T<K+1 214—012004—1\/57&0032—01(1 + v0) exp(—yu(T — 1)) (K 4+ 1) exp (W‘O‘K)
<
= T—a 4(K+1)
In -5

“47)

1
< = exp(—yuT)R>. (69)
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Upper bound for ®. Probability event £ implies

— Eer [Jlwp)?]

® = 272 exp(—yu(T — 1
ul ) ; exp(—yut)
T-1 2—a
64 A
< 367% exp(—yu(T —1))0® -

(50),T<§K+1 3672 R2~ exp(—yu(T — 1))o®(K + 1) exp( 142K

- D e

47 1
< £ exp(—yuT)R?. (70)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

29 (1 — )" T B [Jlwi | — Eee [llwpl?]] =
Next, the summands are bounded:

N ©) 1672 exp(—yuT)\?
2% =) P = Bee 1] S e
(5<0) exp(—yuT)R?

51n AL

e . (71)

Finally, conditional variances
~o def —o— 2
57 Ber [474(1 — 90?27 ||| - Eer [JlwI?] ]

of the summands are bounded:

_y 29 exp(—2yuT) R? "
O—t2 S 4(K+1) Et H”wt H2 ]ng [Hwt ||2] H
Sexp(—yu(1+1))In ==5

4v* exp(=2yuT)R?

. (72)

Sexpl—u(1 + 1) n 20 e 1]
Applying  Bernstein’s  inequality (Lemma B.1) with X, = 29v*(1 —
)T (JJwi||? = Eee [[lwf]|?]), constant ¢ defined in (71), b = Lexp(—yuT)R?,

exp(=2ypT)R*
= =2 —=IE2 = we get:
15011174(1({;1) > g

1 o exp(—2yuT)R* b?
]P){|@| > gexp(—’y,uT and Z =~ W S 2€Xp —m

- B

2(K +1)
The above is equivalent to P{Eg} > 1 — 2(%11) for

T—1
~ —2yuT)R*
Eg = {cither Y 57 > % or @ << exp( —uDRES . (73)

t=0 150 In T
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Moreover, Ep_; implies

T-1
Z 52 (7<2) 442 exp(—ypu(2T — 1))R2 Eee [||lwp]|?]
- 5In AL — exp(*wt)

O T<K+1 7292 exp(—yu(2T — 1)) R?0®

K /\2—04
< t
- 5ln 2L ; exp(—yput)

(50) 727 exp(—yu(2T — 1))R*20*(K + 1) exp(%)

51202~ In®~ 2D

@7 —2vuT)R4
exp( Zu )R (74)
150 In 2EED
B
Upper bound for ®. Probability event E7_; implies
T-1
® = 292> exp(—yu(T — 1= 1)) |y ?
t=0

< 22299262 exp(—yp(T 1))%1 !
< 279970 exp(—yu(T — o
= \J* % exp(—yput)

TSR 2 220120722002 exp(— (T - 3)) In Po—2 AKH) K

: v 5 cxp s

2 - 220120202420 520 exp(—y (T — 3)) In?* 2 4(K+1) (K + 1) exp(ypaK)
R2a72

(47) 1 9
< R exp(—yuT)R=. (75)

That is, we derive the upper bounds for @, @, ®, @, ®. More precisely, Fp_1 implies

(60)
Ry < exp(—yuT)R*+ D+ @+ 0@ + @+ 0,
©9) 1 70) 1 75) 1
@ < cexp(—pl)R?, @ < cexp(—T)R?, ® < < exp(—yuT)R?,

Tz:_l 52 @ exp(=2yuT) R 7“2—:152 4 exp(=2ypT)R*
— 150 In 20EED "7 1501 A

In addition, we also establish (see (67), (73) and our induction assumption)

t=0

P{Er_1}>1- (Y

K+1~
P{Eo}>1—— D PEe}>1-—D
2(K +1) 2(K + 1)
where
4
Ey = {elther Zot W or @<= exp( 'WT)RQ},
T-1
Eey = {either Z&f > W or |® < - exp( VMT)RQ}.
=0

Therefore, probability event Er_1 N Eg N Eg implies

(60)
R: < exp(-ywTRP+0+@4+0@+@+6®

< 2exp(—yuT)R?,
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which is equivalent to (54) for ¢ = T'. Moreover,

— S — T
P{Er} >P{Er_1NEyNEg}=1-P{Er_1UEgUEg} >1-— Ki—fl
In other words, we showed that P{E},} > 1 — k¥8/(k+1) forallk =0,1,..., K + 1. Fork =K + 1
we have that with probability at least 1 — (3

25 — 2% < 2exp(—ypu(K + 1))R%.

Finally, if
. 1 hl(BK)
= min , ,
! 40001 2T (K +1)
2a—1
Bx = max(<?2 (K+1) = p°R°

2(a—1 (a—1)
41051205 o2 (L) w2 (B

2a—1

K~ u’R?

2 2(a—1) K 2 KLWQ_l w2 R?
ag ln o ? hl max 27 R ICES N
()

then with probability at least 1 — 3

= O | max{ 2,

25 —2*? < 2exp(—yu(K + 1))R?
p(K +1) 1
— 9R? Yk Sl LV N I
f max{eXp< 400¢1n 2D ] 7 By

2a—1 2.2
K o2 (%) 1n2 (maX{2,M}>
H 7 « 5
O | max { R?exp (— > ,

In K 2(1—o) 2a—1
¢ B

To get ||2E 1 — 2*||? < e with probability at least 1 — 3, K should be

Y R2 Y R2 0.2 Ta—T 1 02 Ta-T e
K= O <'u, 111 (5) ln (’uﬂ hl E> 5 (,U?E) ln <5 </L26> > hla (BE)> )

where

R2

e (3 () ™)

B, = max < 2,
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E MISSING PROOFS FOR DProx-clipped-SGD-shift

In this section, we give the complete formulations of our results for DProx-clipped-SGD-shift and
rigorous proofs. For the readers’ convenience, the method’s update rule is repeated below:

~ 5 I
zF = Prox. g (xk — ng) , where gk = — E g{-ﬂ g; = hk + Ak
n L

BEFL = BEvAY, AR = clip (Vg (a®) - BE M)
Lemma E.1. Let Assumptions 2 and 3 with ju = 0 hold on Q = B, s7(x*), where V > ||2° —

2 4 3686442 In? 25D 9 . . 1 k
x*|* + — Z |V fi(x*)||%, and let stepsize v satisfy v < +. If ¥ € Q for all
k=0,1,...., K+1, K > () then after K iterations of DProx-clipped-SGD-shift we have
— |2 — [l K A - |2
o (@) a0l =
T (@EF) ~ () < —=
. S (wi, 8 — Z lwel?, (76)
K417 K + 1
def 1 K
—K+1 def k+1
z = %T1 Zm , )
k=0
N de,
ik ¥ Prox. g (2" — 'ny(xk)) , (78)
def -
we 2 Vet - gt (79)

Proof. Using Lemma C.2 from (Khaled et al., 2020) with p = zF+1, y = 2% — 4g%, 2 = 2F, we
derive forall k = 0,1, ..., K that
2y (@(«"H) = @(a¥)) < fab —at|P — 2™ =2t = 29(g" - V() 2F T —a¥).

Next, we obtain the following inequality

—29(g" = Vf(a*), 2" —a) = —2y(g" - V[(@"),2" —a*) + 29(g" - Vf(a"), 3" — 2FTT)

79 . ~ .
< =2y{we, 8 = 2 + 29[7° = VO] - [l2° - 2t

as) N -
= 2wy, 2" — = >+27|| PVl

|| prox., g (x -V f(x ) — ProX.y (mk - ’@k) I
(79)
—2y(wr, B — &) + 297w |12

Putting all together we get
2y (™) — @(a") < la® = 2P [l = 2 - 29w, 87 - %) + 297 .

Summing up the above inequalities for k = 0,1, ..., K, we get
K
1
k+1 * < k _ x12 _ k+1 %2
KHZ — o) < KH;(nx R A )
K+1Z°”“’ B K+1Z”
2 — @t = "+ — o2 Z o8t )
K+1 K + 1 ’
K —1— 1
Finally, we use the definition of Z% and Jensen’s mequahty and get the result. [
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Theorem E.1. Let Assumptions 2 and 3 with p = 0 hold on Q = BMW(:E*), where V. >
36864'}/2 ln2 48n(K+1) n

|20 — z*||? + 3 2 X:IHV]‘}(I*) Zandv=0,h)=...=hd =0,
< min ! fty/n VVn's (80)
’= 360L In 28D 119247, L agnan)) [
E 27% 480K % (ln “T)
v
A = A= L (81)

48 In 22

for some (, = \/" S IV i(e)]|? K+1 > 0and 8 € (0,1]. Then, after K + 1 iterations of
DProx-clipped-SGD-shift the iterates with probability at least 1 — 3 satisfy

— 1 * V
@ ) — @(z%) < JE+D

In particular, we have V' < 2R?, and when ~ equals the minimum from (80), then the iterates
produced by DProx-clipped-SGD-shift after K + 1 iterations with probability at least 1 — 3 satisfy

and {a"};4 C By, p(a”). (82)

LR*In =K RC, " gRI*S oK
K 7 ﬁlx P G ’

meaning that to achieve ®(T5 1) — ®(x*) < e with probability at least 1 — 3 DProx-clipped-SGD-
shift requires

2 nLR? RC.. nRG [ oV AR
K = 0O | max LHlnnH,HC ln\/ﬁHC,<a > In 1<J V)
€ e ' +/ne € Ié] €

oK) — ®(2*) = O | max (83)

ena
(84)

iterations/oracle calls.

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al.,
2023): we prove by induction that the iterates do not leave some ball and the sums decrease as /K +1.
To formulate the statement rigorously, we introduce probability event Ej, foreach k = 0,1,..., K+1
as follows: inequalities

t—1 t—1

20 — 2% )12 = 29 ) (wr, @t = 2*) + 292 Jlwn]|* < 2V, (85)
1=0 1=0
At
r—1
TN vV
A v < 6
hold fort =0,1,...,kand r = 1,2, ..., n simultaneously, where
w = W} + Wy, (87)
R <88>
u def ~1 p def ~ .
zl_Eﬁl[ ] Gis wzl_vf( ) Egg [gz] Vi€ [n]. (89)
We will prove by induction that P{E;} > 1 — k¥8/(k+1) forall k = 0,1,..., K + 1. The base of
induction follows immediately: ||2°—z*[|* <V < 2V and for k = 0 we have || 2 37~ fwz w1l =0

since w;'_; = 0. Next, we assume that the statement holds for k =T — 1 < K, i.e., ]P’{ET 1} >
1 — (T=1B/(k+1). Let us show that it also holds for k = T, i.e., P{Er} > 1 — T8/(k +1).
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To proceed, we need to show that Ep_; implies ||zt — z*|| < 3n\/V forallt = 0,1,...,T. First,
fort =0,1,...,T — 1 probability event E7_; implies (in view of, ®(z') — ®(x*) > 0)

, 79 @)
" —z*||* < Ay < 2V (90)

Next, by definition of V' we have

IVFE@) = VIV <

VvV
Z IV fi(z*)||> < W oD
=1
Then, for t = T we have that Ep_; implies

=" — ]|

I prox.,q (2 —~g") — prox, g (z* =V f(z*))l|
< 2t =gt = V)] <l =2 G+ AV )]

(90),0D) (81)
< <\/§+ ”) VV 49 < 3nVV.

1921n %

This means that E7_; implies zt € By, s7(z*) fort =0,1,...,T and we can apply Lemma E.1:
Er_; implies

0 _ .*x||2 _ T _ %2
T-1 T-1
2 ) 2
~7 > (e - Z o2
1=0
Ar
—. 92
S 7 92)
Before we proceed, we introduce a new notation:
@t if @t — 2| < 2VV,
"= 0, otherwise,
forallt = 0,1,...,T — 1. Random vectors {n;}Z_, are bounded almost surely:
7] < VAT 93)
forallt =0,1,...,7 — 1. In addition, E7_; implies forallt = 0,1,...,T — 1 that
&' —z*|| = |prox,g (z' =V [f(z")) - prox,g (" =V f(z*)) |
< 2t =2t =y (VF(') - Vf(x*))ll
< 2t =2+ AV (") = V()|
4) ¢ )361 (90)
< A+ Ly)|at —a¥| < 0l ot — 2| < 2VV.
meaning that 1; = ¢ — z* follows from Ep_; forallt = 0,1,...,T — 1. Thus, E7_; implies
T-1 T-1
Ar D =P =2 Y —2) + 297D Ill?
T-1 T-1
< V=) (wm) + 297wl (94)

Using the notation from (87)-(89), we can rewrite ||w;||? as

IN

leon 2]l + 2llwr|I* = = + 2wy |

2 n N 4 n —
quwi,lnuzz@wm o) + 2t 09
1=1 =2
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Putting all together, we obtain that E7_; implies

T—1 n T-1 2 T—1 n

s
Ar < VRIS tm) 20 G+ o 30 (el B [etl])
=0 i=1 =0 =0 i=1
@ @ &)

2 T 2T

4 —1 n T-1 -1 n -
+- 5 ZE o]+ 492 3 b2+ 22 3 wa W, ) .(96)
n n

1=0 i=1 1=0 1=0 j=2

@ ® ©®

To finish the proof, it remains to estimate @, @, ®, ®, ®, ® with high probability. More precisely,
the goal is to prove that ©® + @ + ® + @ + ® + ® < V with high probability. Before we proceed,
we need to derive several useful inequalities related to w;';, w?. First of all, we have

[[wiall < 2A 97

by definition of the clipping operator. Next, probability event Er_; implies

IVAG] < IVAGE) = VE@) + V@] £ Lt -] +

Z IV £ (a*)]|2

nvV WV A
S VRV 1927 In 280D = 96 In 2nUED) =3 ©8)

fort =0,1,...,7 — 1 and i € [n]. Therefore, Lemma B.2 and E7_; imply
/|| < *Z lw? |l < W’ (99)
E,. U\w;flu } < 1802790, (100)

foralll =0,1,...,7 —1landi € [n].

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

27, u al u
EEﬁ, {n@%’,z,m)} = h <77la]E£§ [Wi,ﬂ> =0.
Moreover, for all [ = 0,...,7 — 1 random vectors {w;";}}; are independent. Thus, sequence

T—1,n
{—2% (my, w )} is a martingale difference sequence. Next, the summands are bounded:
1,i=0,1

)7‘ k)

2 93,070 YAV (s1) v def
< — b N < = =
< il -lmll < m o1n BT c. (101)

% <W§fl7771>

‘ 2

. .. . def 2,
Finally, conditional variances 02, = Ei [2%- (w,, ;)] of the summands are bounded:

( 3) 1672V

2 <E ﬁ u |2 2 E 102
0ie < Bt | -3 lJeogte 1 - Mlmel e [lwitel?] - (102)

Applying Bernstein’s inequality (Lemma B.1) with X; ; = —2% (i, w}fl>, constant ¢ defined in (101),

2
b: %,G: mm}{w,weget
T—-1 n
V2 b2 3
D > — d — 3 <2 — = .
{ |> o Zozl 21611148”(?“)}_ eXp( 2G+2Cb/24n> 24n(K + 1)
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The above is equivalent to

IB T—1 n V2
P{Ep} >1—-—————. for FEg = { either o> ——— or |®<—
(103)
Moreover, Ep_; implies
T—1 n T 1 n
a0 167 <00> 28872VJ°‘T>\2 @
> 2 ol = > > B [llwrall?] p
1=0 i=1 1=0 i=1
o 48°VV "ooTy @ vz 104
T gne- i e ST T 16y, Sn0G (104)
Upper bound for @. Probability event Er_; implies
- - 93,099 4 . 22TV
@ = 29 (whm) <2y Il lmll < B v m—
2—a
@y 9% o A S K (105)
12 pa-1ppl-@ 48n(K+1) 6"

B

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

B | 2 (il - B [ltl])] =o.

Moreover, for all [ = 0,...,7T — 1 random vectors {w}",}? ; are independent. Thus, sequence

T—1,n
{%2 (||w;‘l 12 — Eg [||w;f‘l ||2} ) }l is a martingale difference sequence. Next, the summands
: i : ,i=0,1

are bounded:

4~2 4~2
T (el B ltdl))| = S (el + B o))

(9<7) 32792 \2 @1 \%
= n2 - 791n2 48n(K+1)
B
v def
B

Finally, conditional variances

o de 16 , 2
72 B [ 120 (Jtl” - Ber [lotal”])]

of the summands are bounded:

s (0 1% E {M’ _E { m
ot " e [ et B et

2
Y 14 u |12
< WEQ [llewi 1] - (107)
Applying Bernstein’s inequality (Lemma B.1) with X; ; = =& (||w P —Eq [||wfl||2D, constant
c defined in (106), b = 12, G = W, we get
T-1 n
V2 b2 3
® > and ——— > < 2e — = .
{ | ZO Zl "~ 8641n 44871(?“) } = =xp ( 2G + 2Cb/3> 24n(K + 1)
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The above is equivalent to

/B T—1 n ) V2 V
]P{E@} Z 1*m, for E@ = ( either Z ZJlJ > W or |©| < E
=0 =1 86 B
(108)
Moreover, E_1 implies
T—1 n T—1 n
(107) (100) 1872V)\2 agam
ZZU” = 32 48n(K+1) ZZE@ i 117] g B8 0HD)
1=0 i=1 1=0 i=1 nin-—z—
Gy 4876 oOTVV Ty 0 v? (109)
- 482 ne—1]p3—« 48n(g(+1) ~ 8641n 48n([1;+1) .
Upper bound for @. Probability event £, implies
2 Tl m 190 7292)2- 20T g1 48%~ TV ® V
ZEfl |:lelH :| _ 2—a 48n(K+1) — - (110)
1=0 i=1 n 32po~tIn™™ " =g

Upper bound for ®. Probability event F_; implies

472%:1 HwbHQ ¢ 4(Q+1)‘720T7 (81) 9216“ UQaT,yQa\/VQ(l_a)
o j

A2(a—1) T 576 n2(1-a) 1n2(1—a) 48n(g<+1)

®0 vV
< —
-6

(111)

Upper bounds for ®. This sum requires a more refined analysis. We introduce new vectors:

j—1 j—1
X woqf (|2 u || « YV
(5;: ni;wz.ﬁ if ni;wz,l > 5 (112)
0, otherwise,
forall j € [n]and[ =0,...,T — 1. Then, by definition
VvV
||5;|| < - (113)
and
8 T—1 n 87 T-1 n fyj—l
S IPMCIT A <n2wz15§-,w;tl>. (114)
=0 j=2 1=0 j= i=1

©’

We also note here that £ implies

T—1 n 7j—1 n j—1
WZZ<ZZW%—5§M}Z> = ?Z<ZZW3T1—5J'T1M}‘,T1>~ (115)
=2 i=1

1=0 j=2 i=1

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

Esl{ (95, Jl>:| < Eglwul) = 0.

Moreover, for all [ = 0,...,7T — 1 random vectors {w}" l} * , are independent. Thus, sequence
T—-1,n
{ <5 l ;Ll> }z is a martingale difference sequence. Next, the summands are bounded:
,J=0,2
8y (113),007) 8 \F vV def
I u l u
‘ <§ » Wi, l> = n H@H ' ”“’j,l” = o T 61 48n(K+1) ¢ (116)
B
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64’y

Finally, conditional variances (o7} 1)2 &f IEE [

5 9 )1672V
17 flwsl

(5;, w? l>2] of the summands are bounded:

64~

(072)° < Bg [ Eei [llew? 7] - (117)

Applying Bernstein’s inequality (Lemma B.1) with X ; = 8% <5§», wi > constant c¢ defined in (116),

b:%,G:mme,Weget
T—1 n
V2 b2 B8
P{|®| > — and — 3 <2 — = .
| |> an ;Jz; i) = oem TSz eXp( 2G+20b/3> 24n(K +1)
The above is equivalent to
T—1 n
p ). /2 V? n_V
P{E@l} Z 1—m7 for E©/ = either g jZZZ(Ui’l) > W or |© | S E
(118)
Moreover, Ep_1 implies
T—1 n T 1 n
(117) 16’y (100) T<K+1 288(K + 1)y2V A2~ 9g®
> 2 )t s > 2B [l < n
=0 j=2 =0 j=2
81) IS8(K + 1)v¥c®V2—%  (80) 2
¢ 88(K + 1)y*o*V2"z s 1% . (119)
482-apa—1]p2- 748”%(“) 2161n 748"%‘“)
That is, we derive the upper bounds for @, @, ®, @, ®, ®. More precisely, Fp_; implies
(96)
Ar < V+04+@+@+®+6+®,
4 8y - ’yj_l
(114) u - u
® =@+ Z<nzwi,T—15]T 1awj,T—1>7
j=2 i=1
105) V/ 110) 1y v
@< —, @< —, 6 < —
- 67 -1’ - 6’
-1 104 -1 %) V2
ZU = 18n( K+1 Zat = Br(K11)
i 216 1n 8641nT
O‘ < ——mMM—.
== 2161n%
In addition, we also establish (see (103), (108), (118) and our induction assumption)
(T-1)p
P{Er 1} >1— ———
{Bri} 2 K+1"
P{E@}>1—L P{E®}>1—L P{E@/}>1—L
- 24n(K +1)’ - 24n(K + 1)’ - 24n(K + 1)’
where

Fy = either

V2 v
2 e v
T l6m TSR or @G }

- V2 1%

either E — or [|®]< —
18n(K+1 =

= 216 In % 6

Es = (< either Z V—2 or [® < v
® = — 8641n% —12(°
{ T
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Therefore, probability event Ep_1 N Eg N Eg N Eg implies

ar < vl Y v Y
ro= 6 6 12 12 6 6
8’}/ n ’_yjfl
+Z< wip_1 _5JTIM}L,T1>
n < n
Jj=2 i=1
n j—1
< 2V + 81 b S w? — 6T_1 w (120)
n 4 - n 4 - 3, T—1 7 YW T—1
j= i=

fort ="1T.

5!

F with high probability. In

j—1
In the final part of the proof, we will show that 1 ; witp g =

particular, we consider probability event ET,L ; defined as follows: inequalities

r—1
gl VvV
I Ey
=1

hold for r = 2,.. ., j simultaneously. We want to show that P{Er_; N ET_L]-} >1- (Yl}fﬂﬁ —

Wﬁﬂ) forall j = 2,...,n. For j = 2 the statement is trivial since

[tz
n 1, T-1|| = n 2

Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Epr_1 N ET_Lm_l} >

97)
< % < \/V

T-1)3 ~1)8 ‘ ~ T-1)8
1-— (K+i - 8(77:;](—21)' Our goal is to prove that P{Er_1 N Ep_1,,} > 1 — (K+i — 87:,(7;26—5-1)'
‘We have
~y m—1 72 m—1 2
- dowira|| = 2 > Wi
i=1 i=1
72 m—1 27 m—1 ~y i—1
= 2 Z w1l + e Z o Zw:f,T—lvwng—l
i=1 i=1 r=1
72 T—1m-—1 27 m—1 ~ i—1
SINED P I FIRED 3F 5 ST IN)
1=0 i=1 i=1 r=1

Next, we introduce a new notation:

i—1 ) i—1 N
p o a2 wles AT Wl || <955
PiT—1 = r=1 =1
0, otherwise
fori =1,...,m — 1. By definition, we have
vV
||P;,T—1H < 5 (121)
. i—1
fori =1,...,m — 1. Moreover, E7_; ,,—1 implies P;7T,1 = % 21 wpp_qfori=1,....m—1
r=
and
m—1
Iy | < vera+g,
i=1
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where

27 m—1
- Z <P;,T—17W§fT—1>~
i=1

It remains to estimate @.

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y " 2y u
Eginl [n<p;,T—1vwi,T—l>:| = <pzT 17E§ [wi,T—1]> =0,

m—1
since random vectors {w;'7_; };; are independent. Thus, sequence { (P s wip_ 1) }i_ , Isa

martingale difference sequence. Next, the summands are bounded:

2y, 2y, 120,07 v (81) |4 def
?<pi7T717w3T71> < ;HPi,T%H wgirall < E\/V)\ = W =c. (122)
Finally, conditional variances (& _,)* & Eer- [%(p;7T717w;fT71)2} of the summands are
bounded:
- 42 (21 42y
(U;‘,TA)Q SEer [712|PQ,T1||2 : |W;L,T1||2] < TE T-1 “|WZ’€T71||2] . (123)

Applying Bernstein’s inequality (Lemma B.1) with X; = 27—7 (Pi 1, wi'r_1), constant c defined in

1% 1
(122), b= 54> G = W, we get

V2 b2 B
- d S S ) — = :
{ |> i Z Fir-1) 34561n48n(ﬁm} B exp( 2G+2Cb/3> 24n(K +1)

The above is equivalent to

P{Eg} > 1—%, for Eq = {either 21(5§,T_1)2 > :3456111‘22"%(“) or |@] < ;2}
Moreover, Ep_; implies (129
Sy E LS B oy ) BV
h @ | 1187%0“/27% @ v . (125)
482-opo—1]n?~® BUHD T 356y A5nUCED

Putting all together we get that Ep_1 N ET,Lm, 1 implies

m—1
¥ “ (110) /
LN <Ve+0+0@, @ < —,
n 2 wl)T,]_ = + + = 5%
T—1 n m—1
(109) V2 -, ) V2
E U — ’ (U'. — ) S .
P 2,1 216 In 48n(é(+1) ;:1: 7, T—1 3456 In 48n(é(+1)

In addition, we also establish (see (108), (124) and our induction assumption)
(T-1)p (m—-1)p
K+1 8n(K +1)’

__ B
24n(K +1)

P{Er_1 N ET—1,m—1} >1-

B

P{Es}>1———
{Eo} = 24n(K + 1)’

P{Ep} > 1 -
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where
T—1 n
V2 \%
Es = [ either 0> ——— - or|® < — 5,
e 5237 saznn% E
m—1
V2 \%
Es = ith — o |®| < —
@ {el “ ; Tir-1) 3456111748"‘?“) or @] < 24}

Therefore, probability event Ep_1 N ET_Lm_l N Eg N Eg implies

m—1

u
E Wi T-1

i=1

v v Vv |4
L+ L L VY
12 12 24 2

3=

This implies ET_Lm and
P{Er_1NEr_1,m} > P{Er_1NEr_1m_1NEsNEg}
1-P {ET_1 NEr_1m_1UEg UF@}

[ T-15  mp
= K+1 8n(K+1)

Therefore, for all m = 2,...,n the statement holds and, in particular, ]P’{ET 1N ET 1n} >

1— (:;Hliﬁ 8(K+1) Taklng into account (120), we conclude that Er_1 N ET 1,nNEoNEgN Eg
implies
Ar <2V

that is equivalent to (85) for t = T'. Moreover,

P{E;} > P{ET_lmET_l,nmE@mE@mE@

)
_P{MUF®UE© UE@'}
B

K+1 8(K +1) 24n(K + 1) K+1
In other words, we showed that P{F}} > 1 — k¥8/(k+1) forall k = 0,1,..., K+ 1. Fork =K + 1
we have that with probability at least 1 —

(92),(85) Vv
OEE) —d(z*) < ———.
) o) S
Finally, if
1 n s VvV

7 < min Bn(K11)° a—1
360L lnT 97 ARG K (m 48n([13(+1)) «

then with probability at least 1 — 3

1%
SEETHY —d(z*) € ———
( Joe) = V(K +1)
a—1
360LV In 28nE+D 48. 2750V V K& (m%) <
= max B , —
K+1 na (K+1)
o) LV]H% U\/Vln%%
= max ,

a—1 a—1

K na K%
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To get ®(zX+1) — ®(2*) < e with probability at least 1 — 3 it is sufficient to choose K such that
both terms in the maximum above are O(¢). This leads to

LV . LV (0\/‘7>a11n 1<0W>“

B

a—1

K=0|max{ —1In—
EN o S

€ e’
which concludes the proof. O

In view of Lemma D.1, the result in the quasi-strongly convex case for DProx-clipped-SGD-shift
follows from our result for DProx-clipped-SGDA-shift.
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F MISSING PROOFS FOR DProx-clipped-SSTM-shift

In this section, we provide the complete formulations of our results for DProx-clipped-SSTM-shift

and proofs. For the readers’ convenience, the method’s update rule is repeated below: 20 = ° = 20,

k+2
Ag =0 =0, g1 = 557, Apy1 = A + a4 and

Apy* + gy 2F ~
= TIH ZF = PIoXy, @ (Z]~C - Oék+19(ffk+1)) )
_ 1 _ .
Gt = =S, Gt = b+ AL,
i=1

PEFL = BE 4 AY, AR = clip (Ve (@) = hE ),

k+1 _ Apy® + ap 2!
Akt
where &5, ... £F are sampled independently from each other and previous steps.

F.1 CONVEX CASE

The following lemma is the main “optimization” part of the analysis of DProx-clipped-SSTM-shift.

Lemma F.1. Ler Assumptions 1, 2 and 3(n = 0) hold on Q = Bg,, ;7 (x*), where M > ||2° —
|+ C%ag 1= >y |V fi(z*)||2, where C > 0, and a > 0. Let 2%, y*, 2 lie in By, /z7(x*)
forallk =0,1,..., K for some K > 0. Additionally, let parameters of DProx-clipped-SSTM-shift
satisfy

a> max{Q, 202} ., Ko= B’Oﬂ : (126)
2
_ oty ik < Ko 127
Ve =1 2kts , . (127)
(k+3)2> lfk > K07

then the iterates produced by DProx-clipped-SSTM-shift satisfy

K-1 K—-1
Ag(®yS) = 2(") < Mo~ 5 Mi + ) apprlwpen,z” =2 + 7 afyyflwr |
k=0 k=0
K—-1 n ()(2
+> D ikl (128)
k=0 i=1

where Lyapunov function My, is defined as follows

. 1 x
My, = (|25 — 2™ |[* + C*a7 0= > lInd = i1, (129)
i=1
where
Fosy = 4 Vot ifk < Ko; (130)
H ary1 ifk > Ko
and wy 1 is defined as follows
def ~ def 1 -
wirsr € G = VEAEY), o @ n D Wik (13D
i=1
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Proof. By optimality condition for the problem (17), we have for any 2 € By 77(z")

Qe (T, = 2) £ an (W) — WEET) +apg (Gt 2 — 2
1 1 1
3l = 2] = R = P - SR 2

app1 ((2) = U(H) + apga <wk+1, 2 - Zk+1>

+ak+1 <Vf(xk+1),zk o zk+1>
1 1 1
5 llzF = 2P = Sl = 2P - Sl - 2

(131)

Using Ajy 1 (yF+! — 281 = ap g (281 — 2F), we get

a1 (G, 2P =2y < a1 (W (2) = BEFY) + g (i, 27 — 2P

+Ak+1 <Vf($k+l),$k+1 _ yk+1>

o)
2

1 k+1 2 1
R

=l - 5

5 ||Zk+1 _Zk||2

< app (U(2) = U(E) + apgr (wig, 28— 2

L
b (£ = )+ Sl -2t

1 1 1
31128 = 2P Sl 2P - S| 2

= ap(U(2) = U(EEY) + s (Whe1, 2R — R

2
A L

A (FE) = ) + Il P
24511
1 1 1
T Ea R FL
= ap1(P(2) = M) + apgr (wegr, 27 — 2

1 1
AR (FE@E) = FOD) + 512 = 27 = Sl = 2]

2
2
1 (1 - %+1L> |25 — 2k |2
2 A
k+1

where in (%) L-smoothness of f was used. Using Young’s inequality, we have

~ D (677
g1 (G(ath), 28 = 2) < a1 (U(z) — (M) + ak+15HWk+1H2 + ?Blek — 2

1 1
g (FE) = FM) + 511" =27 = Sl - 2|

2
1 (1 — w) |25 — 2%
2 A
k+1

D=2« 1
=" a1 (U(2) = ) 4+ af g lwrsa P + zllzk — ZFHP?
1 1
+App1 (FE@) = FM) + §IIZ’“ —z2|* = S|l — 2|

2
_1 (1 . ai+1L> ||Zk+1 _ Zk||2
A

k+1
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2
@l 5 0 and
k41—

Now, by a > 2, we have § —
apr1 (G, 25 = 2) < apga(W(2) = U(EMTY) + 0f 4y wesa 1P

1 1
A (F@) = FOM) + 511" =27 = Sl =2t a32)

2
1/1 aj,L
~5 (- 25 ) ke -

2\2  Apn
< o (U(2) = UE) + of w1+ Apgr (£ = F5)
1 1
+olle =2l = Sl = 2% (133)

To continue the proof, we have to mention that

Gy — ) D (V) g - ) o (- 2

< FOF) = FEETY) + (wig, yF - 2P, (134)

~

where in the last inequality we used convexity of f. Also, by convexity of ¥ and definition of 3/*+1,
we have

Ak [e 7] Ak Q41
() = \IJ( s U(yF) + (M),
(") an’ T A S ") Ao (")
—ap 1 U < — A TR 4+ AT (). (135)

Thus, we acquire

Qe (G, = 2) = o (), 2 =) g (G, 2 )
— Ak <§($k+1),yk _ xk+1> + g1 <§(1’k+1)72k _ Z>

where the last equation is true due to that a1 (251 — 2F) = A (y* — 2¥+1). By (132), (134), we
get

$k+1)79€k+1 - Z> < Ak(f(yk> - f(ﬂUkH)) + Ag <wk+1,yk - $k+1>

+C¥k+1(\11(2’) — \Il(zk+1)) + Ak+1 (f(l,k+1) . f(yk+1))
1 1
+ai i lwrr | + §||zk —z|)? = Z||ZF = 22

2
A — P T A (g — 2

tap1¥(z) — Ak+1‘1’(yk+1) + Akq’(yk) + Apsa (f(l"kH) - f(yk“))

g1 (9(

1 1
R | CA

By definition of function ®(-) (1), we have

appr (G, 2P —2) < AR® (YY) — A1 (P + Ap (Wi, — 2P
o1 ¥(2) + (Apgr — Ag) ()

1 1
JrO‘i-&-1||wk-~-1”2 + §||Zk - ZH2 o §||zk+1 _ ZHQ

= A®(F) = A @) F appr (Wi, 2 = 2F)

o1 ¥(2) + apgr f(a"HT)

1 1
tofpllonll* + l12% =2l - 5

Sl =2
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where in (xx) we used a1 (2! — 2F) = Ap(y* — 2F+1) and Ay = Ay + apy1. Making a
small rearrangement, we derive

1
A @) - A4d(y") < §||Zk =2 = Sl = 2] + ek ¥(2)

1
2
Fapsnf (@) + apgr (@), 2 — 2t

+ag41 <wk+17$k+1 - Zk> + 04%+1||Wk+1||2

By 1 1
| AR G El e ey 76
1 — 1 «
+Oék+1g Zl fi($k+1) + (7 7N] <n Zl Vfi($k+1)7 z — xk+1>
= =
o1 (Wit1, 2 — Y + apgr (Wipn, 2T = 28) + of L llwrg )P

IA

1
2 12540 = 2] + a1 W (2) + aria f(2)
ot (Wea1, 2 — 2°) + af 4 [lwrt ]

_ A1 - . k+1y _ i 2 136
where in the last inequality we used L-smoothness and convexity of each f;. Now we consider the
sequences of h¥, produced by the method, for any i € [n]. Denoting h} = V fi(x*) and , we have

IR =Byl 2Rl B 2m (AR BE )+ VE A2

(2 K2

W = R 11? + 2vk (ga(2* 1) = AE, BE — hi) + vR]|gi (™) — |2

1
Sl =22 = 5

V<1 _ N -
< IR = R 20k (Gi (M) = R RE = B 4 vl g ) = R
= B = REIP + v (@) = R gu(@ ) + BE - 287)
< (U= w)lIBE = REIP + vel| Gt — B2
< (L= w)|IhF = BEIP A 20k [gi () = Vi@ )| 4 20 [V i () — B2

—
o
—

(

@ =)l = BEIP  2v e P+ 2 IV ) = V@I 137)
Summing up (137) by ¢ from 1 to n, we obtain

1 & . 1 & . Wi —
;ZIIh?“ —h* < (1—Vk)EZ||hf—hi ||2‘f‘72||wi,k+1||2
i=1 ] =1
2’/k k+1 *\[12
ZHVJ‘; — Vfi(z*)|]? (138)

Combining inequality (136), where we take z = x*, and inequality (138) multiplied by 3 Llo2a2 ha2e
we get

* * 1 *
A (@) —0(@)) < Ap(2(f) - @@ >)+5||z — |+ 5O ZW Bl
1 * *
e EAAEl Lo e Znh"“ hi |l
1 ~ " *
+5(1—uk>02ai+252||h§—hin? SO Znh’“ h

=1

21’k
+ak+1 <wk+17$* -z > + O‘k+1Hwk+1H + 02 O yo— Z ||Wz Ich1||2

a,
- (g2 -2 kczam) S IV -
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By the selection of parameters (126), (127) and definition of Lyapunov function M}, (129), we have

A ()~ 0(7) < A (9() — B(a%) + LMy — L M

9 n
[0
Fagrr (Wi, @ = 28) + af g [loe |12 + 2;1 D Ml

Summing up the previous inequality by k from 0 to K — 1, we finish the proof.

O
Theorem F.1. Let Assumptions 1, 2 and 3(j = 0) hold on Q = By, 5;(x*), where M > |20 —

*”2+020‘Ko+1n21 LIV fi(z))12, whereC’:%ln%, and a > 0, and

-35.724 ,10nK 18- 650K = (K +1) oo 10nK

a > max 2,83 7 140n ,860 ( +)lnTIOL , (139)

n 5 VMLn“s B

vM
YRR L S — (140)
72041 In =5=

for some K > Ko = [3C?n| > 0 and j3 € (0,1] such that In % > 1. Then, after K iterations
of DProx-clipped-SSTM-shift the following inequality holds with probability at least 1 — 3

. 6aLM .
(") = 2 < ey @d NS G G (0 S € Baym ). (4D

In particular, when parameter a equals the maximum from (139), then after K iterations of DProx-
clipped-SSTM-shift, we have with probability at least 1 — 3

LM LMm'™E oM 1n7%

(D(yK) - (I)({I?*) = O | max K2 ) nk2 ) = K (!1 3

(142)

i.e. achieve ®(yX) — ®(2*) < e with probability at least 1 — 3 DProx-clipped-SSTM-shift requires

K =0 [max{ B JEM ) 2 nEM L oVM ™ n VM (143)
€ en ef 'n € ep

iterations/oracle calls per worker.

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2021; Sadiev
et al., 2023). We prove by induction that the iterates do not leave some ball and ®(y*) — ®(y*)
decreases as ~ 1/K(K+3)

Firstly, = Ry, Rk+1 = max k, Rk+1} for all £ > 0, and now we
show by induction that for all £ > 0 the iterates xk“ ,y lie in B z*). The induction base

is trivial since y° = 2°, Ry = Ry, and z! = = 20. Next, we assume this statement is

Aoy°+a1z
A, >
true for some [ > 1: xl7 zl’l, yl*1 S Bﬁz_l (z*). According to definitions of R; and R;, we obtain
! v P -1
z' € Bg,(z*) C Bg, (z"). Due to that ' is a convex combination of y'~* € By~ (2*) C B (z7),
z' € By, (z*) and By (z*) is a convex set, we have that y' € By («*). Finally, since /"' is a
convex combination of y* and z', we conclude z'** lies in By (z*) as well.
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Now to formulate the statement rigorously, we introduce probability event Ej for each for each
k=0,..., K as follows: inequalities

— t—1 n
ZZal+1<wl+l, +22041+1||Wl+1ii +QZZ Hl [wi il < M, (144)

~ 1=0 i=1

By
Ry <My <2VM, (145)
Qg " M

—t < = 146
; ;wm <5 (146)

hold fort =0,1,...,kandr = 1,2...,n simultaneously, where
wit1 = Wiy + Wi, (147)

W def 1 der 1

Wit = Ezwi,lJrlv Wz+1 = Z% I4+1» (148)

i—1
W41 d:ergi(xlﬂ) Eei [3:(="th)] fk+1 dthgk [9i(x kH)i — Vfi(z*h), Vi€ [n]. (149)

We want to show via induction R; < 5n+/M with high probability, which allows us to apply the
result of Lemma F.1 and Bernstein’s inequality to estimate the stochastic part of the upper-bound.
After that, we will prove by induction that P{E}} > 1 — k8/k for all k = 0,1, ..., K. The base
induction follows immediately the left-hand side of (144) equals zero and M > M by definition,

and for k = 0 we have || %2 Z wio

forsome k=T —1< K —1: ]P’{ET 1} > 1— (T-1B/Kk. Let us show that P{Ep} > 1 — T/k.

= 0, since g = 0. Next we assume that the statement holds

To proceed, we need to show that probability event Fr_ 1mp11es that Rt < 2v/M forall t =

0,1,...,T. The base is already proven. Next we assume that R, < 2v/M forall t = 0,1,...,t for
some t’ < T. Thenforallt =0,1,...,¢

I 2| = [ proxa,e (27 — @d(ah) — prox,,y (¢* — Y f(@") |
< T -t = o (gat) = V() |l
< 1T =@+ allg(at) — AT o[BS = B
< 1+ l Hztfl _ I*HQ + 02a21i th—l _ h>g<||2 + o i1
— C t n 7 3

i=1
(140),(145)

< 2y M1+ e 4vM+nvM < 5nvV M.

’.I‘hisllmeans that z*, 2%, y* € B, g7(x*) fort = 0,1,...,t'and we can apply Lemma F.1: Er_,
implies

t'—1 t'—1

’ % ]- ]- *
A (307) —8@") € EMo— EMy+ Y onlerina’ - )+ 3 ol
=0 =0

t'—1 n

+>D l“ e 12
k=0 i=1

1 1 3

< §M0 - §Mt’ + By < §M (150)

that gives
My < Mo+ M <2M.

That is, we showed that E7_; implies 2, 2*, y* € B, /7(x*) and
(144,150 LMo — LM, + M 3M  6aLM

t * —
d(yh) — B(2*) < At <34 " A3 (151)
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forallt =0,1,...,T. Before we proceed, we introduce a new notation:
x* — 2t if |l — 2 < 2v/M,
"= {0, otherwise,
forallt =0,1,..., 7. Random vectors {n; }1_ are bounded almost surely:
e} < 2v/M (152)

forall t = 0,1,...,7. In addition, n; = z* — 2! follows from Er_; forall ¢t = 0,1,...,T and,
thus, Er_1 implies

T-1 T-1 n
Br = 2 appi(wpsr,z* — 2" +2Zak+1||wk+1” +QZZ k+ i e+
k=0 k=0 i=1
T—-1 n
= QZO%H W41 7k +22ak+1”wk+1” +2) % kHszkHHQ (153)
k=0 i=1

Using the notation from (147)-(149), we can rewrite ||wg1||? and |jw; k112 as

2 —, . 4 Ko
lwrsal® < EZII%,MIIQ 22<Z%k+1» ]k+l>+2|wk+1||2 (154)
i=1 =2

Putting all together, we obtain that E7_; implies

T—-1 n a T—-1 n a
Br < 222 ];;_1 ;Lk-‘rlank +2 Z ];:_1 Lk+1777k>
k=0 i=1 k=0 i=1
&) @
T—-1 n ak ) ) )
+8 2 ([t ” ~ Bep (ke |])
k=0 i=1
®
T—1 n ak T—1 n k
+8 > B [wli | +8 Y ALl |
k=0 i=1 k=0 i=1
@ ®
T-1 n Oé
+8>° - <szk+17 jk+1> (155)
k=0 j=2
®

To finish the proof, it remains to estimate @, @, ®, ®, ®, ® with high probability. More precisely,
the goal to prove that ® + @ + ® + @ 4+ ® + ® < M with high probability. Before we proceed, we
need to derive several useful inequalities related to w;'y , 4, wf-” w41+ First of all, we have

[wiles1ll < 2Ak. (156)

by definition of the clipping operator. Next, probability event Er_; implies that for £ = 0 we have
2! = 20 and

IVfitah) =Rl < IVSi@®) = Vi) + k] = k]|

smooth . vn 1< .
< L|j2® -« ||"'07&1 Cza?;ZIIh?—hiIIQ
i=

SN LS NN

ao Cay

(139),(140) ),
<

< 5 (157)
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Next, fort =1,...,7 — 1 event Ep_; implies
IVAiET) =kl < VAT = VAW + IV fily") = Vi) + b — ki
< L™ =yl + V2L (fiy') = file®) = (Vfila*),yt — 2¥))
(*) t+1 t = t *12
< L™ =yl + V/20L (B(yh) — () + | D Ik — kY] (158)
i=1
SO Logyr | 41 ¢ 12anL?M vn 1<
_ + 2 — ht — h*||2
S L ERTE e e e | DL LR
S 4L\/ MO[t+1 12anL?M \A{E \/M
Ay tt+3)  Cap
~ 10nK ~ 2 10nK
(110) ﬁ 8- 72Lozt+1ozt+1 In 3 4o 12 - 7220,L20[%+1 In 3
2 nA; nt(t+ 3)
+)\t 288 ~ 10nK
2t 220 g
2 Cyn B
- A 576aL2max{K0+2,t+2}(t+2)ln%
- 2 a’?L?t(t + 3)n
A [12al?max {(Ko +2)?, (¢ + 2)?} 722 In® 102K
o na? L2t(t + 3)
+ﬁ 288 N 10nK
2 Cyn B
A 9 72, 10nK
< ?t~amax{(Ko+2),2};ln 3

a

A P
+;¢3mw{Mb+m2%7m2
n

I
2 Cvn B
where in () we use —(1 3 Vfi(2*),y" — z*)
i=1
t+2)° 9 10nK
(L) < 9 forall ¢ > Tand C > 12 721n 102K,

Therefore, Lemma B.2 and E7_; imply

||W?,k+1\|

ng [||W§fk+1||2]

10nK (1%9) %’

<

IN

10nK
B

(159)

U(y') — ¥(x*), and in the last row we use

2%

a—1"
)\k'

18T 0,

(160)

(161)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have

conditional equal to zero, since Egx [wi'), 1] = 0:

Egr [ (i) =0.
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T—1
Moreover, for all k = 0,...,T — 1 random vectors {wf & +1)} are independent. Thus, sequence
’ k=0

T-1
{2 aﬁfl <w;‘ ft 1 77k> }k:O is a martingale difference sequence. Next, the summands are bounded:

Q1 156) ovgyq
(i) < 2Rl el < 4P AV

(140) dnagvM < VM et

OnK =6 IOZK = (162)

Qf41
2

72na4+1 In

. .. . def 2 2
Finally, conditional variances O'Z & = ]Egic [4067’2;1 <qu k1 77k> ] of the summands are bounded::

2
k+1 Ay u
0%y < Eer [4 ey k+1||2-nk||2] < 16EEMEe [Jlwf 2] - (163)

Applying Bernstein’s inequality (Lemma B.1) with X = 2% <w;fk 1 nk>, parameter c as in
(162),b= M G = M

6 In 102K -
T—-1 n
M? b? B
2 —
The above is equivalent to
T—-1 n
B . 9 M? M
P{E®}21—5R—K, for Eg = { either ZU%’C>631 s or |®|§F :
k=0 i=1
(164)
Moreover, Ep_; implies that
T—-1 n 163) T—-1 n Tlna
ool < 1M > Y ’““Egt [t s 11%] < ZSSUO‘MZZ B
k=0 i=1 k=0 i=1 k=0 i=1
(40 2880 M22 N o, 28800 M2~ la2,,

— 722a12a10nKZna12a—722a12a10nKzna71

2880 M2~°/2 = .
< noe—1792—a . Qagaf o 1n2—a IOEK kz(k + 2)
0

1 1440 M?=°/>T(T + 1)* 139 M?

< -
- a® noe—1ra 1n27o¢ 10nK ~ 63n 1077.K
B

(165)

Upper bound for @. Probability event Ep_; implies

T—1 n T-1
k1 o o A1
@ < 2 Y Sl 'S VA2 3 S
k=0 i=1 k=0 "'k
(140) 16 - 720" M g 10nK ~a—1 _«
< — In maX{ak+1ak+17ak+1}
n B
k=0
16.725‘*100‘]\41*“/21 a— 110”KT y Ko+ 2)(k+2)* (k+2
< o :
< — n : tzomax{( 0+2)(k+2)°71 (k+2)7}
TESK 1120167200t MIPK(K +1)° | 100K
- n
= ae 4aLO¢ B
(139) M
O (166)
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Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

8a?
1 [l - B [lotinl]] =0

n
Moreover, forall kK = 0,...,T — 1 random vectors {w}‘k +1} are independent. Thus, sequence
' i=1

8ok 11 u 2
{ n2 Wii1| — Egr

summands are bounded:

8a? 8a?
2 (ot~ By [l )] < 5 (hutina P + B [Jtinal])

1,n
W;LkJrl H ] ) } is a martingale difference sequence. Next, the
k,i=0,1

n2

(156)  64a  Ap (1400 M ger
< =
n2 ~ 9ln 10nK

Finally, conditional variances

o g [P (g - Bt [lotal]) ]

of the summands are bounded:

a6n  8ai, M
H%Eﬁf HH‘*’%HHQ — g [wa’““Hﬂ H

1602, M
< %ng (o1 11%] - (168)

2
u
wi,k+1H >

T-1 n
b? B
{|®> and ZZUM_W}S%xp(—mJFM/g):5nK'

k=0 i=1

~2
Oik =

Applying Bernstein’s inequality (Lemma B.1) with Xl k= Sa’““ (HwkH H — Efk U

parameter ¢ defined in (167), b = 3, G = M2

6:9% In 102K

The above is equivalent to

B T—-1 n M2 M
]P){E@} 2 ]. — 5”’7, fOr E@ = elther z% ;Uz k W or |®| S ?
(169)
Moreover, Er_1 implies
T—1 n T—1 n
(168) O‘k+1 (165) M?2
> T > 3 B [lwial’] < 692 In 02K (170)
k=0 i=1 k=0 i=1
Upper bound for @. Probability event Fr_; implies
T-1 n O%H T—1 O‘k+1 . )
® = 8> > —FEa [sz .| } <7 8MZZ Ee: [Hwi,kJrlu ]
k=0 i=1 k=0 i=1
(165) M M
= 67 In 102K <S35 (171
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Upper bound for ®. Probability event £ implies

T—-1 n — 2
k+1 gt
® = 8 Z Z sz k+1H < 2%+3g2e Z \2a—2
k=0 i=1 k=0 "'k
(140) 22a+3 722a 2 2a 1n2a 2 10nK T-1 ez o
- n2a—2fa—1 Z max {ak+1ak+1 7ak+1}
92a+3 | 792a=2 ;2 1n2a 2 10nK T-1
202
= 92a g2ap2a—2] 20 | [a— 1 Zmax{ (k+2)?, (Ko +2)**72(k +2)%}
1 8-72207 202K (K + )2‘3“1 Za—2 1021( a3 M
< a2a n20—2J2a fa—1 6 172)
Upper bound for ®. This sum requires more refined analysis. We introduce a new vector:
j—1 j—1
« . AL \/M
=T g e TS 2 el < 55 (173)
0, otherwise,
Then, by definition
VvV
I < = (174)
and
T—-1 n o T—-1 n a
k+1 k+1
® = 8 > — (X wik)+8 Z< sz b1 — X, w jk+1>. (175)
k=0 j=2 k=0 j=2 i=1
@/

We also note here that Ep_; implies

T—1 n . i
822<ak+1zwzk+1 ng ]k+1>_8ZQ<C;312wﬁT—Xf_1’w;T>. (176)
J= 1=

k=0 j=2

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

]Efk |:8ak+1

w 8ak+1 W
<X§,Wj,k+1>] T <X§aEg;‘ [Wj,k+1]> =0.

Moreover, for all K = 0,...,T — 1 random vectors {w,}_, are independent. Thus, sequence

T—-1,n
8 o . .
a’““ (x¥ w ) is a martingale difference sequence. Next, the summands are bounded:
Wikl g j=0,2

—%

S ] < S gt T 2 g < A ey
Finally, conditional variances
AazkdifEE’“ %@Ckv ;Lk+1>2
of summands are bounded:
02, < kg slep 7] < 25 e 7. A
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Applying Bernstein’s inequality (Lemma B.1) with X ;, = Sa’““ <Xj Wik +1> constant ¢ defined

in(177),b=4,G = Mf% we get

The above is equivalent to

._.

T— n
B . 2 M? n M
P{E@)/} >1- 5717, for E@/ = ( either Zal,l > W |© | ? . (179)
k=0 j=2
Moreover, Ep_; implies
— T—1 n
(178) k+1 (165) M?2
ZZM <MYDY e [lwial®] < 671n K (180)
k=0 j=2 k=0 j=1

That is, we derive the upper bounds for @, @, @, ®, ®, ®. More precisely, Fr_1 implies

(155)
Br < ®+®+®+@+@+@

(175),( (176) ar
D o W

166) M 171 M a7y M
®@ < —, ®< —, 6Cc

>~ 9; = 37
T-1 n , (6% T-1 n (170) M2
oik < 631 10nK’ Zzgzk = 6.92In 10nK’
k=0 i=1 k=0 i=1

~

1 180 M2

~2 < -
Zai,k S P IOnK
0 j=2

b
Il

In addition, we also establish (see (164), (169), (179) and our induction assumption):

P{Er_1} >1- (i

K b
P{E®}>1—L ]P’{E@}>1—i P{E®/}>1_L
- 5nK’ - 5nK’ = 5nk
where
T—1 n
M? M
E@ = {either ZO’Zk > W or ‘®| S 6} .
k=0 i=1
T—-1 n
_ M? M
E@ = {either ZO’Z}C > W or |®‘ < 9}
k=0 i=1
T-1 n
M? M
Eer = [ either 62> ——m or |®]<—
2, 3 10nK —
k=0 j=2 6% In 6
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Therefore, probability event Ep_1 N Eg N Eg N Eg implies

By < 4,42, &~ 2, 7, M
TS g tetoto e TG

T-1 n
+SZZ<ak+lzwzk+1 X]? ]k+1>

k=0 j=2

n

-
« — Uu
M+8) <nT§ e 1,wj7T>. (181)
j=2 i=1

IA

j—1
In the final part of the proof, we will show that % > Wikt = X? with high probability. In
i=1

particular, we consider probability event Er_, ; defined as follows: inequalities

r—1 /;
n 4 i 2
=1

hold for r = 2, ..., j simultaneously. We want to show that P{ Er_; HET,LJ»} >1-T-DB 255

< (182)

- . . . . . K SnK
forall j = 2,...,n. For j = 2 the statement is trivial since
[0 % (156) ZOLT)\T,1 M
o7 2 2oz <
n n 2

Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Epr_1 N ET,Lm,l} >
1- @08 2m-bf oy, goal is to prove that P{Er_1 N Ep_1,,m} > 1 — w — ?)ZL—I? First,

K+1 Sn(K+1)
m—1
i ar u_|l.
we consider || S > wilp||:
i=1
m—1 2 2
ar 2 W _ a7 u
n < i, T n2 i, T
i=1

B aZ s 2 2aT —
= wZ Z ”szH Z

i=1

OZTZ
n o""rT’
T—1m-—1 20 m—1 a i—1
k+1 2 T T u u
< E: E: [Jw k+1|| + " E: n E :wr,T’wz’,T :
i=1 r=1

k=0 i=1

Next, we introduce a new notation:

i—1 i—1
M
R ) DR oz 3 wity|| < Y37,
Pi,T—1 = r=1 r=1
0, otherwise
fori =1,...,m — 1 a. By definition, we have
v M
llpsr—all < == (183)
~ i—1
fori=1,...,m — 1. Moreover, E,,_; implies p; 7—1 = QTT Swhpfori=1,...,m—1and
=

m—1

< Vo+@+0,

where

m—1
04T

E Pi,T—1,W >
n

i=1

It remains to estimate @.
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Upper bound for @ . To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

2ar 2ar
Eer— [ - (pir—1,w Tﬁ = T<pzT 1, Ber- 1wy ]> =0,
since random vectors {w;'r };; are independent. Thus, sequence { L(piT—1,w “T>}Zr:ll isa
martingale difference sequence. Next, the summands are bounded:
2ar 2o (156),(183) 2¢yp (140) M def
- —(pir-1,wir)| < 7||P1T il fwiizll < —VMAr_1 = W = c(184)

def 2
Finally, conditional variances 02T 1 = IE 71 [4n2 (pir—1,w T>2} of the summands are bounded:

_ 40 N (183 o2 M "
St < B | Ll |wz-,T||2] M e et a8s)
Applying Bernstein’s inequality (Lemma B.1) with X; = =% (p; 71, w;'7), constant ¢ defined in
(184),b = 3. G = GMMW,WG get
n -5

Mo M? b2 B
P{|®@| > — and 52 <— L <9 - - )
{ | > 36 an ; 0i7—-1 > 65 In IOEK} = 2P ( 2G + 2Cf’/3> 5nK

The above is equivalent to

B m—1 ) M2 M
P{E@} Z 1-— ﬁ, for E@ = < either ; Ui,T—l > W or ‘®| S % . (186)

Moreover, Er_1 implies

(185)

m—1 m—
_9 <
03,171 >

i=1 i=1

(161) 2
71 ||W1TH] < 18(m—1)%M0.a)\§1:o{

(140) a2 n2re)2=e/? 10nK

18(m —1)=ZL . In®2
= (m—1) n2 722—0‘&2T_a " B

m<n,T<K a2 o \“ 10nK M?
5 Ok a—1

< 18-6 no—1 (;M) In ﬂ 65 In IOnK

118-6° 1 o \* ) 10nK M2
< _ K+ 1% .
- a® 2o po—l <L\/J\7[> (K +1)%In B 6° In %
(139) M?
< (187)

- 65 In 1025~
Putting all together we get that Ep_1 N ET_Lm_l implies
o m—1
T
o > wir
i=1

o (70 M? (187) M2
ZZ”M < 6. 92 10nK Zng 1= g5y 100K
B B
In addition, we also establish (see and our induction assumption):

P{Br_ 1 NEr_ym1}>1— (T-1)8 2(m—1)8

amy M
<VeO+@4+ 0@, ® < o

K+1 S5nK
]P){.E@}>]_—i ]P’{_E@}>l—L
- 5nK’ - 5nK’
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where

T—1 n
. ~ M? M
" {eltherzzazk 6 g 0K © f'@'ﬁg}’

k=0 i=1
M? M
E@ = {elther Z UZ k: W or |®| S 36}

Therefore, probability event Er_1 N ET_L,,L_l N Ee N Eg implies

MMM\/
SVo T2

P{Er_1nN ETA,m} > P{Er_iN ETfl,mfl NEsNEg}
—-P {ETA N ETfl,mfl UFEgU E@}

(T-1)p5 2mp
K K’

m—
aTZ
n

This implies ET_LW and

> 1-

Therefore, for all m = 2,...,n the statement holds and, in particular P{Er_1 N ET in} >

1— w % . Taking into account (181), we conclude that E_ OET 1.nNEoNEgNEe NEg
implies

Br <M
that is equivalent to (144) for ¢ = T'. Moreover,

IP{ET} > IP{ET_lﬁET_lmﬁE@ﬂE@ﬂE@/ﬂE@

—IP{ET_l NE,UEsUEs UE@UF@}

(T-18 28 , B _, T8
K 5K "BnK K

Finally, if

8.35.724  , 10nK 18- 650K (K +1), am1 10nK
a = max « 2, In , In"= ,
n B VMILn“= B

then with probability at least 1 — 3
6aL M
- K(K+3)
12LM  162-725LM _ , 10nK 3670543 ;, a1 10nK
= max n’ 5 _Ina
K(K +3)" nK(K +3) B T VM(Kn)= 8

LM LMW' 2K o /M5 2K

) ) —1 —1
K2 ’I’LK2 nQTKQT

o(y") — @(a”)

O | max

To get ®(y) — ®(2*) < e wit probability 1 — 3, K should be

[LM  |LM _ onLM 1 (ovM a\/
max — .t/ —1In ,—
€ en ef 'n € eps

that concludes the proof. O
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F.2 STRONGLY CONVEX CASE

In this section, we provide the complete formulation of our result for R-DProx-clipped-SSTM-shift
(a restarted version for DProx-clipped-SSTM-shift) and proofs. We should mention that the results
for DProx-clipped-SSTM-shift), Theorem F.1 and Lemma F.1, can be proven in the same way if we
assume that b = V f;(z%) and M > [|2° — 2*||> + C?ag 1y = >0 1B — V fi(z")|]?.

For the readers’ convenience, the method’s update rule is repeated below:

Algorithm 1 Restarted DProx-clipped-SSTM-shift (R-DProx-clipped-SSTM-shift)

Input: starting point 2°, number of restarts 7, number of steps of DProx-clipped-SSTM-shift
between restarts {Kt}t 1, stepsize parameters {a; }7_;, clipping levels {\f }1 0", {INF gt
S {AL } rro !, smoothness constant L, the constant { N; }7_;.
1: 20 =20
2: fort=1,...,7do
3:  Run DProx-clipped-SSTM-shift for K; iterations with stepsize parameter a;, clipping levels
{AL} 1, and starting point ¢~ 1. Define the output of DProx-clipped-SSTM-shift by .
4: end for
QOutput: 27

Theorem F.2. Let Assumptions 1, 2, 3 with p > 0 hold for Q = By, g;(x*), where M >
[0 — z*||> + CPad, 41 = Soiy W) — V fi(x*)||? and R-DProx-clipped-SSTM-shift runs DProx-
clipped-SSTM-shift 7 times. Let

AL 2. 1016 VIM, 1
K, = ’Vmax{@/ =1 g, 101%/ Mia ) b= 17,

(68 v My 1> 11 t—1>m
n

€t

=]

1 (16~1024a Mt_1>“1 a1 [ 107 16 10%0\/M,_;
t

Ine=1T [ — 188
o - n 3 - (188)
[IJMt_l M 1071Kt’7'
g = T7 Mt—l = W’ T = ’710g2 2% —‘ In /8 2 (189)
35 . 724 10nkK, 18-6° KE Ki+1), a1 10nK
a > max < 2, 8:877 In* On t, 8 6o kK; (a_tl—’_ ) In"o Onft , (190)
n B VM, Ln"s B
n/ M,
A = o (191)

724}, In 102

fort =1,...,7, where C; = 8% 1n N"Tf(t, N, = [3C2n] > 0. Then to achieve ®(i™)—®(2*) < ¢
with probability at least 1 — 3 R-DProx-clipped-SSTM-shift requires

IL . [ uM | L pbM\ . s ( VL uM
O(max{ u1n<€)7 Wln(,g)l <\/7ﬂ1 ( )),
1 (a2>2<5‘—l> (1 <02><> (/tM))
— (= I = (2= ),
n \ pe B \ ue €
2\ 2@ ., 2\ =D
e (2) (1() 1(uM>>}> (192)
na-1 \HE B\ pe £

iterations/oracle calls per worker. Moreover, with probability > 1 — [3 the iterates of R-DProx-
clipped-SSTM-shift ar stage t stay in the ball B2\/m(x*).
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Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2021; Sadiev
et al., 2023). We prove by induction that for any ¢ = 1,...,7 with probability at least 1 — t8/+
inequalities

N . ~ M
d(2h) — (") <e, M <M = o (193)
hold for l =1, ..., ¢ simultaneously. We recall the Lyapunov function is determined as

R A . 1 < . g @ . .
My = |3 =" [P+ CF (aly, 1)~ Y IVAE) = Viila") P < (1+ CPlaly, 41)°L?) 13 ~a"|?,
=1

def

“a,
where by definition of Cf, aﬂvl 1> We can estimate G
9-864% 4 10nK,
G; <2max< 1, In® N T (194)
4n? Ié;
Now, we prove the base of the induction. Theorem F.1 implies that with probability at least 1 — 8/~
. 6a1LR? (190 9.864% 4 10nK;7
Gi(®(3') — @(z*) < — =2 1 1
1( ((E ) (‘T )) — 1K1(K1 + 3) max ’ An4 n ﬂ
y 12LM  162-725LM _ , 10nK 7 367055
max , n , — In
K1(K1 +3)" nKi (K +3) B VM(Kyn)*=
24LM 162-725-9-8645LM . 1o 10nK;T
<  max 5> 5 In ,
K7 nky B
650/ M In"5" 1087 8151845 g/ M I~ L0nar
(nKl)% ’ ni&xa—l Kla%
(188) M
< a=""

4
and, due to the strong convexity,
2G1(2(31) — ©(a*))

7
The base of the induction is proven. Now, assume that the statement holds for some t =T < 7, i.e.,
with probability at least 1 — 75/> inequalities

My < Ghfdt —a2*|* <

N « - M
(i) — @(a*) <e, M <M = o (195)
hold for I = 1,...,T simultaneously. In particular, with probability at least 1 — 78/r we have

My < Mrp. Applying Theorem F.1 and using union bound for probability events, we get that with
probability at least 1 — (T+1)8/+

a=1 10nK 7

) 6ars1LM2 (o0 98645 o 10nKryiiT
Gri1(®@T) —2(2*) < G r__"="2 1, In®
T+1( (SC ) (l‘ )) = T+1 KT+1(KT+1 T 3> max 47’7,4 n 6
12LMT 162 - 725LMT+1 4 10nKT+1T
X max , In ,
Krp1(Kry1 +3) nKrp (Krya +3) B
K 1
3.670#113 e 10nKp 17
Vv ]\4([(1"_;'_17’L)ULT71 /B
.795.9. 6
© e 24L2MT’ 1627259 2864 LMz o 100K a7
Kty nK7. B
60 y/MyIn"s 1EraT 8151846 . o /My In " L0nkrr }
a—1 ’ o a—1
(nKpi1) = n> e Kpo,
(188) M
< erp = poT

4

55

B

}



Under review as a conference paper at ICLR 2024

and, due to the strong convexity,

QGT+1(¢(£Z'T+1) — (I)(LU*))
17

Mry1 < Groq]|2T —2*|? <

< —

Mt
2

= Mrq1.

Thus, we finished the inductive part of the proof. In particular, with probability at least 1 — 3

inequalities

(i) — ®(x*) <&, My <M=

hold for ! = 1, ..., 7 simultaneously, which gives for [ = 7 that with probability at least 1 — /3

d(2) —d(2*) <er =

It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM.

T T M, 1 n LM]‘2 1T
ZKt = O Zmax \/ M L]
t=1 t=1

1 <0 Mt1>0_1 T (O’ Mt 1> =1

— | —— In| - | ——-— ,

n €t B €t

1 In(0-22\"T  zas (7 [5-272\" T
=% (%) = (5 (w)
ne-1 ;5 K B\ pvM

= max Enﬂ in'u—n5Mn
- ofm o (21) B () (5

1 ( o )“al (7’ (O"2T/2 "al> T at
— _ ln — - 22(C¥*1),
n \ uvM B\ uvM p

2

1 < o )al 7a-1 [T <
= ey Ine=1 | =
n a—1 /J\/M B

o

1
n

56

189)
e ey (< €.
T

J>J‘11n T(J)M.Qz(ﬁ_m 22@‘3711)7
uv M B\ uvM

1 (U)C‘alh;:f (T <0>°‘a1 o | amess
nes \ M B\ upv/M '

g - ﬂ'/2>(¥0(1> z‘r: at })
s 23(a-1
VM =1

uM VL

- () (2 5 ()
(

We have
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Thus, we have
a L M L M L M
ZKt = O| max ln<M>, ln(u)ln‘r’ fln(“) ,
p 1% £ ng € VB €
M-D 1 (02\ @D (uM
In|{—=(— In | — ,
B\ e €
1 o2 2(aa—1) " 1 /o2 2((;:1) MM
=) =G )
na-1 \JME B\ ue €

which concludes the proof.
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G MISSING PROOFS FOR DProx-clipped-SGDA-shift

G.1 COCOERCIVE CASE

In this section, we give the complete formulations of our results for DProx-clipped-SGDA-shift and
rigorous proofs. For the readers’ convenience, the method’s update rule is repeated below:

_ a_ Ly A
a* ! = prox.y (2% — vg"), where g* = - DG af =hi + AL
=1

WAL = pk 4 pAR AR = clip (ng (") — hi&)\k) .

Lemma G.1. Let Assumptions 7, 9 and 10 hold for Q = By q7(z*), where V. > |20 —

2560042 In2 28nE+1)

x*||? + > " IF@)|? and 0 < v < Ve If 2 lies in By s7(x*) for all
k=0,1,...,K — 1 for some K > 0, then for all u € By, s7(x*) the iterates produced by DProx-
clipped-SGDA-shift satisfy

% p Iz® = ul)® = lzX —ull> | 7 S e
(F(u), 25,5 —u) + ¥(25,,) — ¥(u) < K +§k2_ollwkll
1 K-—1
+— (wk — U, W), (196)
K k=0
def 1 K-l
K dej k+1
Tavg = Ve v 197
k=0
we 2 F(aF) -G (198)

Proof. The proof of this lemma follows the proof of Theorem D.3 from (Beznosikov et al., 2023).
For completeness, we provide here the full proof. We start with the application of Lemma B.4 with
ot =ah z =2k — y¢*, and y = u for arbitrary u € B, (2*):
(mk+1 — b 4 AgF u— ka) > (\I/(xk+1) — \Il(u)) .
Rearranging the terms, we get
29 (T — W) < 29(Fu—ab) + 2P - b u o)
_’_2<xk+1 _ xk + ’ng,xk _ 1.k+1>
implying
2y (F(ab),a* —u) + W) W) < 2ah - o u—ab) + 29(F(ab) - §F,ab — )
-|—2<.Z‘k+1 _ mk —|—’7§k,$k _ xk+1>
Iz = 2F 2 + [z = ulf® — [+ —
+2y(F(2") = ", 2" —u)
2ttt — 22 4 29 (g, F — 2t
e i e R P
+2y(F(2") = g* 2" —u)
+29(F(u), 2* — 2")

+2v(g" - F(u), 2" — )
k+1 —U||2

IN

lz* —ul® ~ ||z
+2y(F(a*) — g*, 2" — )
+2y(F(u), 2" — ™) + 92(|g" — F(u)]%,
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where in the last step we apply 27(g* — F(u), z¥ — 2*+1) < ~42||g% — F(u)||? + ||z* — 2F+1||2.
Adding 2v(F (u), z**! — u) — 2v(F(2*), z¥ — u) to the both sides, we derive
2y ((Fu), e —u) + 0@ = ¥(w)) < 2" —u® = 2" —

+2y(F(u) — g%, a* —u) +4°[1§" — F(u)|?
—ul® = [l = ulf?
—2y(F(2*) = F(u), 2" —u) +7*||g" = F(u)|?
+2y(F(a*) = ", 2" — )

(36)
<l =l = 2P

2y
—7IIF(:£’“) — F(u)|? + 22| F (z*) — F(u)|?
+2y(F(a") — g*, 2" — u) + 29%|| F(«*) — §"||?
< et =l = (2P =l

+27y(wr, 2 — u) + 292 ||wi ||
Next, we sum up the above inequality for k = 0,1, ..., K — 1 and divide both sides by 2vK:

LN™ () o N [t el ot ] N T W
LN (P — )+ ) —w(w) < o + L3 el
k=0 k=0
K-1
—|—i (" — u,wy)
K s Wk /s
k=0
K1 K1
To finish the proof, we need to use Jensen’s inequality ¥ (11( mk“) < £ 3 (M.
k=0 k=0
K-1
K K 2% — ull® = ll=¥ —ul® | ~ 2
<F(u)’ Lavg — u> + \Il(mavg) - \Ij(u) < 27K + ? kzo HwkH
N 1 K—1< >
K € U7wk 3
k=0

K T S

where 25, = & > 2"l O
k=0

Theorem G.1. Let Assumptions 7, 9, and 10 hold for Q = By s7(x*), where V > |20 — z*|| +
2560072 In? 25D V112

n? iz |1 Fi(@™)|%, and

1 VU
0<~v < min , popn , (199)
480010 5D T (86400) % (K + 1) 3 oI 28nl+D)
v
P WA (200)

48n(K+1)’
40vIn —5

Sfor some K > 0 and 8 € (0,1]. Then, after K iterations the iterates produced by DProx-clipped-
SGDA-shift with probability at least 1 — (3 satisfy
4V
K+1 kK41 *

Gap\ﬁv(xa;; ) < m and {x }k:ﬁ) C By 7 (77), (201)
where xf‘,‘gl is defined in (197). In particular, when ~ equals the minimum from (199), then the
iterates produced by DProx-clipped-SGDA-shift after K iterations with probability at least 1 — 3
satisfy

nk Tt nk
K1 /V In o ovVin 3

G =0 202
ap\/V(xavg ) max K ) nQTflKanl ; ( )
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meaning that to achieve GapW(xf‘;l) < e with probability at least 1 — 3 DProx-clipped-SGDA-
shift requires

K=oV (

€ 8 €

€ 8 n

U\/V)aalln 1 <U\/V

oy
) iterations/oracle calls. (203)

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al.,
2023): we prove by induction that the iterates do not leave some ball and the sums decrease as /K +1.
To formulate the statement rigorously, we introduce probability event E foreachk = 0,1,..., K +1
as follows: inequalities

t—1 t—1
max [|° —u||2+2'yZ(scl —u,wl>+272Zle||2 <8V, (204)
u€B (@) 1=0 1=0
Ay
t—1
vl <VV, (205)
1=0
r—1
VvV
u < - 206
V;Lul,t—l = 9 ( )
hold fort =0,1,...,kandr = 1,2, ..., n simultaneously, where
wp = wl 4 w?, (207)
o def 1 n . def 1 n
wi & 52%, wp = 52%, (208)
w def ~1 ~1 p def 1 ~1 .
Wil = Egg [QJ — G Wi = Fi(z') — ]Egg [Qi] Vi € [n]. (209)

We will prove by induction that P{E;} > 1 — k¥8/(k+1) forall k = 0,1,..., K + 1. The base of
induction follows immediately: for all u € B s7(2*) we have [|% — u|* < 2[|2° — 2*||> 4 2||z* —

ul|* < 4V < 8V and for k = 0 we have ||y Zf;ol wi|| = 0. Next, we assume that the statement
holdsfork =T —1 < K,ie., P{Er_1} > 1 — (T-1)8/(x+1). Let us show that it also holds for
k=T,ie,P{Er} > 1—TB8/(k+1).

To proceed, we need to show that Er_; implies ||zt — z*|| < 3V forallt = 0,1,...,T — 1.
We will use the induction argument as well. The base is already proven. Next, we assume that
2t —2*|] < 3VV forallt =0,1,...,t for some ¢’ < T — 1. This means that z* € By 7 (x*) for
t=0,1,...,¢ and we can apply Lemma G.1: Ep_; implies

max {29t + 1) ((F(w), 245! —u) + Wl = W(w) + 2" —uf2
u€EB sy (z*)
t
<  max 20 —ul|? 42 xl—u,w
< x| {| I2+27) (" — ww)

1=0
¢

+29% ) flwll?
1=0

(204)
< 8V.
that gives
o = ot < max {2y + 1) ((F(u), 0l —w) + W(ak,) — B(w) + 2 - u)?}
u€EB sy (z*)
< 8V.
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That is, we showed that E7_; implies ||zt — z*| < 3v/V and
max {2yt ((F(u), 2, —u) + U(T%,,) — ¥(u) + |2 —ul?} <8V (210)

u€B sy (z*)
forallt =0,1,...,7 — 1. Before we proceed, we introduce a new notation:
fat a2, if |2t — 2| < 3V,
= 0, otherwise,
forallt = 0,1,...,T — 1. Random vectors {n;}Z_ are bounded almost surely:
lne ]l < 3V 211)

forallt = 0,1,...,7. In addition, 7; = x* — x* follows from Ep_; forallt = 0,1,...,T and,
thus, Er_ implies

T-1 _
(204) *
Ap = max ||a?0—uH2—|—2'yZ = u,wp) +272(a?l—$ 7wl>—|—2'y22||le2
u€B /(%) =0
T-1 T-1 T-1
4V +2y max {<z —u, Zwl>} +2y Z(nmm +297° > lwr)?
1=0

u€EB sy (z*)
+2WZ m,wi) + 27 ZHWZH2

>
1=0

IN

4V + 2V

1=0
Using the notation from (207)-(209), we can rewrite ||w;||? as

n 2
>
2 S u 2 4 . — 2
= > el + QZ<Zwm ]z>+2||wl||. (212)
i=1 =2

Putting all together, we obtain that Fp_ imphes

T-1 T n
>+ ZZ s +2VZ )
=0 1=0 1

b
larl® < 2llw | + 2| = =

b
+ 2w/

Ap < AV 4+29/V

) @
4’}/2 T—1 n 472 T—1 n " N
+ T 3D Eg [l + 2 D03 (el — B [lwt4ll?])
=0 =1 =0 =1
® @
T—1 8 9 T—1 n -
IETIES 3 oIs SR oy
=0 =0 j=2
® ®

To finish the proof, it remains to estimate 2yv/V Hlegol w; H ,©,@,®,®,®, ® with high probability.

More precisely, the goal is to prove that 2vv/V HZIT:_OI wy H +0+@+@®+@+B®+® <4V with

high probability. Before we proceed, we need to derive several useful inequalities related to w;*;, wf’.

First of all, we have
llwiall < 2X (214)
by definition of the clipping operator. Next, probability event Er_; implies

IO < IF(@") = F@)| + | F@)]| < la’ =[] +

E ”} ||2
VV (199) VvV
/ /fV n < n (200) A

160+ In 748"(1’;“) ~ 80vIn 748”%{“) 2

215)
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forl =0,1,...,7 — 1 and i € [n]. Therefore, Lemma B.2 and E7_; imply

et || < — Z e,

Eq. [Hw;flu } < 18X, 217)

(216)

foralll =0,1,...,7 —1landi € [n].

Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y 2y s
]Egg [n@n,wéﬂ = o <7il,Esg [wi,l]> =0.

Moreover, for all [ = 0,...,7 — 1 random vectors {w;";}}_; are independent. Thus, sequence

T—1,n
{%’Y (M, w}%} is a martingale difference sequence. Next, the summands are bounded:
) i=0,1

) )

27 (211),(214) 127\/17/\ (200) 3V def
s, win)| < *Ilmll lwinll < < i =c (218)
W i, n(K+1)
n 10In =7
Finally, conditional variances 021 = Egz [ o (s wity) } of the summands are bounded:
4~ ) 36721/
ot < By [ Dot hotal?] € 2 kg ). 219
Applying Bernstein’s inequality (Lemma B.1) with X; ; = =! (nl, ) constant ¢ defined in (218),
2
b—?’lxg,G W,Weget
3V?2 b? Jé]
) > — and — 5 <2 - = .
{ > lzgz; = 90010 BEEED } = 2exp ( 2G + 2cb/3) 24n(K + 1)
The above is equivalent to
T n
3V? 3V
ﬁ _ .
P{Eo} 2 1~ spirrny for Bo = {e“her ZZ ~ S0l (i) or [®= 35 }
1=0 i=
(220)
Moreover, Ep_; implies
(219) 367
ZZ% < ZZEfl il
=0 i=1 =0 i=1
CGID,TSK+1 648721/0 (K +1)\*
o n
(200) 6487“W4_aaa(K +1)In*2 %
<
- 402704,”0471
(199) 32
< A — (221)
2001n 748"(§+1)
Upper bound for @. Probability event E_; implies
@11),(216),T<K+1
@ < 2’72 I - ll? | < 6 2°yVV (K + 1))\a :
6 - 40(y L. oo a1 (48n(K + 1)\ 199 3V
(200) T a a\/> (K—l—l)l 1 ((ﬂ)) < m (222)
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Upper bound for ®. Probability event £ implies

T n
472 N Q17),T<K+1 7272)\2 g (K +1)
® = FZZEQ [”sz” < -
1=0 i=1
(200) 72 2—a _o (48n(K + 1)\ (199 3V
< = *(K +1)In® —_ ) < —. 223
- 402—an(x—1’y \/V o ( + ) n < 6 >~ 100 ( )

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

4y u "
B [t - B [lwtl?]] = o0.

Moreover, for all [ = 0,...,7 — 1 random vectors {w}" l} * , are independent. Thus, sequence
2 T—-1,n
{% (||w;‘l 12 — Eg [||w;f‘l ||2} ) } is a martingale difference sequence. Next, the summands
' d ' 1,i=0,1
are bounded:

(214) 3292\2
n2

%0 u 47
o [leotal? = g Dleotal®])| = 5 (ot + Bg [lwial?]) <

(200) v v def
< < =c. (224)
90 In> 48n(é(+1) 10In 48n(§+1)

Finally, conditional variances

~9 def 167 u u 2
7 St | (il - B lutal?)

of the summands are bounded:

(224) 2y 22V

2 Y 2 v

WS s ) H“Wu” — Eg [[lwis ]H o ? BaETD
B B

Eei [|lwf 1] 225)

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 47%; <||wfl I — Eg [llwy ||2]), constant ¢

defined in (224), b = ¥, G = W we get
& b? B
) > — and — 3 <2exp|— = )
{01 fime 3525 < oo | <20 (<o) - s
The above is equivalent to
5 T n ~2 V2 Vv
]P{E@} Z 1-— m, for E@ = either Zzgiul > W or |@| S TO
1=0 i=1 n B
(226)
Moreover, E_1 implies
T n
225) 292V TR+ 3692V(K +1) 5 4
P f‘TmeZZ%WM S oopEEm 0
5n21n 5nln =
1=0 i=1 1=0 i=1 B
00)  9.40%/2" d—a _a 48n(K +1)
< 9 K+1)o*n*"* ——m——~
< Sogonemt VY (E+ 1ot B
(199) V2
< —600 o %. (227)
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Upper bound for ®. Probability event £ implies

T
@16 T<K+1 o2
® = Y WP S 2K )5
12800 2a 48n(K +1
(220) 800 204(K 1 a s n2a72 87’l( + )
800 n2a=2/y" " B
199) v
< —. 228
< 10 (228)
Upper bound for ®. This sum requires more refined analysis. We introduce new vectors:
j=1 j=1
TN W, if |2 S Wi < ﬂ,
P LWl <% (229)
0, otherwise,
forall j € [n]and [ = 0,...,T — 1. Then, by definition
VvV
I511 < =~ (230)
and
8 T-1 n 8 T-1 n 7;71
_ l u
® = — Z<5j7wj,l>+? <nZw > (231)
1=0 j=2 1=0 j=2 i=1
@/

8 T-1 n ’)/j_l 8 n ryj—l
1 _ 1
n <n wffl“sj’“?ﬁl> = n2<n2“31‘5ﬁ”5‘9>' 3
, Z\ns

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

Eg { (5L, >} =L (8, Bg lwii]) = 0.

Moreover, for all I = 0,...,7" — 1 random vectors {w},}i_, are independent. Thus, sequence
T—1,n i

{ <5 l ;Ll>} is a martingale difference sequence. Next, the summands are bounded:
1,j=0,2

8 /0w 8y 230,214) 8y /V \%4 def

B

85 - el -~
2 def

Finally, conditional variances (0’ ;) Efz { ((5 w;Ll

2 2 16’}’2‘/
ilI7 - llefall

>2} of the summands are bounded:

64’y

Applying Bernstein’s inequality (Lemma B.1) with X; ; = % <(5’ u > constant ¢ defined in (233),

2
bz%,G=1501nyw’weget
T—-1 n
V2 b2 B
pdiel~ Y and Yo - = ‘
> gjzg ) = Tpom BeEi (= exp( 2G+20b/3> 2n(K +1)
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The above is equivalent to

/8 T—1 n V2 V
P{Eg'} > 1——————, for Eg = { eith P> —————————or|®] < —
{ ©® } = 2471(K+ 1)7 or Le either ; ;(Uz,l) 150 In 48n(§+1) OI'| | =5
(235)
Moreover, E_1 implies
T—1 n T—1 n
(234) 16v2V QIN,T<SK+1 288(K + 1)y2VA\2~%g®
2 u
Z Z oj)" < n2 Z Z]Eéj- [llewjall?] < o
1=0 j=2 1=0 j=2
00 288(K +1)y*0*V? "% (199) V2 236)
T 0oy petin? e S0 T 50y S0CED
T—1 .
Upper bound for 2V HZ =0 Wt H We introduce new random vectors:
-1 -1
vy wr, if"ysz <AVV,
G = r=0 r=0
0, otherwise
forl =1,2,...,T — 1. With probability 1 we have
16l < VV. (237)
Using this and (205), we obtain that Ep_; implies
T-1 T-1 |2
)P AR S
1=0 1=0
T—1
= 22|wz||2+2’yz<’yzwr,wz>
T—1 T—1
= 2wl + 29> (G w)
1=0 1=0
T—-1 n
(213) 2
< (@+@+®+@ + 5N (Gw +2vz (Cwb). (238)
[ 1=0
@

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

27 u 27 u
Egi |:n <Clawi7l>:| = Z <<la]E€£ [wi,l]> =0.

Moreover, for all [ = 0,...,7 — 1 random vectors {w;";}}; are independent. Thus, sequence
T—-1,n
{ n 2(Clyw; l>} is a martingale difference sequence. Next, the summands are bounded:
1,i=0,1
2y 2 (237),214) 4~ (200) v def
’n<Cl7W§fz> < ;”QH iyl < ;R)\ < = 1y, BEn(EET) =c (239)
B

. . . o def 2
Finally, conditional variances 52, = Eg: [% (&, w?l>2} of the summands are bounded:

65



Under review as a conference paper at ICLR 2024

R 42 @37) 42
o < By | T lal? It S e vEg (lotil?] (240)
Applying Bernstein’s inequality (Lemma B.1) with X, ; =

il = 277@17 wi‘fl), constant ¢ defined in (239),
2

b=Y G= —Y —— weget

5 150 In 48n(K+1) >

® d < 1., s ___F
| |>7an ZZO” 150 In 0D [ = P ~ 24n(

=0 i=1

2G + 2¢b/3 K+1)
The above is equivalent to
5 &, V2 1%
P{Ex} >1-— Tty for Eg = { either ZZUU > 50 L Ak or |@ < = (-
p 48n(K+1)
1=0 i= B
(241)
Moreover, ET 1 implies
n T
. (240) 442 u
Sy, % SV Ee [l )]
1=0 i=1 1=0
CIDTZKHL 7292V (K 4+ 1A
B n
(200) 9.-20%/2" o 48n(K +1)
< "R (K 4+ 1) In T ————
= 100 - po1 ! ofE+ D B
(199) V2
< -
150 In 282D 242

Upper bound for ®. Probability event Er_1 implies

T
(211),216),T<K+1 N s
< 29> 1l el < 2. 2°YR(K + 1)~——

>
Q

Qo 40°v2"

_ 48n(K +1) 19 V
7O‘JQR2“K+11°‘17<— 243
1103 ( ) 5 < ¥ (243)
That is, we derive the upper bounds for 2v+/V’ HZlT:_Ol wy Er_y
implies
@13) r-1
Ar < WV +20VV > ||+ 0+@+0+ @+ 0+ 6,
1=0
L8 7
@3N g ” 1w
. z<z )
i=1
—1 || @39 1
2VV Zwl <2V (@+@+0+6)+D+6,
(222) 3V @23) 3V Q28) V/ ) v
S AN’ ©) S AN’ ® S TA0 =
100 100 10 5
T—-1 n T—1 n
(221) (227) V2
ZZ"I = 48n(K+1)° ZZU” = 48n(K+1)°
=0 =1 2001n ( ) 1=0 i=1 6001117(,8 )
=1 n o szlzn: 2 39 V2
l = 48n( K+1 ’ Jl = 48n(K+1) °
1=0 i=1 150 In 150 In 804D =0 i=1 150 1In (ﬁ )
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In addition, we also establish (see (220), (226), (243), (235) and our induction assumption)

(T -1)8
P{Er_1}>1- Kl
P{Ea} >1— __s P{Fgp} >1— B
- 24n(K +1)’ - 24n(K +1)’
8 8
MEo} 21—ty M2l opmey

where

n
3V? 3V
ith E 2 s = D < =—
either ; o> 00 48n(§+1) or @< 10 },

T-1 n V2 |4
_ ) 2o v —
Es = {elther ZO’M > 600111% or |® < 10}7

=0 =1
T—1 n
V2 v
E@/ = either Z(O’l 1)2 > BTy o or |@/| < —
() +1 — )
== 150 In % 5
T—-1 n
V2 v
_ : ~2

Therefore, probability event Ep_; N Eg N Eg N Eg N Eg implies

n —1
1/3Vv. V. V V V Vo 2y YA~ 1.
< Z 4 — 4+ — 4 =L - u -0 u
= \l4(10+10+10+5)+5+5+nz<n} Wir-1 9% HWir1

1=0 j=2 i=1
2/}/ n ’)/j_l
< VYV nZ<n waTl—5j-Tl,w}»‘,T1>, (244)
j=2 i=1
2 n ")/]_1
u T—1 u
Ap < AV 42V 42VV |21 )° LNt =7 i,
Jj=2 i=1
v sv v v V.V
10 ' 100 100 10 ' 5 ' 5
8y o~ /7 1
e WEM SN
j=2 i=1
27 o /7 1=
u —1 uw
< SV+2VV nz<n Wiy — 0] ,wJT_1>
Jj=2 i=1
8’}/ n ’Yj_l
5 D ED DI ) s
j=2 i=1

J—1
In the final part of the proof, we will show that 1 >~ wi;, | = 6jT_1 with high probability. In
i=1

particular, we consider probability event ET_L ;j defined as follows: inequalities

r—1
u vV
% > witra|| < 5 (246)
=1
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hold for r = 2, ..., j simultaneously. We want to show that P{Er_; N ET_L]'} >1- T-1)8 _

, K+1
Wﬁﬂ) forall j = 2,...,n. For j = 2 the statement is trivial since
14) 2
N e
n 2

Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Er_1 N ET_l,m_l} >

T—1 m—1 . I T-1 m
1- (K+2B — én(K_gf). Our goal is to prove that P{Er_1 N Ep_1,,} > 1 — (K+EB — 8n(Kﬁ+1)'

First, we consider

m—1

0l u

n Zl Wi -1
i=

m—1 2

u
E : Wi

i=1

72 m—1 ’Y m— ~y i—1
= 2 Z ||W§L,T—1||2 o Z <n ZWﬁT—1>W§fT—1>
i=1 i=1

72 T—1m-—1 y m i—1
2 4
SHES 3 S ETEE S5 SN
=0 =1 =1 r=1
Next, we introduce a new notation:
i—1 i—1
al i 2 vV
N D DRSSPI | D DEEEUNNY e o
pz,Tfl - r=1 r=1
0, otherwise
fori =1,...,m — 1. By definition, we have
VvV
llps,r—1] < -5 (247)
~ 1—
fori=1,...,m — 1. Moreover, E7_1 ,,,—1 implies p; 71 = 1 >_ wpp_qfori=1,....m—1
r=
and
v m—1
=3 Wy < Vet+@+te,
gt
where

2,7 m—1
= Z <pi,T717ng71>~
i=1

It remains to estimate @.

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y 2y
Eé?’l {n<pi7T—1awﬁT—1>} = <pi,T—17]EE,;T*1[wZT—1}> =0
since random vectors {w;';-_; }7-; are independent. Thus, sequence { p17T717w§fT_1>};7:11 isa
martingale difference sequence. Next, the summands are bounded:
%y (247),214) @ 00) 174 def
<PzT 1,Wir_1) §7||P1T il flwiir_all < \F < Wéc'(z‘lg)
20In —7—

68



Under review as a conference paper at ICLR 2024

Finally, conditional variances (8§7T_1)2 def 71 [47; (pi,r—1,w; T_1>2] of the summands are
bounded:

- 4?2 4 72V N

@iraf <Bgr | ol ot S LB [lotal?). 49)
Applying Bernstein’s inequality (Lemma B.1) with X7_; ; = % (pir—1, o.)z?fT_1>, constant ¢ defined
. 1% V2
m (248), b= 50° G = W, we get

V2 b2 B
o>V id S S G e = :
{ |> 0" Z Fir-1) 24001n48n(ﬂm1)} eXp( 2G+2d’/3> 24n(K +1)

The above is equlvalent to

m—1
B : ~/ 2 V2 V
>1-— 2 — : S S ,
P{Eg} >1 20n(K 1) for Eg either ;(UZ’TA) > 1001 48n(§+1) or |@] < %
(250)
Moreover, Er_1 implies
m—1 n
R @49) A2V L o1 Q1D 1872V A2
@lr1)? < =Y Eaflloplf] £ ————
i=1 e n
00 18y%0c V2~ 3 (199) V2 951
402 —eme—1 I~ BlED = 900 1y Bl (251

Putting all together we get that Ep_1 N ET71,m71 implies

m—1
(223)
IS v, <vVerete, ® <
n = 10
T—-1 —1
D DAL o A
o YT 600 BT T T 9g00 I 280D

In addition, we also establish (see (226), (250) and our induction assumption)
(T-1) (m-1)B
K+1 8n(K +1)’

B
24n(K +1)’

P{Er 1 NEr 1ma}>1-

_ B
24n(K + 1)’

P{Es} > 1 - P{Es} > 1 -

where

T—-1 n V2 Vv
Egs = ([ either 62> ————————or|® < — o,
{ ; ; 7 6001n 48"“‘“) 10

m—1 2 V2 %4
o . ~/
E@ = elther i:E - (Ji,Tfl) W or |®| < % .

Therefore, probability event Ep_1 N ET71,m71 N Eg N Eg implies

v v Vv v
LARARN A4
10 10 20 2

m—1

i=

This implies ET,Lm and
P{Er_1N ET—I,m} > P{Er_iN ET—l,m—l NEsNEs}
= 1—IP{ET_1 NEr_1m-1 UE@UE@}

T mp
= K+1 sn(K+1)
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Therefore, for all m = 2,...,n the statement holds and, in particular, P{Er_; N ET L n} >

1-— (7;( Jrlfﬂ ~ SEFD +1) Takmg into account (244) and (245), we conclude that Ep_1 N ET in
implies

T—1
WZM <VV, Ar <38V,
1=0
which is equivalent to (204) and (205) for ¢ = T'. Moreover,

P{Er} 2 P{Er1NEr 1,0 FEoNEsN Ew N EsN Ea)

— IP){ET,1 NEp_ 1, UEgUEgUEg UEy UE@}

_ g, . &T=-n5 6 B o, TB
N K+1 8(K+1) 8(K+1) ~ K+1

In other words, we showed that P{E} > 1 — *8/(x+1) forallk =0,1,...,K + 1. Fork =K +1
we have that with probability at least 1 — 8

(210) 4V
K+1) <

Gapﬁ(ﬂjavg =~ m

Finally, if

Q=

v = min 1 ( 1 ) Vs
4806111%7 86400 (K—l—l)ialn%l%

then with probability at least 1 — 3

K+1
Gap\/V(xavg ) — 7(K+1) K+1

v 4800V In 22D (86400) Y a0y s U
= max , . . B
1 ns (K + 1)T1
(VI 2K oV In 5 K

= O [ max ,

—1 —1
K n“s K%

To get Gapp (25 +1) < e with probability at least 1 — 3 it is sufficient to choose K such that both

avg
terms in the maximum above are O(e). This leads to

K=0 Wlnw,1<g V) In 1<”W>
€ € 153 €

that concludes the proof. O

G.2 QUASI-STRONGLY MONOTONE CASE

Lemma G.2. Let Assumptions 8, 9 hold for Q = B gy(z*), where V. > [a° —

9000000~2 1n2 48n(K+1) n .
R G )ZHF( V2 and 0 < 74 <

1
v <
g+18000000ﬂ¥(%)q"’ -

1 _
15000000 T {TECEET)- If z* lles in B gy (z%) forall k = 0,1,..., K for some K > 0, then
the iterates produced by DProx-clipped-SGDA-shift satisfy

e[| +

n

K n
2y - . *
Vicpr < (=) WVo+ =23 3 (10— TH et — ot =y (F@") = 1Y), wig)
k=0 1:=1

+ ZZ (1= ) ¥l |2 +722 1= ) F w1, (252)

k=0 i=1
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21 2/(48n(K+1) n
where Vi = [la* — o2 4 LTI 2 lIhE = hi
=

Wi, Wi Wl W i wz’i are defined in (207)-(209).

2, by = Fi(a*), and

Proof. Using the update rule of DProx-clipped-SGDA-shift and w;, = F(z*) — §* we obtain

Iz — 2|2 I?

[ prox. g (% — 75*) — prox, g (z* — 7h")

ok — o — (G — b

ok — |2 = 2y(ak — 2%, 5" — h*) + 42" — h*|?

ok — |2 = 2y(ak — 2", F(¥) = h*) — 242(F(ab) — h*,wy)
129" — o, w) + 2 F @) = B2+ A2l

I IA

Next, let us recall that
hf+1 = hf + I/Af, Aic = Cllp (ng (l'k) — hf, Ak) 5 ’gvf = hf + Af, Wik = Fz(xk) - ~§.

Then, Vi € [n] we have

1R = B2 I1f = hf + vAF|P = [|BF = B + 20(hi — by, AF) + 02| AF|1?

1hE = hi 1>+ 20(h = b7, GF — hE) +v2)gF — hE

2

IIS%
< lhE = hEIP A+ 20(hf — Y GF = RE) + vilgE — RE |
= |lhf = BEIP + v(gF — B G+ hi - 2R7)
(L = v)llhf = | +vlgf — h7)?
< (L=v)llhf = BFIP +20)gF - Fi(@h)|® + 2v)|Fy (=) — 7|12

(1= w)llhg = h{1* + 20w l® + 20| Fi(2") — B2,
Let us consider the following stepsize condition

1

18000000 In? (220D ) g °
n

0<~< (253)

L+

Lyapunov function

) , 900000072 In” (%) n )
Vi = [lz" — 2™ + 3 > lInE = b2,
=1
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Vier < b —at? - 290k — o F(ab) — 1) — 292 (F(¥) — 1w
+ 29k — o wn) + I F@R) — B2 4 7

106~2 1.2 [ 48n(K+1) n
+9 10642 In (7[, )

n? ;
=1

910092 In? (42U
= Sk~ b P

=1
9-10%2 In? (748”%‘“))

2 ~ n?2

(35) .
N B ()

¢ vn

-2y 11 Cinax (xk - x*,F(ajk) — h*)

27 « . . 7’ &
+ Z@k — 2" —y(F(z*) — "), wig) + ¥ wrl® + 2 Z llws i |I”
1=1 =1

(253)

9 . 10672 1n2 (4871(K+1)
< RF -2 P+ -

) iuhf—h:w
=1

n2
—y(a¥ — 2%, F(a¥) — h*)

2y . k * k * 2 2 ¥ S 2

+ > (@ =2t = y(F(a®) — h*),wik) + 72wkl +;Z||wl',kll
i=1 i=1

n(K
(34) . 910542 1n? (748 (5 +1)) n
< (A=y)|z” =2 "+ (1 -v)

- PR
i=1

2\ . 7\
+ D (b — ot =y (F(2*) = b7 win) + 9P lon® + 2 D lwiell?
i=1 i=1

1=1
2 n
ol + 25 D llwi k]
i=1
Unrolling the recurrence, we obtain (45). O]

Theorem G.2. Let Assumptions 8, 9, hold for Q = B\/W(x*)r where V> [0 — || +
90000002 In? (48nUCHD ) 1

S |IF()

, 1 VAR In(Bg)
0<~v < min ; BT . (254)
{40962 In 282D 73000, In D (K +1)

2and R > ||2° — x*

s

2
\/i & (K n 1) 2(aa—1) u2vn2(aa_l)
Brx = max 27<3456 ‘ 2= (48n(K+1) ) 1. 2 (253)
0?Iln” = (7/3 )ln (Bk)
2(a—1) 2(a—1)
K= u2Vn=a
= O | max{ 2, wVn (256)
2(a—1) 20e=1) ,  2(a=1)
o2ln” = (%)IHQ max{ 2, & “2(5_‘1/)” <
T (o)
_neexp(—yp(l+k2)VV
Mo = BuK+D) (257)
256\/57111#
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for some K > 0and B € (0,1]. Then, after K iterations the iterates produced by DProx-clipped-
SGDA-shift with probability at least 1 — (3 satisfy

Vi1 < 2exp(—yu(K + 1))V, (258)

9000000~2 In? (M) n

w7 X 1R

V < 2R? and when -y equals the minimum from (254) then the iterates produced by Dprox-clipped-
SGDA-shift after K iterations with probability at least 1 — 3 satisfy

o? lnz(a_l) ("K) In? B
K K “ B K
Vi = O [ max{ R?exp <— £ >,R2@xp< ﬂﬁRx), ? ,

/ln % ¢ In 2K 2(a—1) 2(a—1)

where V. = H,,.k’ 1.*“2

T = Fy(a"). In particular,

K™ pun «
(259)
meaning that to achieve Vi < € with probability at least 1 — 3 DProx-clipped-SGDA-shift requires

- ¢ /R nt . R G Vg, | R?
ol () (). () ()
1/ ¢2\D 1/ o2\ @D o
) )
2R?

D
eln <}3 () >

Proof. The Lyapunov function has the following form

iterations/oracle calls, where

B. = max < 2,

900000072 In> (M) n

* B *
Vi = ot — 27| + — S Ik = w2,
i=1
Similar to previous results, our proof is induction-based. To formulate the statement rigorously, we
introduce probability event £y, for each k = 0,1,..., K + 1 as follows: inequalities
Vi < 2exp(—yut)V (261)
r—1

TN -1\ vV

ﬁ ;wi,t—l S exp (—2 7 (262)
hold for ¢t = 0,1,...,k and r = 1,2,...,n simultaneously. We will prove by induction that

P{E;} > 1 —k8/(k+1) forall k = 0,1,..., K + 1. The base of induction follows immediately
by the definition of V. Next, we assume that the statement holds for k = T'— 1 < K, i.e,,
P{Er_1} > 1—(T-1)8/(k+1). Let us show that it also holds for k = T, i.e., P{Er} > 1—T8/(Kx+1).

Similarly to the monotone case, one can show that due to our choice of the clipping level, we have that
Er_, implies xt € B s, (@) fort =0,...,T — 1. Indeed, fort = 0,1,...,T — 1 inequality
(261) gives zt € B /z7(«*). This means that we can apply Lemma G.2: Er_; implies

T—1 n

2y - . .
Ve < (=) VD D (=) et = (F ) = ) wig)
t=0 i=1
2 T—1 n T-1
+EZZ ’WL T 1— t”wz “2—’_’722 )Tflft”thQ.
t=0 1=1 t=0
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Before we proceed, we introduce a new notation:

& = { — 2t —(F(at) = b), i ot — o —y(F(at) — b*)]| < 2vZexp(—mtf2)VT,

0, otherwise,
(263)
fort =0,1,...,T. Random vectors {gt}tho are bounded almost surely:
lell < 2v2exp(—rmt/2)VV (264)

forallt = 0,1,...,7T. In addition, & = z' — z* — ~(F(2) — h*) follows from Ep_; for all
t=0,1,...,T and, thus, E7_; implies

T—-1 n -
Vr < exp(— wTVJr*ZZ =) TN wity) ZZ — )TN W)
=0 i=1 t=0 i=1
® ®
T—-1 n
49* 1 T-1—t w2 _R u |2
+WZZ( — V) [lwiel* = Eee [llwi ]
=0 i=1
®
T—-1 n
4? 1 T-1-tp u (|2
+?ZZ( — ) ¢ [llwite|I7]
t=0 i=1
®
2T71 n
D D e K VN
t=0 i=1
®
2T 1 n
5 3ot (St ). =
0 o1
®

To derive high-probability bounds for @, @, ®, ®, ®, ® we need to establish several useful inequali-
ties related to w;’, W?,t- First, by definition of clipping

lloi'sll < 2. (266)
Next, we notice that F'p_; implies

* * 39 *
IFi(2") = hill < Fi(@") = Bl + ki = hill < Ll — 2™ +

> It~ n)?
=1

n
< 0+ VAT
30007 In (%)
(261) (254),257) )\
< Vele+ " exp(—711/2)VV L. (267)
3000~ In (%) 2
fort =0,1,...,7 — 1 and ¢ € [n]. Therefore, one can apply Lemma B.2 and get
I _ 2%
bl < = 268
lotll < 5 2Tl < (268)
Eer [[lwiel|”] < 18A?*%“, (269)
forallt =0,1,...,7 — 1 and i € [n]. In addition, we require the following condition
1
v< . (270)

18000000 In> (%)

74



Under review as a conference paper at ICLR 2024

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

B | 2101 — 20" td] = 2 exp (T - 1= ) (6. Bglutl) =0,

Moreover, for all [ = 0,...,T — 1 random vectors {w",}? ; are independent. Thus, sequence

T—1,n
{2% exp (—yu(T — 1 —=1)) (&, wl{ﬁ} . is a martingale difference sequence. Next, the sum-
mands are bounded:

1,i=0,

2y u 2y u
Do -1-0)@std| < Zex(au® -1yl - ot

(264),(266)  84/2
L0 BV (T — 1Y)V
@D exp(pT)V et

= 31n 48n(g(+1) -

271)

. .. . def
Finally, conditional variances 07, = E¢ [

42 oxp (—2yu(T — 1 — 1)) (&,wgfl)ﬂ of the summands

n2
are bounded:

2

4ry u
02 < Equ [n exp(~2yu(T — 1 - D)]l&l? - |wi,z||2}

(264) 3272 u
< g ep(—p2T = 2= D)VE [[lwiill?]. (272)

Applying Bernstein’s inequality (Lemma B.1) with X; ; = 27—7 exp (—yu(T — 1 =1)) (&, wjiy), con-

2
stant ¢ defined in 271), b = PPV G = SLCIMIIVT e get
B

T—1 n
exp(—yuT)V o _ exp(=2yuT)V? b? B B
P{®|>8and ST o2, < SRR g = i

48n(K+1 N 2ch ‘
— 384 In 250UCED 2G + 23 K+1)
The above is equivalent to P{Ep} > 1 — W for
T—-1 n
—2ypT)V? )V
By = Jeither 33 o2 > CPEBIIVEoqp < SRV g
1=0 i=1 384 1n 75 8
Moreover, Ep_; implies
T-1 n T-1E. |||w? ||2
(272) 3272 I3 { il
2 ;
o < exp(=2yu(T' = 1))V p  ————=
269, T<K+1  576~2 K 2o
< —2yu(T —1)Vo*y — L
< exp(=2yu(T — 1)Vo ; (=)
4—a

(227) 9(64v/2)> v* exp(=2yu(T — )WV o*(K + 1) exp(%)
- \/i no—1 1n2—a 48n(g(+1)
(254) _ 2
= exp(=2yuT)V 274)

- 384 1n 48n([13(+1) :
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Upper bound for @. Probability event £ implies

T—1 n
2y &l - llew?,
< -7
) < - exp(—v g E

=0 =1 eXp ’Y,U,Z

T—1
(264),(268) 1
< 2%/ 2y exp(—yu(T — 1))VV o™ E

1=

5 AT exp(—mf2)

OISR+ (128V2) Y¥o® exp(—ypu(T —1))(K + 1) exp (WO‘K) exp(yua) In® 1 AU
- 16 no—1,/77% "2
(254) —~uT
2 exp( gu W (275)

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

By |22 (1= 3071 [ty — B [ltel)] | = 0
€| 2 TH il 3 il =0.
Moreover, for all I = 0,...,7 — 1 random vectors {w;* l} * , are independent. Thus, sequence

{25 exp (—u( 1= 1)) (eI ~ Egy [l
Next, the summands are bounded:
2

4y St u
(L= )™l — gy [l ]|

T— 1I,n
2} ) } is a martingale difference sequence.
1,i=0,1

260 3292\7  exp(—ypT)

B n?  exp(—yu(l+1))
@D exp(—yu(T + )V

T 2561 25U

exp(=YHT)V et

8In 48n(é(+1) - (276)

Finally, conditional variances

1644

o def o 2
7 g | -1 = T2 [l - B [l |

’Ll —Egl

of the summands are bounded:

o (279 4?2 —2yuT)V

52, < o ) [t — B [lel?]|]
8n?exp(—yu(l+1))In =——5— ~ ’ ! ’

72 exp(—2yuT)V

< Eet [llwiy)1?] - (277)
n? exp(—ypu(1 + 1)) In 222U et [liall’]
Applying  Bernstein’s  inequality (Lemma B.1) with X, = ‘%2(1
)1t [||w?l||2 —Eq [HW{QHQ”’ constant ¢ defined in (276), b = exp(—guT)V’

—2yuT)V?
G = eeC2ul)v_ =ars we get
P n(K+1) °
384 1n —5

T—-1 n
exp(—yuT)V 5 _ exp(=2yuT)V? b? B

&) d < — 3 <2 — = .

{ | 8 " ; ;Uz’l 3341y 220 [ =2\ ToG s ) T (K + 1)
The above is equivalent to P{Eg} > 1 — m for

T—-1 n
2yuT)V? —yuT)V
B {enher 3 Sty > S o ol p<gu>} o)

=0 i=1 — 35
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Moreover, Ep_; implies

Tz:lz": em) V2 exp(—ypu(2T — 1))V Til n B [Hw }
Ul ~ —_—
i n?In B S S exp(—yul)
TR+ 18y exp(—yu(2T — 1))V o™ EK: AN
- nln 280UCED = exp(—ypul)

2 ey

4—
@ exp(—yu(2T = )IVV "o (K + 1) exp(25K)
- 4096

na—1]p3—@ %
exp(=2yuT)V?
3841n % '

(254)
<

(279)
Upper bound for ®. Probability event £ implies
2 T—-1 n
I - 9D DR iV
=0 =1
(269) 2 _ -1 2—a
< 729° exp(—yu(T Z )\
n (—yul)
DTSR (64v2)" VY “exp<—w(T — 1)o*(K + 1) exp(22K)
- 1024 a1 2@ %
(254) — TV
2 exp(—yuT)V. 280)
8
Upper bound for ®. Probability event Er_; implies
2 T—1 n
® = ZZ (L =)l |2
=0 =1
T-1
(268) 1
< 4- 2%y exp(—yu(T — 1))o™* —
; AT exp(—ypl)
(257),T<§K+1 (128v2)>  7** exp(—yu(T — 3))o>* %=1 %(K + 1) exp(ypaK)
- 2048 n2-Dya-1
e exp(—p)V
3 .

(281)
Upper bounds for ®. This sum requires more refined analysis. We introduce new vectors
< exp (7 Ml> ﬂ

j—1 j—1
2 u o
I KPP P 2 (282)
0, otherwise,
forall j € [nJandl =0, ...,T — 1. Then, by definition

N VV
16L]) < exp (—W)

283
5 5 (283)
and
4’}/ T—1 n
® — exp (—yu(T — 1= 1)) (&%, wiy)
1=0 j=2
@I
T-1
4
el
n

l

I
=

n Jj—1

i u L u
ZQeXp(—’W(T— 1-1)) <n;w“ —6j,wj7l>. (284)
J= 1=
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We also note here that Ep_; implies

4,yT 1 n 73‘71
ZZexp —yp( —1—t))< Zw —5§,w;fl>

=0 j=2
i—1
—@zn:ex (—yp(T —1—t A — 6Tt 285
=, p (—yu( ) nzwi,T—l i HWiT—1 ) - (285)
i=1

=2

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

4y w 4y w
Eg {n exp (—yu(T —1-1)) <5§-7w,-,z>] = —exp (—yu(T = 1-1)) <5§-,1Eg; [wj,l]> =0.

Moreover, for all [ = 0,...,7T — 1 random vectors {w}i 1}7—1 are independent. Thus, sequence
T—1,n
{4% exp (—yu(T —1-=1)) <6l H >}l o is a martingale difference sequence. Next, the sum-

mands are bounded:

4y u 4y u
‘n exp (—yu(T — 1= 1)) (8%, wiy) < ~, €xp (=T = 1= 1)) [|85]] - [l |

(283),(266) _ _
2060 4v/Vyexp (—yp(T — 1)) exp (wl)/\l

- n

@57) exp (—ypT)V
16\/5111 4871,(2(-&-1)

exp (=yuT) V. et
SIn 48n(K+1)
B

IN

(286)

. e . def
Finally, conditional variances (07 ;)* =

Eg [ (—yu(2T — 2 — 21)) (&5, w}{ﬁﬂ of the sum-

mands are bounded:
1672 N
()? < Ea [ exp (—u(2T — 2~ 20)) |3} ||wj7l||2]

(223) 442V exp (—yp (2T — 2 —

D) u
3 et [llwall”] - (287)
Applying Bernstein’s inequality (Lemma B.1) with X;; = 7 exp (—yu(T —1-1)) (éé,w;{l%

constant ¢ defined in (287), b = M, G = %, we get

T—1 n
nv < &P (=2ypT) V2 b2
Pl e M nd ep(-oym) v
. 1=0 322 - 384111% = s 2G + 2¢b/3
_ B
24n(K + 1)
The above is equivalent to P{Fg/ } > 1 — W for
T—1 n
. ex 2 T V ex _ T V
By = feiter 323 o> SO orlof) < S L sy
1=0 j=2 384 1n
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Moreover, Ep_; implies

287) 442V exp ( 'y,u (2T —2))
(052)? < Z exp (yul) ZEg iy ]I]

(269>=T<SK+1 72792V exp (—yu (2T — 2)) o

ZeXp (yuld) A7~

" =0
< T2V exp (“2pT) 0t S~ (WO‘>
- (64v/2)2-apa—1 2~ Bl
7292V exp (~2yuT) 0 (K + 1) exp (24
: (641/2)2—apa—1]n?~2 %
e exp(2ul) V2

3841n 748"%”1) ' (259)

That is, we derive the upper bounds for ©, @, @, ®, ®, ®. More precisely, Fr_1 implies

(265)
Vi < exp(yuD)V+D+@+@+@+ 6+,

n j—1
Qs o Ay v u T-1  u
®'=© + ?ZZQXP(*’W(T* 1-1)) <n ;%,T—l —d; awj,T—1> )
j= i=
® (2;5) exp (—yuT) V7 ® (2§)) exp (_;'UT) V,
o ) exp (= ;uT) V7
n T—-1 n
@74 exp (—2yuT) V? <279> exp (—2yuT) V?
2
ZJ', S 38410 48n(K+1 ’ Z ZU = e 48n(§+1) ,

=0 i=1 1=0 j=
i (o' )2 O e (=2uT) &
gl =~ 384In 48n(é(+1) ’

In addition, we also establish (see (273), (278), (288), and our induction assumption)

P{ET—l} >1— w

K+1"~°
]P’{E@}>1—L IP’{E@}>1—L P{E@/}>1—L
- 24n(K + 1)’ - 24n(K + 1)’ - 24n(K + 1)’
where

&

I
—N—
@
=
(¢}

151

)q
M5
(]
)
SS
Vv

exp (=2 T)V? o < e CwhV
38411’14871(# or || 8 ’

T—1 n
. exp (=2yuT) V? exp (—ypuT) V
By = qeither Y % 57 > St or @] < " 0
s n(K+1
L L 3841 505D 8
T—1 n
. ex 2vuT)V exp (—ypd)V

Eg = { either (050)? > % r|®'] < %

1o 5= 384 1n —5
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Therefore, probability event Ep_1 N Eg N Eg N Eg implies

8§ 8 8 8 8

<2
4y 7
+— ;exp (—yu(T — 1 —1t)) <n ;w;{T_l . 5JT—1,W;T_1> . (290)

Jj—1
To finish the proof, we need to show that X Z wilp_q = 6 ! with high probability. In particular,

11 1 1 1 1
Vp < exp(—muT)V(l—&——l—-l——i—-l—-i—g)

we consider probability event ET,L j deﬁned as follows: inequalities
r—1

gl u (T =1\ VvV

- ‘ < 0Ll SV I A

n ;wz,T—l = exp (

2 2
hold for r = 2, ..., j simultaneously. We want to show that P{Er_; N ET_L]'} >1- T-1)8 _

| K+1
Wﬁﬂ) forall j = 2,...,n. For j = 2 the statement is trivial since
v H @66 29\, (T =1\ VV
Y < 2Tl —— | =
H 1,7-1 = n_ =P 2 2
Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Er_1 N Er_ Lm-1} 2
1 _ (7;525 _ S(JZ(LI_(lsz) Our goal is to prove that P{ET 1N ET 1m} > 1— (7;@3[3 871(7?(&1)'
First, we consider Z witr_q
- m—1 72 m—1 2
o Z W?,T—1 = n2 Z wlva—l
i=1 i=1

m—1 m—1

2
= %ZH%T %+ :Z<ZLZ%T 1w >

i=1

~

j2 T

m—1
2y
< | Dm0 S ke 25

=1

32

Next, we introduce a new notation:

i—1 i—1

ol u Y u

n > Wr 1> n > Wr -1
r=1 r=1

< oxp (,w) Nid

/ _ 3
PiT—1 =
0, otherwise
fori =1,...,m — 1. By definition, we have
T VvV
10571l < exp _T DY VY (291)
2 2
i—1
fori =1,...,m — 1. Moreover, Ep_1 yimplies pf ;=L > wip fori=1,....m—1
r=1
and
m—1
% Z w;fl S V @ ‘|‘ @ + @7
i=1
where

2 m—1
@ = % Z <p;,T717w;‘L,T71>'
i=1

It remains to estimate @.
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Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y u 2y u
Eginl [n<P;,T—1>%,T—1>} = <P1T 17E5 [wi,T—1]> =0.

2y 7 1 u n . . .
Thus, sequence {7 (Pir_1 wir_1) }i: | is a martingale difference sequence. Next, the summands
are bounded:

2y
< szT 1l flwitr o |

(291),(266) 2\F76XP< W(T 1))
<

2y u
‘ <P1T 15 i,T—1>

Ar—1
n

@2s7) exp (—yT)V
32\/511,1 48n(g(+1)

exp () V. oger
81n48n(é(+1) =&

< (292)

. o . ~ def 4~2
Finally, conditional variances (&} ;_;)* = er1 [%(p;j_l,w;‘j_l)z] of the summands are

bounded:

~/ 2 < E 472 / 2 u 2
(Ui,Tq) > €71 ?HPLTAH '||Wi,T71||

(291) 2 _ _
i Vexp ( zu(T Vg
n

er-1 [llofra %] (293)

Applying Bernstein’s inequality (Lemma B.1) with X; = 277 <p;,T_1 , w%fT_1>, constant ¢ defined in

—yuT)V —2yuT)V?
(292), b = DV — ST we get
B

exp (—ypuT) V. wT _ exp (=2yuT) V2 b?
P{@' andz Zir-1)” < 384111748"(?“) e W Te
_ B
24n(K + 1)
The above is equivalent to P{Ep} > 1 — W for
S —2yuT) V2 —yuT)V
By = Jeither 3 (7 )2 > SRE2W T gy SR WDV - )
= 384 1n =z 8
Moreover, Er_1 implies
L (293) 2Vexp( n
Z(Ug,T—1)2 < Z eT -1 ”sz 1‘“
i=1 i=1
2 WVexp( p(T=1)o" s,
< T-1

n
TR T ) ey ()
T (64v2)2 et 2o BT i
K 187°V27% exp (—yp(T —1)) c%exp ( “KO‘>
(64v/2)2—ene—t In? e SnlED)

esh - exp (=2yuT) V?
3841n 748"(1’;“) '

(295)
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Putting all together we get that Ep_1 N ET71,m71 implies

m—1
% dowis || < Ve+ @+,
=1

(280) _ — (279)
@ 20 exp ( wT)V, Yy, < exp (=2yuT)V

= il = 48n(K11)°
S RS
m—1 2
~ e _ exp(=2yu)V
Z;(ai,T—l) < 384 1n 48n(g(+1) )

In addition, we also establish (see (278), (294) and our induction assumption)

(T-1)p  (m-1)8

P{Er_ 1N Er_q1m}>1— ,
{BraNEBroama} 2 K+1 8n(K+1)

B B
P{Es}>1————— P{Ep}>1—-— "
{Eo} = 24n(K + 1)’ {Eo} 2 24n(K +1)
where
T—1 n
L e ( 2wT)V exp (—ypT)V
Ey = either _— < ————-— 5,
foer =357, > SELIUEN S oo < 22
I VR U exp(—2wT) V2 exp (—yuT)V
Es = {elther Z(ai’T_l) > el I B 4871(?“) or |@| > 3 .

Therefore, probability event Ep_; N Em,l N Eg N Eg implies

m—1

This implies ET,Lm and
P{Er 1 NEr_1m} > P{Er 1NEr_1m 10 EeNEg}
—-P {ETA N ET71,m71 UFEgU E@'}

,_(T-1D5  mp
= K+1 8n(K+1)

Therefore, for all m = 2,...,n the statement holds and, in particular, P{Er_; N ET_L”} >

1-— (7;{1125 I GES) +1 ie., (262) holds. Taking into account (290), we conclude that Er_1 N

ET,L” N Eg N Es N Eg N Eg implies
Vr <2exp (—ypuT)V

that is equivalent to (261) for ¢ = T'. Moreover,

]P{ET} Z P{ET 1nET lnmE(DmE@ﬁE@/

@T-pp B

T8
>1- .
+1) K+1

- 17IP’{ET \NE, UE@UE@UE@/}
B
K

K+1 8K+1) ° 24n(

In other words, we showed that P{E},} > 1 — k¥8/(k+1) forallk =0,1,..., K + 1. Fork =K + 1
we have that with probability at least 1 — 3

25+ — 2|2 < 2exp(—yu(K +1))V.
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Finally, if
v = min 1 VnR In(B)
4096¢ In 28D 7 5000, 1n 2D (K 41) f
2
\/5 P (K + 1)2(o¢ 1) 2Vn2(aa 1)
BK = mnax 27 3456 . 5 2(a—1) 48n(K+1)
o?2ln” = (T)ln (Bk)

2((v 1)

K= p?Vn

1) ) KZ(a—l) oy 2(a—1)
02ln” = (%) In® | max < 2, 2
Ty

then with probability at least 1 — 3
a5+ —a*? < 2exp(—yu(K + 1))V

w(K +1) puy/nRK 1
2V max< exp [ — (gL | &P ~ 30000 I K | B
4096/ In —5 3000(, In =5 K

K : RK ’In* B
= O | max{ R%exp (— K ),RZ exp< i/ ‘> T g 1 2K
In" = (

nK 2(a—1 2(a—1
(:InZ %) KD M)

2(0 1)

= O | max\{ 2,

B

To get |5 +1 — 2*||? < & with probability > 1 — 3, K should be
2 2 2
K =0| max ¢ —In ” In n—él R— , & In In ﬁf* R ,
] € upB VnRu € Ru d 5
1 2\ e 1 2\ e "
. Inl = o Ina—1 (Be) ,
n \ pu2e B\ p?e

2R?

eln (/13 (‘72)2(&06_1)>

This concludes the proof. O

where

B, = max | 2,
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H MISSING PROOFS FOR DProx-clipped-SEG-shift

In this section, we give the complete formulations of our results for DProx-clipped-SEG-shift and
rigorous proofs. For the readers’ convenience, the method’s update rule is repeated below:

z* = prox.y (xk—'yg Zgl, ar —hf—i—Af, hf“:hf—&—yﬁf,

= prox,y (o8 —99%), 7" =~ Z@f, gf =hi +AF, BETY =B+ VA,

i=1

X

AF = clip(F (a%) — B, M), AF = clip(Fa (#%) — BF, M.

H.1 MONOTONE CASE

The following lemma is the main “optimization” part of the analysis of DProx-clipped-SEG-shift.
Lemma H.1. Ler Assumptions 6 and 7 hold for Q = B, n(x*), where V. > ||z — 2*||* +

4096002 In? 22D 9 & ke 1e
> iy [|[Fi(@¥)[]%, and 0 < v < 1/vizL. If 2¥ and 3% lie in B, s (x*) for all
k=0,1,...,K for some K > 0, then for all u € B4n\/v(l‘*) the iterates produced by DProx-

clipped-SEG-shift satisfy

<F(u)7%§/g > + \II( avg) - \I’(U) <

|20 = uf]? — [l25+ — ul?

27(K +1)

e Z (3llwell® + 416411

K
(O, 2" — 296
] Z ko T (296)

k=

a K

K, Y Z (297)
o < FE) -3, (298)
we 2 PR -G (299)

Proof. Since 7% = Prox.y (2% —~vg") and 2*+1 = Prox. g (2% — ~g"), we have 2% —yg* — 2% €
vOU(z*) and 2F — yg* — ¥t € yO¥(2*T1). By definition of the subgradient, we have Yu € R?
v (T@EY) - T(FY)) < @ - b g o

Y (T~ W) < @b gt - B,

- §k>7

Summing up the above inequalities, we get
(@) = T(u) < @ —a2F 2" —FF) + (@M - 2F u— 2P

(G = GF 2R — TR 4 (G u - T, (300)
Since
~ . ~ 1 1 1 -
<.1‘k _ xk,l‘k_H _ J)k> — *”J)k_‘—l _ kaQ _ *Hﬂfk _ kaZ _ 7ka+1 _ l‘kHQ,
2 2 2
1 1 1
(@ — ok okl = ik -] = ettt - aF? - Sl - u)?,

we can rewrite (300) as follows
ey~ ~ 1 1 1,
v ((F@E), 7" —u) + 0(@) - ¥(w) < §IISE’“*UIIQ*;\%’“+1 *UIIQ*gllxk*x’“HQ

1 ~ ko~ ~
_§||xk+1 _ {Ek”2 +7<gk _ gk’karl _ xk>

+7 (0, " — u). (301)

84



Under review as a conference paper at ICLR 2024

Next, we upper-bound v(g"* —g", 2**' —Z*) using Young’s inequality, stating that {a,b) < 5-[la[*+
2||b||* for all a,b € R% and i > 0, and Jensen’s inequality for the squared norm:

I _ . 1 _
VG =gt =) < g -G et -

. — 1 . L
= PFE") = F@E*) —wp+ 00 + 72" — 3|

- 1ooen ~
< 3PIF@ER) = F@O)? + 397 lwrll® + 39210k [1* + [l = %)
4

(32)
<

~ 1 ~
3y L¥|2* — 1”4 397 eonl|? + 39210 + [l = 2¥[302)

Plugging (302) in (301), we derive for all u € R¢

3 (), — ) + 0@~ W) < gl —ul? — Sl — uf?

1 ~ 1 ~
75 (1 . 6")/2L2) ||£Ck - Ik||2 o Zka+1 _ Ik||2
+37lewnl|* + 39210 1* + 7(0, T — u). (303)
We notice that the above inequality does not rely on monotonicity. Next, we apply monotonicity and
getthatforallu € B, ()

1
—ul® = St —l?

2
1 - ~
=5 (1=692L%) [l2* = 2*|* 4+ 5(6%, 7" — 2¥)

~ ((F(u), - u) + \I/(ik) — \I'(u))

IN
21
EX

e

+37 k| + 392 [10klI* + 7 (Ox, «* — u)

1
R s
1

1 ~
—5 (3o )t - o

IA

21

EX
e

2
+372||wk”2 + 4’72H9k||2 + (O, xF — u),

where in the last step we apply v(0%, ZF — 2*) < ~2||0%||? + 1||z% — 2% ||%. Since v < 1/vi2L, we
have

T (F (), — ) + @)~ W) < gl —ul? et~ ul?

+392|wl® + 492 (|0k[|* + 7 {0k, 2 — u),

Summing up the above inequalities for £k = 0, 1,. .., K and dividing both sides by v(K + 1), we
obtain

=
s

1 ~ ~
K+1 . (F(u), 7" —u) + ¥(@") - W(u) <

2% — w® = =" — ul®

29(K +1)

=~
Il

K+1

Y 2 2
R — + 4/|6
+K+1 kgo(?’\lwk\l 10k 17)

avg

Applying iy 3 (F (). B —u) = (F(u) B, —u) and W) ~ (") < gy 32 W), we
get the result. O

Next, we proceed with the full statement of our main result for DProx-clipped-SEG-shift in the
monotone case.
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Theorem H.1 (Case 2 from Theorem C.2). Let Assumptions 1, 6 and 7 hold for Q = B, s(z"),

2 1nQ 48n(K+1) n
where V > [l — 2*|[2 4“5 S |[Fy(a*)||? and

2—a a—1

1 60« e
v < min T (RTT) VVn ,  (304)

1920 In 2" 97900% (K + 1)a o In s 2nUHD
vV
A=A = —————— (305)
60 In 48n([1§+1)

L o= 0 (306)

forsome K > 1and 8 € (0, 1]. Then, after K iterations of DProx-clipped-SEG-shift, the following
inequality holds with probability at least 1 — 3:

9V .
Gap v (T avg)_m and {z"}; 2! C By p(a), {7 € By, yp(z%), (307)

where T _is defined in (297). In particular, when ~ equals the minimum from (304), then after K

avg

iterations of DProx-clipped-SEG-shift, we have with probability at least 1 — /3

LV In 2 oV In s nk

Gap (T avg)—O max K gt

(308)

i.e., to achieve Gap 7(TX, ) < € with probability at least 1 — 3 DProx-clipped-SEG-shift needs

oot
K — 0 | max LV nLV 1 (U\/V) an\/V

5 ; 7 (309)

iterations/oracle calls per worker.

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al.,
2023): we prove by induction that the iterates do not leave some ball and the sums decrease as /K +1.
To formulate the statement rigorously, we introduce probability event F, foreach k = 0,1,..., K+1
as follows: inequalities

t—1 t—1
max {llwo—ull2+2vz<wl—u,ez>+v22(8Hz2+6llwzl2)}s9v, (310)

uGB\/V(x*) =0 =0
Ay
t—1
vzez <VV, 311)
WZF)M ; A : Vzw Sg (312)
hold fort =0,1,...,kand r = 1,2, ..., n simultaneously, where
0, :97+9§’, wj :wl“’—i—w;’, (313)
1 1 1 f ] —
o= 29”7 0= 29”, wp &= Zw oy el G
i=1
def def .
01 =Eg (9] -3 0.,= F@)-Eg [5] Vieln], (315)
W def ~ def .
wiy EEa [31] — 9 wi EF@)-Ea [6] Vieln] (316)

We will prove by induction that P{E} } > 1—#8/(x+1)forall k = 0,1,..., K+1. The base of induc-
tion follows immediately: for all u € B, ;(x*) we have ||2° — u|* < 2[|2° — 2*||> + 2||z* — u||* <
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AV < 9V and for k = 0 we have ||y 3770 6y = 0, |2 3202 02,1l = 12320  wiy il =0
since 0} | = w}'_; = 0. Next, we assume that the statement holds for k = T — 1 < K, i.e.,
P{Er_ 1} > 1—(T DB/ (k+1). Let us show that it also holds for k = T',i.e., P{Ep} > 1— Tﬁ/(K+1).

To proceed, we need to show that E_ implies ||z*—2*|| < 3v/V forallt = 0,1,...,T. We will use

the induction argument as well. The base is already proven. Next, we assume that ||z! — z*| < 3v/V
forallt =0,1,...,t for somet < T. Then

Z |F(z)]12 < v 317)

160 In 48n(K+1)
B

I (x VIIE )| <

and fort =0,1,...,¢

7 =2 = | prox,g(z’ —~g") — prox, g (z* — yF(z"))|
< la® =2 =G = F@)| < lla* = 2™ +4]g" = F(a")|
i B oL (309),B17) vV
< ot =2+ (I + IF @) < \f+27/\<3\f+ 301 BETD
B
< 4nVV. (318)

’.l"hisllmeans that zt,2¢ € B4n\/v(m*) fort = 0,1,...,t and we can apply Lemma H.1: Er_;
implies

max 1 2y(t + 1) ((F(w), Ty —u) + V(@) = (w) ) + 2"+ —ul?
{2+ ) j

Bﬁ(m*)
t—1
< max < |z°— u||2—|—2fyz ' —u,0;)
Byw (@) 1=0

t—1
+72 ) (816 + 6w ]?)
=0

(310)
< 9V

that gives

a7t =t < max {or( 1) ((F (), )+ W) — W) + o — )}
Vv T
< 9V

That is, we showed that E_; implies ||z! — z z*| < 4nV/V and

max {27 t+1) ((F(u), 3y —u) + () — ¥(w) + 2" —ul’} <9V (319)

By (a*)
forallt =0,1,...,T. Before we proceed, we introduce a new notation:
xt— ¥, if |2t — 2| < 3VV,
e = {O, otherwise,
forallt =0,1,...,7. Random vectors {n;}._, are bounded almost surely:

el < 3VV (320)
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forallt = 0,1,...,T. In addition, n; = x* — 2* follows from Er_; forallt = 0,1,...,T and,
thus, Er_ implies

T-1 T-1
Ap L max {on —ul|® + 2y Z(m* — u, 9;>} + 2y Z(xl —z",0;)

ueB v (=) 1=0 1=0
T-1
+92 ) (8110117 + 6l ]?)
=0
T-1 T—1 T—1
< 4V +2y max m*—u,Z@l +29) s 0) + 92> (81617 + 6]lwi?)
u€B /7 (z*) =0 =0

T-1 T-1
+ 2 Z my0r) +77 ) (816:]1° + 6llwnl|?) -
=0

Using the notation from (313)-(316), we can rewrite ||6;]|? as

2
+2(|67]?

n
u
>0
=1

4 n
o ZH@ 1+ 7 <Zm jl> +2(|67]? (321)
=2

and, similarly, it holds for ||w;||?. Putting all together, we obtain that E7_ implies

A

2
n2

6] 2/|6}(1* + 21167 ]|* =

T—-1 9 T—1 n T—-1
Ar < 4V+2VV || S0+ 0SS 0 2y Y (ma6D)
= =0 i=1 =0
@ @
2T 1 n
e S C XIS E A
=0 =1
&)
2 2 o 2 2 u |2 u ||2
5 20D (1650 + Sllwtl® — 8Egy  [160201%] — 6By, [t ]2])
=0 i=1
@
T-1 1 n _
+2’722 8||9l||2+6|| ZZ<29117 ]l>
=0 =0 2
® ®
2 '7 o T—-1 n —
s DD szza Wiy (322)
=0 j=2

@

To finish the proof, it remains to estimate 2V HZIT:_Ol 0|, D,@,®,®,®&,®,® with high proba-

bility. More precisely, the goal is to prove that 2vv/V HZZT:_Ol 0 H +0+@4+-0+®+®+0+O® < 5V

with high probability. Before we proceed, we need to derive several useful inequalities related to

01, wi'y, 07, wy. First of all, we have

10720 < 27, lwityll < 2A (323)
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by definition of the clipping operator. Next, probability event Er_; implies

(32)
IE:)) < IF(") = F@)] + | F@)] < L2’ -] +

D lIE @)
i=1
WV 609 nVV (305) A

< 3L ) 2
< 3 VV + 160~ 1n 48n(é{+1) = 1207In 48n(é<+1) 5
- 1 . sy 2 s - 2
IF@E) < I1EGE) - F@))+ 1@ < LIE -2+ | D IFi@)]
i=1
(304)
< 4LnVV + v v e A

K = K 9
160y In 222U2D 120 In 222D 2

forl =0,1,...,7 — 1 and ¢ € [n]. Therefore, Lemma B.2 and Ep_; imply

HH?H <= 2”9 Wl < )\a TaoTo leH < - ZH%[” < W’ (324)

Ei [He;le | <X, By [Hw;flu } < 18X, (325)
foralll =0,1,...,7 —1andi € [n].

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y u 2y "
]Efé‘f, {@717 m} =— <’71»E§§J[9i,z]> =0.
Moreover, for all [ = 0,...,T — 1 random vectors {6, };_; are independent. Thus, sequence

T—1,n
{%’Y (i, 6} l}} is a martingale difference sequence. Next, the summands are bounded:
1,i=0

2y (320),(323) 127y (305) R1% def
’ <7717 > < 7“7][” ”9 < T\/V)\ < W = C. (326)
Finally, conditional variances 022[ &« ]Egz2 » {%(m, 9;@)2} of the summands are bounded:
) 3672V
0l < By [ 5l - 16 lllﬂ Eg 16417 - (327)

Applying Bernstein’s inequality (Lemma B.1) with X; ; = 77 (i, o3 1)» constant ¢ defined in (326),

2
b—?’l‘g, me%‘%,weget
T—1 n
V2 b2 5
®| > — and —_— 3 <2 — = .
{' ‘> 5 ;2 = 2001 D } = eXp( 2G+2cb/3> 24n(K + 1)
The above is equivalent to
T—1 n
g . 3v2 3V
P{E@} >1-— m, for E@ = ( either z; Z W or ‘@l S 10
(328)
Moreover, Ep_; implies
T—-1 n T 1 n
(327) 36’y (325) T<E+1 648(K 4 1)y2V A2~ g™
> 2 ol = > > By 057 < ;
1=0 i=1 1=0 i=1
(305) 648(K + 1)y*c*V?2=2 (04 312
< (K +1)y%o < . (329)
602—apa—1]p2~° 748"9;“) 200 In 748"(2(“)

&9
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Upper bound for @. Probability event £ implies

T-1
(320,324, T<E+1 6. 2%(K + 1)/ Vo©
@ < 2> |l o) < Yo
@60 (K +1)y*o®In® ! % G04) 3V
< —.
no—1y -1 - 100

6.2
3 (330)

Upper bound for ®. Probability event E_; implies

16’)/ TZliE ”9 (325), <S +1 288,YQ<K+ 1)/\2—a0.a 305) 288’}/&([(—1—1)0’0“/1_%
1=0 i=1 s B n 6027ana711n?—(1%
< v 331
< _
- 100’ (331
9 T—1 n 2 (325)T<SK+1 21672<K+1)>\2—a0.a 305) 216’7a(K+1)0aV1_%
=0 i=1 ! - n 602001 1n?~" D
e V. 332
< _
- 50 ’ (332)
(331),(332) V .
<
- 20 (333)

Upper bound for ®@. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

272 u
S, (810217 + 6l - 8Bgy [164]7] — 6B , [l ]?]] = 0.
Moreover, for all I = 0,...,7 — 1 random vectors {0}, }7";, {w};};_; are independent. Thus,

T—1,n
sequence { (8||9 2+ 6||w;! 2= 8E§2 {HG%HQ} — 6Eg: {Hw;‘leD}l od is a martingale

difference sequence. Next, the summands are bounded:

S |Blezll® + 6l — 8Egy  [l624112] — 6By, [t |

167 122 u
< — 1 (10202 + By, [1624017]) + 3 (ot + e, [t ]2])
(323) 232
< 22472)\
n
(305) Vv
e (334)

= 61n48n(é(+1)

Finally, conditional variances
~9 def 4'}’ u u 2
7 T gy, |[SIORI7 + Ol — 8B, [162417] - By, [letlP]]

of the summands are bounded:

2
L, (3349 V2V

TS g e, |[SIOI7 + Gl - 88 [1647) - 68 [l |
n IHT

472V

WEg L [4”9 lH2+3szl” ]- (335)
B8

Applying Bernstein’s inequality (Lemma B.1) with X =
(8||t9 1? + 6wy |12 —8E¢ | {HH Al ] — 6E¢ [Hw;‘ZHZD, constant ¢ defined in (334),
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2
bz%,szme’Weget
T—1 n
V2 b2 6
o~ Y and S AU G - = :
{| |> " ZZ;;U” 21611148”2,“”}‘ eXp( 2G+2d’/3> 24n(K +1)

The above is equivalent to

6 T-1 n ~2 V2 v
P{E@} >1-— m7 for E@ = < either ; ;Ji,l > W or ‘@l < E

(336)
Moreover, Er_1 implies
T—1 n T—1 n
(335) 4v2V )
S A T w3 B, L Sl
=0 =1 3n?In =0 =1
(325>7T<SK+1 168(K+1) 2V N2
- nln 48n(g(+1)
3 L68(K + 1)y*V2~ 30 @0 v (337)
- 6021 In?~* 2EEHD T 96y 2D
Upper bound for ®. Probability event Er_; implies
T-1
(324), T<K+1 28.22a 2 2“(K+1)
® = 273 @6 +olufl?) < s
1=0
305y 28-2%%-60%°7292%02%(K 4 1) In Za=2 748"%{“) Goa) V/
= n2a—2] a1 < 6 (338)

Upper bounds for ® and @. These sums require more refined analysis. We introduce new vectors:

j—1 Jj—1 Jj—1 IV
if [|[X u vV il u ol u < YV
le _ Z 91 po Ly Z; ez,l " 5§ —Jn Z; Win n Z; Witll = T2 (339)
0, otherwise, 0, otherwise,
forall j € [n]andl = 0,...,T — 1. Then, by definition
vV VV
G < == 1165] < - (340)
2 2
and
32+ T—1 n 32+ T—1 n 5 j—1
_ u u I pu
® = n ZZ 3 Jl 7 Z <n i — T j,l>7 (341)
1=0 j=2 1=0 j=2 i=1
®
24+ T—1 n 24’Y T-1 n 5 j—1
@ = — Z w, T <n wﬁléé,w;l>. (342)
1=0 j=2 1=0 j=2 i=1
@

We also note here that Ep_; implies

-1 n j—1 n j—1
JZZ<ZZQ;L1 H ;Ll> 372:/2<2219?,T1_C}117 ;,T1>a(343)

=0 j=2 =1 j=2
217 o /1 2y o [ I
I u _ /T R u _sT-1  u
T : <’]’L . w il 6j’wj,l> - n Z <TL : wi,T—l 5] ,wj,T_1> (344)
=0 j=2 i=1 j=2 i—1
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Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

32 32y “
E§2J { < i) ]l>} < ;»Egéd[ j,l}> =0.

Moreover, for all I = 0,...,7 — 1 random vectors {Gzl}?zl are independent. Thus, sequence

T—1,n
{3277 < jl-, 0;l>} is a martingale difference sequence. Next, the summands are bounded:
/) 1,5=0,2

32y, 327 (340),(323) 32y 'V (305) 4V def
24T el opu L oeer VY < r ¢
(GO < =Gl ozl < == =--2A < S B (345)
Finally, conditional variances 57, & Eg [10721@2( L0y l)ﬂ of the summands are bounded:
~ 102442 : 25672V .
< By, |G o] 2 Eq 16207 (346)

Applying Bernstein’s inequality (Lemma B.1) with X; ; = TA’ < ]l, 0% z> constant c defined in (345),

_ 4V _ 8Vv?
b= ?,G— 751n 4Sn(K+1),We get
B

4V 8V2 b2 3
P{|®'| > — and o< — V<2 _ — .
©]> - an ZZ”%Z—%IHW = eXp( 2G+2cb/3> 24n(K + 1)

The above is equivalent to

T—1 n

B _ o 8V2 v
IP{E@/} Z 1—m7 fOr E@l = elther g ]22 Zl W or |© | < ?
(347)
Moreover, Ep_; implies
T-1 n (346) 2567 T K (325) T<K+1 4608(K+1) 2y \2—a o
I S kg, (o) ,
=0 j=2 =0 j=2
(05 4608(K + 1)y*0®V?2"3 (04 2
g 608(K + 1)y*o*V="z2 g 8V . (348)
402-apa—11p?~ 748"(§+1) 751n 748”(2{“)

Upper bound for @'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

IEE [247 < Wy, z>} 2y < ]Eflm' [W;Ll]> = 0.

Moreover, for all [ = 0,...,T — 1 random vectors {w}" l} ', are independent. Thus, sequence

T—1,n
{2:1—;* <5§, ;‘l>} is a martingale difference sequence. Next, the summands are bounded:
/) 15=0,2

24y, 24y 11 (340),323) 24~y V' (305) 3V def
u N < 22D ]t < s YT G S
@] < B0t T EE S e e o
Finally, conditional variances (o7} D2 & Eer [5 > <5l ) ] of the summands are bounded:
) Wi n
57672 40 14472V
@02 <, | I | € B (el s
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Applying Bernstein’s inequality (Lemma B.1) with X; ; = 2477 <5§, Wiy > constant ¢ defined in (349),

_ 3V _ 3V?2
b - 5 G - 50 1In 48n(K+1) » we get
B

T—-1 n
P |®|>—and Z

=0 j=2

| (G N (S
= Som EEED (= P\72G 1 2e/5) T 2an(K + 1)

The above is equivalent to

T-1 n

B ) 9 3V 3V
P{Ees} > 1—m7 for Eq =  either ; ;(Uz’,l) > W or |@'| < 5
(351)
Moreover, Er_1 implies
T—1 n T—1 n
G50 144 2y <325> T<K+1 2592(K + 1)y2VA\2~%g
>} TS g [l T BRI T
1=0 j=2 1=0 j=2 "
(05)  2592(K + 1)y*c*V?2~5 (04 3V2
< 602—apa—1 11’1270( 48n([13(+1) S 50 1n 48n(é(+1) . (352)
Upper bound for 2V HZIT:BI 0, H We introduce new random vectors:
-1 -1
_[ige iw|isa]<vr
m= r=0 r=0
0, otherwise
forl =1,2,...,T — 1. With probability 1 we have
Gl < VV. (353)
Using this and (311), we obtain that F'7_1 implies
-1 |
= WV >0
1=0
T-1
= 2VV, |42 Z 16:]|? HWZ <729T791>
T-1 T-1
= 2VV 2D 102 +27 D (G0
1=0 1=0
T-1 n T-1
(15 ®+®+6®+® 2’y u
< IV | S Y D GO + 2 D (671354
1=0 i=1 1=0
® )

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2V 1 gu u
o, | 22060t = 2 {d ey 81]) =0,
Moreover, for all I = 0,...,7T — 1 random vectors {9;‘,1}?:1 are independent. Thus, sequence

T—1,n
{%’Y (¢, 0y z>} is a martingale difference sequence. Next, the summands are bounded:
1,i=0,1

(353),(323) 4»)/ (305) VvV def
HCl” ||9 ZH < ;\/‘7)\ < W =C. (355)
B

2Y 0 g
’TL<CZ, i,l>
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Finally, conditional variances (51’.}l)2 &ef Ee {%22 (, 0}302} of the summands are bounded:

- 3 472V
(a;,o?s%[ i ol < T g, hetale). (356)

Applying Bernstein’s inequality (Lemma B.1) with X; ; = 277 (<, Hgfl), constant ¢ defined in (355),

2
b—w,GZ(mme’Weget
T—-1 n
V2 b2 B
o~V ad v Lo — = '
{ > 5 227 60011148’“5*“}‘ exp( 2G+26b/3> 24n(K +1)

The above is equivalent to

8 NN (a 2 ve v
]P{E} > ].—m, for E = < either lz; ;(Ji,l) > W or |“ < — 10 .
(357)
Moreover, E_1 implies

T—1 n Tln

(356)
> @)’

011%]
=0 =1 =0 =1
0 TAK +1)y"0" V2 E 6 V2
602_ana_1 1n270¢ 4871(?-‘1—1) — 600 ln 48”(?-‘1—1) :

(325)T<<K+1 72(K + 1)y2V A2
- n

(358)

Upper bound for ®. Probability event £ implies

T-1
(353),324), T<K+1 2. 2%(K 4 1)/ Vo
® < 29 (¢l ezl S o1

(305) 2.2%. 601 (K + 1)y“0® In®~? 748"%{“) (304) v

Vsl = 100

(359)

That is, we derive the upper bounds for 2yv/V/ H Zsz_ol 0
ET,1 1mplles

T-1

>0
1=0
j—1
ZH;L,T—l - CJT_la ;‘J,T—1> )
i=1
i—1

Q n <
j=2
J

(342) 24~ i ¥ _
0+ B (1S - e ),
=2

Ar 2 4V+27\F +D+@+0+@+6+6©+®,

G4y o 3

® ©® +

:L
s

i=1

T-1

(354) ®+®+®+®
SNE ST NV ELELEL N
=0

(330) (333) (338) (359)
WY GV e L DV
- 100 - 20 -6 - 100

T—-1 n

-1 n 62 3172 -1 n a3

> A

1=0 i=1 1=0
T—-1 n

V2
0ln 487L(K+1) ’ Z Z 48n(K+1) °
B

600 In

T-1 (252)

n
Z;l

1=0 j=2 1=0 i=1
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In addition, we also establish (see (328), (336), (347), (351), (357) and our induction assumption)

P{Er_1}>1- =18

K+1"~
P{E@}>1—L P{E@}>1—L IP’{E©,}>1—L
- 24n(K +1)’ - 24n(K + 1)’ - 24n(K + 1)’
B B
P{Egx}>1— ———, PlEgt>1— ————
{Bork 2 24n(K + 1)’ {Es} 2 24n(K +1)
where
T—1 n
3?2 3V
Ey = ith 2 s = Q< — 3,
® {el er ;;UM o 48”%(“) or |®| < 0 }
T—1 n
V2 %
_ : =2
E@ = {elther Za-i’l > W or |@| < 6},
=0 =1 B
T—1 n
812 4V
_ : ~2 /
E@/ = {elther ZZU7Z>WOT|©|S? y
=0 j=2 B
T—1 n
. 3V?2 3V
E@/ = {elther 2(0271)2 > W or |®/| S ?
1=0 j=2 — 5
T—1 n
V2 1%
_ . ~/ \2
E = {elther Z(Ui,l) > W or || S 10}
1=0 i=1 B
Therefore, probability event Er_1 N Eg N Eg N Egr N Egy N Eg implies
— 1/V V. V 4V V V
0 < =4 =+ =4+ = —
7; 0 = \/8(20+6 6 " 5)+10+100
n j—1
32y 73 -1 g
+\l > <n Oira =G O
j=2 i=1
32y - Y - u T—-1 pu
< VV+ — =D O =G T ), (360)
j=2 i=1
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and

32~

n

M-

Il
N

Ar < AV 42V 4+ 20V

(41

J
«
n

’l

v
6

1
u T—1 pu
07.,T 1 C_'j 703T 1>
J

o L

LV v v
10 100 20

+372JZ< Z@T 16 . ;'L,T1>
=2
24’YZ< szT L0 Wl 1>

Vv 3V

ts Tt

SIS

< W HVV ?’?Z< Zeml 0, 1>
3272< Z i T—1 Cijl, ?,T1>

i=1

24y Y T-1
} : f§ : u _ 5 u 361
* n o <n g Wir-1 9% HWir—1 /> (36D

j—1 J—1

In the final part of the proof, we will show that -1 Z 071 = =1 and Ty wir = 5T ! with
1—1

high probability. In particular, we consider probablhty event ET—1, ;j defined as follows: inequalities

r—1 r—1
v VvV |y VvV
POl el D DR By
i=1 i=1
holq forr = 2,...,j simultaneously. We want to show that P{Er_; N ETij} >1- % -
W’Bﬂ) forall 5 = 2,...,n. For j = 2 the statement is trivial since
(323) (323)
[T Rt Sﬁ,ph”gléﬁl
n > n 2 n 2

Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Er_1 N ET,l}m,l} >

1— (7;;25 — 8(:%;(2% Our goal is to prove that P{Er_1 N Ep_1 ,,} > 1 — (7;;25 — Sn(’?{il).
Z ezT 1

First, we consider

m—1 2

>0

=1

72
n2

ZQZT 1

71—

- EEWNWQEKEZ ﬂTQ
>

1
=1

IN

m—1 m— i—1
lQ Z ||9;fl||2 Z <’VZGTT 1 zT 1>
i=1
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Similarly, we have

,ym—l 72 m—1 2
S wiral| = o3| 20 Wi
i=1 i=1
72 2y m—1 5 i—1
_ 2 4
= ) Z ||W1T 11?2+ o Z EZW;‘,T—UWZTA
=1 r=1
T—1m—1 m—
< |7 2 Y -
= ) Z Z | u” Z Zer »WiT—1 /-
=0 =1 i=1
Next, we introduce a new notation:
i—1
VvV
. _ %ZG:«L,T—D ZGrT 1 ST’
pZ,T—l - r=1 9
0, otherw1se
i—1 i—1
Vv
S B DYV 1Y wir | < ¥
PiT—1 = r=1 r=1
0, otherwise
fori =1,...,m — 1. By definition, we have
vV , vV
||Pi,T71|| < 5 ||Pi,T71|| < Il (362)
. ~ . . i—1 i—
fori =1,...,m—1. Moreover, E7_1 ,, 1 implies p; 71 = T 1 Orr 1o Pip1 =7 D Wiy
r= r=
fori=1,...,m —1and
m—1
TN on) < Votora,
"4
~y m—1
/
where

2 m—1 2 m—1
= % Z <pi>T*179§fT—1>» ©® = % Z <p;,T—1vw;‘L,T71>'
i=1 i=1

It remains to estimate ® and @’.

Upper bound for ®@. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y u 2y u
]E£2Tj1 [n<Pi,T—17 i,T—1>:| B <Pi,T—17E§§;1[0i,T—1}> =0,

u m—1 .
since random vectors {0}’ _; }._, are independent. Thus, sequence {Z{pir-1, 9¢,T71>}i: | isa

martingale difference sequence. Next, the summands are bounded:

2y 2y GO 2y = s Vg
)| < ol ol s VIS e He 36y
B
Finally, conditional variances (3] ;) o (T [%(pz 71,00 1>2} of the summands are
bounded: 7
~ 42 (360) A2/
(Gi7-1)" < Egros [ lpir—1ll - 1077 1||2] < B [105r07] - (364)
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Applying Bernstein’s inequality (Lemma B.1) with X; = 2% (pi,r—1,0'7_1), constant c defined in

(363),b= X, G =

V2
— e, We get
30° 5400 In 748’“{;“) K g

V2 b2 B
® q L S Y — = :
{ |> 0" Z Fir-1) 54001n48n(ﬂm1)} B exp( 2G+2Cb/3> 24n(K +1)

The above is equivalent to

8 [ U = DU v 14
]P{E@} > ].—m, for E@ = ¢ either ;(O—’L’,Tfl) > W or |®‘ < % .
(365)
Moreover, Er_1 implies
m—1
S G2 1872V A2~
Z zT 1) ZETl HezT 1||] #
i=1
(305) 18 agUY2- 3 (304) V2
< Y (366)

e e = 5400 In 2D

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y u 2y u
ng;l [n<P;,T—1>%‘,T—1>} = <P1T 17E5 [‘%‘,T—1]> =0,

. u n . 2y 4 u m—1.
since random vectors {wi7T_1}i:1 are independent. Thus, sequence {7<P1,T—1vwi,T—1> }i:1 1sa

martingale difference sequence. Next, the summands are bounded:

2v ., w Yo, (362),(323) 2~ (305) V def
2Lt w! < Zp! e < VAR — = (367
” (Pir_1,wiT_1)| < o loir—ill - lwi'r_sll < o 0 4871(?“) c.(367)
Finally, conditional variances (& )2 def ro1 |4 22 s Wi 2| of the summands are
Y i, T—1 ¢ nr (Phr—1 Wi
, 13 ;
bounded:
- 472 (360) 72V
(Ug,T—1)2 <Eer-a 72HP£,T—1||2 ) HW;‘L,T—1||2 < 7215 T-1 [HWZ'fT—lHZ] . (368)
€1 n n &1,
Applying Bernstein’s inequality (Lemma B.1) with X; = <pZ 71, Wi wip_4), constant ¢ defined in
v _ V2
(367), b = 30> G W, we get

V2 b2 ﬂ
o> Y und L S P - = :
{ T Z Fir-1) 5400111‘%(2{*”} - exp< 2G+2Cb/3) 24n(K +1)

The above is equivalent to

ﬁ m—1 V2 v
_ : ~/ 2
P{Ew } > 1—m7 for Egy = {elther Z(Uz‘,T—l) 5400 n 48n(K+1 or |@'] < 30
(369)
Moreover, Ep_; implies
m—1 n
368) A2V Y (325) 1872V N2~ g
Z 7,T 1) < ?ZE;T{” [Hwi,T71||2] < - a
i=1 i=1
(305) agay2-5 (304) 2
< 18v*c*V < Vv . (370)
602—apa—1]p2- 48nli+1) 5400 In 28nE+D)

B B
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Putting all together we get that Ep_1 N ET71,m71 implies

v m—1 5 m—1 . 333) V
= 0 <VO+®+® = b <VO+@®+® ® < —
n;ﬂ_l_\/ +@+®, n;wﬂ_l <VO+@+®, < 55
T—1 n m—1
(337) V2 V2
~9 ~/ 2
— ; 17 2161 B ;( -1) 5400 In 28nUEL)
m—1
V2
~/ 2
Z;(JM*I) = 51000 TG
In addition, we also establish (see (336), (365), (369) and our induction assumption)
= (-1 (m-1)8
P{Er_1NEr_1m_1}>1— - ,
(BN Eroam} 2 K+1 8n(K+1)
P{E@}>1—L P{E®}>1—L P{E®/}>1—L
- 24n(K +1)’ - 24n(K + 1)’ - 24n(K +1)
where
T—1 n
V2 1%
E@ = {either Zan > T 8K+l or |@| S },
) n(K+1
— = 216 In 222D 6
m—1 ) V2 V
: ~/
La either ;(Uu) > W or |®f < 30 (
m—1
V2 \%
— : ~/ 2 / v
Ey = {elther 2 (Oir_1)" > 51001 EnETD 48n(é(+1) or |@] < 30}

Therefore, probability event Ep_; N ET71,m71 N Ee N Eg N Eg implies

VLV VW
- V20 6 30 2
v Vv Vv \%4
LA AN
20 6 30 2

P{Er_1 N Er_1.m-1N EgN EgN Eg}
= 1—-P {ET,1 n ETfl’mfl UE@ UE@ UE@I}

@15 mp

= K+1 8n(K+1)

Therefore, for all m = 2,...,n the statement holds and, in particular, P{Er_; N ET_LH} >
1— (7];_11)5 — S(If-i—l)' Taking into account (361), we conclude that Er_1 N Ep_1 , N Eg N Eg N

Ee¢ N Egr N Eg implies

m—1

% > i

i=1

Fym—l
u
EE WiT—1
i=1

This implies ET_ 1,m and

P{Er_1 N ETfLm}

Y

<VV, Apr<9v

T-1
7D
1=0

that is equivalent to (310) and (311) for t = T". Moreover,

]P{ET} > P {ET—l N ET—I,n NEsNEgN Eg N Eg N E}

1—P{ET_1 NE,UEsUFEs UE@/UF@/UE}

T -1 B B T8

- K+1 8K+1) =~ 24n(K+1) =~ K+1
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In other words, we showed that P{F}} > 1 — k¥8/(k+1) forall k = 0,1,..., K + 1. Fork =K + 1
we have that with probability at least 1 —

Gapp(@h,) = max {(P(u) @, —u) + (L) - U(u)}
B 7 (z*)

1 ’ ’
< ———— max {2 t'—|—1<Fu,fE';v —|—\I/~2v —\I/u>+ a:tH—uQ}
< e o, {200+ D (P00 0+ 9 - w) £ [
(3;9) %

- 29K +1)
Finally, if
. 1 ufn%
4 = min ,
1920L In 220G 7 97900% (K 4 1) w0 n s 2EnUC)
then with probability at least 1 — 3
9V 8640LV In 8D g 60*5 . g RIn T AEnUEL)
G < — =
ey (Eog) < H(E+T) K+1 " 2.97200an % (K + 1)+
LVIH% U\/Vlna;1 %
= O | max 7 EEp——
n o @
To get Gapr(ZL,,) < & with probability > 1 — 3, K should be
K—o ﬂl nLV 1(0\/V> oYV
sﬁ € ep
that concludes the proof. O
H.2 QUASI-STRONGLY MONOTONE CASE
We start with the following lemma.
Lemma H.2. Let Assumptions 6 and 8 hold for Q = B, m(z*), where V >
10 — |2 + 36000000+ In? 222UCEL) S RGE)E v = 40 <
n2 i=1 11 = K an < 7 =
: 1 Vvn 1 k ki, i * —
min < g7 15000L 1n28n(§<+1) ’ 72000000 In® 48n(é{+1) } If ¥ and x¥ lie in B4nﬁ($ ) for all k =
0,1,..., K for some K > 0, then the iterates produced by DProx-clipped-SEG-shift satisfy
K
Vki1 < exp (—%(K + 1)) V+ 2’yZexp (—%(K - k)) O,z — 2*)
k=0
2 K n
y TH u u
3TN e (<K — ) (18107512 + 1t )
k=0 i=1
K n
Y
20D exp (<K — k) (18160417 + 1)1 )
k=0 i=1
32 -
”zzm@KkMZMWQ
k=0 j=2
24 _

233 o (- 0) (St o)

k=0 j=2 i=1

36000000~2 In?2 28nU<+1) B R
where Vi, = |ja* —a* + S (IR = Fi(@)|? + IRE = Fifa")|2) and

0y, ka 9?,1@’ Wiy Wi g wf’k are defined in (298), (299), and (315)-(316)
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Proof. From (303) with 4 = z* we have
ey ko & " Lok sz _ Lok xpp2
Y ((F@E"), 2 —a") +0(@) - V(") < gl =P = 5" — a7
1 — 1 ~
_5 (1 _ 6’72[/2) ||.’13k _ $k||2 _ Z||a,:k+1 _ St',’k||2

+392|wrl® + 392 10kll* + 7 {0k, T — 2*).

Using quasi-strong monotonicity of F', the fact that —F'(z*) € 0¥ (x™*), and convexity of ¥(z*), we
derive

2yl — 27| < 2P - F(27), 3" — 2)
< 2y ((F@EY),7° —2") + 9(E") — ¥ (")
< et 2P = et =) = (1 697L7) [ - 2
1 ~ ~ *
— I = T 4 697 eonl|? + 6921051 + 27(0k, 7 — 27).

x¥ — (|2 — ||7% — 2*||? and rearrange the terms:

Next, we apply [|2% — z*||? > 1|

* TH * ~ . ~
Jo* = < (1= ) o - 2t P =l - 2P - (1= - 692L%) |7 - o

+672|wr ||* + 67210k )| 4 27(0y, T — 2*).

Since 2y(0%, 7% — 2*) = 2v(0", 2* — x*) 4+ 2v(0%, 7% — 2*) < 2426% |2 + 3| 2% — 2¥||?, we have

« TH . ~ . 1 ~
bt =P < (1= B ok =P -l =P (= o 622 ) -
+697[lwr |* + 8|6k > + 2v(Or, 2* — 2. (372)

Now, we move on to the shifts: for all € [n] (for convenience, we use the new notation: h} = F;(z*)
for all ¢ € [n])

IR =2 = Rk = I+ 20 (AR RE = By ) + 2| AP
= RS = )2 2w (G~ BERE - B+ 0%k - R
vshoo ~k_ Tk Tk ~k_ Tk
S R R R N R R T
= |l = BIP v (gF — g+ RE - 2h))
S e A e i &
< (= w)IRE = B2+ 205 — Fileb)| + 20| Fi(a®) — b2
< (= )IRE = B2+ 20wl + 20 Fi(a®) = h; )
= (=) IBE = A1 + 29l el + 2vul Fala®) - b2
(32) ~ . .
< (=) BE = B + 2ypllwi g+ 29l |t - 22
< (= )lRE = P+ 2l + 4pL?)E - o)

L8 — |2 (373)
and, similarly,
IR —Ry|? < (L= w)llhy — hi1I” + 2yp6;

(32) ~ N
< (L=yu)llhi = hi|I” + 2yull6; k

12 4 2yl F5(3%) — Ry |2

|2+ 2yuL?||Z* — 2*|2.  (374)
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Summing up (372), (373), and (374), we derive

Vi < (1= 20) et — o)

36 - 10642 In? 48nEFD . »

+(1 - ym) e D ([ H G R
i=1
6.3 121.2 48n(K+1)
216 - 10°y° L= In 5\ -
— | v - - [EAE

1
- (2 — = 69°L% -

+672||wr||? + 872(|0k||* + 2(0k, 2F — 2*)
72 - 10643 In? 28+

ST (100 ? + Hewrr|?)

i=1

. 106~3 27..2 48n(K+1)
144 - 1004°pL? In* =572 >||5 2
n

+

n

INA
-

1= 28) Vi + 692 2 + 892 10]12 + 2701, 2* — %)

n
3T 100k + Nlwr i)
=1

[ V)

n? 4
(321),(313) 2
< e (<) Vi 2y(00 2t — o) + 5 7 (81012 + 1)
1=1
n 32,7 n
SN UCNERTENEEES SOSCAN
247 -
> (Setuen).
Unrolling the recurrence, we get the result. O

Next, we proceed with the full statement of our main result for DProx-clipped-SEG-shift in the
quasi-strongly monotone case.

Theorem H.2 (Case 1 from Theorem C.2). Let Assumptions 1, 6 and 8 hold for Q = By, 7(z"),

3600000072 In? 48n(K+1) ’
n2 [E] Z?Zl ||Fl(x*)H2 and

. 1 1 N 21n(Br)
0 < — 375
<Y = mln{72.1oﬁuln2‘WM’6L’15000L1n4&7%“r1)’u(K+1) ’ (375)

where V > ||2° — z*||? +

(K 41 12
Bx = max{?2, L ( - 4 (376)
3110400262 In""= (%)m (Bx)
2(a—1) 2<a 1)
e g 2y
= O|max{2 n G377)
222D k) 2 W2 K ey
o2ln” = (%)m max<{ 2,2 e ——
P (o)
\, = nexp(oyp(l+ M)WV 378
k= 30071n48n(K+1) ) (378)
— 5
vo= Y (379)
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for some K > 1and 8 € (0, 1]. Then, after K iterations of DProx-clipped-SEG-shift, the following
inequality holds with probability at least 1 — 3:

K+1
25+ — %2 < 2exp (_w(;)) V. (380)

In particular, when ~y equals the minimum from (304), then after K iterations of DProx-clipped-
SEG-shift, we have with probability at least 1 — (3 that

K K
|25 —2*|? = O max{Vexp|——5—= |,Vexp AR ,
In % L
M\/ﬁ}() 021112(({1) (71() n? By }>

VeXp <_L1nn;( 2(a—1)
B

n- «a
i.e., to achieve ||z — z*||? < e with probability at least 1 — 3 DProx-clipped-SEG-shift needs

K:O(max{(\j%u—&—ln(%ln‘/))ln(‘g)ln(%ln‘g),
L \%4 1 [ o%\%D n (o2 \70 _a_
n(2) () e (ﬂ (%) ) e (B })

(381)

iterations/oracle calls per worker, where

\%4

eln ([19 (‘72)2(;1)>

B. = max | 2,

Proof. Similar to previous results, our proof is induction-based. To formulate the statement rigorously,

we introduce probability event F, foreach k = 0,1,..., K + 1 as follows: inequalities
Vi < 2exp <—V2ﬂt> Vv (382)
Z:Ziegft_l < exp (W) g (383)
Z“z —1]| < exp ( 7/1(754— 1)) g (384)
hold for ¢t = 0,1,...,k and r = 1,2,...,n simultaneously. We will prove by induction that

P{E;} > 1 —k8/(k+1) forall k = 0,1,..., K + 1. The base of induction follows immediately
by the definition of V. Next, we assume that the statement holds for kK = T — 1 < K, i.e.,
P{Er_1} > 1—(T-1)8/(k+1). Let us show that it also holds for k = T, i.e., P{Er} > 1—T8/(Kx+1).

Similarly to the monotone case, one can show that due to our choice of the clipping level, we have that
Er_yimplies z*, 7" € B, s7(¢*)fort =0,...,T — 1. Indeed, for t = 0,1,...,T — 1 inequality
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(382) gives ' € B, s7(x*). Next, for z',t = 0,...,T — 1 event Ep_; implies

"l

[ [ prox, g (' —7g") — prox, g (z" — yF(a"))|

< 2t =2 —~(g" = F(2"))]|
. 1 = ~ . 1 A -
<t ety s - B+ A
=1 =1
<

1 n . ")/ n N
2V | =S IR = Fia) 2+ 23 1A
=1 =1

< T — Y W

6000 In 748"(/?“)

(382)
p <2+20”+V2” ) YV < 4V

- 6000 In %

This means that we can apply Lemma H.2: Ep_; implies

T—1
Vr < exp (f%T> V+2y Z exp (f%(T -1- t)) (O, 2" — x*)
t=0
P e Vi
+5 exp (=T = 1=1)) (1810212 + 1]t |?)
t=0 i=1
T—1 n
Th
2D exp (< T~ 1= 1)) (8116712 + 1]t 1)
t=0 =1
T—1 n j—1
327° T o gu
+ 2 Zexp (—?(T —-1- t)) ZGM, 07
t=0 j=2 i=1
2472 T—1 n o Jj—1
+— Z Zexp (—7(T -1- t)) <sz t,w37t>
t=0 j=2 i=1

Before we proceed, we introduce a new notation:

{wt—x*, if ||t — 2*|| < exp (_vgt)\/W7
Ne = .
0, otherwise,

forallt =0,1,...,7. Random vectors {n;}}_, are bounded almost surely:
t
Imell < exp (—”jf) Vav (385)
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forallt = 0,1,...,T. In addition, n; = x* — x* follows from Er_; forallt = 0,1,...,7 and,
thus, Er_ implies

T—1 n

Vr < exp(—— )V+—ZZexp(f— ,1,1)) <0ﬁl,m>
=0 =1
()
T—1
+29 Y exp (= HHT = 1-1) (6t m)
=0
2 T—l n
¥ Y
+ L3> exn (- @ - 1-0)) (18Egy [105]7) + 14Bg [lwis)?])
=0 =1
@
T—1 n
72 TH u |12 u |12 u |2 u |12
+— exp —7(T— 1-1) 18\\91‘,1” +14”%‘,1“ —18]1*:5’2',1 [||9L1|| ] —14Eg’i=i [H%z” }
=0 =1
@
T—1
+ 2L Z TR —1-1)) (18]16% 1% + 14]Jw?, |1
2 expl—5 Wt ( ll? + 14]w? )17)
=0 =1
®
T—1 n
3297 T
S S e (2 -1-0) (S
=0 j=2
®
24 9 T—1 n j—1
7 Zzexp(—— —1—1)<Zw§fl,w;l . (386)
n? 1=0 j=2 i=1

@

To derive high-probability bounds for @, @,®, ®, ®, ®, @ we need to establish several useful in-
equalities related to 0", 02” Wi wf, ;- First, by definition of clipping

165411 < 21, oyl < 2A. (387)
Next, we notice that Fr_; implies

IF(a") = Rill < |IF(a') = F(a")ll + B} = Fi(a)]

(32)
< Llla’ -2 + lehl z*)|?

j=1

< LJVi+ Vi

6000 In 252LEEL

(382) n IYMZ (375),(378) )\l
< V2(L Y e A
- f( +600071n48”<§“>>e}(p< 4 )\F T2
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and
IF@) —hill < |F(@) — Fi(a®)|| + [k — Fi(z")]

< L|F ot + ZW )7
. nV'V
< L| prox,g (2! —~g") — prox. g (z* — vF(z*))|| +
Iprosgfa! =) = romsgo” = F N+ o ey
U % ol * vV
< LHJJ z 'Y(g F(l‘ ))H + 6000~ In 487,(2(_»,_1)
1< ~ 1= & ny/Vi
< Llzt —2*|| + Ly ||- Bl — Fi(z*)+ =) Al
I =+ 0 1 YR - Fa) + 5B + e
1 Ly
- ! * 2 l
< <L+6000 I BN >\/V1+L7 n;\lh (@) + ZHA I
<

n+ Lyy/n
L+ VVi+ Ly
( 6000 1n48"(§+1)>

(382) n 4+ Lv\/ﬁ yul (375),(378) )\,
< 2| L - Ly < =
< f( +600071n48’“§“>>e>(p< )V L <

forl =0,1,...,7 — 1 and ¢ € [n]. Therefore, one can apply Lemma B.2 and get

lor] < - ZHHI”— o el < - lewlzll_ﬁ, (388)
)\ Al

Eg, [ll60]°] < 18X, Eq {||w;fl|y } < 18X %0, (389)
for all / :0,1,...,T—1andz € [n].

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

Ee [27 exp (_ﬂ(T 1 1)) (m, ;fl>] - 2% exp (—%(T 1 z)) <m,JE%’i[9;fl}> —0.

n 2
Moreover, for all [ = 0,...,T — 1 random vectors {6}, }7_; are independent. Thus, sequence
T—-1,n
{27 exp (—X(T —1-1)) (m, 0" l>}l o is a martingale difference sequence. Next, the sum-

mands are bounded:

2y §lg u al 8y
Top (<@ -1-0) o) = Zew (L@ -1-0) Inll- 16

n

(385),(387) 2V2V~ exp ( (T 1)) il
: o (20)

ypT
q TP )T (-251)v &f |, (390)
100 In 222UZEL '

Finally, conditional variances UZ . &f Ee [47%; exp (—yu(T — 1 —=1)) {(m, 9;{»2} of the summands
are bounded: '

2,i

2 < E Lt —yu(T —1—1 2.16%11%
o < e | 2 exp (—ypu( N = - 11031

(325) 872V exp (—'yu (T —-1-

5) "2
Ee: . [1167:]1°] - (391)

n2
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Applying Bernstein’s inequality (Lemma B.1) with X; ; = 7 exp (—&(T —1-1)) (n, 03,), con-

;LT
stant ¢ defined in (390), b = (- o0, 14 ,G = GOZXOZ(IHE’QZ%/H) , we get
exp( WT)V T-1 n ) V2 2
P< (D] > and exp ( ’Yg )K I < 2exp (—b>
vt = 500001 on(irl) 2G + 2¢b/3
_ p
24n(K + 1)
The above is equivalent to P{Ep} > 1 — W for
T—-1 n _ T v
exp (—yuT) V? exp( 2 )
FEq = { either or || < —————— 3. (392)
lz; Zl 60000 In 252D [l 100
Moreover, Ep_1 implies
S 9N 892V exp (= (T — 1)) AR
Zzai,l < n2 exp N Z]Eggy [||9u|| ]
1=0 i=1 1=0 i=1
G8.TSK+T 14472V exp (—yp (T — 1)) 0% AN
< ( - ( ) Z exp % /\12
1=0
(3;8) 14472V2=% exp (—yuT) o® Tﬁlex yula
- 60002—na—1]p2—« % = P 4

144y*V2=% exp (—yuT) (K + 1) exp

/
=
=
Q
N—

<
- 60002—0p0=1 2~ LD
(375) _ 2
7z exp (—yuT) V= (393)
60000 In 252D
Upper bound for @. Probability event Ep_; implies
T—1
T-1-1 (385),(388)
o < o3 e (~ZEIED ot (39)
T—1
a+1 « ’YILL(T B 1) ’VMZ 1
S 2 Yo 2V exp (—2 ; exp T Alafl
ars) 29711209 exp ( st ) (K +1)exp ( “Ka) yage o U
<
- n(x—lvgfl
(375) 3e€xp ( WT) \%
< (395)
Upper bound for ®. Probability event Fp_; implies
n T
187 —1-1) (393) €XP (— 2 ) 1%
—— | E 0 < N 2/
PI) I ERLEL) ENPE [
=0 i=1
and, similarly,
T
1472 TZ:I i: ( —1- l)) L, (93 ©Xp (—%) 4
exp | ————— | Ea [llwiyll’] < ———"—
1=0 i=1 2 N 100
that give
exp (~247) v
O ——— (396)

50
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Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

2y ' '
"By, [18102017 + 14wty |2 - 18Egy  [164)1%] - 1By [lwill?]] =
Moreover, for all [ = 0,...,T — 1 random vectors {6} }7"_;, {w}; }]__; are independent. Thus, se-

quence { 2 exp (— (T — 1 1)) (18]16% 12 + 14wt 1> — 18Egy  [Il024]12] - 14Eg  [lw)i?] ) }
is a martingale difference sequence. Next, the summands are bounded:

T—1,n
1,i=0,1
2y TH " " u u

o exp (— (@ = 1= 1)) 1810217 + 4] |2 — 18E¢, | [10:41%] — 14Eq, | [lotl)?] |

(87) 256 exp (LT —1-1)) 7N}
< 3

pEP ) G%) " s c (397)
= 8n(K+1)
61n —F

Finally, conditional variances

o def 474 ” u ” u 2
57 = vy exp (—yu(T — 1 — l))Eg'i,i,ggyi [‘18“91',1”2 + 14fwiy|1? - 18Ky [163411] — ME: | [H%‘,lHﬂ‘

of the summands are bounded:

s 6D Yrexp (—XL@2T-1-1)V
who = 3n2n 48n(g(+1)

xEq g, 181005 l||2 + 14wl |2~ 18 [163]1%] - 14E |

dy%exp (- UQ2T -1-1)V
3n21n 748"(2‘“)

]

Eet e [0 + 7l 7] - (398)

Applying Bernstein’s inequality (Lemma B.1) with Xy =
27 exp (~ (T = 1-1)) (18021 + 1]l | — 18Bgy  [10,12] - 14Eg; [l )2]),

. 2Ly
constant ¢ defined in (397), b = M G = %, we get

e WT T-1 n 9

~ exp (—yuT)V

Pq @ > ( ) andg E 2<W
st 216In 20D

IN

b2
2 exp (_ 2G + 2cb/3>

__ B
2n(K + 1)

The above is equivalent to P{Eg} > 1 — y for

B
24n(K+1

T-1 n 9 exp (—2£L) v
exp (—yuT)V ( 2
= { either 05> ———————o0r |® < (399)
g ; il 216 1n 48n(K+1) @] 6

Moreover, Ep_; implies
T-1 n v =

(%98> dexp (—yu(T u
Yy 2 R TS e () SR, bl 4Tt
=0 i=1 3n?In =0 i=1

(393) —~uT V

% exp (—ypT) (400)

216111%'
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Upper bound for ®. Probability event £ implies

T
(388) 92a 52 (378),(375) €XP <—%> Vv

T—1
® < 329°) exp (—%(T - 1)) S S . (401)
=0 !

Upper bounds for ® and @. These sums require more refined analysis. We introduce new vectors:

j—1 j—1
ol u e ||y u || < ,Lul) vV
=t w50 = o (-4) 5 (402)
0, otherwise,
-1 j—1 N
X u if |2 Ul < _apt) vV
o = { w2 e 10 2 i < xp (~24') 7, (403)
0, otherwise,
forallj € [n]and! =0,...,T — 1. Then, by definition
! W\ VV yul\ VV
||CJH < exp (_4> 5 ||5J|| < exp i) o (404)
and
T—-1 n
32y gty I gu
® = — > exp (—7<T—1—l>)< i 051)
=0 j=2
@/
32’7 T—1 n o ~ j—1
u L pu
2L Y e (< 1-0) <n PILESE j,l> . @05)
1=0 j=2 i=1
2 T—1 n
® = Z Zexp (—M(T -1- l)) <(5§,w;‘l>
1=0 j=2
®/
247 & T 7
+Zzexp(—(T-1-l))<nzwgl—5§,wjl> (406)
1=0 j=2 i=1
We also note here that £ implies
327 ¢ + T 7
u l pu
53 e (Y- 1-0) (150 oy
1=0 j=2 i=1
327 - g - u T—-1 pu
= IS (Y O~ ), @oD)
j=2 i=1
247 T—-1 n ~ j—1
2SS (Y1) (2t s
1=0 j=2 i=1
24y = - u T-1
=D (D wira — 0wl ) (408)
j=2 i=1

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

Eg [327 exp (—%(T— 1- l)) (¢ }‘%lﬁ = ?)QTVGXP (_%(T_ 1= l)) <C;’E5§,j [9;1]> =0

n
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Moreover, for all | = 0,...,T — 1 random vectors {9;{1};’:1 are independent. Thus, sequence

T-1,n
{32” exp (=T — 1 -1)) (¢}, 0% l>} Lo is a martingale difference sequence. Next, the sum-
mands are bounded:

32—’yexp (—%(T—l_l)) (s 32 051)

n

32y T u
< Slep(-ZAr-1-0) 10 oz

n

n

wos. 87 16V V ’YeXp< w(T 1)) »
) e\ )

T
as P <_%> V c (409)
101n 748”(§+1) .

Finally, conditional variances 0 = EEZ [107217‘5%2 exp (—yw(T —1-1)) <C], ) ] of the sum-
mands are bounded:

~ 1024~
s By, [P e (T - 1= ) IGI 165
@4 25672V exp (—yu (T —1 - % u
< ( — ( 2)>E§ZM (1163117 - (410)

Applying Bernstein’s inequality (Lemma B.1) with X;; = 327“’ exp (=T —1-1)) (¢, 04),

VAR NI
. exp _auT\y _ 2
constant ¢ defined in (409), b = %, G= %, we get
o A8n(KFT)
B

ep( WT)V T-1 n

T)V? b?
Pl|® d "2 < M < 2 _
©]> an ; Jz; 600 1In % = 2P Tog 2¢cb/3
- _ B
24n(K +1)°
The above is equivalent to P{Fg/ } > 1 — W for
i eXp —yuT)V? exXp <_%) 4
FEg = { either ZZ W |@|<T : (411)
Moreover, Er_1 implies
T—-1 n -1 n
~ @10) 25672V exp (—yu (T — 1)) Yl u
Sar, L S e (1) S g [0
1=0 j=2 1=0 =t

1

(389), T<K+1 2 - - “ N
: 46087V exp (—yu (T — 1)) o 3 exp (W) P
n 2

=0

(378) 4608y*V 2% exp (—yuT) o® = (’yula)

- 3002—apa—1 11127& 48n(§+1) prd

4608y*V2~% exp (—yuT) (K + 1) exp ('”‘fa)

S 3002_ana_1 ln2—a 48774(?4’1)
(375) —~yuT) V2
7 exp (—yuT’) @12)

B 600 In 22D
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Upper bound for @'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

E&-l ) [24’}/ exp (—%(T 11— l)) <5§_’w;{l>:| = 247’}/ exp (—%(T -1- l)) <5§3E§IM [W;L,l}> =0.

Moreover, for all{ = 0,...,7 — 1 random vectors {w;{l};?:l are independent. Thus, sequence
T—1,n
{24” exp (=T — 1 -1)) (8%, w¥ l>}l o is a martingale difference sequence. Next, the sum-

mands are bounded:

24y gl I u
“Lexp (— (T - 1-D) (0w

24~ T 1
< e (<@ -1-0) 18- el

404),387) 12V VGXP( W(T U) I
o
< exp| — | A

- n

_apT
(305) €xp ( 2 ) v def

10 I 28n(K+D) = (413)
B

Finally, conditional variances (0", ,)? &ef Eg [5767 exp (—yu(T —1-1)) (5}, w;‘l>2} of the sum-
1,5 s

gl
mands are bounded:

5762 .
@0 = By, [T exp (ool 1= 1) I3 ol

“04)  288v2V exp (—’yu (T -1- é)) w 12
< — Eg [llwall®] - (414)
Applying Bernstein’s inequality (Lemma B.1) with X, 47 exp (—%(T -1-1)) (5;-, wiy)s
. exp(— 4LV ex ™V
constant ¢ defined in (409), b = % G = W%, we get
T
eXp( Ea )V v _ exp (-ypl) V? b
P{ @ > and —_ < 2exp (—)
lzg jz; 6001 48n(§+1) 2G + 261)/3
_ _ B
24n(K + 1)
The above is equivalent to P{Eg/} > 1 — W for
T—1 n _apT Vv
. exp (—yuT) V2 exp ( 2 )
Eq = { either (o) > ——— o @< ——"2— % (415)
; ; gl 600 In 48n(é(+1 10

Moreover, E_1 implies

T—-1 n -1 n
@14) 2882V exp (—yu (T — 1)) Yl u
o« e > e (75) Y-, [1051°
1=0 j=2 =0 =t
(389),T<K+1 2 o171
2 5184~V exp (—yu (T Yo Zex ( ))\2 o
n

=0

oo yo T-1
(3;8) 5184v*V2=% exp (—yuT) o ’W o
— 3002 apa— 1 1112 a 48n( K+1)

518442V 2~ % exp (—yuT) (K + 1) exp ( fa)

= 3002—apa—1 1n2—a 48n(§+1)
(375) —~uT) V2
7 exp (—yuT) 416)

- 600 1n%'
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That is, we derive the upper bounds for @, @, ®, ®, ®, ®, @. More precisely, Fp_; implies

(386)
Vo < exp(—77 )V+®+®+®+@+®+©+®

(405) 32 -
@:@/+TZ ZazT 1 -;I'l, ;’L,T—l ’
j=2
w0 gy | 247 7 & T-1
@ Z - D oW =8 hwira ),
=1

®< 3P (_#) v (396) €XP (_#) 4 @ exp «%) v

® < _—

- 100 ’ - 50 ’ - 6 ’
jizn:02 69 exp (—ypT)V = lzn: ~ (400) exp (—yuT)V
il = 48n(K+1)’ - 48n(K+1
= = 60000 In 2D T = 2161y B2ED”
o @D exp () V2 S o 419 exp (—yuT) V?
Zaj, = 48n(K+1) ' Z Z ) 48n(K+1)
it 600 1n it 600 In 28n(K+1)

In addition, we also establish (see (392), (392), (411), (411), and our induction assumption)

(T —-1)B 5
PlEroap 21— —— PlEo} 21— g
{Er—1} > K+1 ' {Eo} > T e
P{Ee}>1—— D PlEg)>1-— D PEp)>1--— D
where
Sy 2 exp _apT 1%
_ . 2 exp (—yuT)V ( .
o {elther 1=0 ;Ui’l g 60000 In 222D orl®l s —50
3y _opT 174
. o _ exp (—yuT)V? exp( . )
Ee = either G T Nl e A
{ z:o; o 216111% or |®| :
3y _ T Vv
. o _ exp(—pT)V? exp< . )
Ee = either ZJJZZ>TK+1 o< P2 )L
{ =0 j=2 600 In + 10
T-1 n N
_ . , o _ exp(—yuT)V? ( ]
E@l = {elther o jz::z(aj,l) > W or |® | < 1—0

Y 3 1 1
Vr < BV (14— — —
o= eXp( 2 ) (+100+100+50+6+6+10+10)
<2
327
SN EPWOREER
=1

24VZ< Zw —5f‘1aw?,T—1>~ @17)
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j—1 —1
To finish the proof, we need to show that 1 Z Otr_q = {T "and 2 Z wip_y = (5 ! with high

probability. In particular, we consider probablhty event ET_L j deﬁned as follows: inequalities
r—1
ol (T — 1)\ VV ¥ “ (T — 1)\ VV
ZazT 1|| < exp <—()> %Z%‘,TA < exp _wd - 1)
i=1

4 27 4 2
hold for r = 2,. .., j simultaneously. We want to show that P{Er_; N ET,LJ-} >1 - T8

. K+1
Wﬁﬂ) forall j = 2,...,n. For j = 2 the statement is trivial since
@87 2 _ T-1
[Zor, | € B ¢ o (LD VT
n > n 4 2
¥ (23 29Ap_4 (T — 1)\ VvV
[retra]| S TR o () 5

Next, we assume that the statement holds for some j = m — 1 < n,ie., P{Er_1 N ET,l}m,l} >

T-1 —1 . ~ T—1
1— (KJJB — S(ZKﬁf) Our goal is to prove that P{Er_1 N Ep_1 ,,} > 1 — (KJFEB — Sn(”;(il).
First, we consider Z 04
’}/m 72 m—1 2
n Z -1 - n2 Z 93T—1
i=1 i=1
2 m—1 9 m—1
i Y
= *ZH 1||2+; < ZG 0 1>
i=1 =
2T1 —1—l> m—1 ’ym ’yzl
< |5 S () S e 25 (2 ).
i=1 i=1 =
Similarly, we have
~y m—1 m—1 2
2Y | = > @i
i=1 i=1
’Y m— 27 m—1 ~y i—1
= 2 Z Wit 7+ w <nZWﬁT1awﬁT1>
i=1 i=1 =
— _1_ l) m—1 27 m—1 ~y i—1
< Z < 5 ) ool + = > o DWWy )-
=0 i=1 i=1 r=1

Next, we introduce a new notation:

T—1
PiT—1 = ZQTT 1 ‘ ZQTT 1 Sexp(_%) 4’
2, T—1 — )
0, 0therw1se
i—1 i—1
u u T—
o ) E St 0 S el | < e (~auL-0) 47,
) 0, otherwise
fori =1,...,m — 1. By definition, we have
(T — 1)\ VV (T — 1)\ VV
lpir—1] < exp <—(4)) 5 1071l < exp —¥ -5 (418)
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~ i— —
fori =1,...,m—1. Moreover, E7_1 ,, 1 implies p; 71 = L > Orr_1s Pir1 =3 > wir g
r= ’ r=1
fori=1,...,m—1and
m—1
T Yl < VO+@+ 8,
n ,
i=1
m—1
1 wi,l S V @ + @ + /a
[t
where
2,7 m—1 / ’Y m— ,
2; <PzT 1a9¢T 1 ; Z pz,Tflﬂwi7T71>'
i=1 i=1

It remains to estimate ® and ®'.

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have
conditional expectations equal to zero:

]EE’QFZI |:n<pi’T17 i,T1>:| - n <p2T 17]EE [ei,T71}> =0.

Thus, sequence {%(pw,l, Hng%)}j: L is a martingale difference sequence. Next, the summands
are bounded:

|
(418),(387) 2V/Vy exp( W(T 1))
< AT
n
@0s)  ©Xp (_W) Vet
< =
80 Iy B+ ¢ (419)
B
Finally, conditional variances (o7 ;_;)? o Tt [Zlnizz<ﬁi,Tfla 03 T71>2} of the summands are
bounded:
G < B [ Dloal? 1051
@y VVexp <—7W(€71)) Y
< =1 (11931117 - (420)

n2
Applying Bernstein’s inequality (Lemma B.1) with X; = %"’ (pi,r—1, HQT_Q, constant ¢ defined in
exp(— =Dy

ex - — 2
(419), b = — 80 G = W, we get

ex (—@) 14 ” exp (—yu(T — 1)) V2 b2
P > d o’ 2 o KPITTH < 9 _
® 30 an Z(ULT—l = T 3240010 48n(é(+1) = 2P\ Tog 2cb/3
_ B
24n(K + 1)
The above is equivalent to P{Eg} > 1 — Wim for
yu(T—-1)
n V2 exp | —t—5—= |V

Eg = { either ZGLT%F > exp (yn(T — 1)) or |® > ( 802 ) 421)

48n(K+1
— 38400 In %
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Moreover, Ep_; implies

nL (420) 2Vexp(
Z(Ug,Tﬂ)z < Z]E§2 T71||2]
i=1

(389) 1872Vexp(—w( - ))0 \2-a

= o T-1

G718 187V % exp (—ypu(T — 1)) o (T — 1o
3002—anpa—1]p2~@ 48n(§+1) ox 4

s 187°VE exp (—au(T - 1)) 0% exp (244
3002-apa—1 In?~ B0

G exp (—yu(T - 1)) V?
384001n% '

(422)

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands
have conditional expectations equal to zero:

2y 2y
ng;l |:n<p;,T—1asz—1>} = <P;,T—17ng;1[w;fT—1]> =0.

Thus, sequence {27—7 (p;7T_1, T ») }n is a martingale difference sequence. Next, the summands
are bounded:

2y 2y
Dirrsted| < Dl ot
(418),(387) Q\F’YeXp( e 1))
< AT—1
n
_oau(T=1)
w2V, 423)
- 801 BrE+) c.
B
Finally, conditional variances (7 7 _,)* &f er o [%(p;j_l,w;‘j_l)ﬂ of the summands are
bounded:
~ 4y?
Gira? £ Ego [ Zldeal lotral?]
@ws) 7V Vexp (—W) N )
= n2 ng;l [”wi,Tfl” ] (424)

Applying Bernstein’s inequality (Lemma B.1) with X; = 22(p} .| w¥;._,), constant ¢ defined in

(423),b = oxp(- GV G = eep(T- ))Vv?

80 38400 In 25nUEED) » we get

(r=1)
exp (GRS exp (—yu(T — 1)) V2 G
P<|® d o 2 o ERATH < 2 —
& > 30 an Z(U%T— = 38400 1In 48n(§(+1) = 2P\ Tog Tt 2cb/3
_ g
24n(K +1)°
The above is equivalent to P{Eg/} > 1 — W for
y(T—1)
n,o V2 exp <—7) %
Es = { either Y (3} 7_1)° > exp (T = D)VE gy 802 . (425)

48n(K+1
P 38400 In %
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Moreover, Ep_; implies

n

_ @24 42V exp n
S @aa)?  © = Zﬁg, [16%7 1 1?]

i=1

(389) 1872Vexp (- (T—1))0% 15 q
< " e
C79  18y°V? % exp (—yu(T — 1)) 0° (T = Do
- 3002-apo—1 ly?—o B0 P 1
o<k 187V exp (—ypu(T — 1)) 0% exp (””f”‘)

3002—apna—1p2* 480K+

B
G5 exp (—yT - 1)) V?
384001n% '

(426)

Putting all together we get that E_1 N ET_Lm_l implies

m—1 _uT )y,
(396) €XP
ZelTl <VE+@+®, 1Y uwi||l<Ver@+6, @ < (502>
n ;
i=1
T—1 m—1
Zn:52z(42)) exp (—ypuI)V Y Gl ) < exp (—yu(T — 1)) V?
B 2161n%’ =TT 38400 1n% ’
m—1
Z - eXP( (T —1))V?
z 1 — 48n(K+1 :
P 38400 In %
In addition, we also establish (see (399), (421), (425) and our induction assumption)
= (T-1)B (m-1)8
P{Er_1NEr_1;m_1}>1-— — ’
{Bra 0 Brm-1} 2 K+1 8n(K+1)
P{E@}>1—L P{E}>1—L IP’{Er}>17L
- 24n(K + 1)’ - 24n(K +1)’ - 24n(K + 1)
where
g exp —yuT)V €Xp <_%> 14
Fe = either —_— D)< —— 3
zz; z; 2161n 748"%”1 or [@) 6
n _au(T-1) Vv
. R exp (—yu(T —1)) V? =P ( 2 )
Eg = [ either G 1) > or |®| > )
2 (Gl 38400 In % | 80
n _mu(T-1)
N V2 exp ( ) \%4
Eg = [ either Z(UQ,T—l)Q > exp (—yuT — 1)) or |®'| > 802

38400 In %

Therefore, probability event Ep_1 N Em_l N Ee N Eg N Eg implies

m—1 yu(T—1) VV

v (T = 1) 11 1 _ %P ( x )
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This implies E7_1 ,, and
P{Er 1N Er_1m} P{Er_1 N Er_1,m—1N EsNEg N Eg}
—P {ET,1 n ET,mel U E@ U E U F!}

,_T-D5  mp
= K+1 8n(K+1)

Y

Therefore, for all m = 2,...,n the statement holds and, in particular, P{Er_; N ET_LH} >

1 - (7;;_35 — %, i.e., (383) and (384) hold. Taking into account (417), we conclude that

ET_1 N ET—l,n N E@ n E@ n E@I n E@I n E 1mphes

Vr < 2exp (—%T) Vv
that is equivalent to (382) for ¢ = T'. Moreover,

P{E;} > IP’{ET_lmET_LnﬂE@ﬂE@ﬂE@/ﬂE@/

—IP’{ET,mEnUE@UE@ UF@/UE@/}
(T -1p By 6 _ T8

: =1- .
K+1 B8(K+1) 24n(K + 1) K+1

In other words, we showed that P{E} > 1 — *¥8/(x+1) forallk = 0,1,...,K + 1. Fork = K + 1
we have that with probability at least 1 —

K+1
HxK+1 _ x*HQ < VK+1 < 2exp <’ylu‘( + )> V.

2
Finally, if
1 1
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72-10%1112M 6L 15000L1n% n(K +1)
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then with probability at least 1 — 3
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To get ||2%+! — 2*||? < e with probability > 1 — 3, K should be

nL V v nL_ V
KO(max{<fu+1n< lng>>ln(€>ln<wln€>,
L \% 1 02 2((;11) n 02 2((;11) o
n(2) s (E) (5 (=) ) e ) })

\%4

2 ﬁ
(3 ()7

where

B: = max < 2,
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I NUMERICAL EXPERIMENTS

In this section we provide numerical experiments for the following simple problem:

min  f(x), 427)
z€B,. (&)
where a radius r = 1, a central point = (3,3,...,3)" € R'%, and f(z) = %|z|?, fe(z) =
1||z||? + (¢, z), where ¢ comes from the symmetric Levy a-stable distribution o = 2. We use the
following parameters: v = 0.001, 2° = & + 7‘@, where e = (1,1,...,1) 7. We tried three values
of X\: 0.1, 0.01 and 0.001.
A=01 A=0.01 A=0.001
10° —— Prox-lipped-SGD 100 1 Prox-clipped-5GD 100 —— Prox-clipped-SGD
- Proxclipped-SGD-shift ~§- Prox-clipped-SGD-shift + +— Pre hi
<~ Prox-clipped-SGD-star 102 4 Prox-clipped-SGD-star 1072 \ % Prox-clipped-SGD-star
Ix LIl 10 el
I £ 107
1078 10-10
1010 10-12| |
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Number of iterations Number of iterations Number of iterations

Figure 1: Comparison between performances of Prox-clipped-SGD, Prox-clipped-SGD-star,
Prox-clipped-SGD-shift in solving problem (427) with fixed clipping level for each of them \ €
{0.1,0.01,0.001}.

In our numerical experiments (see Figure 1), we observe that the naive Prox-clipped-SGD converges
slower than Prox-clipped-SGD-star and Prox-clipped-SGD-shift. Moreover, when the clipping
level is small Prox-clipped-SGD converges extremely slow, while Prox-clipped-SGD-shifts takes
some time to learn the shift and then converges to much better accuracy. We also see that the smaller
clipping level is, the better accuracy Prox-clipped-SGD-star achieves. For Prox-clipped-SGD-shift
we observe the same phenomenon when we reduce A from 0.1 to 0.01 . We expect the improvement
in the accuracy even further if we decrease the stepsizes v and v .
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