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Abstract

Stochastic first-order methods are standard for training large-scale machine learning models.
Random behavior may cause a particular run of an algorithm to result in a highly suboptimal
objective value, whereas theoretical guarantees are usually proved for the expectation of the
objective value. Thus, it is essential to theoretically guarantee that algorithms provide small
objective residuals with high probability. Existing methods for non-smooth stochastic convex
optimization have complexity bounds with the dependence on the confidence level that is either
negative-power or logarithmic but under an additional assumption of sub-Gaussian (light-tailed)
noise distribution that may not hold in practice. In our paper, we resolve this issue and derive the
first high-probability convergence results with logarithmic dependence on the confidence level for
non-smooth convex stochastic optimization problems with non-sub-Gaussian (heavy-tailed) noise.
To derive our results, we propose novel stepsize rules for two stochastic methods with gradient
clipping. Moreover, our analysis works for generalized smooth objectives with Hölder-continuous
gradients, and for both methods, we provide an extension for strongly convex problems. Finally,
our results imply that the first (accelerated) method we consider also has optimal iteration and
oracle complexity in all the regimes, and the second one is optimal in the non-smooth setting.

1 Introduction

Stochastic first-order optimization methods like SGD (Robbins and Monro, 1951), Adam (Kingma
and Ba, 2015), and their various modifications are extremely popular in solving a number of different
optimization problems, especially those appearing in statistics (Spokoiny, 2012), machine learning,
and deep learning (Goodfellow et al., 2016). The success of these methods in real-world applications
motivates the researchers to investigate the theoretical properties of the methods and to develop
new ones with better convergence guarantees. Typically, stochastic methods are analyzed in terms
of the convergence in expectation (see (Ghadimi and Lan, 2013; Gower et al., 2019; Moulines and
Bach, 2011) and references therein), whereas high-probability complexity results are established more
rarely. However, as illustrated in (Gorbunov et al., 2020), guarantees in terms of the convergence in
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expectation have a much worse correlation with the real behavior of the methods than high-probability
convergence guarantees when the noise in the stochastic gradients has heavy-tailed distribution.

Recent studies (Şimşekli et al., 2019; Simsekli et al., 2019; Zhang et al., 2020b) show that in
several popular problems such as training BERT (Devlin et al., 2019) on the Wikipedia dataset the
noise in the stochastic gradients is heavy-tailed. Moreover, (Zhang et al., 2020b) justify empirically
that in such cases, SGD works significantly worse than clipped-SGD (Pascanu et al., 2013) and
Adam. Therefore, it is important to theoretically study the methods’ convergence when the noise is
heavy-tailed.

For convex and strongly convex problems with Lipschitz continuous gradient, i.e., smooth convex
and strongly convex problems, this question was properly addressed in (Davis et al., 2021; Gorbunov
et al., 2020; Nazin et al., 2019), where the first high-probability complexity bounds with logarithmic
dependence on the confidence level were derived for the stochastic problems with heavy-tailed noise.
However, a number of practically important problems are non-smooth on the whole space (Mai
and Johansson, 2021; Zhang et al., 2020a). For example, in deep neural network training, the loss
function often grows polynomially fast when the norm of the network’s weights goes to infinity.
Moreover, non-smoothness of the activation functions such as ReLU or loss functions such as hinge
loss implies the non-smoothness of the whole problem. While being well-motivated by practical
applications, the existing high-probability convergence guarantees for stochastic first-order methods
applied to solve non-smooth convex optimization problems with heavy-tailed noise have a drawback.
Namely, the existing complexity bounds depend on the negative power of the confidence level. This
dramatically increases the number of iterations required to obtain high accuracy of the solution with
probability close to one. Such a discrepancy in the theory between algorithms for stochastic smooth
and non-smooth problems leads us to the natural question: is it possible to obtain high-probability
complexity bounds with logarithmic dependence on the confidence level for non-smooth convex
stochastic problems with heavy-tailed noise? In this paper, we give a positive answer to this question.
Moreover, we derive the corresponding bounds under much weaker assumptions than the ones used
in the previous works. To achieve this we focus on gradient clipping methods, as in (Gehring et al.,
2017; Mai and Johansson, 2021; Menon et al., 2020; Pascanu et al., 2013; Zhang et al., 2020a,b).

1.1 Preliminaries

Before we describe our contributions in detail, we formally state the considered setup.

Notation and standard definitions. We use standard notation for stochastic optimization
literature. For all x ∈ Rn we use ∥x∥2 =

√
⟨x, x⟩ to denote standard Euclidean norm, where

⟨x, y⟩ = x1y1 + x2y2 + . . .+ xnyn, x = (x1, . . . , xn)
⊤ ∈ Rn. Next, we use E[ξ] and E[ξ | η] to denote

expectation of ξ and expectation of ξ conditioned on η respectively. In some places of the paper, we
also use Eξ[·] to denote conditional expectation taken w.r.t. the randomness coming from ξ. The
probability of event E is defined as P{E}. Finally, we use the following definition.

Definition 1.1. A differentiable function f : Q ⊆ Rn → R is called µ-strongly convex for some
µ ≥ 0 if for all x, y ∈ Q

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥22.

When µ = 0, the function f is called convex.

2



Stochastic optimization. We focus on the following problem

min
x∈Rn

f(x), f(x) = Eξ [f(x, ξ)] , (1)

where f is a convex but possibly non-smooth function. Next, we assume that at each point x ∈ Rn we
have an access to the unbiased estimator ∇f(x, ξ) of ∇f(x) such that Eξ

[
∥∇f(x, ξ)−∇f(x)∥22

]
< ∞

and if additionally x ∈ Q ⊆ Rn, then

Eξ[∇f(x, ξ)] = ∇f(x), Eξ

[
∥∇f(x, ξ)−∇f(x)∥22

]
≤ σ2, σ > 0. (2)

This assumption with Q = Rn on the stochastic oracle is widely used in stochastic optimization
literature (Ghadimi and Lan, 2012, 2013; Juditsky and Nemirovski, 2011; Lan, 2012; Nemirovski
et al., 2009). In contrast, in our theoretical results, we assume that Q is the ball centered at some1

solution x∗ of (1) with radius ∼ R0 ≥ ∥x0 − x∗∥2, where x0 is a starting point of the method, i.e.,
our analysis does not require (2) to hold on Rn. That is, our assumption on the noise is much
more general than those used in previous works in the area. Finally, we emphasize that we do not
assume that the stochastic gradients have so-called “light tails” (Lan, 2012), i.e., sub-Gaussian noise
distribution meaning that P{∥∇f(x, ξ)−∇f(x)∥2 > b} ≤ 2 exp(−b2/(2σ2)) for all b > 0.

Level of smoothness. Finally, we assume that function f has (ν,Mν)-Hölder continuous gradients2

on a compact set Q ⊆ Rn for some ν ∈ [0, 1], Mν > 0 meaning that

∥∇f(x)−∇f(y)∥2 ≤ Mν∥x− y∥ν2 ∀x, y ∈ Q. (3)

When ν = 1 inequality (3) implies M1-smoothness of f , and when ν = 0 we have that ∇f(x)
has bounded variation which is equivalent to being uniformly bounded. Moreover, when ν = 0
differentiability of f is not needed: one can assume uniform boundedness of the subgradients of
f throughout the proofs. Linear regression in the case when the noise has generalized Gaussian
distribution (Example 4.4 from (Chaux et al., 2007)) serves as a natural example of the situation
with ν ∈ (0, 1). Moreover, when (3) holds for ν = 0 and ν = 1 simultaneously then it holds for all
ν ∈ [0, 1] with Mν ≤ M1−ν

0 Mν
1 (Nesterov, 2015). As we show in our results, it is sufficient to assume

that the set Q is the ball centered at the solution x∗ of (1) with radius ∼ R0 ≥ ∥x0 − x∗∥2, where
x0 is a starting point of the method, i.e., our analysis does not require (3) to hold on Rn.

In addition to inequality (3), we also assume that

∥∇f(x)∥2 ≤
(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(x∗))

ν
1+ν , ∀x ∈ Q, (4)

where for ν = 0 we use
[(

1+ν
ν

) ν
1+ν

]
ν=0

:= limν→0

(
1+ν
ν

) ν
1+ν = 1, and

∥∇f(x)∥22 ≤ 2

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν (f(x)− f(x∗)) + δ

2ν
1+νM

2
1+ν
ν , ∀x ∈ Q. (5)

As we prove in Lemmas A.4 and A.5, inequalities (4) and (5) follow from (3) when Q = Rn. However,
when Q ̸= Rn minimal value of Mν such that (3) holds on Q can be smaller than the minimal value
of Mν such that (4) and (5) hold (see also the discussion in Appendix B from Sadiev et al. (2023)).

1Our proofs work for any x∗. In particular, one can choose x∗ being a projection of x0 on the solutions set.
2By default, we always write “gradients”, though our analysis works for non-differentiable convex functions as well

(when ν = 0): at any point where the gradient is now calculated, it is sufficient to use any subgradient at this point.
This remark is valid for Definition 1.1 as well.
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Table 1: Summary of known and new high-probability complexity bounds for solving (1) with f being convex
and having (ν,Mν)-Hölder continuous gradients. Columns: “Complexity” = high-probability complexity (ε –
accuracy, β – confidence level, numerical constants, and logarithmic factors are omitted), “HT” = heavy-tailed
noise, “UD” = unbounded domain, “CS” = bound on the variance of the stochastic gradient and Hölder
continuity of the gradient is required only on the compact set. Notation: R0 = ∥x0 − x∗∥2, where x∗ is
the closest solution to x0; σ2 = upper bound on the variance (see (2)); D = diameter of the set where
optimization problem is defined. The results labeled by ♣ are obtained from the convergence guarantees in
expectation via Markov’s inequality. Negative-power dependencies on the confidence level β are colored in
red. Our results are highlighted in green.

Method Complexity ν HT? UD? CS?

SGD
(Nemirovski et al., 2009) max

{
M2

0D2

ε2
, σ2D2

ε2

}
0 ✗ ✗ ✗

AC-SA
(Ghadimi and Lan, 2012; Lan, 2012) max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 ✗ ✗ ✗

SIGMA
(Dvurechensky and Gasnikov, 2016) max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

,
σ2R2

0
ε2

 [0, 1] ✗ ✗ ✗

SGD
(Nemirovski et al., 2009)♣ max

{
M2

0R2
0

β2ε2
,
σ2R2

0
β2ε2

}
0 ✓ ✗ ✗

AC-SA
(Ghadimi and Lan, 2012; Lan, 2012)♣ max

{√
M1R

2
0

βε
,
σ2R2

0
β2ε2

}
1 ✓ ✓ ✗

SIGMA
(Dvurechensky and Gasnikov, 2016)♣ max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

β
2

1+3ν ε
2

1+3ν

,
σ2R2

0
β2ε2

 [0, 1] ✓ ✓ ✗

clipped-SSTM
(Gorbunov et al., 2020) max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 ✓ ✓ ✗

clipped-SGD
(Gorbunov et al., 2020) max

{
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 ✓ ✓ ✗

clipped-SSTM
(Theorem 2.1) max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

,
σ2R2

0
ε2

 [0, 1] ✓ ✓ ✓

clipped-SGD
(Theorem 3.1) max

{
M

2
1+ν
ν R2

0

ε
2

1+ν

,
σ2R2

0
ε2

}
[0, 1] ✓ ✓ ✓

High-probability convergence. For a given accuracy ε > 0 and confidence level β ∈ (0, 1)
we are interested in finding ε-solutions of problem (1) with probability at least 1− β, i.e., such x̂
that P{f(x̂)− f(x∗) ≤ ε} ≥ 1− β. For brevity, we will call such (in general, random) points x̂ as
(ε, β)-solution of (1). Moreover, by the high-probability iteration/oracle complexity of a stochastic
method M we mean a sufficient number of iterations/oracle calls (number of ∇f(x, ξ) computations)
needed to guarantee that M returns an (ε, β)-solution of (1).

1.2 Contributions

We summarize our main contributions below.

⋄ The first near-optimal high-probability bounds for non-smooth problems with
heavy-tailed noise. We propose novel stepsize rules for clipped-SSTM (Gorbunov et al., 2020)
to handle problems with the objective having a (ν,Mν)-Hölder continuous gradient and derive in
this setting high-probability complexity guarantees for convex stochastic optimization problems
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Table 2: Summary of known and new high-probability complexity bounds for solving (1) with f being
µ-strongly convex and having (ν,Mν)-Hölder continuous gradients. Columns: “Complexity” = high-
probability complexity (ε – accuracy, β – confidence level, numerical constants, and logarithmic factors are
omitted), “HT” = heavy-tailed noise, “UD” = unbounded domain, “CS” = bound on the variance of the
stochastic gradient and Hölder continuity of the gradient is required only on the compact set. Notation:
R0 = ∥x0 − x∗∥2, where x∗ is the closest solution to x0; σ2 = upper bound on the variance (see (2)). The
results labeled by ♣ are obtained from the convergence guarantees in expectation via Markov’s inequality.
Negative-power dependencies on the confidence level β are colored in red. Our results are highlighted in
green.

Method Complexity ν HT? UD? CS?

SGD
(Nemirovski et al., 2009) max

{
M2

0
µε

, σ2

µε

}
0 ✗ ✗ ✗

AC-SA
(Ghadimi and Lan, 2012; Lan, 2012) max

{√
M1
µ

, σ2

µε

}
1 ✗ ✗ ✗

SIGMA
(Dvurechensky and Gasnikov, 2016)

max
{
N̂, σ2

µε

}
,

N̂ = max

{(
Mν

µR1−ν
0

) 2
1+3ν

,

(
M2

ν
µ1+νε1−ν

) 1
1+3ν

}
[0, 1] ✗ ✗ ✗

SGD
(Nemirovski et al., 2009)♣ max

{
M2

0
µβε

, σ2

µβε

}
0 ✓ ✗ ✗

AC-SA
(Ghadimi and Lan, 2012; Lan, 2012)♣ max

{√
M1
µ

, σ2

µβε

}
1 ✓ ✓ ✗

SIGMA
(Dvurechensky and Gasnikov, 2016)♣

max
{
N̂, σ2

µε̂

}
, ε̂ = βε,

N̂=

(
Mν

µR1−ν
0

) 2
1+3ν

+

(
M2

ν
µ1+ν ε̂1−ν

) 1
1+3ν [0, 1] ✓ ✓ ✗

R-clipped-SSTM
(Gorbunov et al., 2020) max

{√
M1
µ

, σ2

µε2

}
1 ✓ ✓ ✗

R-clipped-SGD
(Gorbunov et al., 2020) max

{
M1
µ

, σ2

µε2

}
1 ✓ ✓ ✗

R-clipped-SSTM
(Theorem 2.2)

max
{
N̂, σ2

µε

}
,

N̂ = max

{(
Mν

µR1−ν
0

) 2
1+3ν

,

(
M2

ν
µ1+νε1−ν

) 1
1+3ν

}
[0, 1] ✓ ✓ ✓

R-clipped-SGD
(Theorem 3.2) max

 M
2

1+ν
ν

µ
2

1+ν R

2(1−ν)
1+ν

0

, M
2

1+ν
ν

µε
1−ν
1+ν

, σ2

µε

 [0, 1] ✓ ✓ ✓

without using the “light tails” assumption, i.e., we prove that our version of clipped-SSTM has

O
(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln

D

β

})
, D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

high-probability complexity. Unlike all previous high-probability complexity results in this
setup with ν < 1 (see Table 1), our result depends only logarithmically on the confidence level β
that is highly important when β is small. Moreover, up to the difference in logarithmic factors,
the derived complexity guarantees meet the known lower bounds (Guzmán and Nemirovski,
2015; Lan, 2012) obtained for problems with light-tailed noise. In particular, when ν = 1,
we recover the accelerated convergence rate (Lan, 2012; Nesterov, 1983). That is, neglecting
the logarithmic factors, our results are unimprovable and, surprisingly, coincide with the
best-known results in the “light-tailed case”.

⋄ New high-probability bounds for clipped-SGD. We derive the first high-probability com-
plexity bounds for clipped-SGD when the objective function is convex with (ν,Mν)-Hölder
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continuous gradient and the noise is heavy tailed., i.e., we derive

O
(
max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln

D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

the high-probability complexity bound. Interestingly, when ν = 0, the derived bound for clipped-
SGD has better dependence on the logarithms than the corresponding one for clipped-SSTM.
Moreover, neglecting the dependence on ε under the logarithm, our bound for clipped-SGD has
the same dependence on the confidence level as the tightest known result in this case under
the “light tails” assumption (Guigues et al., 2017).

⋄ Extensions to the strongly convex case. Using the restarts technique we extend the
obtained results for clipped-SSTM and clipped-SGD to the strongly convex case (see Table 2).
As in the convex case, the obtained results are superior to all previously known results in the
general setup we consider. Moreover, the results derived for clipped-SSTM are optimal up to
logarithmic factors (Guzmán and Nemirovski, 2015; Lan, 2012).

⋄ Generality of the results. As one of the key contributions of this work, we emphasize
that in our theoretical results it is sufficient to assume boundedness of the variance of the
stochastic gradient (22) and Hölder continuity of the gradients of f only on the ball with radius
∼ R0 = ∥x0 − x∗∥2 and centered at the closest to the starting point solution of the problem.
This makes our results applicable to a much wider class of problems than functions with Hölder
continuous gradients on Rn, e.g., our analysis works even for polynomially growing objectives.
Moreover, this feature of our analysis allows us to consider strongly convex functions. Indeed,
the class of strongly convex functions on Rn with Hölder continuous gradients on Rn with ν < 1
is empty. Therefore, it is crucial to assume Hölder continuity of gradients only on a bounded
set3. Next, we do not require the variance of the stochastic gradient to be uniformly bounded
on the whole space, e.g., we allow the variance at point x to grow when ∥x− x∗∥2 → ∞. We
emphasize that even for smooth problems (ν = 1) all previous works in the area rely on the
uniform boundedness of the variance on the whole space (see Tables 1 and 2). Next, in the
works focusing on the “light tails” case, the uniform boundedness of sub-Gaussian variance and
Hölder continuity of the gradients are also assumed on Rn. All of these facts emphasize the
generality of our results.

⋄ Experiments. To test the performance of the considered methods, we conduct several
numerical experiments on image classification and NLP tasks and observe that 1) clipped-
SSTM and clipped-SGD show comparable performance with SGD on the image classification
task, when the noise distribution is almost sub-Gaussian, 2) converge much faster than
SGD on the NLP task, when the noise distribution is heavy-tailed, and 3) clipped-SSTM
achieves a comparable performance with Adam on the NLP task enjoying both the best known
theoretical guarantees and good practical performance. We also compare clipped-SSTM, clipped-
SGD, SGD, and Adam on solving the convex problem, corresponding to the linear regression
with the noise having generalized Gaussian distribution. Our codes are publicly available:
https://github.com/ClippedStochasticMethods/clipped-SSTM.

3It is also worth mentioning that some functions have Hölder continuous gradients for multiple ν simultaneously
(Nesterov, 2015). Therefore, if constants Mν are available, one can choose the best ν in terms of the iteration/oracle
complexity of a method.

6
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1.3 Related Work

Light-tailed noise. The theory of high-probability complexity bounds for convex stochastic
optimization with light-tailed noise is well-developed. Lower bounds and optimal methods for the
problems with (ν,Mν)-Hölder continuous gradients are obtained in (Nemirovski et al., 2009) for
ν = 0, and in (Ghadimi and Lan, 2012) for ν = 1. Up to the logarithmic dependencies, these
high-probability convergence bounds coincide with the corresponding results for the convergence in
expectation (see first two rows of Table 1). While not being directly derived in the literature, the
lower bound for the case when ν ∈ (0, 1) can be obtained as a combination of lower bounds in the
deterministic (Guzmán and Nemirovski, 2015; Nemirovski and Yudin, 1983) and smooth stochastic
settings (Ghadimi and Lan, 2012). The corresponding optimal methods are analyzed in (Devolder,
2013; Dvurechensky and Gasnikov, 2016) based on the concept of inexact oracle.

Heavy-tailed noise. Unlike in the “light-tailed” case, the first theoretical guarantees with rea-
sonable dependence on both the accuracy ε and the confidence level β appeared just recently. In
(Nazin et al., 2019), the first such results without the kind of acceleration appearing in (Nesterov,
1983) were derived for Mirror Descent with special truncation technique for smooth (ν = 1) convex
problems on a bounded domain, and then were accelerated and extended in (Gorbunov et al., 2020).
For strongly convex problems, the first accelerated high-probability convergence guarantees were
obtained in (Davis et al., 2021) for the special method called proxBoost requiring the solving of
nontrivial auxiliary problems at each iteration. These bounds were tightened in (Gorbunov et al.,
2020).

In contrast, for the case when ν < 1 and, in particular, when ν = 0 the best-known high-
probability complexity bounds suffer from the negative-power dependence on the confidence level β,
i.e., have a factor 1/βα for some α > 0, that affects the convergence rate dramatically for small enough
β. Without additional assumptions on the tails these results are obtained via Markov’s inequality
P{f(x)− f(x∗) > ε} < E[f(x)−f(x∗)]/ε from the guarantees for the convergence in expectation to the
accuracy εβ, see the results labeled by ♣ in Table 1. Under an additional assumption on noise tails
that P{∥∇f(x, ξ)−∇f(x)∥22 > sσ2} = O(s−α) for α > 2 these results can be tightened (Gasnikov
et al., 2015) when ν = 0 as ∼ max

{
ln(β−1)/ε2, (1/βεα)

2/(3α−2)
}

without removing the negative-power
dependence on the confidence level β. Different stepsize policies allow to change the last term in
max to β− 1

2α−1 ε−
2α

2α−1 without removing the negative-power dependence on β.

Comparison with (Gorbunov et al., 2020). Although our results and proof technique are
based on the ones proposed in (Gorbunov et al., 2020), our work extends and significantly differs from
(Gorbunov et al., 2020). First of all, we consider problems with Hölder continuous gradients, while
the authors of (Gorbunov et al., 2020) obtain their results only for the smooth functions. To derive
a proper generalization of the results from (Gorbunov et al., 2020), we propose different stepsizes
for clipped-SSTM and clipped-SGD and we also modify the proofs significantly to circumvent the
additional issues arising due to the partial smoothness of the problem, especially in the part where
we prove high-probability bound for the norm of the gradient (see the derivation of inequality (36)).
Since this part is one of the most important ones in the proof, this fact highlights the difference
between two approaches. Moreover, (Gorbunov et al., 2020) assume that the variance is uniformly
upper bounded and the gradient is Lipschitz-continuous on Rn, while our analysis relies on much
weaker assumptions that (2) and (3) hold on a ball around the solution, i.e., on a compact set. Thus,
our results are proven for a much wider class of problems, including ones with polynomially growing

7



objective function/variance Eξ

[
∥∇f(x, ξ)−∇f(x)∥22

]
when ∥x− x∗∥2 → ∞.

Gradient clipping. The methods based on gradient clipping (Pascanu et al., 2013) and normal-
ization (Hazan et al., 2015) are popular in different machine learning and deep learning tasks due
to their robustness in practice to the noise in the stochastic gradients and rapid changes of the
objective function (Goodfellow et al., 2016). In (Mai and Johansson, 2021; Zhang et al., 2020a),
clipped-GD and clipped-SGD are theoretically studied in applications to non-smooth problems with
an objective that can grow polynomially fast when ∥x − x∗∥2 → ∞ showing the superiority of
gradient clipping methods to the methods without clipping. The results from (Zhang et al., 2020a)
are obtained for non-convex problems with almost surely bounded noise, and in (Mai and Johansson,
2021), the authors derive the stability and expectation convergence guarantees for strongly convex
objectives under an assumption that the central p-th moment of the stochastic gradient is bounded
for p ≥ 2. Since (Mai and Johansson, 2021) do not provide convergence guarantees with explicit
dependencies on all important parameters of the problem, it complicates direct comparison with our
results. Nevertheless, convergence guarantees from (Mai and Johansson, 2021) are sub-linear and are
given for the convergence in expectation, and, as a consequence, the corresponding high-probability
convergence results obtained via the Markov’s inequality also suffer from negative-power dependence
on the confidence level. Next, the authors of (Zhang et al., 2020b) establish several expectation
convergence guarantees for clipped-SGD and prove their optimality in the non-convex case under
the assumption that the central α-moment of the stochastic gradient is uniformly bounded, where
α ∈ (1, 2]. It turns out that clipped-SGD is able to converge even when α < 2, whereas vanilla SGD
can diverge in this setting.

1.4 Paper Organization

We present and discuss the simplified versions of our main results on clipped-SSTM (Theorems 2.1
and 2.2) and clipped-SGD (Theorems 3.1 and 3.2) in Sections 2 and 3 respectively. The detailed
statements of the main results, complete proofs, and the corollaries for unit batch sizes (Corollaries 4.1
and 5.1) are given in Sections 4 and 5. Finally, Section 6 contains the results of our numerical
experiments. In Appendix A, we give some useful auxiliary lemmas and prove few technical results.
In Appendix B, we provide a detailed description of the setup for numerical experiments and extra
numerical results.

2 Clipped Stochastic Similar Triangles Method

In this section, we propose a novel variation of Clipped Stochastic Similar Triangles Method (Gorbunov
et al., 2020) adjusted to the class of objectives with Hölder continuous gradients (clipped-SSTM, see
Algorithm 1).

The method is based on the clipping of the stochastic gradients:

clip(∇f(x, ξ), λ) = min

{
1,

λ

∥∇f(x, ξ)∥2

}
∇f(x, ξ) (6)

where ∇f(x, ξ) = 1
m

∑m
i=1∇f(x, ξi) is a mini-batched stochastic gradient and for shortness we

denote by ξ the collection {ξi}mi=1 of samples. Gradient clipping ensures that the resulting vector
has a norm bounded by the clipping level λ. Since the clipped stochastic gradient cannot have an

8



arbitrary large norm, the clipping helps to avoid unstable behavior of the method when the noise is
heavy-tailed, and the clipping level λ is properly adjusted.

However, unlike the stochastic gradient, the clipped stochastic gradient is a biased estimate of
∇f(x): the smaller the clipping level, the larger the bias. The biasedness of the clipped stochastic
gradient complicates the analysis of the method. On the other hand, to circumvent the negative
effect of the heavy-tailed noise on the high-probability convergence, one should choose λ to be not
too large. Therefore, the question on the appropriate choice of the clipping level is highly non-trivial.

Fortunately, there exists a simple but insightful observation that helps us to obtain the right
formula for the clipping level λk at iteration k in clipped-SSTM: if λk is chosen in such a way that
∥∇f(xk)∥2 ≤ λk/2 with high probability, then for the realizations ∇f(xk+1, ξk) of the mini-batched
stochastic gradient such that ∥∇f(xk+1, ξk)−∇f(xk+1)∥2 ≤ λk/2 the clipping is an identity operator.
Next, if the probability mass of such realizations is big enough, then the bias of the clipped stochastic
gradient is properly bounded, which helps derive the needed convergence guarantees. It turns out
that the choice λk ∼ 1/αk ensures the method convergence with the needed rate and high enough
probability.

Algorithm 1 Clipped Stochastic Similar Triangles Method (clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of iterations N , batch sizes {mk}Nk=1, stepsize parameter α,
clipping parameter B, Hölder exponent ν ∈ [0, 1].

1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, 1, . . . , N − 1 do
3: Set αk+1 = α(k + 1)

2ν
1+ν , Ak+1 = Ak + αk+1, λk+1 =

B
αk+1

4: xk+1 = (Aky
k+αk+1z

k)/Ak+1

5: Draw mini-batch mk of fresh i.i.d. samples ξk1 , . . . , ξ
k
mk

and compute ∇f(xk+1, ξk) =
1
mk

∑mk
i=1∇f(xk+1, ξki )

6: Compute ∇̃f(xk+1, ξk) = clip(∇f(xk+1, ξk), λk+1) using (6)
7: zk+1 = zk − αk+1∇̃f(xk+1, ξk)
8: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

9: end for
Output: yN

Guided by this observation, we derive the precise expressions for all the parameters of clipped-
SSTM and derive high-probability complexity bounds for the method. Below, we provide a simplified
version of the main result for clipped-SSTM in the convex case. The complete formulation and the
full proof of the theorem are deferred to Section 4.1 (see Theorem 4.1).

Theorem 2.1 (Simplified version of Theorem 4.1). Assume that function f is convex, its stochastic
gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on
Q = B3R0(x

∗) = {x ∈ Rn | ∥x − x∗∥2 ≤ 3R0}, where R0 ≥ ∥x0 − x∗∥2. Then there exists such a
choice of parameters that clipped-SSTM achieves f(yN )− f(x∗) ≤ ε with probability at least 1− β

after O
(
D ln

2(1+ν)
1+3ν D

β

)
iterations with D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
and requires

O
(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln

D

β

})
oracle calls. (7)
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The obtained result has only logarithmic dependence on the confidence level β and optimal
dependence on the accuracy ε up to logarithmic factors (Guzmán and Nemirovski, 2015; Lan, 2012)
and matches the state-of-the-art results in the light-tailed case (Dvurechensky and Gasnikov, 2016;
Ghadimi and Lan, 2012; Nemirovski et al., 2009) for all ν ∈ [0, 1]. Moreover, the complexity bounds
from (Dvurechensky and Gasnikov, 2016; Ghadimi and Lan, 2012; Nemirovski et al., 2009) are
proportional to O

(
ln2 1

β

)
(neglecting the dependence on Mν and R0), while our bound has better

dependence on the power of the logarithm when ν > 0. In particular, when ν = 1, our bound is
proportional to O

(
ln 1√

εβ

)
. When β is small enough (of the same order with ε or smaller), our

logarithmic factor is much smaller than O
(
ln2 1

β

)
.

Next, we emphasize that our result does not require f to have (ν,Mν)-Hölder continuous gradient
and the variance of the stochastic gradient to be uniformly bounded on the whole space. To achieve
this, we prove that for the proposed choice of parameters the iterates of clipped-SSTM stay inside
the ball B3R0 = {x ∈ Rn | ∥x− x∗∥2 ≤ 3R0} with probability at least 1− β, and, as a consequence,
it is sufficient to assume that (2) and (3) hold only inside this ball. In particular, this means that
the better starting point leads not only to the reduction of R0, but also it can reduce Mν and σ.
Moreover, our result is applicable to a much wider class of functions than the standard class of
functions with Hölder continuous gradients in Rn, e.g., to the problems with polynomial growth in
both the gradient and the variance of the stochastic estimator.

For the strongly convex problems, we consider a restarted version of Algorithm 1 (R-clipped-SSTM,
see Algorithm 2) and derive high-probability complexity result for this version. Below we provide
a simplified version of the result. The complete formulation and the full proof of the theorem are
deferred to Section 4.2 (see Theorem 4.2).

Theorem 2.2 (Simplified version of Theorem 4.2). Assume that function f is µ-strongly convex, its
stochastic gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0
on Q = B3R0(x

∗) = {x ∈ Rn | ∥x− x∗∥2 ≤ 3R0}, where R0 ≥ ∥x0 − x∗∥2. Then there exists such a
choice of parameters that R-clipped-SSTM achieves f(x̂τ )− f(x∗) ≤ ε with probability at least 1− β
after

N̂ = O
(
D ln

2(1+ν)
1+3ν

D

β

)
, D = max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2

ν

µ1+νε1−ν

) 1
1+3ν

}
(8)

iterations of Algorithm 1 in total and requires

O
(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2

µε
ln

D

β

})
oracle calls. (9)

Again, the obtained result has only logarithmic dependence on the confidence level β and, as our
result in the convex case, it has optimal dependence on the accuracy ε up to logarithmic factors
depending on β (Guzmán and Nemirovski, 2015; Lan, 2012) for all ν ∈ [0, 1].

3 SGD with Clipping

In this section, we present a new variant of clipped-SGD (Pascanu et al., 2013) properly adjusted to
the class of objectives with (ν,Mν)-Hölder continuous gradients (see Algorithm 3).

We emphasize that as for clipped-SSTM we use clipping level λ inversely proportional to the
stepsize α. Below, we provide a simplified version of the main result for clipped-SGD in the convex
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Algorithm 2 Restarted clipped-SSTM (R-clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SSTM in restarts
{Nt}τt=1, batch sizes {m1

k}
N1−1
k=1 , {m2

k}
N2−1
k=1 , . . . , {mτ

k}
Nτ−1
k=1 , stepsize parameters {αt}τt=1, clipping

parameters {Bt}τt=1, Hölder exponent ν ∈ [0, 1].
1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SSTM (Algorithm 1) for Nt iterations with batch sizes {mt

k}
Nt−1
k=1 , stepsize

parameter αt, clipping parameter Bt, and starting point x̂t−1. Define the output of clipped-SSTM
by x̂t.

4: end for
Output: x̂τ

case. The complete formulation and the full proof of the theorem are deferred to Section 5.1 (see
Theorem 5.1).

Theorem 3.1 (Simplified version of Theorem 5.1). Assume that function f is convex, its stochastic
gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on
Q = B7R0(x

∗) = {x ∈ Rn | ∥x − x∗∥2 ≤ 7R0}, where R0 ≥ ∥x0 − x∗∥2. Then there exists such a
choice of parameters that clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1−β after

O
(
max

{
D2, D1+ν ln

D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

(10)

iterations and requires

O
(
max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln

D2 +D1+ν

β

})
oracle calls. (11)

Algorithm 3 Clipped Stochastic Gradient Descent (clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of iterations N , batch size m, stepsize γ, clipping parameter
B > 0.

1: for k = 0, 1, . . . , N − 1 do
2: Draw mini-batch of m fresh i.i.d. samples ξk1 , . . . , ξ

k
m and compute ∇f(xk+1, ξk) =

1
m

∑m
i=1∇f(xk+1, ξki )

3: Compute ∇̃f(xk, ξk) = clip(∇f(xk, ξk), λ) using (6) with λ = B/γ
4: xk+1 = xk − γ∇̃f(xk, ξk)
5: end for

Output: x̄N = 1
N

∑N−1
k=0 xk

As all our results in the paper, this result for clipped-SGD has two important features: 1) the
dependence on the confidence level β is logarithmic and 2) Hölder continuity and uniformly bounded
variance assumptions are required only on the ball B7R0(x

∗) centered at the solution. Moreover,
up to the difference in the expressions under the logarithm, the dependence on ε in the result for
clipped-SGD is the same as in the tightest known results for non-accelerated SGD-type methods
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(Devolder, 2013; Guigues et al., 2017). Finally, we emphasize that for ν < 1 the logarithmic factors
appearing in the complexity bound for clipped-SSTM are worse than the corresponding factor in
the complexity bound for clipped-SGD. Therefore, clipped-SGD has the best-known high-probability
complexity results in the case when ν = 0 and f is convex. Furthermore, when ν = 0, our result
has O(ln 1

ε2β
) logarithmic factor, while the best-known high-probability results under “light tails”

assumption are proportional to O(ln2 1
β ) (Dvurechensky and Gasnikov, 2016; Nemirovski et al.,

2009). When β is small enough (of the same order with ε or smaller), our logarithmic factor is much
smaller than O

(
ln2 1

β

)
.

For the strongly convex problems, we consider a restarted version of Algorithm 3 (R-clipped-SGD,
see Algorithm 4) and derive high-probability complexity result for this version. Below we provide

Algorithm 4 Restarted clipped-SGD (R-clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SGD in restarts {Nt}τt=1,
batch sizes {mt}τk=1, stepsizes {γt}τt=1, clipping parameters {Bt}τt=1

1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SGD (Algorithm 3) for Nt iterations with batch size mt, stepsize γt, clipping

parameter Bt, and starting point x̂t−1. Define the output of clipped-SGD by x̂t.
4: end for

Output: x̂τ

a simplified version of the result. The complete formulation and the full proof of the theorem are
deferred to Section 5.2 (see Theorem 5.2).

Theorem 3.2 (Simplified version of Theorem 5.2). Assume that function f is µ-strongly convex, its
stochastic gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0
on Q = B7R0(x

∗) = {x ∈ Rn | ∥x− x∗∥2 ≤ 7R0}, where R0 ≥ ∥x0 − x∗∥2. Then there exists such a
choice of parameters that R-clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β
after

O
(
max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2

}
ln

D

β

})
iterations of Algorithm 3 in total and requires

O
(
max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2,

σ2

µε

}
ln

D

β

})
oracle calls, where

D1 =
Mν

µR1−ν
0

, D2 =
Mν

µ
1+ν
2 ε

1−ν
2

, D = (D
2

1+ν

1 +D1) ln
µR2

0

ε
+D2 +D

2
1+ν

2 .

As in the convex case, for ν < 1, the log-factors appearing in the complexity bound for R-clipped-
SSTM are worse than the corresponding factor in the bound for R-clipped-SGD. Thus, R-clipped-SGD
has the best-known high-probability complexity results for strongly convex f and ν = 0.
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4 Clipped Similar Triangles Method: Missing Details and Proofs

4.1 Convergence in the Convex Case

In this section, we provide the full proof of Theorem 2.1 together with a complete statement of the
result.

4.1.1 Two lemmas

The analysis of clipped-SSTM consists of three main steps. The first one is an “optimization lemma”
– a modification of a standard lemma for Similar Triangles Method (see (Gasnikov and Nesterov,
2018) and Lemma F.4 from (Gorbunov et al., 2020)). This result helps to estimate the progress of
the method after N iterations.

Lemma 4.1. Let f be a convex function with a minimum at some4 point x∗, its gradient be (ν,Mν)-
Hölder continuous on a ball B3R0(x

∗), where R0 ≥ ∥x0 − x∗∥2, and let stepsize parameter α have

the form α = (ε/2)
1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

, where a ≥ 1. If xk, yk, zk ∈ B3R0(x
∗) for all k = 0, 1, . . . , N , N ≥ 0, then

after N iterations of clipped-SSTM for all z ∈ Rn we have

AN

(
f(yN )− f(z)

)
≤ 1

2
∥z0 − z∥22 −

1

2
∥zN − z∥22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ∥θk+1∥22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+

ANε

4
, (12)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1). (13)

Proof. Consider an arbitrary k ∈ {0, 1, . . . , N − 1}. Using
zk+1 = zk − αk+1∇̃f(xk+1, ξk) we get that for all z ∈ Rn

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+ αk+1

〈
∇̃f(xk+1, ξk), zk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+
〈
zk+1 − zk, z − zk+1

〉
(86)
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
− 1

2
∥zk − zk+1∥22

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22. (14)

Next, we notice that

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
=

Aky
k + αk+1z

k

Ak+1
+

αk+1

Ak+1

(
zk+1 − zk

)
= xk+1 +

αk+1

Ak+1

(
zk+1 − zk

)
(15)

4Our proofs are valid for any solution x∗ and, for example, one can take as x∗ the closest solution to the starting
point x0.
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implying

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(13),(14)

≤ αk+1

〈
∇f(xk+1), zk − zk+1

〉
− 1

2
∥zk − zk+1∥22

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22

(15)
= Ak+1

〈
∇f(xk+1), xk+1 − yk+1

〉
− 1

2
∥zk − zk+1∥22

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22

(88)
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+

Ak+1Lk+1

2
∥xk+1 − yk+1∥22

+
αk+1ε

4
− 1

2
∥zk − zk+1∥22 + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22

(15)
= Ak+1

(
f(xk+1)− f(yk+1)

)
+

1

2

(
α2
k+1Lk+1

Ak+1
− 1

)
∥zk − zk+1∥22

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 +

αk+1ε

4
,

where in the third inequality we used xk+1, yk+1 ∈ B3R0(x
∗) and (88) with δ =

αk+1

2Ak+1
ε and

L(δ, ν) = Lk+1 =
(
2Ak+1

εαk+1

) 1−ν
1+ν

M
2

1+ν
ν . Since Ak+1 ≥ aLk+1α

2
k+1 (Lemma A.3) and a ≥ 1 we can

continue our derivations as follows:

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 +

αk+1ε

4
. (16)

Next, due to the convexity of f , we have〈
∇̃f(xk+1, ξk), yk − xk+1

〉 (13)
=

〈
∇f(xk+1), yk − xk+1

〉
+
〈
θk+1, y

k − xk+1
〉

≤ f(yk)− f(xk+1) +
〈
θk+1, y

k − xk+1
〉
. (17)

By definition of xk+1 we have xk+1 =
Aky

k+αk+1z
k

Ak+1
implying

αk+1

(
xk+1 − zk

)
= Ak

(
yk − xk+1

)
(18)
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since Ak+1 = Ak + αk+1. Putting all together, we derive that

αk+1

〈
∇̃f(xk+1, ξk), xk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), xk+1 − zk

〉
+ αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(18)
= Ak

〈
∇̃f(xk+1, ξk), yk − xk+1

〉
+ αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(17),(16)

≤ Ak

(
f(yk)− f(xk+1)

)
+Ak

〈
θk+1, y

k − xk+1
〉

+Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 +

αk+1ε

4
(18)
= Akf(y

k)−Ak+1f(y
k+1) + αk+1

〈
θk+1, x

k+1 − zk
〉

+αk+1f(x
k+1) + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 +

αk+1ε

4

= Akf(y
k)−Ak+1f(y

k+1) + αk+1f(x
k+1)

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

+
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 +

αk+1ε

4
.

Rearranging the terms, we get

Ak+1 f(yk+1)−Akf(y
k)

≤ αk+1

(
f(xk+1) +

〈
∇̃f(xk+1, ξk), z − xk+1

〉)
+

1

2
∥zk − z∥22

−1

2
∥zk+1 − z∥22 + αk+1

〈
θk+1, x

k+1 − zk+1
〉
+

αk+1ε

4
(13)
= αk+1

(
f(xk+1) +

〈
∇f(xk+1), z − xk+1

〉)
+αk+1

〈
θk+1, z − xk+1

〉
+

1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22

+αk+1

〈
θk+1, x

k+1 − zk+1
〉
+

αk+1ε

4

≤ αk+1f(z) +
1

2
∥zk − z∥22 −

1

2
∥zk+1 − z∥22 + αk+1

〈
θk+1, z − zk+1

〉
+

αk+1ε

4

where in the last inequality, we use the convexity of f . Taking into account A0 = α0 = 0 and
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AN =
∑N−1

k=0 αk+1 we sum up these inequalities for k = 0, 1, . . . , N − 1 and get

AN f(yN )

≤ ANf(z) +
1

2
∥z0 − z∥22 −

1

2
∥zN − z∥22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk+1

〉
+

ANε

4

= ANf(z) +
1

2
∥z0 − z∥22 −

1

2
∥zN − z∥22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1

〈
θk+1, ∇̃f(xk+1, ξk)

〉
+

ANε

4

(13)
= ANf(z) +

1

2
∥z0 − z∥22 −

1

2
∥zN − z∥22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ∥θk+1∥22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+

ANε

4

that concludes the proof.

From Lemma A.3 we know that AN ∼ N
1+3ν
1+ν ε

1−ν
1+ν

M
2

1+ν
ν

. Therefore, in view of Lemma 4.1 (inequality

(12) with z = x∗), to derive the desired complexity bound from Theorem 2.1 it is sufficient to show
that

N−1∑
k=0

(
αk+1

〈
θk+1, z − zk

〉
+ α2

k+1 ∥θk+1∥22 + α2
k+1

〈
θk+1,∇f(xk+1)

〉)
+

ANε

4
≲ R2

0

with probability at least 1− β. One possible way to achieve this goal is to apply some concentration
inequality to these three sums. Since we use clipped stochastic gradients, under a proper choice of the
clipping parameter, random vector θk+1 = ∇̃f(xk+1, ξk)−∇f(xk+1) is bounded in ℓ2-norm by 2λk+1

with high probability as well. Taking into account the assumption on the stochastic gradients (see
(2)), it is natural to apply Bernstein’s inequality (see Lemma A.2). Despite the seeming simplicity,
this part of the proof is the trickiest one.

First of all, it is useful to derive tight enough upper bounds for bias, variance, and distortion of
∇̃f(xk+1, ξk) – this is the second step of the whole proof. Fortunately, Lemma F.5 from Gorbunov
et al. (2020) does exactly what we need in our proof and holds without any changes.

Lemma 4.2 (Lemma F.5 from Gorbunov et al. (2020).). For all k ≥ 0, the following inequality
holds: ∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥
2
≤ 2λk+1. (19)

Moreover, if the stochastic gradient satisfies (2) on Q = B3R0(x
∗) and
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∥∇f(xk+1)∥2 ≤ λk+1

2 for some k ≥ 0, then for this k we have:∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]
−∇f(xk+1)

∥∥∥
2

≤ 4σ2

mkλk+1
, (20)

Eξk

[∥∥∥∇̃f(xk+1, ξk)−∇f(xk+1)
∥∥∥2
2

]
≤ 18σ2

mk
, (21)

Eξk

[∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥2
2

]
≤ 18σ2

mk
. (22)

4.1.2 Proof of the Main Result

The final, third step of the proof consists of providing explicit formulas and bounds for the parameters
of the method and derivation of the desired result using induction and Bernstein’s inequality. Below,
we provide the complete statement of Theorem 2.1.

Theorem 4.1. Assume that function f is convex, achieves minimum value at some5 x∗, its stochastic
gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on
Q = B3R0(x

∗), where R0 ≥ ∥x0 − x∗∥2. Let β ∈ (0, 1) and N ≥ 1 be arbitrary such that

ln
4N

β
≥ 2 (23)

and let the parameters of clipped-SSTM satisfy6

α =
ε

1−ν
1+ν

2aM
2

1+ν
ν

, mk = max

{
1,

20736Nσ2α2
k+1 ln

4N
β

C2R2
0

}
, (24)

B =
CR0

16 ln 4N
β

, a ≥ 16384 ln2
4N

β
, (25)

ε
1−ν
1+ν ≤ aCM

1−ν
1+ν
ν R1−ν

0

16 ln 4N
β

, ε ≤ 2
1+ν
2 a

1+ν
2 C1+νR1+ν

0 Mν

100
1+3ν

2

, (26)

ε
1−ν
1+3ν ≤ min

{
a

2+3ν−ν2

2(1+3ν)

2
4+4ν+ 3+8ν−5ν2−6ν3

(1+ν)(1+3ν) ln 4N
β

,

a
(1+ν)2

1+3ν

2
5+8ν+ 2+9ν+7ν2−3ν3+ν4

(1+ν)(1+3ν) ln1+ν 4N
β

}
C

1−ν2

1+3ν R
1−ν2

1+3ν

0 M
1−ν
1+3ν
ν , (27)

5Our proofs are valid for any solution x∗ and, for example, one can take x∗ as the closest solution to the starting
point x0.

6The choice of the parameters (in this and the following results) is dictated by the need to estimate and control
the stochastic error in the proofs. If some of the parameters (such as ν,R0,Mν , σ) are unknown, one can directly tune
parameters α, a,mk. To satisfy (26) and (27) it sufficient to choose sufficiently large a (or, alternatively, sufficiently
small ε).
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ε ≤ 2
1+ν
2 a

1+ν
2 C1+νR1+ν

0 Mν

N
1+3ν

2

+
1

N
1+3ν

2

. (28)

Then, after N iterations of clipped-SSTM, with probability at least 1− β, it holds that

f(yN )− f(x∗) ≤ 4aC2R2
0M

2
1+ν
ν

N
1+3ν
1+ν ε

1−ν
1+ν

, (29)

where
C =

√
7. (30)

In other words, if we choose a = 16384 ln2 4N
β , then the method achieves f(yN )− f(x∗) ≤ ε with

probability at least 1− β after O
(
D ln

2(1+ν)
1+3ν D

β

)
iterations with D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
and requires

O
(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln

D

β

})
oracle calls. (31)

Proof. The proof of this result (and the following ones) is induction-based: we will show by induction
that the iterates stay in some bounded ball around x∗ with high probability. This will allow us
to apply Bernstein-type concentration inequality to estimate the stochastic sums appearing in the
upper bounds.

First of all, we notice that for each k ≥ 0 iterates xk+1, zk, yk lie in the ball B
R̃k

(x∗), where
Rk = ∥zk−x∗∥2, R̃0 = R0, R̃k+1 = max{R̃k, Rk+1}. We prove it using induction. Since y0 = z0 = x0,
R̃0 = R0 ≥ ∥z0 − x∗∥2 and x1 = A0y0+α1z0

A1
= z0 we have that x1, z0, y0 ∈ B

R̃0
(x∗). Next,

assume that xl, zl−1, yl−1 ∈ B
R̃l−1

(x∗) for some l ≥ 1. By definitions of Rl and R̃l we have that
zl ∈ BRl

(x∗) ⊆ B
R̃l
(x∗). Since yl is a convex combination of yl−1 ∈ B

R̃l−1
(x∗) ⊆ B

R̃l
(x∗), and

zl ∈ B
R̃l
(x∗), and B

R̃l
(x∗) is a convex set we conclude that yl ∈ B

R̃l
(x∗). Finally, since xl+1 is a

convex combination of yl and zl we have that xl+1 lies in B
R̃l
(x∗) as well.

Next, our goal is to prove via induction that for all k = 0, 1, . . . , N we have P{Ek} = 1− kβ
N for

probability event Ek defined as follows:

Event Ek:

Inequalities

R2
t ≤ R2

0 + 2
t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉
+ 2

t−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+2

t−1∑
l=0

α2
k+1∥θl+1∥22 +

ANε

2
≤ C2R2

0 (32)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (30).
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For t = 0 inequality (32) holds with probability 1 since C ≥ 1, hence P{E0} = 1. Next, assume
that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1 − (T−1)β

N . Let us prove that
P{ET } ≥ 1− Tβ

N . First of all, since RT−1 implies Rt ≤ CR0 for all t = 0, 1, . . . , T − 1 we have that
R̃T−1 ≤ CR0, and, as a consequence, zT−1 ∈ BCR0(x

∗). Therefore, probability event ET−1 implies

∥zT − x∗∥2
= ∥zT−1 − x∗ − αT ∇̃f(xT , ξT−1)∥2 ≤ ∥zT−1 − x∗∥2 + αT ∥∇̃f(xT , ξT−1)∥2

≤ CR0 + αTλT =

(
1 +

1

16 ln 4N
β

)
CR0

(23),(30)
≤

(
1 +

1

32

)√
7R0 ≤ 3R0,

hence R̃T ≤ 3R0. Then, one can apply Lemma 4.1 and get that probability event ET−1 implies

At

(
f(yt)− f(x∗)

)
≤ 1

2
∥z0 − x∗∥22 −

1

2
∥zt − x∗∥22 +

t−1∑
k=0

αk+1

〈
θk+1, x

∗ − zk
〉

+

t−1∑
k=0

α2
k+1 ∥θk+1∥22 +

t−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+

Atε

4
, (33)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1) (34)

for all t = 0, 1, . . . , T . Taking into account that f(yt)−f(x∗) ≥ 0 for all yt we derive that probability
event ET−1 implies

R2
t ≤ R2

0 + 2
t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉
+ 2

t−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+2

t−1∑
l=0

α2
l+1∥θl+1∥22 +

Atε

2
. (35)

for all t = 0, 1, . . . , T .
The rest of the proof is based on the refined analysis of inequality (35). First of all, when ν = 0

from (4) for all t ≥ 0 we have

∥∥∇f(xt+1)
∥∥
2

≤ M0
(25)
=

16M0B ln 4N
β

CR0

(26)
≤ aM2

0B

ε
=

B

2αt+1
=

λt+1

2
.

Next, we prove that ∥∇f(xt+1)∥2 ≤ λt+1

2 when ν > 0. For t = 0 we have

∥∇f(x1)∥2 = ∥∇f(z0)∥2
(3)
≤ Mν∥z0 − x∗∥ν2 ≤ MνR

ν
0

(26)
≤ 2

1−ν
1+ν aCR0M

2
1+ν
ν

32ε
1−ν
1+ν ln 4N

β

(25),(26)
≤ B

2α1
=

λ1

2
.
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For 0 < t ≤ T − 1 probability event ET−1 implies

∥∇f(xt+1)∥2
≤ ∥∇f(xt+1)−∇f(yt)∥2 + ∥∇f(yt)∥2

(3), Lemma A.4
≤ Mν∥xt+1 − yt∥ν2 +

(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν

(
f(yt)− f(x∗)

) ν
1+ν

(12),(18),(32)
≤ Mν

(
αt+1

At

)ν

∥xt+1 − zt∥ν2 +
(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν

(
C2R2

0

2At

) ν
1+ν

=
λt+1

2
· 2Mν

λt+1

(
αt+1

At

)ν

∥xt+1 − zt∥ν2︸ ︷︷ ︸
D1

+
λt+1

2
·
(
1 + ν

ν

) ν
1+ν 2M

1
1+ν
ν

λt+1

(
C2R2

0

2At

) ν
1+ν

︸ ︷︷ ︸
D2

.

Next, we show that D1 +D2 ≤ 1. Using the definition of λt+1, the definition of αt+1 = α(t+ 1)
2ν
1+ν ,

triangle inequality ∥xt+1 − zt∥2 ≤ ∥xt+1 − x∗∥2 + ∥zt − x∗∥2 ≤ 2CR0, and lower bound (91) for At

(see Lemma A.3) we derive

D1 =
2ν+5Mνα

1+ν
t+1 ln 4N

β

C1−νR1−ν
0 Aν

t

(24)
=

2ν+5Mν(t+ 1)2ν(ε/2)1−ν ln 4N
β

22νa1+νC1−νR1−ν
0 M2

νA
ν
t

(91)
≤

24(t+ 1)2νε1−ν ln 4N
β

a1+νC1−νR1−ν
0 Mν

· 2
(1+3ν)ν

1+ν aνM
2ν
1+ν
ν

t
(1+3ν)ν

1+ν (ε/2)
ν(1−ν)
1+ν

=
(t+ 1)2ν

t
ν(1+3ν)

1+ν

·
24+2νε

1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

t+1
t

≤2

≤
24+4νt

ν(1−ν)
1+ν ε

1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

t≤N−1,(28)
≤

24+4νε
1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

· 2
2ν(1−ν)(1+2ν)
(1+ν)(1+3ν) a

ν(1−ν)
1+3ν C

2ν(1−ν)
1+3ν R

2ν(1−ν)
1+3ν

0 M
2ν(1−ν)

(1+ν)(1+3ν)
ν

ε
2ν(1−ν)

(1+ν)(1+3ν)

=
2
4+4ν+

2ν(1−ν)(1+2ν)
(1+ν)(1+3ν) ε

1−ν
1+3ν ln 4N

β

a
(1+ν)2

1+3ν M
1−ν
1+3ν
ν C

(1−ν)(1+ν)
1+3ν R

(1−ν)(1+ν)
1+3ν

0

(27)
≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

.
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Applying the same inequalities and
(
1+ν
ν

) ν
1+ν ≤ 2 we estimate D2:

D2 =

(
1 + ν

ν

) ν
1+ν 25−

ν
1+νM

1
1+ν
ν αt+1 ln

4N
β

C
1−ν
1+ν R

1−ν
1+ν

0 A
ν

1+ν

t

≤ 2 ·
25−

ν
1+νM

1
1+ν
ν ln 4N

β

C
1−ν
1+ν R

1−ν
1+ν

0 A
ν

1+ν

t

· (t+ 1)
2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

≤
25−

ν
1+ν · 2

2ν
1+ν t

2ν
1+ν ε

1−ν
1+ν ln 4N

β

aC
1−ν
1+ν R

1−ν
1+ν

0 M
1

1+ν
ν A

ν
1+ν

t

(91)
≤

25+
ν

1+ν t
2ν
1+ν ε

1−ν
1+ν ln 4N

β

aC
1−ν
1+ν R

1−ν
1+ν

0 M
1

1+ν
ν

· 2
ν(1+3ν)

(1+ν)2 a
ν

1+νM
2ν

(1+ν)2

ν

t
ν(1+3ν)

(1+ν)2 (ε/2)
ν(1−ν)

(1+ν)2

=
25+

3ν
1+ν t

ν(1−ν)

(1+ν)2 ε
1−ν

(1+ν)2 ln 4N
β

a
1

1+νC
1−ν
1+ν R

1−ν
1+ν

0 M
1−ν

(1+ν)2

ν

t≤N−1,(28)
≤

25+
3ν
1+ν ε

1−ν

(1+ν)2 ln 4N
β

a
1

1+νC
1−ν
1+ν R

1−ν
1+ν

0 M
1−ν

(1+ν)2

ν

·2
2ν(1+2ν)(1−ν)

(1+ν)2(1+3ν) a
ν(1−ν)

(1+ν)(1+3ν)C
2ν(1−ν)

(1+ν)(1+3ν)R
2ν(1−ν)

(1+ν)(1+3ν)

0 M
2ν(1−ν)

(1+ν)2(1+3ν)
ν

ε
2ν(1−ν)

(1+ν)2(1+3ν)

=
2
5+ 3ν

1+ν
+

2ν(1+2ν)(1−ν)

(1+ν)2(1+3ν) ε
1−ν

(1+ν)(1+3ν) ln 4N
β

a
1+ν
1+3νC

1−ν
1+3νR

1−ν
1+3ν

0 M
1−ν

(1+ν)(1+3ν)
ν

(27)
≤ 1

2
2+5ν+ν3

(1+ν)2(1+3ν)

.

Combining the upper bounds for D1 and D2 we get

D1 +D2 ≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

+
1

2
2+5ν+ν3

(1+ν)2(1+3ν)

.

Since 2+5ν+ν3

(1+ν)2(1+3ν)
is a decreasing function of ν for ν ∈ [0, 1] we continue as

D1 +D2 ≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

+
1√
2
.

Next, we use a
(25)
≥ 16384 ln2 4N

β

(23)
≥ 210 and obtain

D1 +D2 ≤ 1

2
3+11ν+13ν2+13ν3

(1+ν)(1+3ν)

+
1√
2
.

One can numerically verify that 1

2
3+11ν+13ν2+13ν3

(1+ν)(1+3ν)

+ 1√
2

is smaller than 1 for ν ∈ [0, 1]. Putting all

together, we conclude that probability event ET−1 implies

∥∇f(xt+1)∥2 ≤
λt+1

2
(36)
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for all t = 0, 1, . . . , T − 1. Having inequality (36) in hand, we show in the rest of the proof that (32)
holds for t = T with large enough probability. First of all, we introduce new random variables:

ηl =

{
x∗ − zl, if ∥x∗ − zl∥2 ≤ CR0,

0, otherwise,
, ζl =

{
∇f(xl+1), if ∥∇f(xl+1)∥2 ≤ B

2αl+1
,

0, otherwise,
(37)

for l = 0, 1, . . . , T − 1. Note that these random variables are bounded with probability 1, i.e. with
probability 1, we have

∥ηl∥2 ≤ CR0 and ∥ζl∥2 ≤
B

2αl+1
. (38)

Secondly, we use the introduced notation and get that ET−1 implies

R2
T

(35),(32),(36),(37)
≤ R2

0 + 2
T−1∑
l=0

αl+1 ⟨θl+1, ηl⟩+ 2
T−1∑
l=0

α2
l+1∥θl+1∥22

+2

T−1∑
l=0

α2
l+1 ⟨θl+1, ζl⟩+

ANε

2

= R2
0 +

T−1∑
l=0

αl+1 ⟨θl+1, 2ηl + 2αl+1ζl⟩+ 2
T−1∑
l=0

α2
l+1∥θl+1∥22 +

ANε

2
.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma A.2) and
obtain that ET−1 implies

R2
T

(85)
≤ R2

0 +
T−1∑
l=0

αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

①

+
T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

②

+

T−1∑
l=0

4α2
l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])
︸ ︷︷ ︸

③

+

T−1∑
l=0

4α2
l+1Eξl

[
∥θul+1∥22

]
︸ ︷︷ ︸

④

+
T−1∑
l=0

4α2
l+1∥θbl+1∥22︸ ︷︷ ︸

⑤

+
ANε

2
(39)

where we introduce new notations:

θul+1
def
= ∇̃f(xl+1, ξl)− Eξl

[
∇̃f(xl+1, ξl)

]
, θbl+1

def
= Eξl

[
∇̃f(xl+1, ξl)

]
−∇f(xl+1), (40)

θl+1
(13)
= θul+1 + θbl+1.

It remains to provide tight upper bounds for ①, ②, ③, ④ and ⑤, i.e. in the remaining part of the
proof we show that ① + ② + ③ + ④ + ⑤ ≤ δC2R2

0 for some δ < 1.
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Upper bound for ①. First of all, since Eξl [θ
u
l+1] = 0 and random variables ηl, ζl are independent

from ξl (which is a collection of i.i.d. samples) summands in ① are conditionally unbiased:

Eξl
[
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉]
= 0.

Secondly, these summands are bounded with probability 1:∣∣αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉∣∣
≤ αl+1∥θul+1∥2 ∥2ηl + 2αl+1ζl∥2

(19),(38)
≤ 2αl+1λl+1 (2CR0 +B) = 2B(2CR0 +B)

=

(
1 +

1

32 ln 4N
β

)
C2R2

0

4 ln 4N
β

(23)
≤
(
1 +

1

64

)
C2R2

0

4 ln 4N
β

.

Finally, one can bound conditional variances σ2
l

def
= Eξl

[
α2
l+1

〈
θul+1, 2ηl + 2αl+1ζl

〉2] in the following
way:

σ2
l ≤ Eξl

[
α2
l+1

∥∥θul+1

∥∥2
2
∥2ηl + 2αl+1ζl∥22

]
(38)
≤ α2

l+1Eξl

[∥∥θul+1

∥∥2
2

]
(2CR0 +B)2

= 4α2
l+1Eξl

[∥∥θul+1

∥∥2
2

](
1 +

1

32 ln 4N
β

)2

C2R2
0

(23)
≤ 4α2

l+1Eξl

[∥∥θul+1

∥∥2
2

](
1 +

1

64

)2

C2R2
0, (41)

i.e., σ2
l is finite due to finiteness of ∥θul+1∥2 (see Lemma 4.2). In other words, sequence

{
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉}
l≥0

is a bounded martingale difference sequence with bounded conditional variances {σ2
l }l≥0. Thus,

we can apply Bernstein’s inequality, i.e. we apply Lemma A.2 with Xl = αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
,

c =
(
1 + 1

64

) C2R2
0

4 ln 4N
β

and F =
c2 ln 4N

β

18 (The choice of F will be clarified below.) and get that for all

b > 0

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F+2cb/3

)
either

T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|①|

≤ b.

Let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
= β

2N . This implies that b is the positive
root of the quadratic equation

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,
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hence

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
=
c ln 4N

β

3
+

√
2c2 ln2 4N

β

9

=
1 +

√
2

3
c ln

4N

β
≤ c ln

4N

β
=

(
1 +

1

64

)
C2R2

0

4
=

(
1

4
+

1

256

)
C2R2

0.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ2
l > F or |①| ≤

(
1

4
+

1

256

)
C2R2

0︸ ︷︷ ︸
probability event E①

.

Here and below, we notice that the conditions of Lemma 4.2 hold when ET−1 holds, since event
ET−1 implies that x0, x1, . . . , xT lie in B3R0(x

∗). Therefore, probability event ET−1 implies that

T−1∑
l=0

σ2
l

(41)
≤ 4

(
1 +

1

64

)2

C2R2
0

T−1∑
l=0

α2
l+1Eξl

[∥∥θul+1

∥∥2
2

]
(22),(36)

≤ 72

(
1 +

1

64

)2

σ2C2R2
0

T−1∑
l=0

α2
l+1

ml

(24)
≤

(
1 + 1

64

)2
C4R4

0

288 ln 4N
β

T−1∑
l=0

1

N

T≤N
≤

(
1 + 1

64

)2
C4R4

0

288 ln 4N
β

=
c2 ln 4N

β

18
= F.

Upper bound for ②. The probability event ET−1 implies

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
≤ αl+1

∥∥∥θbl+1

∥∥∥
2
∥2ηl + 2αl+1ζl∥2

(20),(38)
≤ αl+1 ·

4σ2

mlλl+1
(2CR0 +B)

=
4σ2α2

l+1

ml

(
1 +

2CR0

B

)
=

4σ2α2
l+1

(
1 + 32 ln 4N

β

)
ml

(24)
≤

4

(
1

ln 4N
β

+ 32

)
C2R2

0

20736N

(23)
≤ 11C2R2

0

1728N
.

This implies that

② =

T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉 T≤N
≤ 11C2R2

0

1728
.
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Upper bound for ③. We derive the upper bound for ③ using the same technique as for ①.
First of all, we notice that the summands in ③ are conditionally unbiased:

Eξl

[
4α2

l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])]
= 0.

Secondly, the summands are bounded with probability 1:∣∣∣4α2
l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])∣∣∣ ≤ 4α2
l+1

(
∥θul+1∥22 + Eξl

[
∥θul+1∥22

])
(19)
≤ 4α2

l+1

(
4λ2

l+1 + 4λ2
l+1

)
= 32B2 =

C2R2
0

8 ln2 4N
β

(23)
≤ C2R2

0

16 ln 4N
β

def
= c1. (42)

Finally, one can bound conditional variances

σ̂2
l

def
= Eξl

[∣∣∣4α2
l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])∣∣∣2] in the following way:

σ̂2
l

(42)
≤ c1Eξl

[∣∣∣4α2
l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])∣∣∣]
≤ 4c1α

2
l+1Eξl

[
∥θul+1∥22 + Eξl

[
∥θul+1∥22

]]
= 8c1α

2
l+1Eξl

[
∥θul+1∥22

]
, (43)

i.e., σ̂2
l is finite due to finiteness of ∥θul+1∥2 (see Lemma 4.2). In other words, sequence

{
4α2

l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])}
l≥0

is bounded martingale difference sequence with bounded conditional variances {σ̂2
l }l≥0. Therefore, we

can apply Bernstein’s inequality, i.e. we apply Lemma A.2 with Xl = X̂l = 4α2
l+1

(
∥θul+1∥22 − Eξl

[
∥θul+1∥22

])
,

c = c1 =
C2R2

0

16 ln 4N
β

and F = F1 =
c21 ln

4N
β

18 and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F1+2c1b/3

)
either

T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|③|

≤ b.

As in our derivations of the upper bound for ① we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N , i.e.,

b =
c1 ln

4N
β

3
+

√
c21 ln

2 4N
β

9
+ 2F1 ln

4N

β
=
1 +

√
2

3
c1 ln

4N

β
≤ C2R2

0

16
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ̂2
l > F1 or |③| ≤ C2R2

0

16︸ ︷︷ ︸
probability event E③

.
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Next, we notice that probability event ET−1 implies that

T−1∑
l=0

σ̂2
l

(43)
≤ 8c1

T−1∑
l=0

α2
l+1Eξl

[∥∥θul+1

∥∥2
2

]
(22),(36)

≤ 9σ2C2R2
0

ln 4N
β

T−1∑
l=0

α2
l+1

ml

(24)
≤ C4R4

0

2304 ln2 4N
β

T−1∑
l=0

1

N

T≤N
≤ C4R4

0

2304 ln2 4N
β

(23)
≤ C4R4

0

4608 ln 4N
β

=
c21 ln

4N
β

18
= F1.

Upper bound for ④. The probability event ET−1 implies

④ =
T−1∑
l=0

4α2
l+1Eξl

[
∥θul+1∥22

] (22),(36)
≤

T−1∑
l=0

72α2
l+1σ

2

ml

(24)
≤

T−1∑
l=0

C2R2
0

288N ln 4N
β

T≤N
≤ C2R2

0

288 ln 4N
β

(23)
≤ C2R2

0

576
.

Upper bound for ⑤. Again, we use corollaries of probability event ET−1:

⑤ =

T−1∑
l=0

4α2
l+1∥θbl+1∥22

(20),(36)
≤

T−1∑
l=0

64α2
l+1σ

4

m2
l λ

2
l+1

=
64σ4

B2

T−1∑
l=0

α4
l+1

m2
l

(24),(25)
≤

256 · 64σ4 ln2 4N
β

C2R2
0

T−1∑
l=0

C4R4
0

207362N2σ4 ln2 4N
β

T≤N
≤ C2R2

0

26244
.

Now we summarize all bounds that we have: probability event ET−1 implies

R2
T

(39)
≤ R2

0 + ① + ② + ③ + ④ + ⑤ +
ANε

2
,

where ② ≤ 11C2R2
0

1728
, ④ ≤ CR2

0

576
, ⑤ ≤ C2R2

0

26244
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1

and
P{ET−1} ≥ 1− (T − 1)β

N
, P{E①} ≥ 1− β

2N
, P{E③} ≥ 1− β

2N
,

where

E① =

{
either

T−1∑
l=0

σ2
l > F or |①| ≤

(
1

4
+

1

256

)
C2R2

0

}
,

E③ =

{
either

T−1∑
l=0

σ̂2
l > F1 or |③| ≤ C2R2

0

16

}
.
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Moreover, since N
(28)
≤ 2

1+ν
1+3ν a

1+ν
1+3ν C

2(1+ν)
1+3ν R

2(1+ν)
1+3ν

0 M
2

1+3ν
ν

ε
2

1+3ν
+ 1 and

ε
(26)
≤ 2

1+ν
2 a

1+ν
2 C1+νR1+ν

0 Mν

100
1+3ν

2
we have

ANε

2

(93)
≤ N

1+3ν
1+ν ε

2
1+ν

4aM
2

1+ν
ν

(28)
≤

2
1+ν
1+3ν a

1+ν
1+3νC

2(1+ν)
1+3ν R

2(1+ν)
1+3ν

0 M
2

1+3ν
ν

ε
2

1+3ν

+ 1


1+3ν
1+ν

ε
2

1+ν

4aM
2

1+ν
ν

(26)
≤

(
101

100

) 1+3ν
1+ν C2R2

0

2
≤ 10201C2R2

0

20000
.

Taking into account these inequalities we get that probability event ET−1 ∩ E① ∩ E③ implies

R2
T ≤

(
1 +

(
1

4
+

1

256
+

11

1728
+

1

16
+

1

576
+

1

26244
+

10201

20000

)
C2

)
R2

0

(30)
≤ C2R2

0. (44)

Moreover, using the bound for the union, we derive

P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
≥ 1− Tβ

N
. (45)

That is, by definition of ET and ET−1 we have proven that

P{ET }
(44)
≥ P {ET−1 ∩ E① ∩ E③}

(45)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that

with probability at least 1− β

AN

(
f(yN )− f(x∗)

)
(33)
≤ 1

2
∥z0 − x∗∥22 −

1

2
∥zN − x∗∥22 +

N−1∑
k=0

αk+1

〈
θk+1, x

∗ − zk
〉

+

N−1∑
k=0

α2
k+1 ∥θk+1∥22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+

ANε

4

(32)
≤ C2R2

0

2
.

Since AN

(91)
≥ N

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

we get that with probability at least 1− β

f(yN )− f(x∗) ≤ 4aC2R2
0M

2
1+ν
ν

N
1+3ν
1+ν ε

1−ν
1+ν

.

In other words, clipped-SSTM with a = 16384 ln2 4N
β achieves f(yN )− f(x∗) ≤ ε with probability
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at least 1− β after O

(
M

2
1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
ln

2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β

)
iterations and requires

N−1∑
k=0

mk
(24)
=

N−1∑
k=0

O

(
max

{
1,

σ2α2
k+1N ln N

β

R2
0

})

= O

max

N,
N−1∑
k=0

σ2(k + 1)
4ν
1+ν ε

2(1−ν)
1+ν N ln N

β

M
4

1+ν
ν R2

0a
2




(25)
= O

max

N,
σ2ε

2(1−ν)
1+ν N

2(1+3ν)
1+ν

M
4

1+ν
ν R2

0 ln
3 N

β




= O

max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β
,
σ2R2

0

ε2
ln

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β


 .

oracle calls, where in the last equality we substituted the number of iterations N from the statement
of the theorem.

4.1.3 On the Batchsizes and Numerical Constants

The obtained complexity result is discussed in detail in Section 2. Here, we discuss the choice of
the parameters. For convenience, we provide all assumptions from Theorem 4.1 on the parameters
below:

ln
4N

β
≥ 2 (46)

α =
(ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

, mk = max

{
1,

20736Nσ2α2
k+1 ln

4N
β

C2R2
0

}
, (47)

B =
CR0

16 ln 4N
β

, a ≥ 16384 ln2
4N

β
, (48)

ε
1−ν
1+ν ≤ aCM

1−ν
1+ν
ν R1−ν

0

16 ln 4N
β

, ε ≤ 2
1+ν
2 a

1+ν
2 C1+νR1+ν

0 Mν

100
1+3ν

2

, (49)

ε
1−ν
1+3ν ≤ min

{
a

2+3ν−ν2

2(1+3ν)

2
2+4ν+ 3+8ν−5ν2−6ν3

(1+ν)(1+3ν) ln 4N
β

,

a
(1+ν)2

1+3ν

2
4+7ν+ 2+7ν+2ν2−3ν3

(1+ν)(1+3ν) ln1+ν 4N
β

}
C

1−ν2

1+3ν R
1−ν2

1+3ν

0 M
1−ν
1+3ν
ν , (50)

N =

2
1+ν
1+3ν a

1+ν
1+3νC

2(1+ν)
1+3ν R

2(1+ν)
1+3ν

0 M
2

1+3ν
ν

ε
2

1+3ν

+ 1, C =
√
7. (51)
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We emphasize that (46), (49), and (50) are not restrictive at all since the target accuracy ε and
confidence level β are often chosen to be small enough, whereas a can be made large enough.

One can notice that the assumptions on parameter a and batch size mk contain huge numerical
constants (see (47)-(48)) that result in large numerical constants in the expression for the number of
iterations N and the total number of oracle calls required to guarantee accuracy ε of the solution.
However, for the sake of simplicity of the proofs, we do not try to provide an analysis with better
dependence on the numerical constants. Moreover, the main goal of this paper is to derive improved
high-probability complexity guarantees in terms of O(·)-notation – such guarantees are insensitive
to numerical constants by definition.

Finally, (47) implies that the batch size at iteration k is

mk = Θ

max

1,
Nσ2(k + 1)

4ν
1+ν ε

2(1−ν)
1+ν ln N

β

a2M
4

1+ν
ν R2

0




meaning that for k ∼ N and a = O
(
ln2 N

β

)
we have that the second term in the maximum is

proportional to N
1+5ν
1+ν ε

2(1−ν)
1+ν . When ν is close to 1 and σ2 ≫ 0, it implies that mk is huge for big

enough k, making the method completely impractical. Fortunately, this issue can be easily solved
without sacrificing the oracle complexity of the method: it is sufficient to choose large enough a.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold and

a = max

16384 ln2
4N

β
,
5184

1+3ν
1+ν · 2

2(1+5ν)(1+2ν)

(1+ν)2 σ
2(1+3ν)

1+ν C
4ν
1+νR

4ν
1+ν

0 ln
1+3ν
1+ν 4N

β

M
2

1+ν
ν ε

6ν
1+ν

 . (52)

Then for all k = 0, 1, . . . , N − 1 we have mk = 1 and to achieve f(yN )− f(x∗) ≤ ε with probability
at least 1− β clipped-SSTM requires

O

max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β
,
σ2R2

0

ε2
ln

σ2R2
0

ε2β


 (53)

iterations/oracle calls.

Proof. We start with showing that for the new choice of a we have mk = 1 for all k = 0, 1, . . . , N − 1.
Indeed, using the assumptions on the parameters from Theorem 4.1, we derive

mk = max

{
1,

20736Nσ2α2
k+1 ln

4N
β

C2R2
0

}

= max

1,
5184Nσ2(k + 1)

4ν
1+ν ε

2(1−ν)
1+ν

a2M
4

1+ν
ν C2R2

0


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1,
5184σ2N
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(30)
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1,
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a
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2
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ν ε
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 (52)
≤ 1.
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That is, with the choice of the stepsize parameter a as in (52), the method uses unit batch sizes at
each iteration. Therefore, iteration and oracle complexities coincide in this case. Next, we consider
two possible situations.

1. If a = 16384 ln2 4N
β , then

N
(30)
=

2
1+ν
1+3ν a

1+ν
1+3νC

2(1+ν)
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ε
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+ 1

= O

M
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ε
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N

β
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ε
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 .

2. If a =
5184
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1+ν ·2
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2(1+3ν)

1+ν C
4ν
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0 ln
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β

M
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, then

N
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=
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ln
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)
.

Putting all together, we derive (53).

4.2 Convergence in the Strongly Convex Case

In this section, we provide the full proof of Theorem 2.2 together with a complete statement of the
result. Note that due to strong convexity, the solution x∗ is unique.

Theorem 4.2. Assume that function f is µ-strongly convex, its stochastic gradient and its gradient
satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on Q = B3R0(x

∗), where R0 ≥
∥x0 − x∗∥2. Let ε > 0, β ∈ (0, 1) and for t = 1, . . . , τ

Nt =

a
1+ν
1+3ν

t C
2(1+ν)
1+3ν R

2(1+ν)
1+3ν

0 M
2

1+3ν
ν

2
(1+ν)(t−2)

1+3ν ε
2

1+3ν

t

+ 1, εt =
µR2

0

2t+1
, (54)

τ =

⌈
log2

µR0

2ε

⌉
−1, ln

4Ntτ

β
≥ 2, C =

√
7, (55)

αt =
ε

1−ν
1+ν

t

2atM
2

1+ν
ν

, mt
k = max

{
1,

20736 · 2t−1Ntσ
2(αt

k+1)
2 ln 4Ntτ

β

C2R2
0

}
, (56)
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αt
k+1 = αt(k + 1)

2ν
1+ν , Bt =

CR0

16 ln 4Ntτ
β

, at = 16384 ln2
4Ntτ

β
, (57)

ε
1−ν
1+ν

t ≤ atCM
1−ν
1+ν
ν R1−ν

0

16 · 2
(1−ν)(t−1)

2 ln 4Ntτ
β

, εt ≤
a

1+ν
2

t C1+νR1+ν
0 Mν

100
1+3ν

2 · 2
(1+ν)(t−2)

2

, (58)

ε
1−ν
1+3ν

t ≤ min

{
a

2+3ν−ν2

2(1+3ν)

t

2
2+4ν+ 3+8ν−5ν2−6ν3

(1+ν)(1+3ν) ln 4Ntτ
β

,

a
(1+ν)2

1+3ν

t

2
4+7ν+ 2+7ν+2ν2−3ν3

(1+ν)(1+3ν) ln1+ν 4Ntτ
β

}
C

1−ν2

1+3ν R
1−ν2

1+3ν

0 M
1−ν
1+3ν
ν

2
(1−ν2)(t−1)

2(1+3ν)

. (59)

Then, after τ restarts R-clipped-SSTM produces x̂τ such that with probability at least 1− β

f(x̂τ )− f(x∗) ≤ ε. (60)

That is, to achieve (60) with probability at least 1− β the method requires

N̂ = O

max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2

ν

µ1+νε1−ν

) 1
1+3ν

}
ln

2(1+ν)
1+3ν

M
2

1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β

 (61)

iterations of Algorithm 1 and

O

max

N̂,
σ2

µε
ln

M
2

1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β


 oracle calls. (62)

Proof. Applying the convergence rate result (29) in Theorem 4.1 together with our choice of
the parameters of the first restart, we obtain that with probability at least 1 − β

τ it holds that

f(x̂1)− f(x∗) ≤ µR2
0

4 . Since f is µ-strongly convex we have µ∥x̂1−x∗∥22
2 ≤ f(x̂1)− f(x∗). Therefore,

with probability at least 1− β
τ

f(x̂1)− f(x∗) ≤ µR2
0

4
, ∥x̂1 − x∗∥22 ≤

R2
0

2
.

From mathematical induction and the union bound for probability events, it follows that the
inequalities

f(x̂t)− f(x∗) ≤ µR2
0

2t+1
, ∥x̂t − x∗∥22 ≤

R2
0

2t

hold simultaneously for t = 1, . . . , τ with probability at least 1 − β. Thus, it means that after
τ =

⌈
log2

µR2
0

ε

⌉
− 1 restarts R-clipped-SSTM finds an ε-solution with probability at least 1− β. The
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total number of iterations N̂ is
τ∑

t=1

Nt

(54),(57)
= O

 τ∑
t=1

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

2
(1+ν)t
1+3ν ε

2
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t
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2(1+ν)
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2
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0 τ

2
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2
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t β


= O
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M
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ν R
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0 2
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M
2

1+3ν
ν R

2(1+ν)
1+3ν

0 2
2t
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2
(1+ν)t
1+3ν µ

2
1+3νR

4
1+3ν

0 β


= O
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M
2
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ν 2

(1−ν)t
1+3ν

µ
2

1+3νR
2(1−ν)
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2(1+ν)
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M
2

1+3ν
ν 2

(1−ν)t
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β
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= O

M
2

1+3ν
ν max

{
τ, 2

(1−ν)τ
1+3ν

}
µ

2
1+3νR

2(1−ν)
1+3ν

0

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν 2

(1−ν)τ
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β


= O

max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2

ν

µ1+νε1−ν

) 1
1+3ν

}
ln

2(1+ν)
1+3ν

M
2

1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β

 ,

and the total number of oracle calls equals

τ∑
t=1

Nt−1∑
k=0

mt
k = O

max


τ∑

t=1

Nt,
τ∑

t=1

σ2R2
0

2tε2t
ln

M
2

1+3ν
ν 2

(1−ν)t
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β




= O

max

N̂,
τ∑

t=1

σ2 · 2t

µ2R2
0

ln
M

2
1+3ν
ν 2

(1−ν)τ
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β




= O

max

N̂,
σ2

µε
ln

M
2

1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β


 .

One can also derive a similar result for R-clipped-SSTM when stepsize parameter a is chosen as
in Corollary 4.1 for all restarts. In this case, on can choose unit batch sizes: mt

k = 1 for all k and t.

5 SGD with Clipping: Missing Details and Proofs

5.1 Convex Case

In this section, we provide a full statement of Theorem 3.1 together with its proof. The proof is
based on a similar idea as the proof of the complexity bounds for clipped-SSTM.
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Theorem 5.1. Assume that the function f is convex, achieves its minimum at a point x∗, and its
stochastic gradient and its gradient satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on
Q = B7R0(x

∗), where R0 ≥ ∥x0 − x∗∥2. Then, for all β ∈ (0, 1) and N such that

ln
4N

β
≥ 2, (63)

we have that after N iterations of clipped-SGD with

λ =
R0

γ ln 4N
β

, m ≥ max

{
1,

81Nσ2

λ2 ln 4N
β

}
(64)

and stepsize

γ ≤ min

{
ε

1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln
4N
β

}
, (65)

with probability at least 1− β it holds that

f(x̄N )− f(x∗) ≤ C2R2
0

γN
, (66)

where x̄N = 1
N

∑N−1
k=0 xk and

C = 7. (67)

In other words, clipped-SGD with γ = min

{
ε
1−ν
1+ν

8M
2

1+ν
ν

, R0
√
2Nε

ν
1+ν M

1
1+ν
ν

,
R1−ν

0

2CνMν ln 4N
β

}
achieves f(x̄N )−

f(x∗) ≤ ε with probability at least 1− β after

O

(
max

{
M

2
1+ν
ν R2

0

ε
2

1+ν
,
MνR

1+ν
0

ε ln
MνR

1+ν
0

εβ

})
iterations and requires

O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,max

{
MνR

1+ν
0

ε
,
σ2R2

0

ε2

}
ln

MνR
1+ν
0

εβ


 (68)

oracle calls.

Proof. Since f(x) is convex and its gradients satisfy (3), we get the following inequality under
assumption that xk ∈ B7R0(x

∗):

∥xk+1 − x∗∥22 = ∥xk − γ∇̃f(xk, ξk)− x∗∥22
= ∥xk − x∗∥22 + γ2∥∇̃f(xk, ξk)∥22 − 2γ

〈
xk − x∗, ∇̃f(xk, ξk)

〉
(13)
= ∥xk − x∗∥22 + γ2∥∇f(xk) + θk∥22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(85)
≤ ∥xk − x∗∥22 + 2γ2∥∇f(xk)∥22 + 2γ2∥θk∥22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(5)
≤ ∥xk − x∗∥22 − 2γ

(
1− 2γ

(
1

ε

) 1−ν
1+ν

M
2

1+ν
ν

)(
f(xk)− f(x∗)

)
+ 2γ2∥θk∥22

−2γ
〈
xk − x∗, θk

〉
+ 2γ2ε

2ν
1+νM

2
1+ν
ν ,
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where θk = ∇̃f(xk, ξk) − ∇f(xk) and the last inequality follows from the convexity of f . Using
notation Rk

def
= ∥xk − x∗∥2, k > 0 we derive that for all k ≥ 0

R2
k+1 ≤ R2

k − 2γ

(
1− 2γ

(
1

ε

) 1−ν
1+ν

M
2

1+ν
ν

)(
f(xk)− f(x∗)

)
+ 2γ2∥θk∥22

−2γ
〈
xk − x∗, θk

〉
+ 2γ2ε

2ν
1+νM

2
1+ν
ν

under assumption that xk ∈ B7R0(x
∗). Let us define A = 2γ

(
1− 2γ

(
1
ε

) 1−ν
1+ν M

2
1+ν
ν

)
(65)
≥ 2γ

(
1− 2 · ε
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ν

·
(
1
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2
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)
= 3

2γ ≥ γ >
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A
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k+1 + 2γ2∥θk∥22 − 2γ

〈
xk − x∗, θk

〉
+ 2γ2ε

2ν
1+νM

2
1+ν
ν

under assumption that xk ∈ B7R0(x
∗). Summing up these inequalities for k = 0, 1, . . . , N − 1, we

obtain

A

N

N−1∑
k=0

[
f(xk)− f(x∗)

]
=

1

N

(
R2

0 −R2
N

)
+ 2γ2ε
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1+νM

2
1+ν
ν +

2γ2

N

N−1∑
k=0

∥θk∥22 −
2γ

N

N−1∑
k=0

〈
xk − x∗, θk

〉

under assumption that xk ∈ B7R0(x
∗). Noticing that for x̄N = 1

N

N−1∑
k=0

xk Jensen’s inequality gives

f(x̄N ) = f

(
1
N

N−1∑
k=0

xk
)

≤ 1
N

N−1∑
k=0

f(xk), we have

AN
(
f(x̄N )− f(x∗)

)
≤ R2

0 −R2
N + 2γ2Nε

2ν
1+νM

2
1+ν
ν + 2γ2

N−1∑
k=0

∥θk∥22

−2γ
N−1∑
k=0

〈
xk − x∗, θk

〉
(69)

under assumption that xk ∈ B7R0(x
∗) for k = 0, 1, . . . , N − 1. Taking into account that f(x̄N ) −

f(x∗) ≥ 0 and changing the indices we get that for all k = 0, 1, . . . , N

R2
k ≤ R2

0 + 2γ2kε
2ν
1+νM

2
1+ν
ν + 2γ2

k−1∑
l=0

∥θl∥22 − 2γ

k−1∑
l=0

〈
xl − x∗, θl

〉
. (70)

under assumption that xl ∈ B7R0(x
∗) for l = 0, 1, . . . , k−1. The remaining part of the proof is based

on the analysis of inequality (70). In particular, via induction we prove that for all k = 0, 1, . . . , N
with probability at least 1− kβ

N we have P{Ek} = 1− kβ
N for probability event Ek defined as follows:

Event Ek:
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Inequalities

R2
t

(70)
≤ R2

0 + 2γ2tε
2ν
1+νM

2
1+ν
ν + 2γ2

t−1∑
l=0

∥θl∥22 − 2γ
t−1∑
l=0

〈
xl − x∗, θl

〉
≤ C2R2

0 (71)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (67).
For t = 0 inequality (71) holds with probability 1 since C ≥ 1. Next, assume that for some

k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1− (T−1)β
N . Let us prove that P{ET } ≥ 1− Tβ

N .
First of all, probability event ET−1 implies that xt ∈ B7R0(x

∗) for t = 0, 1, . . . , T − 1, and, as a
consequence, (70) holds for k = T . Since ∇f(x) is (ν,Mν)-Hölder continuous on B7R0(x

∗), we have
that probability event ET−1 implies∥∥∇f(xt)

∥∥
2

(3)
≤ Mν∥xt − x0∥ν

(71)
≤ MνC

νRν
0

(65)
≤ λ

2
(72)

for t = 0, 1, . . . , T − 1. Next, we introduce new random variables:

ηl =

{
x∗ − xl, if ∥x∗ − xl∥2 ≤ CR0,

0, otherwise,
(73)

for l = 0, 1, . . . , T − 1. Note that these random variables are bounded with probability 1, i.e. with
probability 1, we have

∥ηl∥2 ≤ CR0. (74)

Using the introduced notation, we obtain that ET−1 implies

R2
T

(71),(65)
≤ R2

0 + 2

(
R0

√
2Nε

ν
1+νM

1
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)2
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∥θl∥22 − 2γ
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〈
xl − x∗, θl

〉
= 2R2
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∥θl∥22 − 2γ

t−1∑
l=0

〈
xl − x∗, θl

〉
(73),(74)

= 2R2
0 + 2γ

T−1∑
l=0

⟨θl, ηl⟩+ 2γ2
T−1∑
l=0

∥θl∥22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma A.2) and
obtain that ET−1 implies

R2
T

(85)
≤ 2R2

0 + 2γ

T−1∑
l=0

⟨θul , ηl⟩︸ ︷︷ ︸
①

+2γ

T−1∑
l=0

〈
θbl , ηl

〉
︸ ︷︷ ︸

②

+4γ2
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(
∥θul ∥22 − Eξl

[
∥θul ∥22

])
︸ ︷︷ ︸

③
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Eξl
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⑤
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where we introduce new notations:

θul
def
= ∇̃f(xl, ξl)− Eξl

[
∇̃f(xl, ξl)

]
, θbl

def
= Eξl

[
∇̃f(xl, ξl)

]
−∇f(xl), (76)

θl = θul + θbl .

It remains to provide tight upper bounds for ①, ②, ③, ④ and ⑤, i.e. in the remaining part of the
proof we show that ① + ② + ③ + ④ + ⑤ ≤ δC2R2

0 for some δ < 1.
Upper bound for ①. First of all, since Eξl [θ

u
l ] = 0 summands in ① are conditionally unbiased:

Eξl [2γ ⟨θul , ηl⟩] = 0. Secondly, these summands are bounded with probability 1: |2γ ⟨θul , ηl⟩| ≤

2γ∥θul ∥2 ∥ηl∥2
(19),(74)

≤ 4γλCR0. Finally, one can bound conditional variances σ2
l
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= Eξl

[
4γ2 ⟨θul , ηl⟩

2
]

in the following way: σ2
l ≤ Eξl

[
4γ2 ∥θul ∥

2
2 ∥ηl∥

2
2

] (74)
≤ 4γ2(CR0)

2Eξl

[
∥θul ∥

2
2

]
, i.e., σ2

l is finite due
to finiteness of ∥θul+1∥2 (see Lemma 4.2). In other words, sequence {2γ ⟨θul , ηl⟩}l≥0 is a bounded
martingale difference sequence with bounded conditional variances {σ2

l }l≥0. Therefore, we can apply

Bernstein’s inequality, i.e., we apply Lemma A.2 with Xl = 2γ ⟨θul , ηl⟩, c = 4γλCR0 and F =
c2 ln 4N

β

6
and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)

or, equivalently, with probability at least 1− 2 exp
(
− b2

2F+2cb/3

)
either

T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|①|

≤ b.

The choice of F will be clarified further. Let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=

β
2N . This implies that b is the positive root of the quadratic equation

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,

hence

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln
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c ln 4N
β

3
+

√
4c2 ln2 4N

β

9

= c ln
4N

β
= 4γλCR0 ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ2
l > F or |①| ≤ 4γλCR0 ln

4N

β︸ ︷︷ ︸
probability event E①

.
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Here and below, we notice that the conditions of Lemma 4.2 hold when ET−1 holds, since event
ET−1 implies that x0, x1, . . . , xT lie in B7R0(x

∗). Therefore, probability event ET−1 implies that

T−1∑
l=0

σ2
l ≤ 4γ2(CR0)

2
T−1∑
l=0

Eξl
[
∥θul ∥22

] (22)
≤ 72γ2(CR0)

2σ2 T

m

T≤N
≤ 72γ2(CR0)

2σ2N

m
≤

c2 ln 4N
β

6
= F,

where the last inequality follows from c = 4γλCR0 and simple arithmetic.
Upper bound for ②. First of all, we notice that probability event ET−1 implies

2γ
〈
θbl , ηl

〉
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2
∥ηl∥2

(20),(74)
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.

This implies that
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≤ 8γσ2CR0N

mλ

(64)
≤ 8

81
λγCR0 ln

4N

β
.

Upper bound for ③. We derive the upper bound for ③ using the same technique as for ①. First of
all, we notice that the summands in ③ are conditionally unbiased: Eξl

[
4γ2

(
∥θul ∥22 − Eξl

[
∥θul ∥22

])]
=

0. Second, the summands are bounded with probability 1:∣∣∣4γ2 (∥θul ∥22 − Eξl
[
∥θul ∥22

])∣∣∣ ≤ 4γ2
(
∥θul ∥22 + Eξl

[
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]) (19)
≤ 4γ2

(
4λ2 + 4λ2

)
= 32γ2λ2 def

= c1. (77)

Finally, one can bound conditional variances

σ̂2
l

def
= Eξl

[∣∣∣4γ2 (∥θul ∥22 − Eξl
[
∥θul ∥22

])∣∣∣2] in the following way:
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[
∥θul ∥22

]
, (78)

i.e., σ̂2
l is finite due to finiteness of ∥θul+1∥2 (see Lemma 4.2). In other words, sequence

{
4γ2

(
∥θul ∥22 − Eξl

[
∥θul ∥22

])}
l≥0

is a bounded martingale difference sequence with bounded conditional variances {σ̂2
l }l≥0. Therefore,

we can apply Bernstein’s inequality, i.e. we apply Lemma A.2 with Xl = X̂l = 4γ2
(
∥θul ∥22 − Eξl

[
∥θul ∥22

])
,

c = c1 = 32γ2λ2 and F = F1 =
c21 ln

4N
β

18 and get that for all b > 0

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)
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or, equivalently, with probability at least 1− 2 exp
(
− b2

2F1+2c1b/3

)

either
T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|③|

≤ b.

As in our derivations of the upper bound for ① we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N , i.e.,

b =
c1 ln

4N
β

3
+

√
c21 ln

2 4N
β

9
+ 2F1 ln

4N

β
≤ c1 ln

4N

β
= 32γ2λ2 ln

4N

β
.

That is, with probability at least 1− β
2N

either
T−1∑
l=0

σ̂2
l > F1 or |③| ≤ 32γ2λ2 ln

4N

β︸ ︷︷ ︸
probability event E③

.

Next, we notice that probability event ET−1 implies that

T−1∑
l=0

σ̂2
l

(78)
≤ 8γ2c1

T−1∑
l=0

Eξl

[
∥θul ∥

2
2

] (22)
≤ 144γ2c1σ

2 T

m

T≤N
≤ 144γ2c1σ

2N

m

(64)
≤

144γ2λ2c1 ln
4N
β

81
=

c21 ln
4N
β

18
= F1.

Upper bound for ④. The probability event ET−1 implies

④ = 4γ2
T−1∑
l=0

Eξl
[
∥θul ∥22

] (22)
≤ 72γ2σ2

T−1∑
l=0

1

m

T≤N
≤ 72γ2Nσ2

m

(64)
≤ 8

9
λ2γ2 ln

4N

β
.

Upper bound for ⑤. Again, we use corollaries of probability event ET−1:

⑤ = 4γ2
T−1∑
l=0

∥θbl ∥22
(20)
≤ 64γ2σ4 T

m2λ2

T≤N
≤ 64γ2σ4 N

m2λ2

(64)
≤ 64

6561

λ2γ2 ln2 4N
β

N
.

Now we summarize all bounds that we have: probability event ET−1 implies

R2
T

(75)
≤ 2R2

0 + ① + ② + ③ + ④ + ⑤,

② ≤ 8

81
λγCR0 ln

4N

β
, ④ ≤ 8

9
λ2γ2 ln

4N

β
, ⑤ ≤ 64

6561

λ2γ2 ln2 4N
β

N
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1
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and P{ET−1} ≥ 1− (T−1)β
N , P{E①} ≥ 1− β

2N , P{E③} ≥ 1− β
2N ,

where E① =

{
either

T−1∑
l=0

σ2
l > F or |①| ≤ 4γλCR0 ln

4N

β

}
,

E③ =

{
either

T−1∑
l=0

σ̂2
l > F1 or |③| ≤ 32γ2λ2 ln

4N

β

}
.

Taking into account these inequalities and our assumptions on λ and γ (see (64) and (65)) we get
that probability event ET−1 ∩ E① ∩ E③ implies

R2
T ≤ 2R2

0 +

(
4

7
+

8

567
+

16

49
+

4

441
+

64

321489

)
C2R2

0

(67)
≤ C2R2

0. (79)

Moreover, using the bound for the union, we derive

P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
≥ 1− Tβ

N
. (80)

That is, by definition of ET and ET−1 we have proven that

P{ET }
(79)
≥ P {ET−1 ∩ E① ∩ E③}

(80)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that

with probability at least 1− β

AN
(
f(x̄N )− f(x∗)

) (69),(65)
≤ R2

0 + 2

(
R0

√
2Nε

ν
1+νM

1
1+ν
ν

)2

Nε
2ν
1+νM

2
1+ν
ν

+2γ2
N−1∑
k=0

∥θk∥22 − 2γ

N−1∑
k=0

〈
xk − x∗, θk

〉
≤ 2R2

0 + 2γ2
N−1∑
k=0

∥θk∥22 − 2γ
N−1∑
k=0

〈
xk − x∗, θk

〉
(71)
≤ C2R2

0.

Since A = 2γ

(
1− 2γ

(
1
ε

) 1−ν
1+ν M

2
1+ν
ν

)
(65)
≥ γ we get that with probability at least 1− β, it holds that

f(x̄N )− f(x∗) ≤ C2R2
0

AN ≤C2R2
0

γN . When

γ = min

{
ε

1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln
4N
β

}
we have that with probability at least 1− β

f(x̄N )− f(x∗)

≤ max

8C2M
2

1+ν
ν R2

0

ε
1−ν
1+ν N

,

√
2C2M

1
1+ν
ν R0ε

ν
1+ν

√
N

,
2C2+νMνR

1+ν
0 ln 4N

β

N

 .
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Next, we estimate the iteration and oracle complexities of the method and consider 3 possible
situations.

1. If γ = ε
1−ν
1+ν

8M
2

1+ν
ν

, then with probability at least 1− β

f(x̄N )− f(x∗) ≤ 8C2M
2

1+ν
ν R2

0

ε
1−ν
1+ν N

.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β after

O

M
2

1+ν
ν R2

0

ε
2

1+ν


iterations and requires

Nm
(64)
= O

(
max

{
N,

N2σ2γ2 ln N
β

R2
0

})

= O

max

N,
N2ε

2(1−ν)
1+ν σ2 ln N

β

M
4

1+ν
ν R2

0




= O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,
σ2R2

0

ε2
ln

M
2

1+ν
ν R2

0

ε
2

1+ν β




oracle calls.

2. If γ = R0
√
2Nε

ν
1+ν M

1
1+ν
ν

, then with probability at least 1− β

f(x̄N )− f(x∗) ≤
√
2C2M

1
1+ν
ν R0ε

ν
1+ν

√
N

.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β after

O

M
2

1+ν
ν R2

0

ε
2

1+ν


iterations and requires

Nm
(64)
= O

(
max

{
N,

N2σ2γ2 ln N
β

R2
0

})
= O

(
max

{
N,

Nσ2 ln N
β

ε
2ν
1+νM

2
1+ν
ν

})

= O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,
σ2R2

0

ε2
ln

M
2

1+ν
ν R2

0

ε
2

1+ν β




oracle calls.
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3. If γ =
R1−ν

0

2CνMν ln 4N
β

, then with probability at least 1− β

f(x̄N )− f(x∗) ≤
2C2+νMνR

1+ν
0 ln 4N

β

N
.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β after

O

MνR
1+ν
0 ln

MνR
1+ν
0

εβ

ε


iterations and requires

Nm
(64)
= O

(
max

{
N,

N2σ2γ2 ln N
β

R2
0

})
= O

(
max

{
N,

N2σ2

M2
νR

2ν
0 ln N

β

})

= O
(
max

{
MνR

1+ν
0

ε
,
σ2R2

0

ε2

}
ln

MνR
1+ν
0

εβ

)
oracle calls.

Putting all together and noticing that ln M
2

1+ν
ν R2

0

ε
2

1+ν β
= O

(
ln

MνR
1+ν
0

εβ

)
we get the desired result.

As for clipped-SSTM, it is possible to get rid of using large batch sizes without sacrificing the
oracle complexity via a proper choice of γ.

Corollary 5.1. Let the assumptions of Theorem 5.1 hold and

γ = min

 ε
1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln
4N
β

,
R0

9σ
√
N ln 4N

β

 . (81)

Then for all k = 0, 1, . . . , N − 1 one can use m = 1 and to achieve f(x̄N )− f(x∗) ≤ ε with probability
at least 1− β clipped-SGD requires

O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,max

{
MνR

1+ν
0

ε
,
σ2R2

0

ε2

}
ln

(
MνR

1+ν
0

εβ
+

σ2R2
0

ε2β

)
 (82)

iterations/oracle calls.

Proof. First of all, we verify that m = 1 is a valid choice. The only assumption on m is given in

(64): m
(64)
≥ max

{
1, 81Nσ2

λ2 ln
4N
β

}
. Since γ ≤ R0

9σ
√

N ln 4N
β

, we have

max

{
1,

81Nσ2

λ2 ln 4N
β

}
(64)
= max

{
1,

81γ2σ2N ln 4N
β

R2
0

}
≤ 1
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Therefore, for γ given in (81) one can use m = 1.
Next, if the minimum in (81) is attained on any of the first three terms, then applying the

derivations from the end of the proof of Theorem 5.1, we get that the method requires

O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,max

{
MνR

1+ν
0

ε
,
σ2R2

0

ε2

}
ln

MνR
1+ν
0

εβ




iterations/oracle calls to achieve f(x̄N )−f(x∗) ≤ ε with probability at least 1−β. If γ = R0

9σ
√

N ln 4N
β

,

then with probability at least 1− β

f(x̄N )− f(x∗)
(66)
≤

9C2R0σ
√
ln 4N

β√
N

.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β after7

O

σ2R2
0 ln

σ2R2
0

ε2β

ε2


iterations/oracle calls. Putting all together, we get the desired result.

5.2 Strongly Convex Case

In this section, we provide a full statement of Theorem 3.2 together with its proof. Note that due to
strong convexity, the solution x∗ is unique.

Theorem 5.2. Assume that function f is µ-strongly convex, its stochastic gradient and its gradient
satisfy (2) and (3) respectively with σ > 0, ν ∈ [0, 1], Mν > 0 on Q = B7R0(x

∗), where R0 ≥
∥x0 − x∗∥2. Let ε > 0, β ∈ (0, 1), and for all t = 1, . . . , τ , where τ =

⌈
log2

µR2
0

ε

⌉
− 1,

Nt = max


2C4M

2
1+ν
ν R2

0

2tε
2

1+ν

t

,

4C2+νMνR
1+ν
0 ln

16C2+νMνR
1+ν
0

2
(1+ν)t

2 εtβ

2
(1+ν)t

2 εt

 , εt =
µR2

0

2t+1
,

λt =
R0

2
t
2γt ln

4Ntτ
β

, mt ≥ max

{
1,

81Ntσ
2

λ2
t ln

4Ntτ
β

}
, ln

4Ntτ

β
≥ 2,

γt = min

 ε
1−ν
1+ν

t

8M
2

1+ν
ν

,
R0

2
t
2
√
2Ntε

ν
1+ν

t M
1

1+ν
ν

,
R1−ν

0

21+
(1−ν)t

2 CνMν ln
4Ntτ
β

 .

7To achieve f(x̄N )− f(x∗) ≤ ε it is sufficient to take N such that
9C2R0σ

√
ln

4N
β√

N
≤ ε. Solving this inequality w.r.t.

N , we get that it is sufficient to take N such that N ≥
81C4σ2R2

0 ln 4N
β

ε2
, e.g., N =


162C4σ2R2

0 ln

(
648C4σ2R2

0
ε2β

)
ε2

 satisfies

this inequality.
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Then R-clipped-SGD achieves f(x̄τ )− f(x∗) ≤ ε with probability at least 1− β after

O
(
max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2

}
ln

D

β

})
iterations of Algorithm 3 in total and requires

O
(
max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2,

σ2

µε

}
ln

D

β

})
(83)

oracle calls, where

D1 =
Mν

µR1−ν
0

, D2 =
Mν

µ
1+ν
2 ε

1−ν
2

, D = D2 ln
µR2

0

ε
.

Proof. Applying Theorem 5.1, we obtain that with probability at least 1− β
τ it holds that f(x̂1)−

f(x∗) ≤ µR2
0

4 . Since f is µ-strongly convex we have µ∥x̂1−x∗∥22
2 ≤ f(x̂1) − f(x∗). Therefore, with

probability at least 1− β
τ

f(x̂1)− f(x∗) ≤ µR2
0

4
, ∥x̂1 − x∗∥22 ≤

R2
0

2
.

From mathematical induction and the union bound for probability events, it follows that inequalities
f(x̂t) − f(x∗) ≤ µR2

0
2t+1 , ∥x̂t − x∗∥22 ≤ R2

0
2t hold simultaneously for t = 1, . . . , τ with probability at

least 1− β. In particular, it means that after τ =
⌈
log2

µR2
0

ε

⌉
− 1 restarts R-clipped-SGD finds an

ε-solution with probability at least 1− β. The total number of iterations N̂ is

τ∑
t=1

Nt = O

 τ∑
t=1
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M
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2tε
2

1+ν

t

,
MνR

1+ν
0

2
(1+ν)t
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D1 ln
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,

where

D1 =
Mν

µR1−ν
0

, D2 =
Mν

µ
1+ν
2 ε

1−ν
2

, D = D2 ln
µR2

0

ε
.

Finally, the total number of oracle calls equals
τ∑

t=1

Nt−1∑
k=0

mt
k = O

(
max

{
τ∑

t=1

Nt,

τ∑
t=1

σ2R2
0

2tε2t
ln
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0 τ

2
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= O
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σ2

µε
ln

D
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One can also derive a similar result for R-clipped-SGD when stepsize γ is chosen as in Corollary 5.1
for all restarts. In this case, one can choose unit batch sizes: mt = 1 for all t.

6 Numerical Experiments

In this section, we present the results of our numerical experiments in synthetic and real-world data.
We defer additional details regarding the choice of parameters to Appendix B.

6.1 Experiments on Synthetic Data

First of all, we tested the considered methods on the following problem, which corresponds to the
linear regression with the noise having generalized Gaussian distribution (Example 4.4 from (Chaux
et al., 2007)):

min
x∈Rn

{
fp(x) =

1

m
∥Ax− y∥pp =:

1

m

m∑
i=1

fi,p(x)

}
, fi,p(x) = |a⊤i x− yi|p, (84)

where A ∈ Rm×n, y ∈ Rm, p ∈ [1, 2], and a⊤i denotes the i-th row of matrix A. One can
show that fp(x) is convex and has (ν,Mν)-Hölder continuous (sub)gradient8 with ν = p − 1 and
Mν = 21−ν(1+ν)

m

∑m
i=1 ∥ai∥

1+ν
2 . Moreover, to rewrite the considered problem in the form (1), we

define ξ as a random index having a uniform distribution on {1, . . . ,m}. Since the (sub)gradient of
fi is bounded on any compact set and any i ∈ {1, . . . ,m}, the variance of the stochastic gradient
can be uniformly upper bounded on any compact set as well. That is, problem (84) fits the setup we
consider in the theoretical analysis in the previous sections.

We generate matrix A as follows: 1) assemble the matrix A1 ∈ Rm×n from mn i.i.d. samples
from the standard Gaussian distribution N (0, 1), 2) multiply the rows of matrix A1 on i.i.d. samples
from the Levy distribution with parameters 0 and 0.5 that are smaller than the threshold t = 104 (we
redraw a sample if it is larger than t to avoid numerical instabilities during the experiments), denote
the result by A2, 3) divide the columns of A2 by their empirical standard deviations (again due to
numerical instabilities), denote the result by A, 4) split the dataset equally into the train and test
sets and add i.i.d. samples from the Levy distribution with parameters 0 and 0.5 to the train part
(we redraw a sample if it is larger than t · α with α = 10). Next, we generate x = xtrue as a random
vector from the uniform distribution on the unit Euclidean sphere and set y := ytrue = Axtrue. We
use m = 10000, n = 200 (5000 for the train set and 5000 for the test set). The starting point for the
methods was generated from the uniform distribution on the Euclidean sphere with radius 10. We
also use xpred to denote the output of a method and ypred = Axpred to denote the “answer” of the
trained model.

The resulting problem has a heavy-tailed stochastic gradient noise. To illustrate this, for different
values of p, we sample a large enough number of batched stochastic gradients ∇fp(x

0, ξ1), . . . ,∇fp(x
0, ξK)

with the batch size we use to run the methods and plot the histograms for ∥∇fp(x
0, ξ1) −

∇fp(x
0)∥2, . . . , ∥∇fp(x

0, ξK)−∇fp(x
0)∥2, see Figure 1.

8For p ∈ (1, 2] function fi,p(x) is differentiable and ∇fi,p(x) = p|a⊤
i x− yi|p−1sign(a⊤

i x− yi)ai and for p = 1 it has

subdifferential ∂fi,p(x) =


ai, if a⊤

i x− yi > 0,

[−ai, ai], if a⊤
i x− yi = 0,

−ai, if a⊤
i x− yi < 0.
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Figure 1: Noise distribution of the stochastic gradients for synthetic dataset, depending on batch
size and p of the loss function (84). Red lines: Gaussian probability density functions with means
and variances empirically estimated by the samples. The total number of batches for each graph is
5 · 105.

We compared 4 different methods on this problem with different p: Adam, SGD, clipped-SGD, and
clipped-SSTM. The results w.r.t. the best relative loss achieved on the training dataset are reported
in Figure 2. In all our experiments, clipped-SSTM performs significantly better than other tested
methods for all values of p. We also observe that for p < 1.5 SGD has a comparable or even faster
convergence than clipped-SGD, while for larger values of p SGD is much slower than clipped-SGD.
Taking into account the noise distributions reported in Figure 1, this behavior is expected since
the stochastic gradient noise in the considered problem has heavier tails due to the specifics of the
dataset generation. We also notice that, in this series of experiments, Adam is never faster than
clipped-SSTM and, moreover, for p ≥ 1.5 Adam converges slower than clipped-SGD. Additionally, we
compared these methods w.r.t. the number of epochs needed to achieve a 2.0 relative loss on the
train, the results are reported in Appendix B.1.2.

6.2 Neural Networks Training

In our experiments with the training of neural networks, we tested the performance of the methods
on the following non-convex non-smooth problems9 (in both tasks, we use standard cross-entropy

9We conduct these experiments to illustrate that clipped-SSTM and clipped-SGD might be useful even for the
problems that are not theoretically studied in this paper. Since (Gorbunov et al., 2020) does not provide numerical
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loss functions):

• BERT fine-tuning on CoLA dataset (Warstadt et al., 2019). We use pretrained BERT from
Transformers library (Wolf et al., 2020) (bert-base-uncased) and freeze all layers except the
last two linear ones.

• ResNet-18 training on ImageNet-100 (first 100 classes of ImageNet (Russakovsky et al., 2015)).

First, we study the noise distribution for both problems as follows: at the starting point we sample
large enough number of batched stochastic gradients ∇f(x0, ξ1), . . . ,∇f(x0, ξK) with batch size 32
and plot the histograms for ∥∇f(x0, ξ1)−∇f(x0)∥2, . . . , ∥∇f(x0, ξK)−∇f(x0)∥2, see Figure 3. As
one can see, the noise distribution for BERT + CoLA is substantially non-sub-Gaussian, whereas the
distribution for ResNet-18 + Imagenet-100 is almost Gaussian. We observe a similar phenomenon
for other points along the trajectories of the methods; see Appendix B.2.3.

Next, we compared four different optimizers on these problems: Adam, SGD (with Momentum),
clipped-SGD (with Momentum and coordinate-wise10 clipping) and clipped-SSTM (with norm-clipping
and ν = 1). The results are presented in Figure 4. We observed that the noise distributions do not
change significantly along the trajectories of the considered methods, see Appendix B. During the
hyper-parameters search, we compared different batch sizes emulated via gradient accumulation
(thus, we compare methods with different batch sizes by the number of base batches used). The
base batch size was 32 for both problems; stepsizes and clipping levels were tuned. One can find
additional details regarding our experiments in Appendix B.

Image classification. On ResNet-18 + ImageNet-100 task, SGD performs relatively well, and
even ties with Adam (with batch size of 4× 32) in validation loss. clipped-SSTM (with batch size of
2× 32) also ties with Adam and clipped-SGD is not far from them. The results were averaged from 5
different launches (with different starting points/weight initializations). Since the noise distribution
is almost Gaussian, even vanilla SGD performs well, i.e., gradient clipping is not required. At the
same time, the clipping does not slow down the convergence significantly.

Text classification. On BERT + CoLA task, when the noise distribution is heavy-tailed, the methods
with clipping outperform SGD by a large margin. This result is in good correspondence with the
derived high-probability complexity bounds for clipped-SGD, clipped-SSTM, and the best-known ones
for SGD. Moreover, clipped-SSTM (with batch size of 8× 32) achieves the same loss on validation as
Adam, and has better accuracy. These results were averaged from 5 different train-val splits and 20
launches (with different starting points/weight initializations) for each of the splits, 100 launches in
total. We provide additional experiments with different NLP tasks in Appendix B.2.4.

experiments with clipped-SSTM on the training of neural networks, our experiments are the first ones showing the
behavior of clipped-SSTM on the considered tasks.

10Following standard practice in the usage of clipping, we use coordinate-wise clipping in clipped-SGD Zhang et al.
(2020b). In the preliminary experiments, we also tried norm-clipping for clipped-SGD, but it showed worse results than
the coordinate-wise one. Our analysis can be generalized to the case of coordinate-wise clipping if we assume the
boundedness of the coordinate-wise variance σ2

c of the stochastic gradients. Then, the result of Lemma 4.2 will hold
with σ2 = nσ2

c , and the norm of the clipped vector will be bounded by
√
nλ. These changes will lead to the explicit

dependence on the dimension in the complexity bounds, similarly to Zhang et al. (2020b).

46



0 20 40 60 80 100
epochs

100

101

lo
ss

Relative train loss, p=1

0 20 40 60 80 100
epochs

10 1

100

lo
ss

Test loss, p=1

0 20 40 60 80 100
epochs

100

101

l2
-d

ist
an

ce

||xtrue xpred||2, p = 1
clipped-SSTM
clipped-SGD
Adam
SGD

0 20 40 60 80 100
epochs

100

101

lo
ss

Relative train loss, p=1.25

0 20 40 60 80 100
epochs

10 1

100

lo
ss

Test loss, p=1.25

0 20 40 60 80 100
epochs

100

101

l2
-d

ist
an

ce

||xtrue xpred||2, p = 1.25
clipped-SSTM
clipped-SGD
Adam
SGD

0 20 40 60 80 100
epochs

100

101

102

lo
ss

Relative train loss, p=1.5

0 20 40 60 80 100
epochs

10 1

100

101

lo
ss

Test loss, p=1.5

0 20 40 60 80 100
epochs

100

101

l2
-d

ist
an

ce

||xtrue xpred||2, p = 1.5
clipped-SSTM
clipped-SGD
Adam
SGD

0 20 40 60 80 100
epochs

100

101

102

lo
ss

Relative train loss, p=1.75

0 20 40 60 80 100
epochs

10 1

100

101

lo
ss

Test loss, p=1.75

0 20 40 60 80 100
epochs

100

101

l2
-d

ist
an

ce

||xtrue xpred||2, p = 1.75

clipped-SSTM
clipped-SGD
Adam
SGD

0 20 40 60 80 100
epochs

100

101

102

lo
ss

Relative train loss, p=2.0

0 20 40 60 80 100
epochs

10 1

100

101

102

lo
ss

Test loss, p=2.0

0 20 40 60 80 100
epochs

100

101

l2
-d

ist
an

ce

||xtrue xpred||2, p = 2.0

clipped-SSTM
clipped-SGD
Adam
SGD

Figure 2: Results obtained for different p by the best relative train loss achieved. To calculate
relative loss, we use fp(xpred)/fp(xtrue), where fp(xtrue) is non-zero because of the noise added to
the train part of the dataset.
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fine-tuning on the CoLA dataset before the training. Red lines: Gaussian probability density functions
with means and variances empirically estimated by the samples. Batch count is the total number of
samples used to build a histogram.
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Figure 4: Train and validation loss + accuracy for different optimizers on both problems. Here,
“batch count” denotes the total number of used stochastic gradients.

A Basic Facts, Technical Lemmas, and Auxiliary Results

A.1 Useful Inequalities

For all a, b ∈ Rn

∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22, (85)

⟨a, b⟩ = 1

2

(
∥a+ b∥22 − ∥a∥22 − ∥b∥22

)
. (86)

A.2 Auxiliary Lemmas

The following lemma is a standard result about functions with (ν,Mν)-Hölder continuous gradient
(Devolder et al., 2014; Nesterov, 2015).
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Lemma A.1. Let f has (ν,Mν)-Hölder continuous gradient on Q ⊆ Rn. Then for all x, y ∈ Q and
for all δ > 0

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Mν

1 + ν
∥x− y∥1+ν

2 , (87)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L(δ, ν)

2
∥x− y∥22 +

δ

2
, L(δ, ν) =

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν . (88)

The next result is known as Bernstein inequality for martingale differences (Bennett, 1962;
Dzhaparidze and Van Zanten, 2001; Freedman et al., 1975).

Lemma A.2. Let the sequence of random variables {Xi}i≥1 form a martingale difference se-

quence, i.e. E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume that conditional variances σ2
i

def
=

E
[
X2

i | Xi−1, . . . , X1

]
exist and are bounded and also assume that there exists deterministic constant

c > 0 such that ∥Xi∥2 ≤ c almost surely for all i ≥ 1. Then for all b > 0, F > 0 and n ≥ 1

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑

i=1

σ2
i ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
. (89)

A.3 Technical Lemmas

Lemma A.3. Let sequences {αk}k≥0 and {Ak}k≥0 satisfy

α0 = A0 = 0, αk+1 =
(k + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

, Ak+1 = Ak + αk+1, a, ε,Mν > 0, ν ∈ [0, 1] (90)

for all k ≥ 0. Then for all k ≥ 0 we have

Ak ≥ aLkα
2
k, Ak ≥ k

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

, (91)

where L0 = 0 and for k > 0

Lk =

(
2Ak

αkε

) 1−ν
1+ν

M
2

1+ν
ν . (92)

Moreover, for all k ≥ 0

Ak ≤ k
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

. (93)

Proof. We start with deriving the second inequality from (91). The proof goes by induction. For
k = 0, the inequality holds. Next, we assume that it holds for all k ≤ K. Then,

AK+1 = AK + αK+1 ≥
K

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

.

Let us estimate the right-hand side of the previous inequality. We want to show that

K
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

≥ (K + 1)
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν
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that is equivalent to the inequality:

K
1+3ν
1+ν

2
+ (K + 1)

2ν
1+ν ≥ (K + 1)

1+3ν
1+ν

2
⇐⇒ K

1+3ν
1+ν

2
≥ (K + 1)

2ν
1+ν (K − 1)

2
.

If K = 1, it trivially holds. If K > 1, it is equivalent to

K

K − 1
≥
(
K + 1

K

)2− 2
1+ν

.

Since 2− 2
1+ν is monotonically increasing function for ν ∈ [0, 1] we have that

(
K + 1

K

)2− 2
1+ν

≤ K + 1

K
≤ K

K − 1
.

That is, the second inequality in (91) holds for k = K + 1, and, as a consequence, it holds for all
k ≥ 0. Next, we derive the first part of (91). For k = 0, it trivially holds. For k > 0 we consider
cases ν = 0 and ν > 0 separately. When ν = 0 the inequality is equivalent to

1 ≥ 2aαkM
2
0

ε
, where

2aαkM
2
0

ε

(90)
= 1,

i.e., we have Ak = aLkα
2
k for all k ≥ 0. When ν > 0 the first inequality in (91) is equivalent to

Ak ≥ a
1+ν
2ν α

1+3ν
2ν

k (ε/2)−
1−ν
2ν M

1
ν
ν

(90)⇐⇒ Ak ≥ k
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

,

where the last inequality coincides with the second inequality from (91) that we derived earlier in
the proof.

To finish the proof, it remains to derive (93). Again, the proof goes by induction. For k = 0
inequality (93) is trivial. Next, we assume that it holds for all k ≤ K. Then,

AK+1 = AK + αK+1 ≤
K

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

.

Let us estimate the right-hand side of the previous inequality. We want to show that

K
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

≤ (K + 1)
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν
1+ν aM

2
1+ν
ν

that is equivalent to the inequality:

K
1+3ν
1+ν + (K + 1)

2ν
1+ν ≤ (K + 1)

1+3ν
1+ν .

This inequality holds due to
K

1+3ν
1+ν ≤ (K + 1)

2ν
1+νK.

That is, (93) holds for k = K + 1, and, as a consequence, it holds for all k ≥ 0.
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Lemma A.4. Let f have Hölder continuous gradients on Rn for some ν ∈ [0, 1] with constant
Mν > 0, be convex and x∗ be some minimum of f(x) on Rn. Then, for all x ∈ Rn

∥∇f(x)∥2 ≤
(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(x∗))

ν
1+ν , (94)

where for ν = 0 we use
[(

1+ν
ν

) ν
1+ν

]
ν=0

:= limν→0

(
1+ν
ν

) ν
1+ν = 1.

Proof. For ν = 0 inequality (94) follows from (3) and11 ∇f(x∗) = 0. When ν > 0 for arbitrary point

x ∈ Rn we consider the point y = x − α∇f(x), where α =
(
∥∇f(x)∥1−ν

2
Mν

) 1
ν
. For the pair of points

x, y we apply (87) and get

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Mν

1 + ν
∥x− y∥1+ν

2

= f(x)− α∥∇f(x)∥2 + αν+1Mν

1 + ν
∥∇f(x)∥1+ν

2

= f(x)− ∥∇f(x)∥
1+ν
ν

2

M
1
ν
ν

+
∥∇f(x)∥

1+ν
ν

2

(1 + ν)M
1
ν
ν

= f(x)− ν∥∇f(x)∥
1+ν
ν

2

(1 + ν)M
1
ν
ν

implying

∥∇f(x)∥2 ≤
(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(y))

ν
1+ν ≤

(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(x∗))

ν
1+ν .

Lemma A.5. Let f have Hölder continuous gradients on Rn for some ν ∈ [0, 1] with constant
Mν > 0, be convex and x∗ be some minimum of f(x) on Rn. Then, for all x ∈ Rn and all δ > 0,

∥∇f(x)∥22 ≤ 2

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν (f(x)− f(x∗)) + δ

2ν
1+νM

2
1+ν
ν . (95)

Proof. For a given δ > 0 we consider an arbitrary point x ∈ Q and y = x − 1
L(δ,ν)∇f(x), where

L(δ, ν) =
(
1
δ

) 1−ν
1+ν M

2
1+ν
ν . For the pair of points x, y we apply (88) and get

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L(δ, ν)

2
∥x− y∥22 +

δ

2

= f(x)− 1

2L(δ, ν)
∥∇f(x)∥22 +

δ

2

implying

∥∇f(x)∥22 ≤ 2L(δ, ν) (f(x)− f(y)) + δL(δ, ν)

≤ 2

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν (f(x)− f(x∗)) + δ

2ν
1+νM

2
1+ν
ν .

11When f is not differentiable, we use subgradients. In this case, 0 belongs to the subdifferential of f at the point
x∗, and we take it as ∇f(x∗).
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B Additional Experimental Details and Results

B.1 Experiments on Synthetic Data

B.1.1 Hyper-Parameters tuning

We grid-searched hyper-parameters for each model. Commonly for all models we considered batch
sizes of {5, 10, 20, 50, 100, 200} and stepsizes lr ∈ [1e−1, 1e−5]. As to model-specific parameters:

• for Adam we grid-search over betas ∈ ({0.8, 0.9, 0.95, 0.99}, {0.9, 0.99, 0.999}),

• for SGD — over momentum ∈ {0.8, 0.9, 0.99, 0.999},

• for clipped-SSTM — over clipping parameter B ∈ {1e−0, 1e−1, 1e−2, 1e−3},

• for clipped-SGD — over momentum ∈ {0.8, 0.9, 0.99, 0.999} and clipping parameter B ∈
{1e−0, 1e−1, 1e−2, 1e−3}.

For clipped-SSTM we additionally use ν = 1 and norm clipping (we did not gridsearch over
it extensively; however, in our experiments on real data, these parameters were the best). For
clipped-SGD we use coordinate-wise clipping.

For Adam, clipped-SSTM and clipped-SGD the best parameters for each p were approximately the
same:

• Adam: lr = 1e−3, betas = (0.9, 0.9) and batch size of 10

• clipped-SSTM: lr = 1e−3, ν = 1, B = 1e−2, norm clipping and a batch size of 5

• clipped-SGD: lr = 1e−3 and B = 1e−1 or lr = 1e−2 and B = 1e−2, momentum = 0.8,
coordinate-wise clipping and a batch size of 5

B.1.2 Comparison w.r.t. certain relative train loss level

In Figure 2, we reported the performance of the methods in terms of the best models w.r.t. train
loss achieved. However, it is also interesting to compare the methods w.r.t. the speed they achieve a
certain (2.0) level of relative loss on train (fp(xpred)/fp(xtrue)). This is a valid metric, since fp(xtrue)
is non-zero, after adding noise to the train part of the dataset, and xtrue is still a good approximation
of the optimal solution. The results are represented in Figure 5. As in the previous set of experiments,
one can see that clipped-SSTM outperforms other algorithms and achieves this 2.0 level of relative
loss much faster, though later loses to Adam/clipped-SGD.

B.2 Neural Networks Training

B.2.1 Hyper-Parameters

In our experiments with the training of neural networks, we use standard implementations of Adam
and SGD from PyTorch Paszke et al. (2019); we write only the parameters we changed from the
default.

To conduct these experiments, we used Nvidia RTX 2070s. The longest experiment (evolution of
the noise distribution for image classification task) took 53 hours (we iterated several times over the
train dataset to build a better histogram; see Appendix B.2.3).
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Figure 5: Results obtained for different p by the lowest epoch when model achieved ×2 from loss in
xtrue

Image Classification. For ResNet-18 + ImageNet-100 the parameters of the methods were
chosen as follows:

• Adam: lr = 1e− 3 and a batch size of 4× 32

• SGD: lr = 1e− 2, momentum = 0.9 and a batch size of 32

• clipped-SGD: lr = 5e− 2, momentum = 0.9, coordinate-wise clipping with clipping parameter
B = 0.1 and a batch size of 32

• clipped-SSTM: ν = 1, stepsize parameter α = 1e− 3 (in code we use separately lr = 1e− 2 and
L = 10 and α = lr

L ), norm clipping with clipping parameter B = 1 and a batch size of 2× 32.
We also upper bounded the ratio Ak/Ak+1 by 0.99 (see a_k_ratio_upper_bound parameter in
code)
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The main two parameters that we grid-searched were lr and batch size. For both of them, we
used a logarithmic grid (i.e., for lr, we used 1e− 5, 2e− 5, 5e− 5, 1e− 4, . . . , 1e− 2, 2e− 2, 5e− 2
for Adam). Batchsize was chosen from 32, 2 · 32, 4 · 32, and 8 · 32. For SGD, we also tried various
momentum parameters.

For clipped-SSTM and clipped-SGD, we used clipping levels of 1 and 0.1, respectively. Too small
a choice of the clipping level, e.g. 0.01, slows down the convergence significantly.

Another important parameter for clipped-SSTM here was a_k_ratio_upper_bound – we used
it to upper bound the maximum ratio of Ak/Ak+1. Without this modification, the method is too
conservative. e.g., after 104 steps Ak/Ak+1 ≈ 0.9999. Effectively, it can be seen as a momentum
parameter of SGD.

Text Classification, CoLA. For BERT + CoLA the parameters of the methods were chosen as
follows:

• Adam: lr = 5e− 5, weight_decay = 5e− 4 and a batch size of 32

• SGD: lr = 1e− 3, momentum = 0.9 and a batch size of 32

• clipped-SSTM: ν = 1, stepsize parameter α = 8e− 3, norm clipping with clipping parameter
B = 1 and a batch size of 8× 32

• clipped-SGD: lr = 2e− 3, momentum = 0.9, coordinate-wise clipping with clipping parameter
B = 0.1 and a batch size of 32

There, we used the same grid as in the previous task. The main difference here is that we didn’t
bound clipped-SSTM Ak/Ak+1 ratio – there are only ≈ 300 steps of the method (because the batch
size is 8 · 32). Thus, the method is still not too conservative.

B.2.2 On the Relation Between Stepsize Parameter α and Batchsize

In our experiments, we noticed that clipped-SSTM shows similar results when the ratio bs2/α is kept
unchanged, where bs is batch size (see Figure 6). We compare the performance of clipped-SSTM
with 4 different choices of α and the batch size.
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Figure 6: Train and validation loss + accuracy for clipped-SSTM with different parameters. Here
α0 = 0.000125, bs means batch size. As we can see from the plots, increasing α 4 times and batch
size 2 times almost does not affect the method’s behavior.

Theorem 4.1 explains this phenomenon in the convex case. For the case of ν = 1 we have (from
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(24) and (30)):

α ∼ 1
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1
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where the dependencies on numerical constants and logarithmic factors are omitted. Therefore,
the observed empirical relation between batch size (mk) and α correlates well with the established
theoretical results for clipped-SSTM.

B.2.3 Evolution of the Noise Distribution

In this section, we provide our empirical study of the noise distribution evolution along the trajectories
of different optimizers. As one can see from the plots in Figures 7 and 8, the noise distribution for
ResNet-18 + ImageNet-100 task is always close to Gaussian distribution, whereas for BERT + CoLA
task it is significantly heavy-tailed.
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Figure 7: Evolution of the noise distribution for BERT + CoLA task.

B.2.4 Additional Results on NLP Tasks

In addition to the previous experiments, we tried several different tasks from GLUE benchmark
(Wang et al., 2018): binary classification (SST-2), paraphrase (MRPC) and text similarity (STS-B).
Noise distributions for these tasks are represented in Figure 9. As for BERT + CoLA, the noise in the
stochastic gradients is heavy-tailed.
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Figure 8: Evolution of the noise distribution for ResNet-18 + ImageNet-100 task.

In these additional tests, we also consider clipped-SSTM∗ – a modification of clipped-SSTM with
linearly increasing batch size. This method provides faster convergence at early steps, as well as
better results overall in comparison to clipped-SSTM. Parameters for all methods were tuned and are
reported below.
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Figure 9: Noise distribution of the stochastic gradients for GLUE benchmark and BERT before the
training. Red lines: probability density functions with means and variances empirically estimated by
the samples. Batch count is the total number of samples used to build a histogram.

Text Classification, SST-2. For BERT + SST-2 the parameters of the methods were chosen as
follows:

• Adam: lr = 5e− 4 and a batch size of 32

• SGD: lr = 1e− 3, momentum = 0.9 and a batch size of 32

• clipped-SGD: lr = 2e− 3, momentum = 0.9, coordinate-wise clipping with clipping parameter
B = 0.1 and a batch size of 32

• clipped-SSTM: ν = 1, stepsize parameter α = 1e− 3, norm clipping with clipping parameter
B = 1 and a batch size of 8× 32
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• clipped-SSTM∗: ν = 1, stepsize parameter α = 1e− 3, norm clipping with clipping parameter
B = 1 and a batch size of k × 32 where k = 1 + ⌊ batch count

400 ⌋

The results are represented in Figure 10.
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Figure 10: Train and validation loss + accuracy for different optimizers for BERT + SST-2 task.

Paraphrase, MRPC. For BERT + MRPC the parameters of the methods were chosen as follows:

• Adam: lr = 5e− 4 and a batch size of 32

• SGD: lr = 3e− 4, momentum = 0.99 and a batch size of 32

• clipped-SGD: lr = 1e− 3, momentum = 0.95, coordinate-wise clipping with clipping parameter
B = 0.1 and a batch size of 32

• clipped-SSTM: ν = 1, stepsize parameter α = 3e− 3, norm clipping with clipping parameter
B = 1 and a batch size of 4× 32

• clipped-SSTM∗: ν = 1, stepsize parameter α = 1e− 2, norm clipping with clipping parameter
B = 1 and a batch size of k × 32 where k = 1 + ⌊ batch count

100 ⌋

The results are represented in Figure 11.
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Figure 11: Train and validation loss + accuracy for different optimizers for BERT + MRPC task.

Text similarity, STS-B. For BERT + STS-B the parameters of the methods were chosen as follows:

• Adam: lr = 1e− 3 and a batch size of 32

• SGD: lr = 1e− 4, momentum = 0.99 and a batch size of 32

• clipped-SGD: lr = 1e−3, momentum = 0.995, coordinate-wise clipping with clipping parameter
B = 0.1 and a batch size of 32
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• clipped-SSTM: ν = 1, stepsize parameter α = 1e− 2, norm clipping with clipping parameter
B = 1 and a batch size of 8× 32

• clipped-SSTM∗: ν = 1, stepsize parameter α = 3e− 3, norm clipping with clipping parameter
B = 1 and a batch size of k × 32 where k = 1 + ⌊ batch count

200 ⌋

The results are represented in Figure 12.
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Figure 12: Train and validation loss + accuracy for different optimizers for BERT + STS-B task.

As for BERT + CoLA, we see that methods with clipping are superior to SGD. This is expected
in view of the histograms reported in Figure 9 and previous empirical studies. We also point out
that clipped-SSTM/clipped-SSTM ∗/clipped-SGD achieve either comparable or even better validation
accuracy than Adam.
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