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Abstract. Stochastic optimization is a vital field in the realm of math-
ematical optimization, finding applications in diverse areas ranging from
operations research to machine learning. In this paper, we introduce
a novel first-order optimization algorithm designed for scenarios where
Markovian noise is present, incorporating Nesterov acceleration for en-
hanced efficiency. The convergence analysis is performed using an as-
sumption on noise depending on the distance to the solution. We also
delve into the consensus problem over Markov-varying networks, explor-
ing how this algorithm can be applied to achieve agreement among multi-
ple agents with differing objectives during changes in the communication
system. To show the performance of our method on the problem above,
we conduct experiments to demonstrate the superiority over the classic
approach.

Keywords: convex optimization · stochastic optimization · Markovian
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1 Introduction

Stochastic optimization encompasses a suite of methodologies aimed at minimiz-
ing or maximizing an objective function in the presence of randomness. These
methods have evolved into indispensable tools across a spectrum of disciplines
including science, engineering, business, computer science, and statistics. Appli-
cations are diverse, ranging from refining the placement of acoustic sensors on
a beam through simulations, to determining optimal release times for reservoir
water to maximize hydroelectric power generation, to fine-tuning the parameters
of statistical models based on given datasets. The introduction of randomness
typically occurs through the cost function or the constraint set. While the term
”stochastic optimization” may encompass any optimization approach that incor-
porates randomness within certain communities, our focus here is on scenarios
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where the objective function is stochastic.
As with deterministic optimization, no universal solution method generally ex-
cels across all problems. Structural assumptions play a pivotal role in making
problems tractable. Given that solution methodologies are intricately linked to
problem structures, our analysis relies heavily on problem type, with a detailed
exposition of associated solution approaches.

Related work. A considerable body of research has documented substantial ad-
vancements achieved by accelerating gradient descent in a Nesterov manner [37].
Building upon this foundation, Nesterov-accelerated stochastic gradient descent
[2,5] emerged as a powerful tool for optimizing different objectives in stochastic
settings. In the earlier works [39,43], the proof of convergence was done using
an assumption on bounded variance, which significantly narrows the application
perspective. Later, [40] succeeded in relaxing this assumption to strong growth
condition, which partially solved the aforementioned problem. At the same time,
several papers delved into applying acceleration to specific stochastic cases, e.g.,
coordinate descent [38], heavy tailed noise [41], distributed learning [42]. How-
ever, all of these works investigate i.i.d. noise setup, while a more general case
could be considered.
As of late, there has been an emergence of scholarly works aimed at addressing
the existing gap in the analysis of Markovian noise configuration. Nonetheless,
it is noteworthy that this domain continues to be a dynamically evolving field
of study. Specifically, [14] examined a variant of the Ergodic Mirror Descent
algorithm yielding optimal convergence rates for smooth and nonconvex prob-
lems. More recently, [18] proposed a random batch size algorithm tailored for
nonconvex optimization within a compact domain. In the Markovian noise do-
main, the finite-time analysis of non-accelerated SGD-type algorithms has been
investigated in [19] and [21]. However, [19] relies heavily on the assumption of
a bounded domain and uniformly bounded stochastic gradient oracles and [21]
achieves only suboptimal dependence on initial conditions for strongly convex
problems when employing SGD. In the exploration of accelerated SGD in the
presence of Markovian noise, [22] achieved an optimal rate of initial condition
forgetting, but suboptimal variance terms. Recently, [1] proposed the accelerated
version of SGD achieving linear dependence on the mixing time.
The aforementioned studies predominantly address general Markovian noise op-
timization. Recently, a surge of papers has emerged, focusing on the specialized
scenario of distributed optimization [24,25]. [26] investigates the generalization
and stability of Markov SGD with specific emphasis on excess variance guaran-
tees. Simultaneously, specific results such as those from [27] offer lower bounds
for particular finite-sum problems within the Markovian setting.

Our contributions. We present the analysis of an accelerated version of SGD
in the Markovian noise setting under the assumption of a gradient estimator
bounded by the distance to the optimum. We obtain sharp convergence rate and
optimal dependence in terms of the mixing time of the underlying Markov chain.
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Moreover, for k = 1 Markovian scheme reduces to a classical i.i.d. noise setup.
To the best of our knowledge, analysis in this case (even for i.i.d. stochasticity)
under suggested assumptions has not been presented in the literature before. To
show the practicality of our method, we perform numerical experiments on the
consensus search problem on time-varying networks and show a better conver-
gence rate compared to classical approaches for solving this problem.

1.1 Technical Preliminaries

Let (Z, dZ) be a complete separable metric space endowed with its Borel σ-field
Z. Let (ZN,Z⊗N) be the corresponding canonical process. Consider the Markov
kernel Q defined on Z×Z, and denote by Pξ and Eξ the corresponding probability
distribution and the expected value with initial distribution ξ. Without loss of
generality, we assume that (Zk)k∈N is the corresponding canonical process. By
construction, for any A ∈ Z, it holds that Pξ(Zk ∈ A|Zk−1) = Q(Zk−1, A),
Pξ-a.s. If ξ = δz, z ∈ Z, we write Pz and Ez instead of Pδz and Eδz , respectively.
For x1, . . . , xk being the iterates of any stochastic first-order method, we denote
Fk = σ(xj , j ≤ k) and write Ek as an alias for E[·|Fk].

Lemma 1 (Cauchy Schwartz inequality). For any a, b, x1, . . . , xn ∈ Rd and c >
0 the following inequalities hold:

2⟨a, b⟩ ≤ ∥a∥2

c
+ c∥b∥2, (1)

∥a+ b∥2 ≤
(
1 +

1

c

)
∥a∥2 + (1 + c)∥b∥2. (2)

2 Problem and Assumptions

In this paper, we study the minimization problem

min
x∈Rd

[
f(x) := EZ∼π[F (x, Z)]

]
, (3)

where access to the function f and its gradient are available only through the
noisy oracle F (x, Z) and ∇F (x, Z) respectively. We start by presenting two
classical regularity constraints on the target function f :

Assumption 1 The function f is L-smooth on Rd with L > 0, i.e. it is con-
tinuously differentiable and there exists a constant L > 0 such that the following
inequality holds for all x, y ∈ Rd:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Assumption 2 The function f is µ-strongly convex on Rd, i.e. it is continu-
ously differentiable, and there exists a constant µ > 0 such that the following
inequality holds for all x, y ∈ Rd:

µ

2
∥x− y∥2 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ .
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Next we specialize our assumption on the sequence of noise variables {Zi}∞i=0.
Assumption 3 is also considered to be classical in the case of stochastic opti-
mization with the Markovian noise [18,19,22]. It allows us to deal with finite
state-space Markov chains with irreducible and aperiodic transition matrix.

Assumption 3 {Zi}∞i=0 is a stationary Markov chain on (Z,Z) with Markov
kernel Q and unique invariant distribution π. Moreover, Q is uniformly geomet-
rically ergodic with mixing time τ ∈ N, i.e., for every k ∈ N,

∆(Qk) = sup
z,z′∈Z

(1/2)∥Qk(z, ·)−Qk(z′, ·)∥TV ≤ (1/4)⌊k/τ⌋ .

Now we specify our assumption on the stochastic gradient estimator. The major-
ity of existing literature on stochastic first order methods for solving (3) utilizes
strong growth condition [40] or uniformly bounded variance [39] as they allow
to prove the convergence quite straightforwardly. However, these assumptions
narrow down the set of target functions that can be considered rather strongly
and there are several kinds of relaxation of it [9], where gradient differences are
bounded by the norm of the true gradient and a certain bias. Instead of this, we
propose to use the following assumption:

Assumption 4 For all x ∈ Rd it holds that Eπ[∇F (x, Z)] = ∇f(x). Moreover,
for all z ∈ Z and x ∈ Rd it holds that

∥∇F (x, z)−∇f(x)∥2 ≤ σ2 + δ2∥x− x∗∥2 . (4)

It is one way or another much weaker, then strong grows condition and uniformly
bounded variance and, to the best of our knowledge, seem to be new for analyzing
accelerated methods for solving stochastic optimization problems. One can notice
that unlike the i.i.d. case, we are forced to require the almost sure bound in
(4) rather than in expectation. This issue inevitably arises when dealing with
Markovian stochasticity due to the impossibility of using the expectation trick
[20], and has not yet been solved by any authors dealing with such type of
stochasticity [18,19,21]. Either way, there are advantages to this approach as
well. If we additionally require our noisy oracle F (x, Z) to be L̃−Lipschiz, then
Assumption 4 is automatically satisfied. Formally, if for any x, y ∈ Rd,

∥∇F (x, z)−∇F (y, z)∥ ≤ L̃(z)∥x− y∥,

for L̃ : Z → R+ with sup |L̃| < ∞, then

∥∇F (x, z)−∇f(x)∥2 ≤ 3∥∇F (x, z)−∇F (x∗, z)∥2 + 3∥∇F (x∗, z)−∇f(x∗)∥2

+ 3∥∇f(x)−∇f(x∗)∥2

≤ 3(∥L̃∥2 + L2)∥x− x∗∥2 + 3∥∇F (x∗, z)−∇f(x∗)∥2,

taking σ =
√
3∥∇F (x∗, z)−∇f(x∗)∥ and δ =

√
6max(L, ∥L̃∥) gives Assump-

tion 4.
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3 Main results

We start by introducing our version of Nesterov accelerated SGD. It utilizes
the idea from [1] of using exactly the number of samples that comes from the
truncated geometric distribution with truncation parameter to be specified later
(see Theorem 1) in order to obtain optimal computational complexity of the
algorithm.

Algorithm 1 Markov Accelerated GD

1: Parameters: stepsize γ > 0, momentums θ, η, number of iterations N , batchsize
limit M

2: Initialization: choose x0 = x0
f

3: for k = 0, 1, 2, . . . , N − 1 do
4: xk

g = θxk
f + (1− θ)xk

5: Sample Jk ∼ Geom (1/2)

6: gk = gk0 +

{
2Jk

(
gkJk

− gkJk−1

)
, if 2Jk ≤ M

0, otherwise
with gkj = 1

2j

∑2j

i=1 ∇F (xk
g , ZTk+i)

7: xk+1
f = xk

g − γgk

8: xk+1 = ηxk+1
f + (1− η)xk

f

9: T k+1 = T k + 2Jk

10: end for

The key idea behind randomized batch size is to reduce the bias of the stochas-
tic gradient estimator. Motivation for this is irrefutably natural as under the
Markovian stochastic gradients oracles this bias appears by itself. Indeed, one
can easily show the fact that:

Ek[∇F (xk, ZTk+i)] ̸= ∇f(xk) .

In a subsequent part, we show how the bias of the gradient estimator intro-
duced in line 6 of Algorithm 1 scales with the truncation parameter M . To
obtain proper dependence, we first need to introduce auxiliary Lemma 2, which
is to constrain the gradient estimator with a simpler structure. In particular, we
bound MSE for sample average approximation computed over batch size n under
arbitrary initial distribution. We emphasise that it is extremely essential to have
the bound for MSE under arbitrary initial distribution ξ, because in the proof of
our Theorem 1 we will unavoidably manage the conditional expectations w.r.t.
the previous iterate.

Lemma 2. Consider Assumptions 3 and 4. Then, for any n ≥ 1 and x ∈ Rd,
it holds that

Eπ

[
∥ 1
n

∑n

i=1
∇F (x, Zi)−∇f(x)∥2

]
≤ 8τ

n

(
σ2 + δ2∥x− x∗∥2

)
. (5)
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Moreover, for any initial distribution ξ on (Z,Z), that

Eξ

[
∥ 1
n

∑n

i=1
∇F (x, Zi)−∇f(x)∥2

]
≤ C1τ

n

(
σ2 + δ2∥x− x∗∥2

)
, (6)

where C1 = 16(1 + 1
ln2 4

).

Proof. By [31, Lemma 19.3.6 and Theorem 19.3.9], for any two probabilities ξ, ξ′

on (Z,Z) there is a maximal exact coupling (Ω,F , P̃ξ,ξ′ , Z, Z
′, T ) of PQ

ξ and PQ
ξ′ ,

that is,

∥ξQn − ξ′Qn∥TV = 2P̃ξ,ξ′(T > n) . (7)

We write Ẽξ,ξ′ for the expectation with respect to P̃ξ,ξ′ . Using the coupling
construction (7),

E1/2
ξ

[
∥

n∑
i=1

{∇F (x, Zi)−∇f(x)}∥2
]
≤ E1/2

π

[
∥
n−1∑
i=0

∇F (x, Zi)−∇f(x)∥2
]
+

Ẽ1/2
ξ,π

[
∥
n−1∑
i=0

{∇F (x, Zi)−∇F (x, Z ′
i)}∥2

]
.

The first term is bounded with (5). Moreover, with (7) and Assumption 4, we
get

∥
n−1∑
i=0

{∇F (x, Zi)−∇F (x, Z ′
i)}∥2 ≤ 8

(
σ2 + δ2∥x− x∗∥2

)( n−1∑
i=0

1{Zi ̸=Z
′
i}

)2

= 8
(
σ2 + δ2∥x− x∗∥2

)( n−1∑
i=0

1{T>i}

)2

≤ 16
(
σ2 + δ2∥x− x∗∥2

) ∞∑
i=1

i1{T>i} .

Thus, using the Assumption 3, we bound

Ẽξ,π

[ ∞∑
i=1

i1{T>i}

]
=

∞∑
i=1

iP̃ξ,ξ′(T > i) =

∞∑
i=1

i(1/4)⌊i/τ⌋ ≤ 4

∞∑
i=1

i(1/4)i/τ .

Now we set ρ = (1/4)1/τ and use an upper bound

∞∑
k=1

kρk ≤ ρ−1

+∞∫
0

xpρx dx ≤ ρ−1
(
ln ρ−1

)−2
Γ (2)

= ρ−1
(
ln ρ−1

)−2
=

τ2

(1/4)1/τ ln2 4
.
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Combining the bounds above yields

Eξ

[
∥ 1
n

n∑
i=1

∇F (x, Zi)−∇f(x)∥2
]
≤
(c1τ

n
+

c2τ
2

n2

) (
σ2 + δ2∥x− x∗∥2

)
,

where c1 = 16, c2 = 128(1/4)−1/τ

ln2 4
. Now we consider the two cases. If n < c1τ , we

get from Minkowski’s inequality that

Eξ

[
∥ 1
n

n∑
i=1

∇F (x, Zi)−∇f(x)∥2
]
≤ 2σ2 + 2δ2∥x− x∗∥2 ,

and (6) holds. If n > c1τ , it holds that

c2τ
2

n2

(
σ2 + δ2∥∇f(x)∥2

)
≤ c2τ

2

nc1τ

(
σ2 + δ2∥x− x∗∥2

)
,

and we gain (6) too. □

We are now ready to bound the MSE for the gradient estimator introduced in
line 6 of Algorithm 1. From Lemma 3, we obtain a desired linear dependence of
the error reduction on the parameter M .

Lemma 3. Consider Assumptions 3 and 4. Then for the gradient estimates gk

from line 6 Algorithm 1 it holds that Ek[g
k] = Ek[g

k
⌊log2 M⌋]. Moreover,

Ek[∥∇f(xk
g)− gk∥2] ≤ 13C1τ log2 M(σ2 + δ2∥xk

g − x∗∥2) , (8)

∥∇f(xk
g)− Ek[g

k]∥2 ≤ 2C1τM
−1(σ2 + δ2∥xk

g − x∗∥2) ,

where C1 is defined in (6).

Proof. To show that Ek[g
k] = Ek[g

k
⌊log2 M⌋] we simply compute conditional ex-

pectation w.r.t. Jk:

Ek[g
k] = Ek

[
EJk

[gk]
]
= Ek[g

k
0 ] +

⌊log2 M⌋∑
i=1

P{Jk = i} · 2iEk[g
k
i − gki−1]

= Ek[g
k
0 ] +

⌊log2 M⌋∑
i=1

Ek[g
k
i − gki−1] = Ek[g

k
⌊log2 M⌋] .

(9)

We start with the proof of the first statement of (8) by taking the conditional
expectation for Jk:

Ek[∥∇f(xk
g)− gk∥2] ≤ 2Ek[∥∇f(xk

g)− gk0∥2] + 2Ek[∥gk − gk0∥2]

= 2Ek[∥∇f(xk
g)− gk0∥2] + 2

∑⌊log2 M⌋

i=1
P{Jk = i} · 4iEk[∥gki − gki−1∥2]

= 2Ek[∥∇f(xk
g)− gk0∥2] + 2

∑⌊log2 M⌋

i=1
2iEk[∥gki − gki−1∥2]
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≤ 2Ek[∥∇f(xk
g)− gk0∥2] +

+ 4
∑⌊log2 M⌋

i=1
2i
(
Ek[∥∇f(xk

g)− gki−1∥2 + Ek[∥gki −∇f(xk
g)∥2]

)
.

To bound Ek[∥∇f(xk
g) − gk0∥2], Ek[∥∇f(xk

g) − gki−1∥2, Ek[∥gki − ∇f(xk
g)∥2], we

apply Lemma 2 and get

Ek[∥∇f(xk
g)− gk∥2]

≤ 2σ2 + 2δ2∥xk
g − x∗∥2 + 12

∑⌊log2 M⌋

i=1
2i · C1τ

2i
(σ2 + δ2∥xk

g − x∗∥2)

≤ 13C1τ log2 M(σ2 + δ2∥xk
g − x∗∥2) .

To show the second part of the statement, we use (9) and get

∥∇f(xk
g)− Ek[g

k]∥2 = ∥∇f(xk)− Ek[g
k
⌊log2 M⌋]∥

2 .

Using Lemma 2 and 2⌊log2 M⌋ ≥ M/2 finishes the proof. □

We also note that our proofs of Lemma 2 and Lemma 3 rely on the proofs of
Lemmas 1 and 2 of [1], but for the sake of clarity of the narrative we give them
in full.
Now, before we move on to the proof of our major result, we first need to
introduce two descent lemmas:

Lemma 4. Consider Assumptions 1 and 2 be satisfied. Then for the iterates of
Algorithm 1 with θ = (1− η)/(β − η), θ > 0, η ≥ 1, it holds that

Ek[∥xk+1 − x∗∥2] ≤(1 + αγη)(1− β)∥xk − x∗∥2 + (1 + αγη)β∥xk
g − x∗∥2

+ (1 + αγη)(β2 − β)∥xk − xk
g∥2 + η2γ2Ek[∥gk∥2]

− 2ηγ⟨∇f(xk
g), ηx

k
g + (1− η)xk

f − x∗⟩

+
ηγ

α
∥Ek[g

k]−∇f(xk
g)∥2 , (10)

where α > 0 is any positive constant.

Proof. We start with lines 8 and 7 of Algorithm 1:

∥xk+1−x∗∥2 = ∥ηxk+1
f + (1− η)xk

f − x∗∥2 = ∥ηxk
g − ηγgk + (1− η)xk

f − x∗∥2

=∥ηxk
g + (1− η)xk

f − x∗∥2 + γ2η2∥gk∥2 − 2γη⟨gk, ηxk
g + (1− η)xk

f − x∗⟩.

Using straightforward algebra, we get

∥xk+1 − x∗∥2 =∥ηxk
g + (1− η)xk

f − x∗∥2 − 2γη⟨∇f(xk
g), ηx

k
g + (1− η)xk

f − x∗⟩
− 2γη⟨Ek[g

k]−∇f(xk
g), ηx

k
g + (1− η)xk

f − x∗⟩+ γ2η2∥gk∥2

− 2γη⟨gk − Ek[g
k], ηxk

g + (1− η)xk
f − x∗⟩

≤(1 + αηγ)∥ηxk
g + (1− η)xk

f − x∗∥2 + γη

α
∥Ek[g

k]−∇f(xk
g)∥2.
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− 2γη⟨∇f(xk
g), ηx

k
g + (1− η)xk

f − x∗⟩+ γ2η2∥gk∥2

− 2γη⟨gk − Ek[g
k], ηxk

g + (1− η)xk
f − x∗⟩

In the last step we also applied Cauchy-Schwartz inequality in the form (1) with
c > 0. Taking the conditional expectation, we get

Ek[∥xk+1 − x∗∥2] ≤(1 + αηγ)∥ηxk
g + (1− η)xk

f − x∗∥2

− 2γη⟨∇f(xk
g), ηx

k
g + (1− η)xk

f − x∗⟩

+ γ2η2Ek[∥gk∥2] +
γη

α
∥Ek[g

k]−∇f(xk
g)∥2 . (11)

Now let us handle expression ∥ηxk
g + (1 − η)xk

f − x∗∥2 for a while. Taking into
account line 4 and the choice of θ such that θ = (1− η)/(β − η) (in particular,
β = η + (1− η)/θ and (1− η)(θ − 1)/θ = 1− β), we get

ηxk
g + (1− η)xk

f = ηxk
g +

(1− η)

θ
xk
g − (1− η)(1− θ)

θ
xk = βxk

g + (1− β)xk

Substituting into ∥ηxk
g + (1− η)xk

f − x∗∥2, we get

∥ηxk
g + (1− η)xk

f − x∗∥2 = ∥βxk
g + (1− β)xk − x∗∥2

= ∥xk − x∗ + β(xk
g − xk)∥2

= ∥xk − x∗∥2 + 2β⟨xk − x∗, xk
g − xk⟩+ β2∥xk − xk

g∥2

= ∥xk − x∗∥2 + β
(
∥xk

g − x∗∥2 − ∥xk − x∗∥2 − ∥xk
g − xk∥2

)
+ β2∥xk − xk

g∥2

= (1− β)∥xk − x∗∥2 + β∥xk
g − x∗∥2 + (β2 − β)∥xk − xk

g∥2. (12)

Combining (12) with (11), we finish the proof. □

Lemma 5. Let Assumptions 1 and 2 be satisfied. Let problem (3) be solved by
Algorithm 1. Then for any u ∈ Rd, we get

Ek[f(x
k+1
f )] ≤f(u)− ⟨∇f(xk

g), u− xk
g⟩ −

µ

2
∥u− xk

g∥2 −
γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2].

Proof. Using Assumption 1 and line 7 of Algorithm 1, we get

f(xk+1
f ) ≤ f(xk

g) + ⟨∇f(xk
g), x

k+1
f − xk

g⟩+
L

2
∥xk+1

f − xk
g∥2

= f(xk
g)− γ⟨∇f(xk

g), g
k⟩+ Lγ2

2
∥gk∥2

= f(xk
g)− γ⟨∇f(xk

g),∇f(xk
g)⟩ − γ⟨∇f(xk

g),Ek[g
k]−∇f(xk

g)⟩

− γ⟨∇f(xk
g), g

k − Ek[g
k]⟩+ Lγ2

2
∥gk∥2

≤ f(xk
g)− γ∥∇f(xk

g)∥2 +
γ

2
∥∇f(xk

g)∥2 +
γ

2
∥Ek[g

k]−∇f(xk
g)∥2
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− γ⟨∇f(xk
g), g

k − Ek[g
k]⟩+ Lγ2

2
∥gk∥2.

Here we also used Cauchy-Schwartz inequality (1) with a = ∇f(xk
g), b = ∇f(xk

g)−
Ek[g

k] and c = 1. Taking the conditional expectation, we get

Ek[f(x
k+1
f )] ≤f(xk

g)−
γ

2
∥∇f(xk

g)∥2 +
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2].

Using Assumption 2 with x = u and y = xk
g , one can conclude that for any

u ∈ Rd it holds

Ek[f(x
k+1
f )] ≤ f(u)− ⟨∇f(xk

g), u− xk
g⟩ −

µ

2
∥u− xk

g∥2 −
γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2]. □

Taking into account all of the considerations above, we can prove the following
result:

Theorem 1. Consider Assumptions 1 – 4. Let the problem (3) be solved by
Algorithm 1. Then for β, θ, η, γ,M satisfying

M = (1 + 2/β), β =

√
4µγ

9
, η =

9β

2µγ
=

√
9

µγ
,

γ ≲min

{
µ3

δ4τ2
;
1

L

}
, θ =

1− η

β − η
,

it holds that

E

[
∥xN − x∗∥2 + 18

µ
(f(xN

f )− f(x∗))

]

≲ exp

(
−N

√
µγ

9

)[
∥x0 − x∗∥2 + 18

µ
(f(x0)− f(x∗))

]
+

√
γ

µ3/2
C1τ log2 Mσ2.

Proof. Using Lemma 5 with u = x∗ and u = xk
f , we get

Ek[f(x
k+1
f )] ≤f(x∗)− ⟨∇f(xk

g), x
∗ − xk

g⟩ −
µ

2
∥x∗ − xk

g∥2 −
γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2],

Ek[f(x
k+1
f )] ≤f(xk

f )− ⟨∇f(xk
g), x

k
f − xk

g⟩ −
µ

2
∥xk

f − xk
g∥2 −

γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2].
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Summing the first inequality with coefficient 2γη, the second with coefficient
2γη(η − 1) and (10), we obtain

Ek[∥xk+1 − x∗∥2 + 2γη2f(xk+1
f )]

≤(1 + αγη)(1− β)∥xk − x∗∥2 + (1 + αγη)β∥xk
g − x∗∥2

+ (1 + αγη)(β2 − β)∥xk − xk
g∥2 − 2ηγ⟨∇f(xk

g), ηx
k
g + (1− η)xk

f − x∗⟩

+ η2γ2Ek[∥gk∥2] +
ηγ

α
∥Ek[g

k]−∇f(xk
g)∥2

+ 2γη
(
f(x∗)− ⟨∇f(xk

g), x
∗ − xk

g⟩ −
µ

2
∥x∗ − xk

g∥2 −
γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2]

)
+ 2γη(η − 1)

(
f(xk

f )− ⟨∇f(xk
g), x

k
f − xk

g⟩ −
µ

2
∥xk

f − xk
g∥2 −

γ

2
∥∇f(xk

g)∥2

+
γ

2
∥Ek[g

k]−∇f(xk
g)∥2 +

Lγ2

2
Ek[∥gk∥2]

)
=(1 + αγη)(1− β)∥xk − x∗∥2 + 2γη (η − 1) (f(xk

f )− 2γηf(x∗))

+ ((1 + αγη)β − γηµ) ∥xk
g − x∗∥2

+ (1 + αγη)(β2 − β)∥xk − xk
g∥2 − γ2η2∥∇f(xk

g)∥2

+
(ηγ
α

+ γ2η2
)
∥Ek[g

k]−∇f(xk
g)∥2 +

(
η2γ2 + γ3η2L

)
Ek[∥gk∥2]

≤(1 + αγη)(1− β)∥xk − x∗∥2 + 2γη (η − 1) (f(xk
f )− 2γηf(x∗))

+ ((1 + αγη)β − γηµ) ∥xk
g − x∗∥2

+ (1 + αγη)(β2 − β)∥xk − xk
g∥2 − γ2η2∥∇f(xk

g)∥2

+ ηγ

(
1

α
+ γη

)
∥Ek[g

k]−∇f(xk
g)∥2 + 8η2γ2 (1 + γL)Ek[∥gk −∇f(xk

g)∥2]

+
1

2
η2γ2 (1 + γL)Ek[∥∇f(xk

g)∥2] .

In the last step, we also used (2) with c = 4. Since γ ≤ 9
16L , the choice of

α = β
2ηγ , β =

√
16µγ/9 gives

β =
√

16µγ/9 ≤
√

µ/L ≤ 1,

(1 + αηγ)(1− β) =

(
1 +

β

2

)
(1− β) ≤

(
1− β

2

)
,

and, therefore,

Ek

[
∥xk+1 − x∗∥2 + 2γη2f(xk+1

f )
]

≤(1− β/2)∥xk − x∗∥2 + 2γη (η − 1) (f(xk
f )− 2γηf(x∗))

+ η2γ2 (1 + 2/β) ∥Ek[g
k]−∇f(xk

g)∥2

+ 8η2γ2 (1 + γL)Ek[∥gk −∇f(xk
g)∥2]
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+ ((1 + αγη)β − γηµ) ∥xk
g − x∗∥2

Subtracting 2γη2f(x∗) from both sides, we get

Ek

[
∥xk+1 − x∗∥2 + 2γη2(f(xk+1

f )− f(x∗))
]

≤ (1− β/2) ∥xk − x∗∥2 + (1− 1/η) · 2γη2(f(xk
f )− f(x∗))

+ η2γ2 (1 + 2/β) ∥Ek[g
k]−∇f(xk

g)∥2

+ 8η2γ2 (1 + γL)Ek[∥gk −∇f(xk
g)∥2]

+ ((1 + αγη)β − γηµ) ∥xk
g − x∗∥2

Applying Lemma 3 and γL ≤ 1, one can obtain

Ek

[
∥xk+1 − x∗∥2 + 2γη2(f(xk+1

f )− f(x∗))
]

≤ (1− β/2) ∥xk − x∗∥2 + (1− 1/η) · 2γη2(f(xk
f )− f(x∗))

+ η2γ2 (1 + 2/β) · 2C1τM
−1(σ2 + δ2∥xk

g − x∗∥2)
+ 16η2γ2 · 13C1τ log2 M(σ2 + δ2∥xk

g − x∗∥2)
+ ((1 + αγη)β − γηµ) ∥xk

g − x∗∥2

With M ≥ (1+ 2/β),
√
γ ≤ µ

3
2

1872C1τδ2 log2 M , α = β
2γη , β = 2

3

√
µγ and η =

√
9
µγ ,

we have:

(1 + αγη)β − γηµ+ η2γ2δ2
(
(1 + 2/β) · 2C1τM

−1 + 208C1τ log2 M
)

≤ (1 + αγη)β − 3
√
µγ +

C1τδ
2γ

µ

(
18 + 1872 log2 M

)
≤ √

µγ − 3
√
µγ + 2

√
µγ ≤ 0,

and then,

Ek

[
∥xk+1 − x∗∥2 + 2γη2(f(xk+1

f )− f(x∗))
]

≤
(
1− β/2

)
∥xk − x∗∥2 + (1− 1/η) · 2γη2(f(xk

f )− f(x∗))

+
(
η2γ2 (1 + 2/β) · 2C1τM

−1 + 16η2γ2 · 13C1τ log2 M
)
σ2

≤max {(1− β/2) , (1− 1/η)}
[
∥xk − x∗∥2 + 2γη2(f(xk

f )− f(x∗))
]

+
(
η2γ2 (1 + 2/β) · 2C1τM

−1 + 16η2γ2 · 13C1τ log2 M
)
σ2.

Using that ηγ = 9β/(2µ), β/2 = 1/η and γ ≤ L−1, we have

Ek

[
∥xk+1 − x∗∥2 + 2γη2(f(xk+1

f )− f(x∗))
]

≤ (1− β/2)
[
∥xk − x∗∥2 + 2γη2(f(xk

f )− f(x∗))
]

+
81

4
β2µ−2

(
(1 + 2/β) · 2C1τM

−1 + 208C1τ log2 M
)
σ2
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Finally, we perform the recursion and substitute β =
√
4µγ/9:

E
[
∥xN − x∗∥2 + 2γη2(f(xN

f )− f(x∗))
]

≤
(
1−

√
µγ

9

)N

[∥x0 − x∗∥2 + 2γη2(f(x0
f )− f(x∗))]

+
81

2
βµ−2

(
(1 + 2/β) · 2C1τM

−1 + 208C1τ log2 M
)
σ2

≤ exp

(
−
√

µγN2

9

)
[∥x0 − x∗∥2 + 2γη2(f(x0

f )− f(x∗))]

+
81
√
γ

µ3/2
C1τ

(
1 + 104 log2 M

)
σ2 .

Substituting of η =
√

9
µγ concludes the proof. □

Corollary 1 (Step tuning for Theorem 1). Under the conditions of Theorem 1,
choosing γ as

γ ≲ min

{
µ3

δ4τ2
;
1

L
;

1

µN2
ln2

(
µ2N [∥x0 − x∗∥2 + 18µ−1(f(x0

f )− f(x∗))]

τσ2

)}
,

in order to achieve ϵ-approximate solution (in terms of E
[
∥xN − x∗∥2

]
≲ ϵ) it

takes

Õ

((√
L

µ
+

τδ2

µ2

)
log

(
1

ϵ

)
+

τσ2

µ2ϵ

)
oracle calls.

4 Numerical experiments

In this section, we present numerical experiments that compare the proposed
method and the existing approaches for the problem of finding consensus in
distributed network.

4.1 Problem formulation

Let us consider the next problem. Assume that we have {xi}di=1, where xi ∈ R.
Also we get a communication network, where ith agent stores xi. Moreover, the
communication graph can be described as Gk = (V,Ek), where the set of edges
depends on the k – the current moment. The task is formulated as a consensus
search, i.e., to find x = 1

d

∑d
i=1 xi – the average value of the agents.

To formalize our problem, we introduce the Laplacian matrix of the graph Gk:
Wk = Dk − Ak (here Dk is the diagonal matrix with degrees of nodes, Ak –
adjacency matrix) and its properties:

1. [Wk]i,j ̸= 0 if and only if (i, j) ∈ Ek or i = j,
2. kerWk ⊃

{
(x1, . . . , xd) ∈ Rd : x1 = . . . = xd

}
,
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3. range Wk ⊂
{
(x1, . . . , xd) ∈ Rd :

∑d
i=1 xi = 0

}
.

If we consider x = (x1, . . . , xd)
⊤, then, because of second property, one can

obtain

x1 = . . . = xn ⇔ Wkx = 0.

Moreover, it is known that

Wkx = 0 ⇔
√
Wkx = 0.

Hence, the problem of finding the consensus on the moment k can be reformu-
lated as

min
x∈R

[
f(x) :=

1

2
x⊤Wkx

]
. (13)

It is important that the problem formulations (13) for each k have the same
optimal point x∗, which is equal to consensus.
The classic approaches to find a consensus is a gossip protocol [36]. In terms of
problem (13) the method can be formulated as a gradient descent:

xk+1 = xk − γWkx
k = (1− γWk)x

k.

This iteration sequence gives the consensus since the third property is fulfilled –
it allows to keep the sum of coordinates of xk the same, preventing the departure
from the desired optimal point.
As mentioned above, the problem changes over time as the set of edges specifying
the communication system changes. This situation occurs quite often in practice
– when additional resources are available to improve the network, edges may
be added to speed up processes, and in some system failures, communications
between agents may be disconnected due to crashes and overloads. Therefore, it
is natural to assume that the changes in the graphs Gk occur according to the
Markovian law, since the changes are confined only to the current state of the
communication system.
Since for the problem (13) the gradient is equal to Wkx, we have

∥Wkx− E(Wk)x∥2 = ∥Wkx−Wkx
∗ − E(Wk)x+ E(Wk)x

∗∥2

≤ λ2
max(Wk − E(Wk))∥x− x∗∥2,

where E(Wk) is an expectation of Laplacian matrix of a graph Gk taking into
account the stochasticity responsible for the changes in the graph (more detailed
description see later). Consequently, the considered problem satisfies Assumption
4, what means that the theoretical analysis of our paper is applicable to (13).

4.2 Setup

In numerical experiments, we consider the problem described above on different
topologies with certain Markovian stochastisity.
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Brief description. We design the experiments in the following way. Suppose
we have some starting, or base topology. Then we modify it according to some
Markovian law, during which we cannot affect the base graph (i.e., discard edges
from it). Based on these changes, we compare two methods: proposed and classic
one.
Topologies. As a base topologies we consider two types of graphs – cycle-graph
and star-graph. For each starting network we conducted numerical experiments
for problems with different dimensions: 10, 100, 1000.
Markovian stochasticity. The network changes in time in the certain way.
On each moment k with probability 1

2 the random edge can be added to the
topology, but if it already exists in the graph, then nothing happens. At the
same time, with the same probability the random edge can be removed from
the network. Nevertheless, if this edge is in the base topology or communication
topology does not contain this edge, we keep the graph in the same condition.

4.3 Results

We performed numerical experiments with different base topologies (see Figures
1 and 2) with d = 10 (see Figures 1a, 2a), 100 (see Figures 1b, 2b) and 1000
(see Figures 1c, 2c). As a result, the proposed method outperform the classic ap-
proach [36] showing a faster rate of convergence, especially for the high-dimension
problem.
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Fig. 1: Comparison of MAGD and GD for the consensus problem (13) on the
cycle topology with different dimensions.
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Fig. 2: Comparison of MAGD and GD for the consensus problem (13) on the
star topology with different dimensions.
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