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Abstract. A few years ago, the optimization field introduced classes
of relatively smooth [2], relatively continuous, and relatively strongly
convex optimization problems [5,10]. These concepts have expanded the
class of problems to which optimal complexity estimates of gradient-type
methods in high-dimensional spaces can be applied. There are known
works on online optimization (regret minimization) problems for both
relatively Lipschitz and relatively strongly convex problems. In this work,
we consider the problem of strongly convex online optimization with con-
vex inequality constraints. A scheme with switching over productive and
non-productive steps is proposed for these problems. The convergence
rate of the proposed scheme is proven for the class of relatively Lipschitz
and strongly convex minimization problems. Moreover, analogously with
the [6] we study extensions of the considered Mirror Descent algorithms
that eliminate the need for a priori knowledge of the lower bound on the
(relative) strong convexity parameters of the observed functions. Some
numerical experiments were conducted to demonstrate the effectiveness
of one of the proposed algorithms with a comparison with another adap-
tive algorithm for convex online-optimization problems.
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Introduction

The development of numerical methods for solving non-smooth online optimiza-
tion problems presents a great interest nowadays due to the appearance of many
applied problems with the corresponding statement [3,6,7,8,11]. Online optimiza-
tion plays a key role in solving machine learning, finance, networks, and other
problems. As some examples of such problems, we can mention multi-armed
bandits, job-shop scheduling and ski rental problems, search games, etc. One of
the most popular methods of solving online optimization problems is the Mir-
ror Descent method [14]. Let us note, that Mirror Descent can be also applied
for solving online optimization problems in a stochastic setting [1,4], which al-
lows using an arbitrary, not necessarily 1–strongly convex, distance-generating
function (see (6)).

Remind, that the online optimization problem represents the problem of min-
imizing the sum (or the arithmetic mean) of T functionals ft : Q −→ R (t = 1, T )
given on some closed convex set Q ⊂ Rn

min
x∈Q

1

T

T∑

t=1

ft(x), s.t. g(x) ≤ 0. (1)

The key feature of the problem statement consists in the possibility of calculating
the (sub)gradient ∇ft(x) of each functional ft only once.

Recently, in [16] there were proposed some modifications of the Mirror De-
scent method for solving online optimization problems in the case, if all the
functions ft(x) and functional constraint g(x) satisfy Lipschitz condition, i.e.
there exists such a constant M > 0, that

|g(x)− g(y)|≤M‖x− y‖, (2)

|ft(x)− ft(y)|≤M‖x− y‖, ∀t = 1, T . (3)

In the case of non-negativity of regret

RegretT :=

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x), (4)

these methods are optimal for the considered class of problems accordingly to
[7], the number of non-productive steps during their work is O(T ). In the case of
negative regret, the number of non-productive steps for the proposed methods
is O(T 2).

Later, in [17] the smoothness class for the applicability of such approaches has
been extended by reducing the requirement of Lipschitz continuity of functions
to the recently proposed concept of relative Lipschitz continuity [9,12].

Definition 1. Let us call a convex function f : Q −→ R M -relatively Lipschitz-
continuous for some M > 0, if the following inequality holds

〈∇f(x), y − x〉+M
√

2V (y, x) ≥ 0, ∀x, y ∈ Q. (5)
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This concept has been widely used in many applied problems and has also en-
abled the proposal of subgradient methods for both non-differentiable and non-
Lipschitz Support Vector Machine (SVM) and for problems of Intersection of
n Ellipsoids while maintaining optimal convergence rate estimates for the class
of simply Lipschitz-continuous functions. It is worth noting that the proposed
method also allowed the use of an imprecisely defined function (more exactly, a
function that admits a representation in a model form), nevertheless, the method
was also optimal.

Let h : Q −→ R be a distance-generating function (or prox-function) that is
continuously differentiable and convex. For all x, y ∈ Q we consider the corre-
sponding Bregman divergence

V (y, x) = h(y)− h(x)− 〈∇h(x), y − x〉. (6)

In this paper, we improve existing estimates of the convergence rate by con-
sidering a class of strongly convex functions and generalize the obtained problem
statement to the case of problems with functional constraints.

Definition 2. A function f over a convex set Q is called µ-strongly convex with
respect to a convex function h if

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µV (x, y), ∀x, y ∈ Q,

More precisely, we present a novel theorem that provides a tighter bound
on regret, in terms of the number of productive steps taken by the algorithm.
Specifically, the theorem proves that if the algorithm completes exactly T pro-
ductive steps and has a non-negative regret, then the number of non-productive
steps satisfies TJ ≤ CT , where C is a constant. This result significantly improves
existing convergence rate estimates for the Mirror Descent method with func-
tional constraints. In addition, we obtain the complexity of the bound in terms
of T and some other problem parameters. This corollary allows us to determine
the number of productive steps needed to achieve the desired accuracy of regret
in practice.

We also consider some modifications of the Mirror Descent method for solving
non-smooth online optimization problems [6]. Specifically, the paper introduces
two algorithms for solving strongly convex minimization problems with and with-
out regularization. The first algorithm, called General-Norm Online Gradient
Descent: Relatively Strongly Convex and Relatively Lipschitz-Continuous Case,
is based on a convex function h and updates the solution iteratively using predic-
tions and observations of the objective function ft. The second algorithm, called
Adaptive General-Norm Online Gradient Descent with Regularization, extends
the first algorithm by introducing an adaptive regularization term that depends
on a function d that is both relatively Lipschitz continuous and relatively strongly
convex.

For each algorithm, we provide the theoretical justification of bounds on the
regret. These theorems guarantee upper bounds on the regret for each algorithm
and can be used to analyze the performance of the algorithms. Overall, the paper
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presents a comprehensive framework for solving non-smooth online optimization
problems with functional constraints, and the results have practical implications
for a broad range of applications.

The paper consists of an introduction and 4 main sections. In Sect. 1 we
consider the basic statement of the constrained online optimization problem
and propose a modification of the Mirror Descent method for minimizing the
arithmetic mean of relatively strongly convex and relatively Lipschitz-continuous
functionals, supposing that functional constraint satisfies the same conditions.
We also provide a theoretical justification for the convergence rate of the pro-
posed method. Sect. 2 is devoted to some modifications of the algorithms, pro-
posed in [6] for the corresponding class of problems with regularization. In Sect.
3 we combine the above-mentioned ideas and propose algorithms with switching
over productive and non-productive steps both with and without iterative regu-
larization during the work of algorithms. In Sect. 4 we present some numerical
experiments which demonstrate the effectiveness of one of the proposed algo-
rithms and a comparison with another adaptive algorithm for the considered
optimization problems.

To sum it up, the contributions of the paper can be stated as follows:

– We proposed an optimal method for solving a constrained online optimiza-
tion problem with relatively strongly convex and relatively Lipschitz-continu-
ous objective functionals and functional constraints. For the case of non-
negative regret, the number of non-productive steps is bounded by O(T ).

– We proposed two algorithms for solving strongly convex minimization prob-
lems with and without regularization based on iteratively updating steps by
using some auxiliary functions. Similar to [6], we present extensions of Mir-
ror Descent that exclude the need for a priori knowledge of the lower bound
on the (relatively) strong convexity parameters of the observed functions.

– We provided the results of numerical experiments demonstrating the advan-
tages of using the proposed methods.

1 Mirror Descent for Relatively Strongly Convex and
Relatively Lipschitz-Continuous Online-optimization
Problems with Inequality Constraints

In this section, we present a scheme with switching over productive and non-
productive steps for relatively strongly convex and relatively Lipschitz-continuous
online optimization problems with inequality constraints. We consider the fol-
lowing strongly convex constrained optimization problem

min
x∈Q

T∑

t=1

ft(x), g(x) ≤ 0, (7)

where ft : Q −→ R and g : Q −→ R. Let x∗ be a solution of (7), i.e.

x∗ = arg min
x∈Q

T∑

t=1

ft(x), g(x∗) ≤ 0.
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Let us denote the set of productive steps xt for which g(xt) ≤ ε by I, and
the set of non-productive steps by J . Let T = |I|, TJ = |J |. Let us consider a
subgradient method with switching over productive and non-productive steps.

Algorithm 1 Constrained Online Optimization: Mirror Descent for Relatively
Lipschitz-Continuous and Relatively Strongly Convex Problems.

Require: ε > 0, µ > 0, T, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: if g(xt) ≤ ε then
4: ηt = 1

µt
;

5: xt+1 := PrQ{xt − ηt∇ft(xt)}; ”productive step”
6: i := i+ 1;
7: t := t+ 1;
8: else
9: ηt = 1

µt
;

10: xt+1 := PrQ{xt − ηt∇g(xt)}; ”non-productive step”
11: t := t+ 1;
12: end if
13: until i = T + 1.

Theorem 1. Suppose that, for each t, ft is an Mf -relatively Lipschitz continu-
ous and µ-strongly convex function with respect to the prox-function h. Let g(x)
be Mg-relatively Lipschitz continuous and µ-strongly convex function with respect
to h. Suppose that Algorithm 1 for

ε =
M2

µ

1 + lnT

T

where M = max{Mf ,Mg}, works exactly T productive steps and RegretT ≥ 0.
Then there exists a constant C ∈ (2; 3) such that the number of non-productive
steps satisfies TJ ≤ CT , moreover, the following inequality holds:

RegretT :=

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x) ≤ M2

µ

(
1 + ln

(
(C + 1)T

))
= O(Tε),

where g(xt) ≤ ε for any t = 1, T .

Proof. Let us check the auxiliary inequality

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x) ≤ M2

µ
(1 + ln(T + TJ))− εTJ . (8)
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1. Taking into account the Mf -relative Lipschitz-continuity of the function ft
for each productive step we have

ηt

(
ft(xt)− ft(x∗)

)
≤ ηt

(
〈∇ft, xt − x∗〉 − µV (x∗, xt)

)

≤ η2tM2
f + V (x∗, xt)− V (x∗, xt+1)− ηtµV (x∗, xt).

Hence, after dividing both sides of the above inequality by ηt we get

ft(xt)− ft(x∗) ≤ ηtM2
f +

1

ηt

(
V (x∗, xt)− V (x∗, xt+1)

)
− µV (x∗, xt)

=
M2
f

µt
+ µtV (x∗, xt)− µV (x∗, xt)− µtV (x∗, xt+1)

=
M2
f

µt
+ µ(t− 1)V (x∗, xt)− µtV (x∗, xt+1).

(9)

2. Similarly, taking into account the Mg-relative Lipschitz-continuity of g for
each non-productive step we have g(xt) > ε and

ηtε < ηt(g(xt)− g(x∗)) ≤ ηt (〈∇g, xt − x∗〉 − µV (x∗, xt))

≤ η2tM2
g + V (x∗, xt)− V (x∗, xt+1)− ηtµV (x∗, xt).

Dividing both sides of the last inequality by ηt, we get:

ε < g(xt)− g(x∗)

≤ ηtM2
g +

1

ηt

(
V (x∗, xt)− V (x∗, xt+1)

)
− µV (x∗, xt)

=
M2
g

µt
+ µtV (x∗, xt)− µV (x∗, xt)− µtV (x∗, xt+1)

=
M2
g

µt
+ µ(t− 1)V (x∗, xt)− µtV (x∗, xt+1).

(10)

3. Summing up inequalities (9), (10) over productive and non-productive steps,
for M = max{Mf ,Mg}, we get

∑

t∈I

(
ft(xt)− ft(x∗)

)
+
∑

t∈J

(
g(xt)− g(x∗)

)

≤
T+TJ∑

t=1

(
M2

µt
+ µ(t− 1)V (x∗, xt)− µtV (x∗, xt+1)

)

≤ M2

µ
ln(T + TJ)− µ(T + TJ)V (x∗, xT+TJ

)

≤ M2

µ
ln(T + TJ).

Using the fact, that for non-productive steps

g(xt)− g(x∗) ≥ g(xt) > ε,
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we get an estimate for the sum of the objective functionals:

∑

t∈I

(
ft(xt)− ft(x∗)

)
≤ M2

µ
ln(T + TJ)−

∑

t∈J

(
g(xt)− g(x∗)

)

≤ M2

µ
ln(T + TJ)−

∑

t∈J
ε =

M2

µ
ln(T + TJ)− εTJ .

4. According to the assumption of non-negativity of the regret, we find

0 ≤ RegretT =

T∑

t=1

(
ft(xt)− ft(x∗)

)
=

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x)

≤ M2

µ

(
1 + ln(T + TJ)

)
− εTJ .

Hence εTJ ≤
M2

µ

(
1+ln(T +TJ)

)
and ε =

M2

µ

1 + lnT

T
. Therefore, we have

1 + lnT

T
TJ ≤ 1 + ln(T + TJ),

TJ
T
≤ 1 + ln(T + TJ)

1 + lnT
.

Moreover, taking into account

ln(T + TJ) = ln

(
T

(
1 +

TJ
T

))
= lnT + ln

(
1 +

TJ
T

)
,

we get
TJ
T
≤

1 + lnT + ln(1 + TJ

T )

1 + lnT
≤ 1 + ln

(
1 +

TJ
T

)
.

Since the linear function grows faster than the logarithmic one, it is obvious,

that for a sufficiently large TJ , the above inequality does not hold, thus
TJ
T

is bounded. Therefore, we proved that TJ = O(T ), i.e. there exists C > 0
such that TJ ≤ CT or TJ

T ≤ C:

TJ
T
≤ 1 + ln

(
1 +

TJ
T

)
.

Equality in the latter inequality is achieved when

TJ
T
≈ 2, 146.

5. Further, we note that by the definition of ε, we have

ε =
M2

µ

1 + lnT

T
=
M2

µT
+
M2

µ

lnT

T
.
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Since T is the number of productive steps and TJ ≤ CT is the number
of non-productive steps, the total number of steps is T + TJ ≤ (C + 1)T .
Therefore

ε =
M2

µ(T + TJ)
+
M2

µ

ln(T + TJ)

T + TJ
≤ M2

µ(C + 1)T
+
M2

µ

ln(C + 1)T

(C + 1)T
.

This allows us to bound the regret as follows:

RegretT :=

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x) ≤ M2

µ

(
1 + ln(C + 1)T

)
.

This shows that the bound on the regret, given by the last inequality holds,
which finishes the proof.

Remark 1. Let us show that our algorithm will necessarily make at least one
productive steps. Indeed, suppose, that the number of productive steps equals
zero, then

εTJ ≤
TJ∑

t=1

(
g(xt)− g(x∗)

)
≤ M2

µ

(
1 + lnTJ

)
.

It is obviously, that for a sufficiently large TJ , the above inequality does not
hold. Thus, for a sufficiently large number of non-productive steps, there will be
at least one productive step.

Let us find out how many non-productive steps need to be taken to achieve
inequality:

εTJ =
TJM

2

µ

1 + lnT

T
>
M2

µ
(1 + lnTJ),

1 + lnT

T
>

1 + lnTJ
TJ

.

Then TJ ≤ CT , where C is a constant, which proves that the number of
non-productive steps is bounded until at least one productive step is made.

2 Online Mirror Descent with Regularization

In this section, we propose some modifications of the algorithms proposed in
[6] for relatively strongly convex and relatively Lipschitz online optimization
problems and provide theoretical estimates of the quality of the solution.

We consider the following strongly convex minimization problem

min
x∈Q

T∑

t=1

ft(x), (11)

where ft : Q −→ R. Define µ1:t :=
t∑

s=1
µs, where µs is the parameter of relative

strong convexity of the function fs. Let µ1:0 = 0.
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Algorithm 2 General-Norm Online Gradient Descent: Relatively Strongly Con-
vex and Relatively Lipschitz-Continuous Case.

1: Input: convex function h.
2: Initialize x1 arbitrarily.
3: for t = 1, . . . , T do
4: Predict xt, observe ft.
5: Compute ηt+1 and let yt+1 be such that ∇h(yt+1) = ∇h(xt)− ηt+1∇ft(xt).
6: Let xt+1 = arg min

x∈Q
V (x, yt+1) be the projection of yt+1 onto Q.

7: end for

Theorem 2. Suppose that, for each t, ft is an Mt-relatively Lipschitz-continuous
and µt-strongly convex function with respect to prox-function h. Applying the Al-
gorithm 2 with ηt+1 = 1

µ1:t
, we have

RegretT ≤
T∑

t=1

M2
t

µ1:t
.

Proof. The proof is given in Appendix A.

Let’s now consider an analogue of Algorithm 2 for relatively strongly convex
and relatively Lipschitz-continuous problems with iterative regularization. Define

λ1:t :=
t∑

s=1
λs. The proposed algorithm is listed as Algorithm 3, below.

Algorithm 3 Adaptive General-Norm Online Gradient Descent with Regular-
ization.

1: Input: convex function h.
2: Initialize x1 arbitrarily.
3: for t = 1, . . . , T do
4: Predict xt, observe ft.

5: Compute λt = 1
2

(√
(µ1:t + λ1:t−1)2 + 8M2

t /(A
2 + 2M2

d )− (µ1:t + λ1:t−1)
)
.

6: Compute ηt+1 and let yt+1 be such that

∇h(yt+1) = ∇h(xt)− ηt+1 (∇ft(xt) + λt∇d(xt)) .

7: Let xt+1 = arg min
x∈Q

V (x, yt+1) be the projection of yt+1 onto Q.

8: end for

For Algorithm 3, we have the following result.

Theorem 3. Suppose that, for each t, ft is Mt-relatively Lipschitz-continuous
and µt-relatively strongly convex function with respect to the prox-function h.
Let d : Q −→ R be Md-relatively Lipschitz-continuous and 1-strongly convex
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function with respect to h. Suppose that d(x) ≥ 0, ∀x ∈ Q and A2 = sup
x∈Q

d(x).

Applying Algorithm 3 with ηt+1 = 1
µ1:t+λ1:t

, the following inequalities hold

RegretT ≤ λ1:TA2 +

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
,

and

RegretT ≤ 2 inf
λ∗
1 ,...,λ

∗
T

(
(A2 + 2M2

d )λ∗1:T +

T∑

t=1

(Mt + λ∗tMd)
2

µ1:t + λ∗1:t

)
.

Proof. The proof is given in Appendix B.

3 The Case of Online Optimization Problems with
Functional Constraints

In this section, we consider a scheme with switching over productive and non-
productive steps both with and without iterative regularization for a relatively
strongly convex and relatively Lipschitz-continuous constrained online optimiza-
tion problem.

Remind that we consider the following problem of strongly convex conditional
minimization

min
x∈Q

T∑

t=1

ft(x), g(x) ≤ 0.

and

x∗ = arg min
x∈Q

T∑

t=1

ft(x), g(x∗) ≤ 0,

where ft : Q −→ R and g : Q −→ R. Remind that the set of productive steps
is I, the set of non-productive steps is J and T = |I|, TJ = |J |. Similarly to

Section 2, we define µ1:t :=
t∑

s=1
µs, where µs is the parameter of relative strong

convexity of the function fs and let µ1:0 = 0. If t is the number of non-productive
step, then µt = µg, where µg is the parameter of relative strong convexity of the
function g.

Theorem 4. Suppose that, for each t, ft is an Mt-relatively Lipschitz-continuous
and µt-strongly convex function with respect to the convex function h. Let g(x) be
Mg-relatively Lipschitz-continuous and µg-strongly convex function with respect
to h. If Algorithm 4 works exactly T productive steps and RegretT ≥ 0, then the
following inequality holds:

RegretT ≤
T+TJ∑

t=1

M2

µ1:t
− εTJ ,

where M = max{Mt,Mg} and g(xt) ≤ ε for any t = 1, T .
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Algorithm 4 Mirror Descent for Constrained Optimization Problems with Rel-
atively Lipschitz-Continuous and Relatively Strongly Convex Functions.

Require: ε > 0, T, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: if g(xt) ≤ ε then
4: ηt = 1

µ1:t
;

5: xt+1 := PrQ{xt − ηt∇ft(xt)}; ”productive step”
6: i := i+ 1;
7: t := t+ 1;
8: else
9: ηt = 1

µ1:t
;

10: xt+1 := PrQ{xt − ηt∇g(xt)}; ”non-productive step”
11: t := t+ 1;
12: end if
13: until i = T + 1.
14: Guaranteed accuracy:

δ :=
1

T

(
T+TJ∑
t=1

M2

µ1:t
− εTJ

)
.

Proof. 1. Taking into account that ft is Mt-relative Lipschitz continuous, then
for every productive step, we have

ηt

(
ft(xt)− ft(x∗)

)
≤ ηt

(
〈∇ft, xt − x∗〉 − µtV (x∗, xt)

)

≤ η2tM2
t + V (x∗, xt)− V (x∗, xt+1)− ηtµtV (x∗, xt).

Hence, after dividing both sides of the above inequality by ηt, we get

ft(xt)− ft(x∗) ≤ ηtM2
t +

1

ηt

(
V (x∗, xt)− V (x∗, xt+1)

)
− µtV (x∗, xt)

=
M2
t

µ1:t
+ µ1:tV (x∗, xt)− µtV (x∗, xt)− µ1:tV (x∗, xt+1)

=
M2
t

µ1:t
+ µ1:t−1V (x∗, xt)− µ1:tV (x∗, xt+1).

(12)

2. Similarly, taking into account that g is Mg-relative Lipschitz continuous,
then for every non-productive step, we have g(xt) > ε, and

ηtε < ηt

(
g(xt)− g(x∗)

)
≤ ηt

(
〈∇g, xt − x∗〉 − µtV (x∗, xt)

)

≤ η2tM2
g + V (x∗, xt)− V (x∗, xt+1)− ηtµtV (x∗, xt).
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Dividing both sides of the last inequality by ηt, we get:

ε < g(xt)− g(x∗)

≤ ηtM2
g +

1

ηt

(
V (x∗, xt)− V (x∗, xt+1)

)
− µtV (x∗, xt)

=
M2
g

µ1:t
+ µ1:tV (x∗, xt)− µtV (x∗, xt)− µ1:tV (x∗, xt+1)

=
M2
g

µ1:t
+ µ1:t−1V (x∗, xt)− µ1:tV (x∗, xt+1).

(13)

3. Summing up inequalities (12), (13) over productive and non-productive steps,
for M = max{Mt,Mg}, we get

∑

t∈I

(
ft(xt)− ft(x∗)

)
+
∑

t∈J

(
g(xt)− g(x∗)

)

≤
T+TJ∑

t=1

(
M2

µ1:t
+ µ1:t−1V (x∗, xt)− µ1:tV (x∗, xt+1)

)

≤
T+TJ∑

t=1

M2

µ1:t
− µ1:T+TJ

V (x∗, xT+TJ
) ≤

T+TJ∑

t=1

M2

µ1:t
.

Using the fact, that for non-productive steps

g(xt)− g(x∗) ≥ g(xt) > ε,

we get an estimate for the sum of the objective functionals:

∑

t∈I

(
ft(xt)− ft(x∗)

)
≤
T+TJ∑

t=1

M2

µ1:t
−
∑

t∈J

(
g(xt)− g(x∗)

)

≤
T+TJ∑

t=1

M2

µ1:t
−
∑

t∈J
ε =

T+TJ∑

t=1

M2

µ1:t
− εTJ .

4. Thus, we get

0 ≤ RegretT =

T∑

t=1

(
ft(xt)− ft(x∗)

)
=

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x)

≤
T+TJ∑

t=1

M2

µ1:t
− εTJ .

Corollary 1. Assume that all conditions of Theorem 4 hold and suppose
µt ≥ µ > 0 for all 1 ≤ t ≤ T + TJ . If

ε =
M2

µ

1 + lnT

T
,

then the bound on the regret of Algorithm 4 is O(lnT ).
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Proof.

0 ≤ RegretT ≤
T+TJ∑

t=1

M2

µ1:t
−εTJ ≤

T+TJ∑

t=1

M2

µt
−εTJ ≤

M2

µ

(
ln(T+TJ)+1

)
−εTJ ,

hence εTJ ≤
M2

µ

(
1 + ln(T + TJ)

)
. Let ε =

M2

µ

1 + lnT

T
. Then we have

1 + lnT

T
TJ ≤ 1 + ln(T + TJ),

and

TJ
T
≤ 1 + ln(T + TJ)

1 + lnT
=

1 + lnT + ln(1 + TJ

T )

1 + lnT
≤ 1 + ln(1 +

TJ
T

).

Since the linear function grows faster than the logarithmic one, it is obviously,
that with a sufficiently large TJ , the above inequality does not hold, and then
TJ
T

is bounded. Thus we proved that there exists such a constant C > 0, that

TJ ≤ CT . So, we have

RegretT ≤
M2

µ

(
1 + ln

(
(C + 1)T

))
= O(lnT ) = O(Tε).

Let’s consider an analogue of Algorithm 4 for relatively strongly convex and
relatively Lipschitz-continuous problems with iterative regularization. Similarly

to Section 2, we define λ1:t :=
t∑

s=1
λs.

Theorem 5. Suppose that, for each t, ft is an Mt-relatively Lipschitz-continuous
and µt-relatively strongly convex function with respect to the prox-function h.
Let g(x) be Mg-relatively Lipschitz-continuous and µg-relatively strongly con-
vex function with respect to h. Let d : Q −→ R be Md-relatively Lipschitz-
continuous and 1-relatively strongly convex function with respect to h. Suppose
also that d(x) ≥ 0, ∀x ∈ Q. If Algorithm 5 works exactly T productive steps and
RegretT ≥ 0, then the following inequalities hold:

RegretT ≤ λ1:T+TJ
A2 +

T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
− εTJ ,

and

RegretT ≤ 2 inf
λ∗
1 ,...,λ

∗
T+TJ

(
(A2 + 2M2

d )λ∗1:T+TJ
+

T+TJ∑

t=1

(M + λ∗tMd)
2

µ1:t + λ∗1:t

)
− εTJ .

where A2 = sup
x∈Q

d(x), M = max{Mt,Mg} and g(xt) ≤ ε for any t = 1, T .
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Algorithm 5 Constrained Online Optimization: Mirror Descent for Relatively
Strongly Convex and Relatively Lipschitz-Continuous Problems with Regular-
ization.
Require: ε > 0, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: if g(xt) ≤ ε then

4: λt = 1
2

(√
(µ1:t + λ1:t−1)2 + 8M2/(A2 + 2M2

d )− (µ1:t + λ1:t−1)
)

;

5: ηt = 1
µ1:t+λ1:t

;
6: xt+1 := PrQ{xt − ηt(∇ft(xt) + λt∇d(xt))}; ”productive step”
7: i := i+ 1;
8: t := t+ 1;
9: else

10: λt = 1
2

(√
(µ1:t + λ1:t−1)2 + 8M2/(A2 + 2M2

d )− (µ1:t + λ1:t−1)
)

;

11: ηt = 1
µ1:t+λ1:t

;
12: xt+1 := PrQ{xt − ηt(∇g(xt) + λt∇d(xt))}; ”non-productive step”
13: t := t+ 1;
14: end if
15: until i = T + 1.
16: Guaranteed accuracy:

δ :=
1

T

(
λ1:T+TJA

2 +

T+TJ∑
t=1

(M + λtMd)
2

µ1:t + λ1:t
− εTJ

)
.

Proof. The proof is given in Appendix C.

We can formulate the following statement for concrete values of µt. Partially,
we can achieve intermediate rates for regret between T and logT .

Corollary 2. Assume that all conditions of Theorem 5 hold and µt = t−α for
all 1 ≤ t ≤ T + TJ .

1. If α = 0, λt = 0 ∀1 ≤ t ≤ T + TJ , and ε = M2 1 + lnT

T
, then the bound on

the regret of Algorithm 5 is O(lnT ).
2. If α > 1/2, λ1 =

√
T + TJ , λt = 0 for 1 < t ≤ T + TJ , and

ε =
A2 + 2(M2

d +M2)√
T

,

then the bound on the regret of Algorithm 5 is O(
√
T ).

3. If 0 < α ≤ 1/2, λ1 = (T + TJ)α, λt = 0 ∀1 ≤ t ≤ T + TJ and

ε =

(
A2 + 2M2

d +
4M2

α

)
Tα−1,

then the bound on the regret of Algorithm 5 is O(Tα).

Proof. The proof is given in Appendix D.
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4 Numerical Experiments

In this section, to demonstrate the performance of the proposed Algorithm 4, we
conduct some numerical experiments for the considered problem (1) and make
a comparison with an adaptive Algorithm 2, proposed in [16]. All experiments
were implemented in Python 3.4, on a computer fitted with Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s). RAM
of the computer is 8 GB.

Let us consider the following function

f(x) =
1

T

T∑

i=1

(
|〈ai, x〉 − bi|+

µi
2
‖x‖22

)
, (14)

where ai ∈ Rn, bi ∈ R, µi > 0. Functional constraints are defined as follows

g(x) = max
1≤i≤m

{
〈αi, x〉 − βi +

µ̂i
2
‖x‖22

}
, (15)

where αi ∈ Rn, βi ∈ R, µ̂i > 0.
Function f is the arithmetic mean of the functions fi(x) = |〈ai, x〉 − bi| +

µi

2 ‖x‖
2
2, i = 1, T . Each of these functions is Mi-Lipschitz-continuous and µi-

strongly convex. Also, function g is Mg-Lipschitz-continuous and µg-strongly
convex. Coefficients ai, αi ∈ Rn and constants bi, βi ∈ R in (14) and (15) are
randomly generated from the uniform distribution over [0, 1). Also, the strong
convexity parameters µi and µ̂i are randomly chosen in the interval (0, 1).

We choose a standard Euclidean proximal setup as a prox-function, starting

point x0 =
(

1√
n
, . . . , 1√

n

)
∈ Rn and Q is the unit ball in Rn.

We run Algorithm 4 and adaptive Algorithm 2 from [16] with n = 1000 and
m = 10 and different values of T with ε = 1/

√
T . The results of the work of

these algorithms are represented in Fig. 1, below. These results demonstrate the
number of non-productive steps, the running time is given in seconds, the guar-
anteed accuracy δ of the approximated solution (sequence {xt}t∈I on productive

steps), and the values 1
T

∑T
i=1 fi(xi), where xi is productive, as a function of T .

The dotted curve represents the results of the proposed Algorithm 4, whereas
the dashed curve represents the results of the adaptive Algorithm 2 in [16].

From the conducted experiments, we can see that the adaptive Algorithm 2
in [16], works faster than Algorithm 4, with a smaller amount of non-productive
steps. But when increasing the number of functionals fi in (14), the guaranteed
accuracy δ and values of the objective function at productive steps, produced
by Algorithm 4 is better.

Note that from Fig. 1, we can see that increasing of T (the number of func-
tionals fi) leads to an increasing of δ (the accuracy of the solution). In other
words, increasing the number of functionals fi in the objective function (14),
which in fact is increasing information about the objective function or actu-
ally enlarging data about the problem, leads to increasing the accuracy of the
solution.
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Fig. 1: The results of Algorithm 4 (dots) and adaptive Algorithm 2 in [16] (dashed)
for the objective function (14) with constraints (15).

Conclusions

In this paper, we considered relatively strongly convex and relatively Lipschitz-
continuous constrained online optimization problems. We proposed some meth-
ods with switching over productive and non-productive steps and provided cor-
responding estimates of the quality of the solution. We also presented analogues
of the methods proposed earlier in [6], for solving relatively strongly convex
and relatively Lipschitz-continuous online optimization problems with and with-
out regularization. Furthermore, for the problems with functional constraints,
we have proposed a scheme with switching over productive and non-productive
steps with adaptive regularization. We also proved that if the algorithm runs
exactly T productive steps and has a non-negative regret, then the number of
non-productive steps satisfies TJ ≤ CT , where C is a constant. In particular, for
the proposed methods, we obtained some bounds on the algorithm’s regret in
terms of the number of productive steps made by the algorithm under specific
assumptions about the parameters of relative strong convexity and some other
parameters of the problem.

The key idea of the considered methods is that at each step of the algorithm
for each selected ft, we determine the corresponding parameter of the relative
strong convexity µt. Thus, it is possible to take into account the parameter of
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relative strong convexity of each of the functions ft. This is highly significant
because the functions are selected during the method’s working process, and it
would be a mistake to assume that some strong convexity can be set initially. It
is important to note, that if we consider the following functional constraint

g(x) = max
1≤i≤m

{gi(x)},

where each gi is µi-relatively strongly convex function, then in the process of
working of the algorithm at this particular non-productive step t, it makes sense
to consider the first of the constraints gi(x) for which the condition gi(xt) ≤ ε
is violated and the corresponding parameter µi, i.e. µt = µi. We do not initially
know which constraint will be violated in the process of working of the method,
and it is logical to take into account its relative strong convexity parameter
instead of the global relative strong convexity one, which may turn out to be
much larger. We have analyzed the results of the given numerical experiments
and compared the effectiveness of one of the proposed algorithms with Algorithm
2 proposed in [16].
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Appendix A. The proof of Theorem 2.

Proof. By the assumption on the functions ft, for x∗ = arg min
x∈Q

∑T
t=1 ft(x) we

have
ft(xt)− ft(x∗) ≤ 〈∇ft(xt), xt − x∗〉 − µtV (x∗, xt).

By a well-known property of Bregman divergences, it holds that for any vectors
x, y, z,

〈x− y,∇h(z)−∇h(y)〉 = V (x, y)− V (x, z) + V (y, z).

Combining both observations,

ft(xt)− ft(x∗) ≤ 〈∇ft(xt), xt − x∗〉 − µtV (x∗, xt)

=
1

ηt+1
〈∇h(yt+1)−∇h(xt), x

∗ − xt〉 − µtV (x∗, xt)

=
1

ηt+1
[V (x∗, xt)− V (x∗, yt+1) + V (xt, yt+1)]− µtV (x∗, xt)

≤ 1

ηt+1
[V (x∗, xt)− V (x∗, xt+1) + V (xt, yt+1)]− µtV (x∗, xt),

where the last inequality follows from the Pythagorean Theorem for Bregman
divergences, as xt+1 is the projection w.r.t the Bregman divergence of yt+1 and
x∗ ∈ Q is in the convex set.

Summing over all iterations and recalling that ηt+1 = 1
µ1:t

,

RegretT ≤
T∑

t=2

V (x∗, xt)

(
1

ηt+1
− 1

ηt
− µt

)
+ V (x∗, x1)

(
1

η2
− µ1

)

+

T∑

t=1

1

ηt+1
V (xt, yt+1) =

T∑

t=1

1

ηt+1
V (xt, yt+1).

(16)

We procced to bound V (xt, yt+1). By the definition of Bregman divergence, and
the Mt-relative Lipschitz-continuity,

V (xt, yt+1) + V (yt+1, xt) = 〈∇h(xt)−∇h(yt+1), xt − yt+1〉
= ηt+1〈∇ft(xt), xt − yt+1〉

≤ ηt+1Mt

√
2V (yt+1, xt)

=
√

2M2
t η

2
t+1V (yt+1, xt)

≤M2
t η

2
t+1 + V (yt+1, xt).

Thus, we have
V (xt, yt+1) ≤M2

t η
2
t+1.

Plugging back into (16) we get

RegretT ≤
T∑

t=1

1

ηt+1
V (xt, yt+1) ≤

T∑

t=1

ηt+1 ·M2
t =

T∑

t=1

M2
t

µ1:t
.
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Appendix B. The proof of Theorem 3.

At the first, let us mention the following auxiliary lemma, which was proposed
in [6].

Lemma 1. Define

HT ({λt}) = HT (λ1, . . . , λT ) = λ1:T +

T∑

t=1

Ct
µ1:t + λ1:t

,

where Ct ≥ 0 does not depend on λt. If λt satisfies λt = Ct

µ1:t+λ1:t
for t = 1, . . . , T,

then
HT ({λt}) ≤ 2 inf

{λ∗
t }≥0

HT ({λ∗t }).

Now, let us prove Theorem 3.

Proof. By assumption on the functions ft and d, for x∗ = arg min
x∈Q

∑T
t=1 ft(x) we

have
ft(xt)− ft(x∗) ≤ 〈∇ft(xt), xt − x∗〉 − µtV (x∗, xt),

and
d(xt)− d(x∗) ≤ 〈∇d(xt), xt − x∗〉 − V (x∗, xt).

Summing these two inequalities, we have

(ft(xt) + λtd(xt))− (ft(x
∗) + λtd(x∗)) ≤ 〈∇ft(xt) + λt∇d(xt), xt − x∗〉

− (µt + λt)V (x∗, xt).

By a well-known property of Bregman divergences, it holds that for any
vectors x, y, z,

〈x− y,∇h(z)−∇h(y)〉 = V (x, y)− V (x, z) + V (y, z).

Combining both observations,

(ft(xt) + λtd(xt))− (ft(x
∗) + λtd(x∗))

≤ 〈∇ft(xt) + λt∇d(xt), xt − x∗〉 − (µt + λt)V (x∗, xt)

=
1

ηt+1
〈∇h(yt+1)−∇h(xt), x

∗ − xt〉 − (µt + λt)V (x∗, xt)

=
1

ηt+1
[V (x∗, xt)− V (x∗, yt+1) + V (xt, yt+1)]− (µt + λt)V (x∗, xt)

≤ 1

ηt+1
[V (x∗, xt)− V (x∗, xt+1) + V (xt, yt+1)]− (µt + λt)V (x∗, xt),

where the last inequality follows from the Pythagorean theorem for Bregman
divergences, as xt+1 is the projection w.r.t the Bregman divergence of yt+1 and
x∗ ∈ Q is in the convex set.
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Summing over all iterations and recalling that ηt+1 = 1
µ1:t+λ1:t

,

T∑

t=1

(ft(xt) + λtd(xt))−
T∑

t=1

(ft(x
∗) + λtd(x∗))

≤
T∑

t=2

V (x∗, xt)

(
1

ηt+1
− 1

ηt
− µt − λt

)
+ V (x∗, x1)

(
1

η2
− µ1 − λ1

)

+

T∑

t=1

1

ηt+1
V (xt, yt+1) =

T∑

t=1

1

ηt+1
V (xt, yt+1).

(17)

We proceed to bound V (xt, yt+1). By the definition of Bregman divergence, and
the relative Lipschitz-continuity,

V (xt, yt+1) + V (yt+1, xt) = 〈∇h(xt)−∇h(yt+1), xt − yt+1〉
= ηt+1〈∇ft(xt) + λt∇d(xt), xt − yt+1〉

≤ ηt+1Mt

√
2V (yt+1, xt) + λtηt+1Md

√
2V (yt+1, xt)

= (Mt + λtMd)
√

2η2t+1V (yt+1, xt)

=
√

2(Mt + λtMd)2η2t+1V (yt+1, xt)

≤ (Mt + λtMd)
2η2t+1 + V (yt+1, xt).

Thus, we have
V (xt, yt+1) ≤ (Mt + λtMd)

2η2t+1.

Plugging back into (17) we get

T∑

t=1

(ft(xt) + λtd(xt))−
T∑

t=1

(ft(x
∗) + λtd(x∗)) ≤

T∑

t=1

1

ηt+1
V (xt, yt+1) ≤

≤
T∑

t=1

ηt+1(Mt + λtMd)
2 =

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
.

Thus, we have

T∑

t=1

(ft(xt) + λtd(xt)) ≤ min
x

(
T∑

t=1

(ft(x) + λtd(x))

)
+

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
.

Dropping the d(xt) terms and bounding d(x∗) ≤ A2, we have

T∑

t=1

ft(xt) ≤
T∑

t=1

ft(x
∗) + λ1:TA

2 +

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
,

hence

RegretT ≤ λ1:TA2 +

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
. (18)
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The following inequality allows us to remove the dependence on λt from the
numerator of the second sum in (18). We have

λ1:TA
2 +

T∑

t=1

(Mt + λtMd)
2

µ1:t + λ1:t
≤ λ1:TA2 +

T∑

t=1

(
2M2

t

µ1:t + λ1:t
+

2λ2tM
2
d

µ1:t + λ1:t−1 + λt

)

≤ (A2 + 2M2
d )λ1:T + 2

T∑

t=1

M2
t

µ1:t + λ1:t
.

(19)

By (19) and Lemma 1, we have

RegretT ≤ (A2 + 2M2
d )λ1:T + 2

T∑

t=1

M2
t

µ1:t + λ1:t

≤ inf
λ∗
1 ,...,λ

∗
T

(
2(A2 + 2M2

d )λ∗1:T + 4

T∑

t=1

M2
t

µ1:t + λ∗1:t

)

≤ 2 inf
λ∗
1 ,...,λ

∗
T

(
(A2 + 2M2

d )λ∗1:T +

T∑

t=1

(Mt + λ∗tMd)
2

µ1:t + λ∗1:t

)
,

provided the λt are chosen as solutions to

(A2 + 2M2
d )λt =

2M2
t

µ1:t + λ1:t−1 + λt
.

It is easy to verify that

λt =
1

2

(√
(µ1:t + λ1:t−1)2 + 8M2

t /(A
2 + 2M2

d )− (µ1:t + λ1:t−1)

)

is the non-negative root of the above quadratic equation.

Appendix C. The proof of Theorem 5.

Proof. By assumption on the functions ft and d for every productive step we
have

ηt((ft(xt) + λtd(xt))− (ft(x
∗) + λtd(x∗)))

≤ ηt(〈∇ft(xt) + λt∇d(xt), xt − x∗〉 − (µt + λt)V (x∗, xt))

≤ η2t (Mt + λtMd)
2 + V (x∗, xt)− V (x∗, xt+1)− ηt(µt + λt)V (x∗, xt).
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Hence, after dividing both sides of the above inequality by ηt we get

(ft(xt) + λtd(xt))− (ft(x
∗) + λtd(x∗))

≤ ηt(Mt + λtMd)
2 +

1

ηt
(V (x∗, xt)− V (x∗, xt+1))− (µt + λt)V (x∗, xt)

=
(Mt + λtMd)

2

µ1:t + λ1:t
+ (µ1:t + λ1:t)V (x∗, xt)− (µt + λt)V (x∗, xt)−

− (µ1:t + λ1:t)V (x∗, xt+1)

=
(Mt + λtMd)

2

µ1:t + λ1:t
+ (µ1:t−1 + λ1:t−1)V (x∗, xt)− (µ1:t + λ1:t)V (x∗, xt+1).

Similarly, taking into account the Mg-relative Lipschitz-continuity of g and
the Md-relative Lipschitz-continuity of d for every non-productive step we have
g(xt) > ε, and

ηtε < ηt((g(xt) + λtd(xt))− (g(x∗) + λtd(x∗)))

≤ ηt (〈∇g(xt) + λt∇d(xt), xt − x∗〉 − (µt + λt)V (x∗, xt))

≤ η2t (Mg + λtMd)
2 + V (x∗, xt)− V (x∗, xt+1)− ηt(µt + λt)V (x∗, xt).

Dividing both sides of the last inequality by ηt, we get:

ε < (g(xt) + λtd(xt))− (g(x∗) + λtd(x∗)

≤ ηt(Mg + λtMd)
2 +

1

ηt
(V (x∗, xt)− V (x∗, xt+1))− (µt + λt)V (x∗, xt)

=
(Mg + λtMd)

2

µ1:t + λ1:t
+ (µ1:t + λ1:t)V (x∗, xt)− (µt + λt)V (x∗, xt)−

− (µ1:t + λ1:t)V (x∗, xt+1)

=
(Mg + λtMd)

2

µ1:t + λ1:t
+ (µ1:t−1 + λ1:t−1)V (x∗, xt)− (µ1:t + λ1:t)V (x∗, xt+1).

Summing up the inequalities for productive and non-productive steps, and
let M = max{Mt,Mg}, then

∑

t∈I
((ft(xt) + λtd(xt))− (ft(x

∗) + λtd(x∗))) +
∑

t∈J
((g(xt) + λtd(xt))− (g(x∗) + λtd(x∗)))

≤
T+TJ∑

t=1

(
(M + λtMd)

2

µ1:t + λ1:t
+ (µ1:t−1 + λ1:t−1)V (x∗, xt)− (µ1:t + λ1:t)V (x∗, xt+1)

)

≤
T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
− (µ1:T+TJ

+ λ1:T+TJ
)V (x∗, xT+TJ

)

≤
T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
.
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Bounding d(x∗) ≤ A2 and using the fact, that for non-productive steps

g(xt)− g(x∗) ≥ g(xt) > ε,

we get an estimate for the sum of the objective functionals:

T∑

t=1

(ft(xt)− ft(x∗)) =

T∑

t=1

ft(xt)−min
x∈Q

T∑

t=1

ft(x)

≤
T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
−
∑

t∈J
(g(xt)− g(x∗))

+

T+TJ∑

t=1

λtd(x∗)−
T+TJ∑

t=1

λtd(xt)

≤
T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
+ λ1:T+TJ

A2 − εTJ .

Thus, we get

0 ≤ RegretT ≤
T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
+ λ1:T+TJ

A2 − εTJ .

Using inequality (19), we have

λ1:T+TJ
A2 +

T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
− εTJ

≤ λ1:T+TJ
A2 +

T+TJ∑

t=1

(
2M2

µ1:t + λ1:t
+

2λ2tM
2
d

µ1:t + λ1:t−1 + λt

)
− εTJ

≤ (A2 + 2M2
d )λ1:T+TJ

+ 2

T+TJ∑

t=1

M2

µ1:t + λ1:t
− εTJ .

(20)

By (20) and Lemma 1

RegretT ≤ (A2 + 2M2
d )λ1:T+TJ

+ 2

T+TJ∑

t=1

M2

µ1:t + λ1:t
− εTJ

≤ inf
λ∗
1 ,...,λ

∗
T+TJ

(
2(A2 + 2M2

d )λ∗1:T+TJ
+ 4

T+TJ∑

t=1

M2

µ1:t + λ∗1:t

)
− εTJ

≤ 2 inf
λ∗
1 ,...,λ

∗
T+TJ

(
(A2 + 2M2

d )λ∗1:T+TJ
+

T+TJ∑

t=1

(M + λ∗tMd)
2

µ1:t + λ∗1:t

)
− εTJ .

provided the λt are chosen as solutions to

(A2 + 2M2
d )λt =

2M2

µ1:t + λ1:t−1 + λt
.
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It is easy to verify that

λt =
1

2

(√
(µ1:t + λ1:t−1)2 + 8M2/(A2 + 2M2

d )− (µ1:t + λ1:t−1)

)

is the non-negative root of the above quadratic equation.

Appendix D. The proof of Corollary 2.

Proof. 1. Indeed, if λt = 0 ∀1 ≤ t ≤ T + TJ , then the claimed statement
immediately follows from Corollary 1.

2. Indeed, if λ1 =
√
T + TJ and λt = 0 for 1 < t ≤ T + TJ , then

0 ≤ RegretT ≤ λ1:T+TJ
A2 +

T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
− εTJ

≤ (A2 + 2M2
d )λ1:T+TJ

+ 2

T+TJ∑

t=1

M2

µ1:t + λ1:t
− εTJ

≤ (A2 + 2M2
d )
√
T + TJ + 2

T+TJ∑

t=1

M2

√
T + TJ

− εTJ

=
(
A2 + 2(M2

d +M2)
)√

T + TJ − εTJ ,

hence εTJ ≤
(
A2 + 2(M2

d +M2)
)√

T + TJ . Let ε =
A2 + 2(M2

d +M2)√
T

. Then

we get

TJ
T
≤
√
T + TJ
T

=

√
1 +

TJ
T
.

Since the linear function grows faster than the square root function, it is obvi-
ously, that with a sufficiently large TJ , the above inequality does not hold, and

then
TJ
T

is bounded. Thus we proved that ∃ C > 0 : TJ ≤ C · T . So, we have

RegretT ≤
(
A2 + 2(M2

d +M2)
)√

(C + 1)T = O(
√
T ).

3. Let us assume λ1 = (T + TJ)α, λt = 0, ∀1 ≤ t ≤ T + TJ . Note that

µ1:t :=

t∑

s=1

µs ≥
t−1∫

0

(x+ 1)−αdx = (1− α)−1
(
t1−α − 1

)
.
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Hence

0 ≤ RegretT ≤ λ1:T+TJ
A2 +

T+TJ∑

t=1

(M + λtMd)
2

µ1:t + λ1:t
− εTJ

≤ (A2 + 2M2
d )λ1:T+TJ

+ 2

T+TJ∑

t=1

M2

µ1:t + λ1:t
− εTJ

≤ (A2 + 2M2
d )(T + TJ)α + 2M2(1− α)

T+TJ∑

t=1

1

(t1−α − 1)
− εTJ

≤ (A2 + 2M2
d )(T + TJ)α + 4M2 1

α
(T + TJ)α +O(1)− εTJ .

Then we have εTJ ≤ (A2 + 2M2
d + 4M2 1

α )(T + TJ)α. Let ε = (A2 + 2M2
d +

4M2 1
α )
Tα

T
, then

Tα

T
TJ ≤ (T + TJ)α,

and
TJ
T
≤
(
T + TJ
T

)α
=

(
1 +

TJ
T

)α
.

It is obviously, that with a sufficiently large TJ , the above inequality does not
hold, and then ∃ C > 0 : TJ ≤ C · T . Thus, we have

RegretT = O((T + TJ)α) = O(((C + 1)T )α) = O(Tα).
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