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1. Introduction

In this paper we consider the following min-max optimization problem:

min
x∈Rdx

max
y∈Rdy

f(x, y), (1.1)

where R
dx and R

dy are Euclidean spaces and f(x, y) : Rdx ×R
dy → R is a real-valued function.

Problem (1.1) is widely studied in optimization and arises not only in mathematics, but
also in economics, computer science and machine learning [1, 2]. Because min-max problems
arising in practice tend to be high-dimensional, first-order algorithms become a go-to way to
solve them in no small part due to low cost of a single iteration. Consequently, there is a need to
understand how such methods would perform in the worst possible circumstances of the defined
setting and compare their worst-case performance.

Smooth min-max games are currently of great interest for research because the exact worst-
case behavior of even the most basic methods remains mostly unknown [3, 4]. Even the asymp-
totic dependencies of methods’ global convergence behavior on smoothness parameters remain
a subject of active research [5].

Several SDP-based approaches have been developed for analysis of exact worst-case perfor-
mance of first-order methods: performance estimation problems (PEP) [6], integral quadratic
constraints (IQC) [7] and an approach of automatic generation of Lyapunov functions to verify
linear convergence [8] which is roughly a synthesis of the previous two. In this paper we show-
case PEP application exclusively since it allows numerical acquisition of exact worst-case linear
convergence rates in the most quick and practical manner.

The idea of PEP is to express the exact worst-case performance of an optimization algorithm
as the solution of a tractable optimization problem. However, the general formulation of PEP
is infinite-dimensional because the performance metric is being optimized over an entire class
of functions, which leads to it seemingly being intractable. The obstacle can be overcome
by replacing optimization over functions with optimization over all possible oracle outputs for
a method applied to a class of functions. In this way the problem becomes finite-dimensional
and, in many cases, convex in the form of an SDP. In order for this replacement to be equivalent,
one needs to put such constraints on the gradients and functional values that would hold if and
only if the gradients and functional values can belong to a function from the class [9]. Such
constraints are called interpolation conditions and are a key to computer-assisted derivation of
exact worst-case guarantees with PEP approach.

After initial success of PEP in analyzing first-order algorithms applied to smooth convex/
strongly-convex(SC) functions [10] and computer-assisted derivation of several optimal meth-
ods [11], the attempts have been made to transfer the approach to saddle-point problems [12].
The success of those attempts has remained mostly limited due to the lack of interpolation
conditions for smooth convex-concave classes.

Although we do not derive interpolation conditions for the smooth strongly-convex-strongly-
concave (SCSC) class in this paper, we still try to partially bridge the existing gap by analyzing
special cases of general smooth SCSC class. We also derive conditions for M-Lipshitz convex-
concave functions that can be used for numerical analysis of subgradient methods via PEP. In
later sections we construct a PEP for first-order fixed-step methods that are applied to a fairly
descriptive class of convex-concave functions with bilinear coupling. The PEP setup presented
here is reasonably generalized and can be quickly adapted for different first-order fixed-step
methods and quadratic performance metrics.
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Our contribution is two-fold:

• We obtain interpolation conditions for several saddle function classes: nonsmooth convex-
concave functions, conditions for difference of strongly-convex functions in a form contain-
ing oracle information exclusively and convex-concave functions with a bilinear coupling
term. By that we also hope to set the stage for acquiring interpolation conditions for the
general smooth SCSC class which is currently of great interest for min-max optimization
research.

• We construct PEP for first-order fixed-step methods that are applied to the bilinear-coupled
saddle point problem. Then we solve (dual) PEP to compare iteration complexities of Sim-
GDA and Alt-GDA.

2. Interpolation conditions

2.1. Basic definitions

Let us start with definitions. First we define convex-concave functions.

Definition 1. We say that a function f(x, y) : Rdx × R
dy → R is convex-concave if

f(·, y) is convex for all y ∈ R
dy ,

f(x, ·) is concave for all x ∈ R
dx .

We denote this class by S.

Next, we define more frequently studied, smooth, possibly SCSC function class:

Definition 2. For given constants (μx, μy, Lx, Ly, Lxy) that satisfy 0 � μx � Lx,

0 � μy � Ly, Lxy � 0, we say that a differentiable function f(x, y) : Rdx × R
dy → R is

(μx, μy)-strong-convex-strong-concave (SCSC ) and has (Lx, Ly, Lxy)-Lipshitz gradients if

f(·, y) : μx is strongly convex for all y ∈ R
dy ,

f(x, ·) : μy is strongly concave for all x ∈ R
dx ,

||∇xf(x1, y)−∇xf(x0, y)|| � Lx||x1 − x0|| for all x0, x1 ∈ R
dx , y ∈ R

dy ,

||∇yf(x, y1)−∇yf(x, y0)|| � Ly||y1 − y0|| for all y0, y1 ∈ R
dy , x ∈ R

dx ,

||∇xf(x, y1)−∇xf(x, y0)|| � Lxy||y1 − y0|| for all y0, y1 ∈ R
dy , x ∈ R

dx ,

||∇yf(x1, y)−∇yf(x0, y)|| � Lxy||x1 − x0|| for all x0, x1 ∈ R
dx , y ∈ R

dy .

We denote this class by SμxμyLxLyLxy .

As we explained in the introduction to this paper, the PEP approach relies on reformula-
tion of the originally infinite-dimensional problem in a finite-dimensional fashion which requires
interpolation conditions. We now formally define the concept of interpolability.

Definition 3. Let I be an index set and consider a sequence A = {(xi, yi, gxi , gyi , fi)}i∈I
where xi, g

x
i ∈ R

dx, yi, g
y
i ∈ R

dy , fi ∈ R for all i ∈ I. Consider a set of convex-concave
functions F . The sequence A is F -interpolable if and only if there exists a function f ∈ F such
that gxi ∈ ∂xf(xi, yi), g

y
i ∈ ∂yf(xi, yi), fi = f(xi, yi) for all i ∈ I.

With those definitions, we proceed to derive interpolation conditions for several convex-
concave classes starting with the most general convex-concave class.
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2.2. Convex-concave functions

Consider a, generally speaking, nonsmooth convex-concave function f ∈ S that is also
M -Lipshitz:

Definition 4. A function f ∈ S is M -Lipshitz if

||f(x1, y1)− f(x2, y2)|| �M (||x1 − x2||+ ||y1 − y2||) (2.1)

for all x1, x2 ∈ R
dx, y1, y2 ∈ R

dy .

We now prove interpolation conditions for M -Lipshitz convex-concave functions (denoted
by SM ). Our approach is constructive, which means we provide a way to construct an interpo-
lating function if certain conditions are satisfied:

Theorem 1. Let I be an index set and consider a vector sequence {(xi, yi, gxi , gyi , fi)}i∈I .
This sequence is SM -interpolable if and only if the following conditions are satisfied :
for all i, j ∈ I the following inequality holds:

fi � fj + gxj
T(xi − xj) + gyi

T(yi − yj), (2.2)

for all i ∈ I the following inequalities hold :

||gxi || �M, ||gyi || �M. (2.3)

Proof. Necessity. Suppose f ∈ SM . From the definition of the subdifferentials ∂xf(x, y)
and ∂yf(x, y) it follows that

fi + gyi
T(yj − yi) � f(xi, yj) � fj + gxj

T(xi − xj),

which is inequality (2.2). Inequalities (2.3) are a trivial consequence of f being M -Lipshitz.
Sufficiency. Suppose that inequalities (2.2) and (2.3) are satisfied. Consider a func-

tion f(x, y) which is defined as follows:

f(x, y) = sup
z∈Z

min
i∈[n]

fi + zT(x− xi) + gyi
T(y − yi), (2.4)

where the convex set Z ⊂ R
dx is defined as follows:

Z = conv

(
n⋃

i=1

{gxi }
)

. (2.5)

First, it is easy to observe that the function f(x, y) is convex in x. Indeed, for fixed y, the
function f(x, y) is a pointwise supremum of functions that are linear in x:

f(x, y) = sup
z∈Z

[
zTx+ ϕy(z)

]
,

where the function ϕy(z) is defined as follows:

ϕy(z) = min
i∈[n]

fi − zTxi + gyi
T(y − yi). (2.6)
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Next, one can show that the function −f(x, y) is convex in y. Indeed,

−f(x, y) = inf
z∈Z

ϕx(z, y), (2.7)

where the function ϕx(z, y) is defined as follows:

ϕx(z, y) = max
i∈[n]
− [

fi + zT(x− xi) + gyi
T(y − yi)

]
. (2.8)

Note, that the function ϕx(z, y) is convex in (z, y), which implies the convexity of the func-
tion −f(x, y) in y.

Now, we show that f(xk, yk) = fk. On the one hand, we get

f(xk, yk) = sup
z∈Z

min
i∈[n]

fi + zT(xk − xi) + gyi
T(yk − yi) �

� sup
z∈Z

fk + zT(xk − xk) + gyk
T(yk − yk) = fk.

On the other hand, we get

f(xk, yk) = sup
z∈Z

min
i∈[n]

fi + zT(xk − xi) + gyi
T(yk − yi) �

� min
i∈[n]

fi + gxk
T(xk − xi) + gyi

T(yk − yi) � min
i∈[n]

fk = fk,

where we have used Eq. (2.2) in the last inequality. Hence, f(xk, yk) = fk.
Next, we show that gxk ∈ ∂xf(xk, yk). Indeed,

f(x, yk)− f(xk, yk)− gxkT(x− xk) = sup
z∈Z

min
i∈[n]

fi + zT(x− xi) + gyi (yk − yi)− fk − gxk(x− xk) �

� min
i∈[n]

fi + gxk
T(x− xi) + gyi

T(yk − yi)− fk − gxkT(x− xk) =

= min
i∈[n]

fi + gyi
T(yk − yi)− (fk + gxk

T(xi − xk)) � 0.

Hence, gxk ∈ ∂xf(xk, yk) by the definition of the subdifferential.
Next, we show that gyk ∈ ∂yf(xk, yk). Indeed,

f(xk, y)− f(xk, yk)− gykT(y− yk) = sup
z∈Z

min
i∈[n]

fi + zT(xk −xi) + gyi
T(y− yi)− fk− gykT(y− yk)�

� sup
z∈Z

fk + zT(xk −xk) + gyk
T(y− yk)− fk − gykT(y− yk) = 0.

Hence, gyk ∈ ∂yf(xk, yk) by the definition of the subdifferential.
Finally, we show that the function f(x, y) satisfies Definition 4. Let (x1, y1), (x2, y2) ∈

∈ R
dx × R

dy . Then, we get

f(x1, y1)− f(x2, y2) = sup
z1∈Z

min
i1∈[n]

fi1 + z1
T(x1 − xi1) + gyi1

T(y1 − yi1)−

− sup
z2∈Z

min
i2∈[n]

fi2 + z2
T(x2 − xi2) + gyi2

T(y2 − yi2) =

= sup
z1∈Z

inf
z2∈Z

min
i1∈[n]

max
i2∈[n]

[
f i1 + z1

T(x1 − xi1) + gyi1
T(y1 − yi1)−

−fi2 − z2T(x2 − xi2)− gyi2T(y2 − yi2)
]

=
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= sup
z1∈Z

inf
z2∈Z

max
i2∈[n]

min
i1∈[n]

[
fi1 + z1

T(x1 − xi1) + gyi1
T(y1 − yi1)−

−fi2 − z2T(x2 − xi2)− gyi2T(y2 − yi2)
]
�

� sup
z1∈Z

max
i2∈[n]

[
fi2 + z1

T(x1 − xi2) + gyi2
T(y1 − yi2)−

−fi2 − z1T(x2 − xi2)− gyi2T(y2 − yi2)
]

=

= sup
z1∈Z

max
i2∈[n]

z1
T(x1 − x2) + gyi2

T(y1 − y2) �

� sup
z1∈Z

max
i2∈[n]

||z1||||x1 − x2||+ ||gyi2 ||||y1 − y2|| �

�M (||x1 − x2||+ ||y1 − y2||),
where we have used Eq. (2.3) in the last inequality. �

Without the assumption of M -Lipshitsness, the interpolation conditions reduce to Eq. (2.2)
which can be seen from the proof structure handling M -Lipshitsness separately.

2.3. Difference of strongly-convex functions

Consider a difference of two smooth strongly-convex functions which can also be refered to
as a separable smooth SCSC function.

Definition 5. For given constants (μx, μy, Lx, Ly) we say that a differentiable func-

tion f(x, y) : Rdx × R
dy → R is a separable smooth SCSC function if there exist differentiable

functions p(x) : Rdx → R and q(y) : Rdy → R such that

f(x, y) = p(x)− q(y) for all x ∈ R
dx , y ∈ R

dy ,

p(x) : Lx is smooth, μx is strongly convex,

p(y) : Ly is smooth, μy is strongly convex.

It’s easy to see that this class constitutes a subset of SμxμyLxLyLxy when Lxy = 0, so
we denote separable smooth SCSC class as SμxμyLxLy0. Although interpolation conditions
for SμxμyLxLy0 have already been effectively derived in [13], we aim to rewrite the inequalities
in a form that only contains min-max oracle information with no additional variables.

First, we will need the conditions for smooth strongly-convex interpolability. We refer
to [10] where those conditions were presented along with their application in analysis of exact
worst-case performance of first-order optimization methods using the PEP approach.

Theorem 2 (Fμ,L-interpolability [10]). A vector sequence {(xi, gi, fi)}i∈I is Fμ,L-in-
terpolable if and only if the following inequality holds for all i, j ∈ I:

fi � fj+gj
T(xi−xj)+

L

2(L− μ)

(
1

L
||gi − gj ||2 + μ||xi − xj||2 − 2

μ

L
(gi − gj)T(xi − xj)

)

. (2.9)

Lemma 1. Consider a vector sequence {(xi, yi, gxi , gyi , fi)}i∈I . This sequence is

SμxμyLxLy0-interpolable if and only if there exists a vector p ∈ R
|I| such that the following

inequalities are satisfied for all i, j ∈ I:

pi − pj � gxj
T(xi − xj) +

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2024, 20(5), 875–893
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+
Lx

2(Lx − μx)

(
1

Lx
||gxi − gxj ||2 −

2μx
Lx

(gxi − gxj )T(xi − xj) + μx||xi − xj ||2
)

,

pi − pj � fi − fj − gyj T(yi − yj) +

+
Ly

2(Ly − μy)
(

1

Ly
||gyi − gyj ||2 +

2μy
Ly

(gyi − gyj )T(yi − yj) + μy||yi − yj||2
)

. (2.10)

Proof. Necessity. Suppose there exist p(x) ∈ Fμx,Lx and q(y) ∈ Fμy ,Ly . Eq. (2.10) immedi-
ately follows from Theorem 2 with pi = p(xi).

Sufficiency. Suppose conditions (2.10) are satisfied. Applying Theorem 2 twice to vector se-
quences {(xi, gxi , pi)}i∈I and {(yi, −gyi , pi − fi)}i∈I , we prove the existence of func-

tions p(x) ∈ Fμx,Lx and q(y) ∈ Fμy ,Ly that interpolate respective vector sequences. From this

it follows that a function f(x, y) = p(x) − q(y) interpolates {(xi, yi, gxi , gyi , fi)}i∈I sequence,
which concludes the proof. �

Now we want to rewrite conditions (2.10) without vector p ∈ R
|I|. After combining inequal-

ities (2.10) we get for all i, j ∈ I:

pi − pj � cij , (2.11)

where

cij = max
{
αij , βij

}
,

αij = gxj
T(xi − xj) +

Lx
2(Lx − μx)

(
1

Lx
||gxi − gxj ||2 −

2μx
Lx

(gxi − gxj )T(xi − xj) + μx||xi − xj||2
)

,

βij =fi−fj−gyj T(yi−yj)+
Ly

2(Ly−μy)
(

1

Ly
||gyi −gyj ||2+

2μy
Ly

(gyi − gyj )T(yi − yj)+μy||yi−yj||2
)

.

Before determining conditions under which the system of linear inequalities (2.11) has a so-
lution, we introduce several definitions and a lemma.

Definition 6. Let I be an ordered set of indices. Let J = (j0, . . . , jk) be an ordered
selection of indices from I such that indices are not allowed to repeat except for jk that is
allowed to be equal to j0. We introduce J(n) as a set of all such selections that have j0 = 0
and jk = n, where 0, n ∈ I.

Definition 7. Let I be an ordered set of indices. Let cij ∈ R be real numbers indexed
by i, j ∈ I. Also, let J = (j0 = 0, . . . , jk = n) ∈ J(n). We define a sum CJ of numbers cij

corresponding to J as follows:

CJ =
k−1∑

l=0

cjl+1jl .

Definition 8. Let I be an ordered set of indices. Let cij ∈ R be real numbers indexed
by i, j ∈ I. The maximal sum corresponding to J(n) is

CJ(n) = max
J∈J(n)

CJ .
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Definition 9. Let I be an ordered set of indices. Let cij ∈ R be real numbers indexed
by i, j ∈ I. Let J = (j0, . . . , jk) be some ordered subset of I. The cyclic sum of cij that
corresponds to J is

k∑

l=0

cjl+1jl ,

where we define jk+1 = j0. If the subset J = (j0) consists of only one element, we define the
cyclic sum as cj0j0.

Now we proceed to determining conditions under which the system of linear inequali-
ties (2.11) is feasible. The following Lemma 2 is inspired by the concept of cyclic monotonicity
introduced in the classical work of R. Tyrrell Rockafellar [14] and is essentially a variation of
Theorem 3.2 from [15]. Though we do not claim Lemma 2 to be a novel result in principle, we
find its formulation more convenient for purposes of expressing interpolation conditions.

Lemma 2. A system of linear inequalities (2.11) is feasible (in respect to p ∈ R
|I|) if and

only if all cyclic sums of cij (Definition 9) are nonpositive.

Proof. Let us suppose p ∈ R
|I| is a solution to the system. Let J = (j0, . . . , jk) be an

ordered subset of I. After we take a sum of corresponding inequalities

pj1 − pj0 � cj1j0 ,

pj2 − pj1 � cj2j1 ,

· · ·
pjk − pjk−1

� cjkjk−1 ,

pj0 − pjk � cj0jk ,

we have zero on the left side and a cyclic sum of cij that corresponds to the ordered subset J
on the right side. Summing over all possible J , we get all cyclic sums of cij are nonpositive.

Now suppose that all cyclic sums of cij are nonpositive. We will show that pi = CJ(i) i ∈ I,

where CJ(i) is a maximal sum from Definition 8, form a feasible point for system (2.11).

After substituting pi, we need to check that the inequalities hold for all i, j ∈ I:

max
J∈J(i)

CJ � max
J∈J(j)

CJ + cij . (2.12)

The inequalities obviously hold for i = j, so consider i 
= j. There are two possible cases.

First case: J j = arg max
J∈J(j)

CJ does not contain i.

Then (J j , i) ∈ J(i) and the sum of cij corresponding to (J j , i) is exactly max
J∈J(j)

CJ + cij .

This sum, however, is not larger than max
J∈J(i)

CJ which is a maximal sum for J(i).

Second case: J j = arg max
J∈J(j)

CJ contains i.

From Definition 6 it follows that J j ∈ J(j) can contain i only once. This implies that

J j = (j0 = 0, . . . , jm = i, . . . , jk = j),

(J j , i) = (j0 = 0, . . . , jm = i, . . . , jk = j, jk+1 = i).
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The sum of cij (Definition 7) corresponding to (J j, i) can be written as

C(Jj ,i)
= CJj1

+ CJj2
,

where

J j1 = (j0 = 0, . . . , jm = i),

J j2 = (jm = i, . . . , jk+1 = i).

It can be seen that J j1 ∈ J(i). And since any cyclic sum of cij is nonpositive, it follows
that CJj2

� 0. Consequently:

max
J∈J(j)

CJ + cij = C(Jj ,i)
= CJj1

+ CJj2
� CJj1

� max
J∈J(i)

CJ .

This means that the proposed p is indeed a feasible point for the system. �
Finally, we can rewrite interpolation conditions from Lemma 1 in a form that contains

oracle information exclusively.

Theorem 3. Consider a sequence {(xi, yi, gxi , gyi , fi)}i∈I . Consider the numbers cij ∈ R,
indexed by i, j ∈ I and calculated from this sequence:

∀i, j ∈ I : cij = max{αij , βij},

where

αij = gxj
T(xi − xj) +

Lx
2(Lx − μx)

(
1

Lx
||gxi − gxj ||2 −

2μx
Lx

(gxi − gxj )T(xi − xj) + μx||xi − xj||2
)

,

βij = fi−fj−gyj T(yi−yj)+
Ly

2(Ly−μy)
(

1

Ly
||gyi − gyj ||2+

2μy
Ly

(gyi −gyj )T(yi−yj) + μy||yi − yj ||2
)

.

The sequence is SμxμyLxLy0-interpolable if and only if any cyclic sum (Definition 9) of cij

is nonpositive.

Proof. The statement of the theorem is a trivial consequence of Lemma 1 and Lemma 2. �
The interpolation conditions for the difference of smooth SC functions are not of great

practical interest in themselves because when used in PEP, they would effectively separate
into already well-known interpolation conditions of smooth SC functions that are a very well-
studied class, both theoretically and numerically via PEP. Still, the interpolation conditions for
the difference of SC functions, when written in the form without additional variables, might
give a good insight into the potential structure of interpolation conditions of a more general
class SμxμyLxLyLxy .

2.4. Bilinear convex-concave functions

Before moving to saddle functions with bilinear coupling we should deal with functions of
the following form:

f(x, y) = yTAx, (2.13)

where A ∈ R
dy×dx is a coupling matrix with the bounded largest singular value σmax(A) � L.
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Definition 10.We consider finite-dimensional linear operators, i.e., matrices, with bounded
largest singular value: LL = {A : σmax(A) � L}.

We will need interpolation conditions for LL that were derived in [16].

Definition 11 (LL-interpolability [16]). Sets of pairs {(xi, yi)}i∈[N1]
and {(uj, vj)}j∈[N2]

are LL-interpolable if and only if ∃A ∈ LL such that

{
yi = Axi, ∀i ∈ [N1],

vj = ATuj, ∀j ∈ [N2].

Theorem 4 (LL-interpolability [16]). Let X ∈ R
n×N1, Y ∈ R

m×N1, U ∈ R
m×N2 ,

V ∈ R
n×N2, and L � 0. (X, Y, U, V ) is LL-interpolable if and only if

⎧
⎪⎪⎨

⎪⎪⎩

XTV = Y TU,

Y TY � L2XTX,

V TV � L2UTU.

To get interpolation conditions for (2.13), we have to slightly modify Theorem 4.

Theorem 5. Consider a sequence {(xi, yi, gxi , gyi , fi)}i∈I . The sequence is interpolable by

functions (2.13) if and only if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi = gxi
Txi = gyi

Tyi ∀i ∈ I,
Gx

TX = Y TGy,

Gx
TGx � L2Y TY,

Gy
TGy � L2XTX,

where X, Y , Gx, Gy are matrices with columns formed by {xi}i∈I , {yi}i∈I , {gxi }i∈I , {gyi }i∈I ,
respectively.

Proof. Suppose we have a function (2.13). It’s easy to see that the conditions are satisfied.
Now suppose the conditions are satisfied. With Theorem 4 we can find a linear operator A that
interpolates (X, Gy, Y, Gx). We have to check that yTAx has correct values in every (xi, yi):

f(xi, yi) = yi
TAxi = gxi

Txi = gyi
Tyi = fi.

This means that yTAx interpolates {(xi, yi, gxi , gyi , fi)}i∈I sequence correctly. �
We now move to bilinear saddle functions of the form

f(x, y) = aTx+ yTAx− bTy, (2.14)

where A ∈ LLxy , a ∈ R
dx , b ∈ R

dy .
It is easy to see that functions (2.14) constitute a subset of SμxμyLxLyLxy corresponding

to μx = μy = Lx = Ly = 0 which motivates us to acquire the interpolation conditions for this
relatively simple convex-concave class (designated as S0000Lxy). The next lemma will be useful
later for writing conditions in a more compact form.
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Lemma 3. Let f(x, y) ∈ S (Definition 1). Let {(xi, yi, gxi , gyi , fi)}i∈I be a sequence that

is interpolable by f(x, y) that satisfies

fi = fj + gxj
T(xi − xj) + gyi

T(yi − yj) ∀i, j ∈ I, (2.15)

then ∀i, j, k, m ∈ I holds

(gxi − gxk )T(xj − xm) = (gyj − gym)T(yi − yk).

Proof. Write inequalities (2.15) in a cyclic manner and take their sums. For cycles of
length 2:

fi = fj + gxj
T(xi − xj) + gyi

T(yi − yj),
fj = fi + gxi

T(xj − xi) + gyj
T(yj − yi).

After addition we get
(gxi − gxj )T(xi − xj) = (gyi − gyj )T(yi − yj). (2.16)

After doing the same for a cycle of length 3 and combining with Eq. (2.16):

(gxi − gxk)T(xj − xk) = (gyj − gyk)T(yi − yk). (2.17)

Finally, for a cycle of length 4 and combining with both Eq. (2.16) and Eq. (2.17):

(gxi − gxk )T(xj − xm) = (gyj − gym)T(yi − yk),
which is Eq. (3). �

We now prove interpolation conditions for S0000Lxy .

Theorem 6. Consider a sequence {(xi, yi, gxi , gyi , fi)}i∈I . The sequence is S0000Lxy -inter-
polable if and only if

⎧
⎪⎪⎨

⎪⎪⎩

fi = fj + gxj
T(xi − xj) + gyi

T(yi − yj) ∀i, j ∈ I,
Gpx

TGpx � L2
xyY

pTY p ∀p ∈ I,
Gpy

TGpy � L2
xyX

pTXp ∀p ∈ I,
where Xp, Y p, Gpx, Gpy are matrices with columns formed by {xi − xp}i∈I , {yi − yp}i∈I ,{
gxi − gxp

}

i∈I , {g
y
i − gyp}i∈I , respectively.

Proof. Suppose the sequence is interpolable. It’s straightforward to check that the condi-
tions are satisfied. Suppose the conditions are satisfied. Using Lemma 3 we get ∀p, k, m ∈ I:

Gmy
TY k = XmTGkx,

Gpx
TGpx � L2

xyY
pTY p,

Gpy
TGpy � L2

xyX
pTXp.

By Theorem 4, for any p ∈ I, there exists Ap ∈ LLxy such that ∀i ∈ I:

gxi − gxp = Ap(yi − yp),
gyi − gyp = Ap

T(xi − xp).
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We choose matrix A, corresponding to some particular p, p = 0, for example, and construct
a function:

F (x, y) = xTAy + (gx0 −Ay0)Tx+ (gy0 −ATx0)y + (f0 − gx0Tx0 − gy0Ty0 + x0
TAy0).

Now we show that F (x, y) correctly interpolates (xi, yi, g
x
i , g

y
i , fi)i∈I :

F (xi, yi) = f0 + gx0
T(xi − x0) + (xi

TA(yi − y0)− x0TA(yi − y0) + gy0
T(yi − y0)) =

= f0 + gx0
T(xi − x0) + gyi

T(yi − y0) = fi,

∇xF (xi, yi) = Ayi −Ay0 + gx0 = A(yi − y0) + gx0 = gxi ,

∇yF (xi, yi) = ATx−ATx0 + gy0 = gyi ,

which concludes the proof. �
Given the interpolation conditions for the main special cases (Theorem 1, Theorem 3,

Theorem 6) it should be much easier to derive interpolation conditions for the (most general)
smooth SCSC class SμxμyLxLyLxy . It might also be possible to guess them and then verify
numerically using a recently developed approach to verifying interpolation conditions [17]. We
leave it for future research.

2.5. Composite convex-concave functions with a bilinear coupling term

In this subsection we consider the following saddle point problem:

min
x∈Rdx

max
y∈Rdx

[
f(x) + yTAx− g(y)

]
, (2.18)

where f(x) ∈ FμxLx , g(y) ∈ FμyLy , A ∈ LLxy , and we denote KμxμyLxLyLxy ⊂ SμxμyLxLyLxy .

The problem 2.18 is well-studied, has a large number of applications and arises in settings
that are seemingly unrelated to min-max optimization: empirical risk minimization [18], rein-
forcement learning [19], minimization under affine constraints [20] and many others. Multiple
methods have even been developed that are optimal in the sense of asymptotic dependence on
smoothness parameters [21]. However, the exact worst-case upper bounds remain unknown for
the majority of methods including the optimal ones.

From the structure alone, the way to acquire interpolation conditions for this class seems
fairly straightforward: it is simply a combination of conditions for smooth strongly-convex
functions (Theorem 2) and conditions for the bilinear coupling function (Theorem 5).

Theorem 7. Sets {(xi, yi, φxi , φyi , fi)}i∈I are KμxμyLxLyLxy-interpolable if and only if there

exist {(hxi , hyi , gxi , gyi , fxi , f yi )}i∈I such that

fi = fxi + hxi
Txi − f yi ,

φxi = gxi + hxi ,

φyi = hyi − gyi ,

fxi � fxj +gxj
T(xi−xj)+

Lx
2(Lx−μx)

(
1

Lx
||gxi −gxj ||2+μx||xi−xj||2−2

μx
Lx

(gxi −gxj )T(xi−xj)
)

,

f yi � f yj +gyj
T(yi−yj)+

Ly
2(Ly−μy)

(
1

Ly
||gyi −gyj ||2+μy||yi−yj||2−2

μy
Ly

(gyi −gyj )T(yi−yj)
)

,
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Hx
TX = Y THy,

Hx
THx � L2

xyY
TY,

Hy
THy � L2

xyX
TX,

where X, Y , Hx, Hy are matrices with columns formed by {xi}i∈I , {yi}i∈I , {hxi }i∈I , {hyi }i∈I ,
respectively.

Proof. Statement of the theorem follows from combining Theorem 2 and Theorem 5. The
logic of the proof is completely analogous to Lemma 1, which presents interpolation conditions
for difference of strongly-convex functions. �

3. PEP for min-max problems

3.1. PEP construction

We now move to construct a performance estimation problem for a class of (so-called)
N -degree first-order fixed-step methods applied to composite functions with the bilinear coupling
term KμxμyLxLyLxy . The idea of this specific PEP formulation is to find a linear convergence
guarantee (for some fixed quadratic metric) that would hold for an arbitrary number of iterations.
The approach results in only having to solve a small SDP at the cost of guarantee’s tightness [8].

We then numerically solve the (dual) problem for Sim-GDA and Alt-GDA with their best
step choices. We refer to [10] for a detailed explanation of the proper and tight PEP approach,
containing thorough justifications for every step of PEP’s construction. We also assume the
problem to have a reasonably high dimension, the need for such an assumption will become
clear later.

We consider first-order iterative fixed-step methods of the form

uxk =

N∑

j=0

θxj xk−j, vyk =

N∑

j=0

φyj yk−j (M)

gxk = ∇xf(uxk), hxk = ATvyk ,

xk+1 =

N∑

j=0

αxjxk−j − βxgxk − γxhxk,

uyk =
N∑

j=0

θyj yk−j, vxk =
N+1∑

j=0

φxjxk+1−j,

gyk = ∇yg(uyk), hyk = Avxk ,

yk+1 =

N∑

j=0

αyjyk−j − βygyk + γyhyk,

where N is a degree (or memory) of method (M). We define methods similar to how it was done
in [8] for convenience later on. The algorithm should have a fixed point z∗ = (x∗, y∗) so we will
demand constant step-sizes to satisfy

N∑

j=0

θxj =

N∑

j=0

θyj =

N+1∑

j=0

φxj =

N∑

j=0

φyj =

N∑

j=0

αxj =

N∑

j=0

αyj = 1.

It also makes sense to demand βx 
= 0, βy 
= 0, γx 
= 0, γy 
= 0.
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We introduced a class of methods with N -step memory that can also take advantage of the
problem’s bilinear-coupled structure. The class includes the most basic methods like Sim-GDA
and Alt-GDA but does not include any of advanced methods which is acceptable since (M)
serves primarily the purpose of demonstration. We note that (M) can be freely changed to be
any first-order fixed-step method, and we build PEP in a way that its final general structure
does not depend on a method. We now introduce a PEP program and move straight to its
finite-dimensional formulation:

sup
{(xi, yi, hxi , hyi , gxi , gyi , fxi , fyi )}i∈I

||xN+1 − x∗||2 + ||yN+1 − y∗||2 (PEP)

such that

(x, y, ux, uy, vx, vy) are generated by method (M),

{(uxi , gxi , fxi )}i∈I is FμxLx — interpolable,

{(uyi , gyi , f yi )}i∈I is FμyLy — interpolable,

{(vyi , hxi )}i∈I , (vxi , h
y
i )i∈I is LLxy — interpolable,

(x∗, y∗) = (0dx , 0dy),

gx∗ = −hx∗ = 0dx , gy∗ = hy∗ = 0dy ,

||xN − x∗||2 + ||yN − y∗||2 � R2.

Because the class KμxμyLxLyLxy is translation invariant we can let (x∗, y∗) = (0dx , 0dy).
Due to the problem being unconstrained, and from optimality conditions we also get gx∗ =
= −hx∗ = 0dx and gy∗ = hy∗ = 0dy . By shifting the function values we can also have fx∗ = f y∗ = 0
though it would not affect the SDP in any manner, which will become apparent later. One can
notice that in (PEP) the method performs N steps of (M) which is due to (M) having N -step
memory. Also, the performance metric can be changed to be any other quadratic of (current
and previous N [8]) distances, gradient and functional values. Our next goal is to rewrite (PEP)
as a convex semidefinite program. To achieve that, we will express interpolation conditions in
terms of Gram matrices and use them as program’s constraints.

We begin with initializing row basis vectors for initial conditions, gradient values and func-

tional values xk, g
x
k, h

x
k ∈ R3N+3, yk, g

y
k, h

y
k ∈ R3N+3, f

x
k ∈ RN+1, f

y
k ∈ RN+1:

xk := eTk+N+1, k ∈ −N, . . . , 0; gxk := eTk+N+2, k ∈ 0, . . . , N ; h
x
k := eTk+2N+3, k ∈ 0, . . . , N ;

yk := eTk+N+1, k ∈ −N, . . . , 0; gyk := eTk+N+2, k ∈ 0, . . . , N ; h
y
k := eTk+2N+3, k ∈ 0, . . . , N ;

f
x
k := eTk+1, k ∈ 0, . . . , N ; f

y
k := eTk+1, k ∈ 0, . . . , N ;

x∗ := 0T3N+3; gx∗ = −hx∗ = 0T3N+3;

y∗ := 0T3N+3; gy∗ = h
y
∗ = 0T3N+3;

f
x
∗ = 0TN+1; f

y
∗ = 0TN+1.

The rest of row vectors are calculated with (M) iterating for k = 0, . . . , N with previously
defined vectors:

uxk =
N∑

j=0

θxj xk−j, vyk =
N∑

j=0

φyjyk−j,
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uyk =

N∑

j=0

θyj yk−j, vxk =

N+1∑

j=0

φxjxk+1−j,

xk+1 =
N∑

j=0

αxjxk−j − βx(gxk + gx∗)− γx(h
x
k + h

x
∗),

yk+1 =

N∑

j=0

αyj yk−j − βy(gyk + gy∗) + γy(h
y
k + h

y
∗).

Now we introduce Gram matrices Wx = BT
xBx ∈ S3N+3, Wy = BT

y By ∈ S3N+3 where

Bx := [x−N − x∗ · · · x0 − x∗ gx0 − gx∗ · · · gxN − gx∗ hx0 − hx∗ · · · hxN − hx∗ ],

By :=
[
y−N − y∗ · · · y0 − y∗ gy0 − gy∗ · · · gyN − gy∗ hy0 − hy∗ · · · hyN − hy∗

]
,

and also vectors of function values:

fx := [fx0 − fx∗ , . . . , fxN − fx∗ ] T,

f y :=
[
f y0 − f y∗ , . . . , f yN − f y∗

]
T.

We can now express interpolation conditions in terms of Gram matrices. The index set
is defined as I = {0, . . . , N, ∗}. With the Gram matrices introduced earlier, the interpolation
conditions for strongly-convex functions (Theorem 2) f(x) ∈ FμxLx , g(y) ∈ FμyLy take the form
(∀i, j ∈ I)

0 � mx
ij
Tf x + Tr(WxM

x
ij),

0 � my
ij
Tf y + Tr(WyM

y
ij),

where for mx
ij ∈ RN+1, Mx

ij ∈ S3N+3:

Mx :=
1

2

⎡

⎢
⎢
⎢
⎢
⎣

−μxLx μxLx μx −Lx
μxLx −μxLx −μx Lx

μx −μx −1 1

−Lx Lx 1 −1

⎤

⎥
⎥
⎥
⎥
⎦
,

mx
ij := (Lx − μx)(f

x
i − fxj )T,

Mx
ij :=

⎡

⎢
⎢
⎢
⎢
⎣

uxi + x∗
uxj + x∗
gxi + gx∗
gxj + gx∗

⎤

⎥
⎥
⎥
⎥
⎦

TMx

⎡

⎢
⎢
⎢
⎢
⎣

uxi + x∗
uxj + x∗
gxi + gx∗
gxj + gx∗

⎤

⎥
⎥
⎥
⎥
⎦
,

and my
ij ∈ RN+1, My

ij ∈ S3N+3 are defined in the same way.

Conditions for the bilinear coupling function (Theorem 5) can be rewritten as

PHx
TWxPvx = Pvy

TWyPHy,

PHx
TWxPHx � L2

xyPvy
TWyPvy,

PHy
TWyPHy � L2

xyPvx
TWxPvx,
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where PHx, PHy ∈ R(3N+3)×(N+1), Pvx, Pvy ∈ R(3N+3)×(N+1):

PHx =
[
(h
x
0 + h

x
∗)T, . . . , (h

x
N + h

x
∗)T

]
,

PHy =
[
(h
y
0 + h

y
∗)T, . . . , (h

y
N + h

y
∗)T

]
,

Pvx =
[
(vx0 + x∗)T, . . . , (vxN + x∗)T

]
,

Pvy =
[
(vy0 + y∗)

T, , . . . , (vyN + y∗)
T
]
.

And finally, the performance metric and its initial bound are

||xN+1 − x∗||2 + ||yN+1 − y∗||2 = Tr(WxA
x
N+1) + Tr(WyA

y
N+1),

||xN − x∗||2 + ||yN − y∗||2 = Tr(WxA
x
N ) + Tr(WyA

y
N ) � R2,

where AxN+1 = xN+1
TxN+1, AyN+1 = yN+1

TyN+1, AxN = xN
TxN , AyN = yN

TyN .

Having rewritten everything in terms of Gram matrices, we can reformulate (PEP) so that
optimization is carried out over Wx, Wy, f

x, f y:

sup
Wx,Wy, f

x, f y
Tr(WxA

x
N+1) + Tr(WyA

y
N+1) (Gram-PEP)

such that ∀i, j ∈ I
0 � mx

ij
Tf x + Tr(WxM

x
ij),

0 � my
ij
Tf y + Tr(WyM

y
ij),

PHx
TWxPvx = Pvy

TWyPHy,

PHx
TWxPHx � L2

xyPvy
TWyPvy ,

PHy
TWyPHy � L2

xyPvx
TWxPvx,

T r(WxA
x
N ) + Tr(WyA

y
N ) � R2,

Rank(Wx) � dx,

Rank(Wy) � dy.

Problem (Gram-PEP) is still not convex because of the rank constraints. From the rank
constraints, it follows that the optimal value of PEP is a nondecreasing function of dx, dy, that
stops growing when min(dx, dy) reaches 3N + 3.

Using the assumption that problem is high-dimensional, we can ditch the rank constraints
for Gram matrices. In this way, the optimal value of (Gram-PEP) remains the same for functions
with min(dx, dy) � 3N + 3 and thus, the resulting bound remains tight for those functions.
The bound will also hold for functions with min(dx, dy) < 3N + 3, but tightness is no longer
guaranteed, which we can accept in accordance with high-dimensional assumption. Getting rid
of rank constraints turns the program into a convex SDP:

sup
Wx,Wy, f

x, f y
Tr(WxA

x
N+1) + Tr(WyA

y
N+1) (SDP-PEP)

such that ∀i, j ∈ I
0 � mx

ij
Tf x + Tr(WxM

x
ij),
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0 � my
ij
Tf y + Tr(WyM

y
ij),

PHx
TWxPvx = Pvy

TWyPHy,

PHx
TWxPHx � L2

xyPvy
TWyPvy ,

PHy
TWyPHy � L2

xyPvx
TWxPvx,

T r(WxA
x
N ) + Tr(WyA

y
N ) � R2.

Since we aim to get exact upper bounds on (M) worst-case performance, it would be con-
venient [10, 22] to dualize (SDP-PEP):

inf
λij , λij , τ, C1, C2, C3

τR2 (dual-PEP)

such that

λij , λij � 0 ∀i, j ∈ I,
τ � 0, C2, C3 � 0,

∑

i,j∈I
λijM

x
ij − PvxC1PHx

T − PHxC2PHx
T + L2

xyPvxC3Pvx
T − τAxN +AxN+1 � 0,

∑

i,j∈I
λijM

y
ij + PHyC1Pvy

T + L2
xyPvyC2Pvy

T − PHyC3PHy
T − τAyN +AyN+1 � 0,

∑

i,j∈I
λijm

x
ij = 0,

∑

i,j∈I
λijm

y
ij = 0.

We can set R = 1 due to homogeneity. The main advantage of dual-PEP form is that besides
the upper bound for the worst-case performance, solution of dual-PEP essentially yields a proof
of the said guarantee [22]. We are omitting a proof for strong duality between (SDP-PEP) and
(dual-PEP) for the sake of being concise and also note that with PEP, strong duality tends to
hold for all methods that satisfy very mild and reasonable assumptions [8, 10].

3.2. PEP experiment

We now consider two specific methods, Sim-GDA:

xk+1 = xk − ηx∇xf(xk, yk),

yk+1 = yk + ηy∇xf(xk, yk)

and Alt-GDA:

xk+1 = xk − ηx∇xf(xk, , yk),

yk+1 = yk + ηy∇xf(xk+1, yk).

Both methods are known to converge linearly (globally) on the class of bilinear composites

with iteration complexity O(k2) for Sim-GDA and O(k) for Alt-GDA where k =
max(Lx, Ly , Lxy)

min(μx, μy)

is a condition number [4].

We test (dual-PEP) by solving it for Sim-GDA and Alt-GDA with ||z − z∗|| as a metric
of choice. In this way (dual-PEP) basically turns into a standard PEP for 1 iteration. In this
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Fig. 1. Verified iteration complexities for Sim-GDA (a) and Alt-GDA (b)

test we let Lx = Ly = Lxy = L and μx = μy = μ and define the condition number k = L
μ . We

used grid search to find the best step size for every condition number. Iteration complexity is
calculated as N = − 1

log(ρ) = − 2
log(τ) .

The results for iteration complexities are displayed in Fig. 1, they are in agreement with
iteration complexities that were acquired with IQC for this same setting [4]. Although the
specific PEP example that is presented in the paper does not yield the exact worst-case bounds
for a set number of iterations, it was still enough to quickly estimate and compare methods’
iteration complexities. We leave thorough analysis of methods’ convergence rates via PEP for
future research.
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