
Adaptive Catalyst for Smooth Convex Optimization

Anastasiya Ivanovaa,b and Dmitry Pasechnyuka and Dmitry Grishchenkoc and Egor
Shulgina,d and Alexander Gasnikova,b,e and Vladislav Matyukhina

aMoscow Institute of Physics and Technology, Moscow, Russia;
bNational Research University Higher School of Economics, Moscow, Russia;
cUniversité Grenoble Alpes, Grenoble, France;
dKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia;
eInstitute for Information Transmission Problems, Moscow, Russia

ABSTRACT
In this paper, we present a generic framework that allows accelerating almost arbi-
trary non-accelerated deterministic and randomized algorithms for smooth convex
optimization problems. The major approach of our envelope is the same as in Cat-
alyst [43]: an accelerated proximal outer gradient method, which is used as an en-
velope for a non-accelerated inner method for the `2 regularized auxiliary problem.
Our algorithm has two key differences: 1) easily verifiable stopping criteria for inner
algorithm; 2) the regularization parameter can be tuned along the way. As a result,
the main contribution of our work is a new framework that applies to adaptive inner
algorithms: Steepest Descent, Adaptive Coordinate Descent, Alternating Minimiza-
tion. Moreover, in the non-adaptive case, our approach allows obtaining Catalyst
without a logarithmic factor, which appears in the standard Catalyst [43, 44].

KEYWORDS
Adaptive Methods; Catalyst; Accelerated Methods; Steepest Descent; Coordinate
Descent; Alternating Minimization; Distributed Methods; Stochastic Methods.

1. Introduction

One of the main achievements in numerical methods for convex optimization is the
development of accelerated methods [51]. Until 2015 acceleration schemes for different
convex optimization problems seem to be quite different to unify them. But starting
from the work [43] in which universal acceleration technique (Catalyst) was proposed,
there appears a stream of subsequent works [40, 44, 55, 56] that allows spreading
Catalyst on monotone variational inequalities, non-convex problems, stochastic opti-
mization problems. In all these works, the basic idea is to use an accelerated proximal
algorithm as an outer envelope [60] with non-accelerated algorithms for inner auxiliary
problems. The main practical drawback of this approach is the requirement to choose
a regularization parameter such that the conditional number of the auxiliary problem
becomes became O(1). To do that, we need to know the smoothness parameters of the
target that are not typically free available.

An alternative accelerated proximal envelope [57] was proposed in the paper [47].
The main difference with standard accelerated proximal envelops is the adaptability of

The research of A. Gasnikov and V. Matyukhin was supported by the Ministry of Science and Higher

Education of the Russian Federation (Goszadaniye) №075-00337-20-03, project No. 0714-2020-0005.

ar
X

iv
:1

91
1.

11
27

1v
6

 [
m

at
h.

O
C

]
 7

 M
ar

 2
02

1

the scheme [47]. Note, that this scheme allows also to build (near) optimal tensor (high-
order) accelerated methods [20, 21, 23, 51, 66]. That is, the “acceleration” potential
of this scheme seems to be the best known for us for the moment. So the main and
rather simple idea of this paper can be formulated briefly as follows: To develop
adaptive Catalyst, we replace the accelerated proximal envelope with a
fixed regularization parameter [44, 57] on the adaptive accelerated proximal
envelope from [47].

In Section 2 , we describe adaptive Catalyst envelope – Algorithm 1 and generalized
Monteiro-Svaiter theorem from [47] to set out how to do this envelope work. We
emphasize that the proof of the theorem contains as a byproduct the new theoretical
analysis of the stopping criterion for the inner algorithm (9). This stopping criterion
allows one to show that the proposed envelope in non-adaptive mode is log-times
better (see Corollary 1) in the total number of oracle calls of the inner method (we’ll
measure the complexity of the envelope in such sense) in comparison with all other
envelopes known for us.

By using this adaptive accelerated proximal envelope, we propose in Section 3 an
accelerated variant of steepest descent [20, 59] as an alternative to A. Nemirovski
accelerated steepest descent (see [8, 52] and references therein), adaptive accelerated
variants of alternating minimization procedures [3] as an alternative to [7, 28, 65] and
adaptive accelerated coordinate descent [49]. For the last example, as far as we know,
there were no previously complete adaptive accelerated coordinate descent. The most
advanced result in this direction is the work [17] that applies only to the problems
with increasing smoothness parameter along the iteration process. For example, for
the target function like f(x) = x4, this scheme doesn’t recognize that smoothness
parameters (in particular Lipschitz gradient constant) tend to zero along the iteration
process.

In Section 4 we describe numerical experiments with the steepest descent, adaptive
coordinate descent, alternating minimization and local SGD. We try to accelerate
these methods by the envelope, described in Algorithm 1.

We hope that the proposed approach allows accelerating not only adaptive on their
own procedures, but also many other different non-accelerated non-adaptive random-
ized schemes by settings on general smoothness parameters of target function that can
be difficult to analyze patently [24, 26, 27].

The first draft of this paper appeared in arXiv in November 2019. Since that time,
this paper has developed (and cited) in different aspects. The main direction is a con-
venient (from the practical (6) and theoretical (9) point of view) criterion of stopping
the inner algorithm that is wrapped in accelerated proximal envelope. We emphasize
that our contribution in this part is not a new accelerated proximal envelope (we
use the well-known envelope [47]), but we indicate that this envelope is better than
the other ones due to the new theoretical analysis of its inner stopping criteria that
lead us from (6) to (9). Although this calculation looks simple enough, to the best of
our knowledge, this was the first time when it was provably developed an accelerated
proximal envelope that required to solve the auxiliary problem with prescribed rela-
tive accuracy in argument ' 1/5. Since the auxiliary problem is smooth and strongly
convex, this observation eliminates the logarithmic factor (in the desired accuracy) in
the complexity estimate for such an envelope in comparison with all known analogues.
Note that this small observation will have a remarkable influence on the development
of accelerated algorithms. A close stopping condition, for instance, arises in the follow-
ing papers [9, 10] that developed (sub-)optimal accelerated tensor method based on
accelerated proximal envelopes. The proposed “logarithm-free” envelope allows one to

2

improve the best known bounds [45] for strongly convex-concave saddle-point problems
(with different constants of strong convexity and concavity) on logarithmic factor [12].
Composite variant of this envelope also allows one to develop “logarithm-free” gra-
dient sliding-type methods2 [12, 13, 32] and its tensor generalizations [34]. Moreover,
one of the variants of the hyper-fast second-order method was also developed based on
this envelope [35]. Though this envelope had known before, it seems that the original
idea of this paper to use this envelope in Catalyst type procedures and new (impor-
tant from the theoretical point of view) reformulation of stopping criteria for inner
algorithm (9) has generated a large number of applications, some of them mentioned
in this paper, the others can be found in the literature cited above. As an important
example, we show in section 3.2 that the developed envelope with non-accelerated
coordinate descent method for auxiliary problem works much better in theory (and
better in practice) than all known direct accelerated coordinate-descent algorithms for
sparse soft-max type problem. Before this article, this was an open problem, how to
beat standard accelerated coordinate-descent algorithms that don’t allow one to take
into account sparsity of the problem for soft-max type functional [18, 58].

The other contribution of this paper is an adaptive choice of the smooth param-
eter. Since our approach requires two inputs (lower bound Ld and upper bound Lu
for the unknown smoothness parameter L), it’s hardly possible to call it “adaptive”.
Moreover, the greater the discrepancy between these two parameters, the worthier is
our adaptive envelope in theory. But almost all of our experiments demonstrate low
sensitivity to these parameters rather than to real smoothness parameter. But even
for such a “logarithm-free” and adaptive envelope, we expect that typically the direct
adaptive accelerated procedures will work better than its Catalyst type analogues. It
was recently demonstrated in the following work [64] for accelerated alternating min-
imization procedure. But even to date, there are problems in which one can expect
that firstly optimal accelerated algorithms will be developed by using Catalyst type
procedures rather than direct acceleration. Recent advances in saddle-point problems
[12, 45, 70] and decentralized distributed optimization3 [29, 41] confirm this thought.
We expect that for Homogeneous Federated Learning architectures, Accelerated Local
SGD can be developed (see [67] for the state of the art approach) by using Catalyst-
type envelope with SCAFFOLD version of local SGD algorithm [37]. As far as we
know, it’s still an open problem to build Accelerated local SGD as an inner algorithm.
In this paper, we demonstrate some optimistic experiments in this direction.

2. The Main Scheme

Let us consider the following minimization problem

min
y∈Rn

f(y), (1)

where f(y) is a convex function, and its gradient is Lipschitz continuous w.r.t. ‖ · ‖2
with the constant Lf :

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2.

2Note, that [13] contains variance reduction [1, 61] generalization (with non proximal-friendly composite) of
proposed in this paper scheme.
3Note, that the results of these papers were further reopened by using direct acceleration [39, 42].

3

We denote x? a solution of (1).
To propose the main scheme of the algorithm we need to define the following func-

tions:

FL,x(y) = f(y) + L
2 ||y − x||

2
2,

fL(x) = min
y∈Rn

FL,x(y) = FL,x(yL(x)),

then the function FL,x(y) is L–strongly convex, and its gradient is Lipschitz continuous
w.r.t. ‖ · ‖2 with the constant (L+ Lf). So, the following inequality holds

||∇FL,x(y2)−∇FL,x(y1)||2 ≤ (L+ Lf)||y1 − y2||2. (2)

Due to this definition, for all L ≥ 0 we have that fL(x) ≤ f(x) and the convex function
fL(x) has a Lipschitz-continuous gradient with the Lipschitz constant L. Moreover,
according to [59] [Theorem 5, ch. 6], since

x?∈Argmin
x∈Rn

fL(x),

we obtain

x? ∈ Argmin
x∈Rn

f(x) and fL(x?) = f(x?).

Thus, instead of the initial problem (1), we can consider the Moreau–Yosida regularized
problem

min
x∈Rn

fL(x). (3)

Note that the problem (3) is an ordinary problem of smooth convex optimization.
Then the complexity of solving the problem (3) up to the accuracy ε with respect to
the function using the Fast Gradient Method (FGM) [51] can be estimated as follows

O

(√
LR2

ε

)
. The ‘complexity’ means here the number of oracle calls. Each oracle call

means calculation of ∇fL(x) = L(x− yL(x)), where yL(x) is the exact solution of the
auxiliary problem min

y∈Rn
FL,x(y).

Note that the smaller the value of the parameter L we choose, the smaller is the
number of oracle calls (outer iterations). However, at the same time, this increases the
complexity of solving the auxiliary problem at each iteration.

At the end of this brief introduction to standard accelerated proximal point meth-
ods, let us describe the step of ordinary (proximal) gradient descent (for more details
see [57])

xk+1 = xk − 1
L∇fL(xk) = xk − L

L(xk − yL(xk)) = yL(xk).

To develop an adaptive proximal accelerated envelop, we should replace standard
FGM [51] on the following adaptive variant of FGM Algorithm 1, introduced by [47]
for smooth convex optimization problems.

The analysis of the algorithm is based on the following theorem.

4

Algorithm 1 Monteiro–Svaiter algorithm

Parameters: z0, y0, A0 = 0
for k = 0, 1, . . . , N − 1 do

Choose Lk+1 and yk+1 such that

‖∇FLk+1,xk+1(yk+1)‖2 ≤ Lk+1

2 ‖y
k+1 − xk+1‖2,

where

ak+1 =
1/Lk+1+

√
1/L2

k+1+4Ak/Lk+1

2 ,

Ak+1 = Ak + ak+1,

xk+1 = Ak
Ak+1

yk + ak+1

Ak+1
zk

zk+1 = zk − ak+1∇f
(
yk+1

)
end for
Output: yN

Theorem 1 (Theorem 3.6 [47]). Let sequence (xk, yk, zk), k ≥ 0 be generated by
Algorithm 1 and define R :=

∥∥y0 − x?
∥∥

2
. Then, for all N ≥ 0,

1
2

∥∥zN − x?∥∥2

2
+AN ·

(
f
(
yN
)
− f (x?)

)
+ 1

4

N∑
k=1

AkLk

∥∥∥yk − xk∥∥∥2

2
≤ R2

2 ,

f
(
yN
)
− f (x?) ≤ R2

2AN
,
∥∥zN − x?∥∥2

≤ R,

N∑
k=1

AkLk

∥∥∥yk − xk∥∥∥2

2
≤ 2R2. (4)

We also need the following Lemma.

Lemma 1 (Lemma 3.7a [47]). Let sequences {Ak, Lk}, k ≥ 0 be generated by Algo-
rithm 1. Then, for all N ≥ 0,

AN ≥ 1
4

(
N∑
k=1

1√
Lk

)2

. (5)

Let us define non-accelerated methodM that we will use to solve auxiliary problem.

Assumption 1. The convergence rate (after t iterations / oracle calls) for the method
M for problem

min
y∈Rn

F (y)

can be written in the general form as follows: with probability at least 1 − δ holds

5

(for randomized algorithms, like Algorithm 4, this estimates holds true with high
probability)4

F (yt)− F (y?) = O
(
LFRy

2 ln t
δ

)
min

{
Cn
t , exp

(
− µF t
CnLF

)}
,

where y? is the solution of the problem, Ry = ||y0 − y?||2, function F is µF –strongly
convex and LF is a constant which characterized smoothness of function F .

Typically Cn = O(1) for the standard full gradient first order methods, Cn = O(p),
where p is a number of blocks, for alternating minimization with p blocks and Cn =
O(n) for gradient free or coordinate descent methods, where n is dimension of y. See
the references in next Remark for details.

Remark 1. Let us clarify what we mean by a constant LF which characterized
smoothness of function F . Typically for the first order methods this is just the Lip-
schitz constant of gradient F (see, [6, 59] for the steepest descent and [7, 36, 65] for
alternating minimization); for gradient free methods like Algorithm 4 this constant is
the average value of the directional smoothness parameters, for gradient free methods
see [2, 11, 14, 15, 19, 62], for coordinate descent methods see [49, 53, 69] and for more
general situations see [27].

Remark 2. Note that in Assumption 1 the first estimate corresponds to the estimate
of the convergence rate of the methodM for convex problems. And the second estimate
corresponds to the estimate for strongly convex problems.

Our main goal is to propose a scheme to accelerate methods of this type. But note
that we apply our scheme only to degenerate convex problems since it does not take
into account the strong convexity of the original problem.

Denote F k+1
L,x (·) ≡ FLk+1,xk+1(·). Based on Monteiro–Svaiter accelerated proximal

method we propose Algorithm 2.
Now let us prove the main theorem about the convergence rate of the proposed

scheme. Taking into account that Õ(·) means the same as O(·) up to a logarithmic
factor, based on the Monteiro–Svaiter Theorem 1 we can introduce the following the-
orem:

Theorem 2. Consider Algorithm 2 with 0 < Ld < Lu for solving problem (1), where
Q = Rn, with auxiliary (inner) non-accelerated algorithm (method) M that satisfy
Assumption 1 with constants Cn and Lf such that Ld ≤ Lf ≤ Lu.

Then the total complexity5 of the proposed Algorithm 2 with inner method M is

Õ

(
Cn ·max

{√
Lu
Lf
,
√

Lf
Ld

}
·
√

LfR2

ε

)
with probability at least 1− δ.

Proof. Note that the Monteiro–Svaiter (M-S) condition

‖∇F k+1
L,x (yk+1)‖2 ≤ Lk+1

2 ‖y
k+1 − xk+1‖2 (6)

4For deterministic algorithms we can skip “with probability at least 1− δ” and factor “ln N
δ

”.
5The number of oracle calls (iterations) of auxiliary methodM that required to find ε solution of (1) in terms

of functions value.

6

Algorithm 2 Adaptive Catalyst

Parameters: Starting point x0 = y0 = z0; initial guess L0 > 0; parameters α >
β&γ > 1; optimization method M, A0 = 0.
for k = 0, 1, . . . , N − 1 do

Lk+1 = β ·min {αLk, Lu}
r = 0
repeat

r := r + 1
Lk+1 := max {Lk+1/β, Ld}
Compute

ak+1 =
1/Lk+1+

√
1/L2

k+1+4Ak/Lk+1

2 ,

Ak+1 = Ak + ak+1,

xk+1 = Ak
Ak+1

yk + ak+1

Ak+1
zk.

Compute an approximate solution of the following problem with auxiliary
non-accelerated method M

yk+1 ≈ argmin
y

F k+1
L,x (y) :

By runningM with starting point xk+1 and output point yk+1 we wait Nr iterations
to fulfill adaptive stopping criteria

‖∇F k+1
L,x (yk+1)‖2 ≤ Lk+1

2 ‖y
k+1 − xk+1‖2.

until r > 1 and Nr ≥ γ ·Nr−1 or Lk+1 = Ld
zk+1 = zk − ak+1∇f

(
yk+1

)
end for
Output: yN

instead of the exact solution yk+1
? = yLk+1

(xk+1) of the auxiliary problem, for which

‖∇F k+1
L,x (yk+1

?)‖2 = 0,

allows to search inexact solution that satisfies the condition (6).
Since yk+1

? is the solution of the problem min
y
F k+1
L,x (y), the ∇F k+1

L,x (yk+1
?) = 0. Then,

using inequality (2) we obtain

||∇F k+1
L,x (yk+1)||2 ≤ (Lk+1 + Lf)||yk+1 − yk+1

? ||2. (7)

Using the triangle inequality we have

||xk+1 − yk+1
? ||2 − ||yk+1 − yk+1

? ||2 ≤ ||yk+1 − xk+1||2. (8)

Since r.h.s. of the inequality (8) coincide with the r.h.s. of the M-S condition and
l.h.s. of the inequality (7) coincide with the l.h.s. of the M-S condition up to a multi-

7

plicative factor Lk+1/2, one can conclude that if the inequality

||yk+1 − yk+1
? ||2 ≤ Lk+1

3Lk+1+2Lf
||xk+1 − yk+1

? ||2 (9)

holds, the M-S condition holds too.
To solve the auxiliary problem min

y
FLk+1,xk+1(y) we use non-accelerated methodM.

Using Assumption 1 with probability ≥ 1 − δ
N (where N is the total number of the

Catalyst’s steps), we obtain that the convergence rate (after t iterations of M, see
Assumption 1)

F k+1
L,x (yk+1

t)− F k+1
L,x (yk+1

?) = O
(
(Lf + Lk+1)R2

k+1 ln Nt
δ

)
exp

(
− Lk+1t
Cn(Lf+Lk+1)

)
.

Note, that Rk+1 = ||xk+1 − yk+1
? ||2 since xk+1 is a starting point.

Since F k+1
L,x (·) is Lk+1-strongly convex function, the following inequality holds [51]

Lk+1

2 ||y
k+1
t − yk+1

? ||22 ≤ F k+1
L,x (yk+1

t)− F k+1
L,x (yk+1

?).

Thus,

||yk+1
t − yk+1

? ||2 ≤ O

(√
(Lf+Lk+1)R2

k+1

Lk+1
ln Nt

δ

)
exp

(
− Lk+1t

2Cn(Lf+Lk+1)

)
. (10)

From (9), (10) and the fact that we startM at xk+1, we obtain that the complexity T
(number of iterations ofM) of solving the auxiliary problem with probability at least
1− δ

N is determined from

O

(
Rk+1

√
(Lf+Lk+1)

Lk+1
ln NT

δ

)
exp

(
− Lk+1T

2Cn(Lf+Lk+1)

)
' Lk+1

3Lk+1+2Lf
Rk+1, (11)

hence

T = Õ
(
Cn

(Lk+1+Lf)
Lk+1

)
. (12)

Since we use in (12) Õ() notation, we can consider T to be the estimate that cor-
responds to the total complexity of auxiliary problem including all inner restarts on
Lk+1.

Substituting inequality (5) into estimation (4) we obtain

f(yN)− f(x?) ≤ 2R2(
N∑
k=1

1√
Lk

)2 .

Since the complexity of the auxiliary problem with probability at least 1− δ
N is T we

assume that in the worst case all Lk+1 are equal. Then the worst case we can estimate
as the following optimization problem

max
Ld≤L≤Lu

L+Lf
L

√
LR2

ε ,

8

Obviously, the maximum is reached at the border. So, using union bounds inequality
over all N iterations of the Catalyst we can estimate the complexity in the worst two
cases as follows:

• If all Lk+1 = Ld ≤ Lf (at each iteration we estimate the regularization parameter

as lower bound), then (Lk+1+Lf)
Lk+1

≈ Lf
Lk+1

and total complexity with probability

≥ 1− δ is

Õ

(
Cn

Lf
Ld

√
LdR2

ε

)
= Õ

(
Cn

√
Lf
Ld
·
√

LfR2

ε

)
.

• If all Lk+1 = Lu ≥ Lf (at each iteration we estimate the regularization parameter

as upper bound), then (Lk+1+Lf)
Lk+1

≈ 1 and total complexity with probability

≥ 1− δ is

Õ

(
Cn

√
LuR2

ε

)
= Õ

(
Cn

√
Lu
Lf
·
√

LfR2

ε

)
.

Then, using these two estimations we obtain the result of the theorem.

Note that this result shows that such a procedure will works not worse than standard

Catalyst [43, 44] up to a factor Õ

(
max

{√
Lu
Lf
,
√

Lf
Ld

})
independent on the stopping

criteria in the restarts on Lk+1.

Since the complexity of solving the auxiliary problem is proportional to (Lk+1+Lf)Cn
Lk+1

,

when we reduce the parameter Lk+1 so that Lk+1 < Lf the complexity of solving an
auxiliary problem became growth exponentially. Therefore, as the stopping criterion
of the inner method, we select the number of iterations Nt compared to the number of
iterations Nt−1 at the previous restart t− 1. This means that if Nt ≤ γNt−1 then the
complexity begins to grow exponentially and it is necessary to go to the next iteration
of the external method. By using such adaptive rule we try to recognize the best
possible value of Lk+1 ' Lf . The last facts are basis of standard Catalyst approach
[43, 44] and have very simple explanation. To minimize the total complexity we should
take parameter Lk+1 ≡ L such that

min
L

√
LR2

ε · Õ
(
Lf+L
L

)
.

This leads us to Lk+1 ' Lf .
Note that also in non-adaptive case (if we choose all Lk+1 ≡ Lf) we can obtain the

following corollary from the Theorem 2.

Corollary 1. If we consider Algorithm 2 with Lk+1 ≡ Lf for solving problem (1),
then the total complexity of the proposed Algorithm 2 with inner non-randomized
method M is

O

(
Cn

√
LfR2

ε

)
. (13)

Proof. Using (11) without ln NT
δ factor (since M is non-randomized) we derive that

9

the complexity of the auxiliary problem is (see also (12))

T = O
(
Cn

(Lk+1+Lf)
Lk+1

· ln
(

3Lk+1+2Lf
Lk+1

))
And since we choose Lk+1 ≡ Lf ,

3Lk+1+2Lf
Lk+1

= 5

Then the complexity of the auxiliary problem is T = O (Cn). Using this estimate, we
obtain that the total complexity is (13).

If method M is randomized we have the additional factor ln NT
δ ' ln

(
1
δε

)
. Hence,

(13) changes: with probability at least 1− δ

O

(
Cn ln

(
1
δε

)√LfR2

ε

)
.

Note that in the standard Catalyst approach [43, 44] the total complexity is

O

(
Cn ln

(
1
δε

)√LfR2

ε · ln
(

1
ε′

))
, where ε′ = Poly(ε) is the relative accuracy of solving

the auxiliary problem at each iteration. From this we get that choosing the stopping
criterion for the inner method as the criterion from the Algorithm 2 we can get the
Catalyst without a logarithmic cost ln

(
1
ε′

)
. It seems that such variant of Catalyst can

be useful in many applications. For example, as universal envelope for non accelerated
asynchronized centralized distributed algorithms [46].

3. Applications

In this section, we present a few examples of algorithms that we consider as inner
solvers. Most of them have an adaptive structure. It’s natural to apply adaptive en-
velope to adaptive algorithms since the developed methods keep adaptability.

3.1. Steepest Descent

Consider the following problem

min
x∈Rn

f(x),

where f(x) is a Lf–smooth convex function (its gradient is Lipschitz continuous w.r.t.
‖ · ‖2 with the constant Lf).

To solve this problem, let us consider the general gradient descent update rule

xk+1 = xk − hk∇f(xk).

In [59] it was proposed an adaptive way to select hk as following (see also [6] for precise
rates of convergence)

hk = argmin
h∈R

f(xk − h∇f(xk)).

10

Algorithm 3 Steepest descent

Parameters: Starting point x0.
for k = 0, 1, . . . , N − 1 do

Choose hk = argminh∈R f(xk − h∇f(xk))
Set xk+1 = xk − hk∇f(xk)

end for
Output: xN

In contrast with the standard selection hk ≡ 1
Lf

for L-smooth functions f , in this

method there is no need to know smoothness constant of the function. It allows to use
this method for the smooth functions f when Lf is unknown (or expensive to compute)
or when the global Lf is much bigger than the local ones along the trajectory.

On the other hand, as far as we concern, there is no direct acceleration of the steepest
descent algorithm. Moreover, it is hard to use Catalyst with it as far as acceleration
happens if Lk (κ in Catalyst article notations) is selected with respect to Lf and the
scheme does not support adaptivity out of the box. Even if global Lf is known, the
local smoothness constant could be significantly different from it that will lead to the
worse speed of convergence.

Note that for Algorithm 3 the Assumption 1 holds with Cn = O(1) and Lf is the
Lipschitz constant of the gradient of function f .

3.2. Random Adaptive Coordinate Descent Method

Consider the following unconstrained problem

min
x∈Rn

f(x).

Now we assume directional smoothness for f , that is there exists β1, . . . , βn such that
for any x ∈ Rn, u ∈ R

|∇if (x+ uei)−∇if(x)| ≤ βi|u|, i = 1, . . . , n,

where ∇if(x) = ∂f(x)/∂xi. For twice differentiable f it equals to (∇2f(x))i,i ≤ βi.
Due to the fact that we consider the situation when smoothness constants are not
known, we use such a dynamic adjustment scheme from [49, 69].

Note that for Algorithm 4 the Assumption 1 holds with Cn = O(n) (for x ∈ Rn)

and6 Lf = Lf := 1
n

n∑
i=1

βi (the average value of the directional smoothness parameters).

As one of the motivational example, consider the following minimization problem

min
x∈Rn

f(x) = γ ln

(
m∑
i=1

exp

(
[Ax]i
γ

))
− 〈b, x〉,

where A ∈ Rm×n, b ∈ Rn. We denote the ith row of the matrix A by Ai. A is sparse,
i.e. average number of nonzero elements in Ai is less than s. f is Lf -smooth w.r.t.

6Strictly speaking, such a constant takes place for non-adaptive variant of the CDM with specific choice of ik

[49]: π(ik = j) =
βj∑n

j′=1
βj′

. For described RACDM the analysis is more difficult [58].

11

Algorithm 4 RACDM

Parameters: Starting point x0;
lower bounds β̂i := β0

i ∈ (0, βi] , i = 1, . . . , n
for k = 0, 1, . . . , N − 1 do

Sample ik ∼ U [1, . . . , n]

Set xk+1 = xk − β̂−1
ik
· ∇ikf

(
xk
)
· eik

While ∇ikf(xk) · ∇ikf(xk+1) < 0 do{
β̂ik = 2β̂ik , xk+1 = xk − β̂−1

ik
· ∇ikf

(
xk
)
· eik

}
Set βik = 1

2βik
end for
Output: xN

‖ · ‖2 with Lf = maxi=1,...,m ‖Ai‖22 and its gradient is component-wise βj-continuous
with βj = maxi=1,...,m |Aij |.

Fast Gradient Method (FGM) [52] requires O

(√
LfR2

ε

)
iterations with the com-

plexity of each iteration O (ns).

Coordinate Descent Method (CDM) [4] requires O
(
nLfR

2

ε

)
iterations with the com-

plexity of each iteration7 O (s).

Accelerated Coordinate Descent Method (ACDM) [22, 53] requires O

(
n

√
L̃fR2

ε

)
iterations with the complexity of each iteration O (n), where L̃f =

1

n

n∑
j=1

√
βj .

For proposed in this paper approach we have O

(
n

√
LfR2

ε

)
iterations of CGM

with complexity of each inner iteration O(s) and complexity of each outer iteration
O(ns). However, outer iteration executes ones per ∼ n inner iterations, so average-case
iteration complexity is O(s).

We combine all these results in the table below. From the table one can conclude
that if Lf < Lf , then our approach has better theoretical complexity.

Algorithm Complexity Reference

FGM O

(
ns
√

LfR2

ε

)
[52]

CDM O
(
nsLfR

2

ε

)
[4, 49]

ACDM O

(
n2

√
L̃fR2

ε

)
[53]

Catalyst CDM O

(
ns

√
LfR2

ε

)
this paper

7Here one should use a following trick in recalculation of ln
(∑m

i=1 exp ([Ax]i)
)

and its gradient (partial
derivative). From the structure of the method we know that xnew = xold + δei, where ei is i-th orth. So if

we’ve already calculate Axold then to recalculate Axnew = Axold+δAi requires only O(s) additional operations

independently of n and m.

12

Note that the use of Component Descent Method allows us to improve con-
vergence estimate by factor

√
n compared to Fast Gradient Method. Indeed, for

this problem we have Lf = maxi=1,...,m ‖Ai‖22 = O(n), and on the other hand

Lf = 1
n

∑
j=1,...,n maxi=1,...,m |Aij | = O(1). Therefore, the total convergence estimate

for Fast Gradient Method can be written as

O

(
ns ·
√
n ·
√
R2

ε

)
,

and for proposed in this paper method factor
√
n is reduced to O(1) and could be

omitted:

O

(
ns ·

√
R2

ε

)
.

The best complexity improvement is achieved if Lf = n, which means there is at
least one row in the matrix such that Ai = 1

n, even though all other rows can be
arbitrary sparse.

3.3. Alternating Minimization

Consider the following problem

min
x=(x1,...,xp)T∈⊗pi=1Rni

f(x),

where f(x) is a Lf–smooth convex function (its gradient is Lipschitz continuous w.r.t.
‖ · ‖2 with the constant Lf).

For the general case of number of blocks p > 2 the Alternating Minimization al-
gorithm may be written as Algorithm 5. There are multiple common block selection
rules, such as the cyclic rule or the Gauss–Southwell rule [3, 7, 36, 65].

Algorithm 5 Alternating Minimization

Parameters: Starting point x0.
for k = 0, 1, . . . , N − 1 do

Choose i ∈ {1, . . . , p}
Set xk+1 = argmin

xi
f(xk1, ...x

k
i−1, xi, x

k
i+1, ..., x

k
p)

end for
Output: xN

Note that for Algorithm 5 the Assumption 1 holds with Cn = O(p) (p – number of
blocks) and Lf is the Lipschitz constant of the gradient of function f .

3.4. Local Stochastic Gradient Descent

Local SGD [38] becomes popular first of all due to the application in federated learning
[33]. In the core of the approach lies a very simple idea [16, 38, 50, 63]: to solve con-
sidered stochastic convex optimization problem in parallel on M nodes via Adaptive

13

Stochastic Gradient Descent (SGD) [54] with synchronization after each τ iterations
of SGD and sharing an average point. The large we want to choose M the smaller we
should choose τ to conserve the total (optimal) number of oracle T (stochastic gradi-
ent) calls (on M nodes). Say, for strongly convex case Mτ ' T [38]. It is well known
that for stochastic convex optimization problems from the oracle complexity point of
view there is no difference between accelerated schemes and non-accelerated ones [48].
On the other hand, if we reduce the variance by batching acceleration could play a
significant role [25, 68]. That is in parallelized architecture the accelerated schemes
are dominant. So, the natural question: Can we accelerate local SGD? Below we’ll try
to demonstrate the numerical possibility of acceleration local SGD by proposed M-S
Catalyst scheme. From the theoretical perspective, an acceleration of local SGD is still
an open problem [67] rather than acceleration of ordinary SGD (see, for example, [18]
and reference therein).

Algorithm 6 Local SGD algorithm

Parameters: x0 ∈ Rn, w — number of workers, L, µ,
SN — set of synchronization steps indices
τ — maximum difference between two consequent integers in SN

Initialize variables x0
h = x0 for h ∈ [1, w]

for k = 0, 1, . . . , N − 1 do
for h ∈ {1, . . . , w} do in parallel

Sample ikh uniformly in [1,m]
if k + 1 ∈ SN then

xk+1
h = 1

w

∑w
j=1

(
xkj − ηk∇fikh(xkj)

)
else

xk+1
h = xkh − ηk∇fikh(xkh)

end if
end for

end for
Output: x̂N = 1

wSN

∑w
h=1

∑N−1
k=0 ξkxkh, where ξk = (max{16L/µ, τ} + k)2, SN =∑N−1

k=0 ξk.

3.5. Theoretical Guarantees

Let us present the table that establishes the comparison of rates of convergence for
the above algorithms before and after acceleration via Algorithm 2. In non-accelerated
case these algorithms apply to the convex but non-strongly convex problem, therefore,
we use estimates for the convex case from Assumption 1. But in the case of acceleration
of these methods, we apply them to a regularized function which is strongly convex.

Denote χ = max

(√
Lu
Lf
,
√

Lf
Ld

)
, then we represent the following table.

4. Experiments

In this section, we perform experiments for justifying the acceleration of the aforemen-
tioned methods in practice. For all figures below, the vertical axis measures functional
suboptimality f(x)− f(x?) in the logarithmic scale.

14

non-accelerated M-S accelerated

Steepest Descent LfR2

ε χ
√

LfR2

ε

Random Adaptive Coordinate Descent Method n · LfR
2

ε n · χ
√

LfR2

ε

Alternating Minimization p · LfR
2

ε p · χ
√

LfR2

ε

4.1. Steepest Descent Acceleration

0 500 1,000 1,500 2,000
10�4

10�3

10�2

10�1

100

101

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

al
it
y
(l

og
-s

ca
le

) Steepest Descent
Monteiro-Svaiter SD
↵ = 2, � = 1.3, � = 1.4
↵ = 2, � = 1.5, � = 1.3
↵ = 3, � = 2.0, � = 1.4
↵ = 6, � = 3.0, � = 2.0

0 1,000 2,000 3,000 4,000

10�3

10�2

10�1

100

101

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

al
it
y
(l

og
-s

ca
le

) Steepest Descent
Monteiro-Svaiter SD
↵ = 2, � = 1.3, � = 1.4
↵ = 2, � = 1.5, � = 1.3
↵ = 3, � = 2.0, � = 1.4

1

(a) Logistic regression (14) with rcv1 train dataset.

0 500 1,000 1,500 2,000

10−4

10−3

10−2

10−1

100

101

iterations

fu
n
ct
io
n
al

su
b
op

ti
m
a
li
ty

(l
og
-s
ca
le
) Gradient Descent (GD)

Steepest Descent (SD)
Monteiro-Svaiter SD
α = 2, β = 1.3, γ = 1.4
α = 3, β = 2, γ = 1.4
α = 6, β = 3, γ = 2
α = 2, β = 1.5, γ = 1.3
Monteiro-Svaiter GD

(b) Logistic regression (14) with a1a dataset.

Figure 1. Results of Steepest Descent acceleration for different problems

In this experimental setup we consider logistic loss minimization problem

min
x∈Rn

f(x) =
1

m

m∑
j=1

log(1+exp(−yjz>j x)) (14)

with two different datasets from LIBSVM [5] repository (rcv1 train and a1a) We
selected logistic regression as the objective as far as logistic regression converges with
sub-linear rate like general non-strongly function that is important assumption for
accelerated versions of algorithm to be provable.

In this setup we present our experimental results for Steepest Descent (Algorithm 3)
and its accelerated via Algorithm 2 versions with different tuples of parameters (α, β, γ)
to show the dependence of the algorithm on parameters.8

In Figure 1a we present functional suboptimality vs aggregated amount of gradient
computations (oracle calls) in logarithmic scale. To be more precise, we present the
following: for every “restart” we split all the points into two groups. First group –
points from the inner algorithm run with “optimal” Lk+1. Second group is for the
points, that are extra (cost of adaptation) and for this points we plot the value in
point yk from the previous restart (to have the horizontal lines on plots in cases
when adaptation takes so long). In the end of the day, for each restart we, first, plot
“horizontal line” for all points from the second group and after we present points from
the first group with the corresponding to them values.

8For all runs with steepest descent we used Ld = 0.0001Lf and Lu = Lf , where Lf is a real Lipschitz constant

of ∇f .

15

As we could see from the plot, acceleration happens when M-S acceleration scheme
is used together with steepest descent but is highly dependent on the parameters of
Monteiro–Svaiter algorithm. For instance, big α and β make it harder to algorithm to
adapt to the current “optimal” value of Lk+1 that makes algorithm slower. Second,
selecting big γ is not reasonable too as far as it corresponds to the big fluctuation of
Lk+1 during every restart. Moreover, selecting α and β close to each other also tends
to slow down the convergence process.

Let us give some intuition why this happens. Let us recall, that parameters α and
β impact on the speed of adaptation. More precisely, the decrease of estimation Lk+1

after the one iterate is by factor of βp/α, where p ∈ Z+. This implies two different
things:

if Lk+1 < Lf the “optimistic” amount of adaptation rounds is logα
Lf
Lk+1

, that is

very big if α is close to 1;

if Lf ∈
(
Lk+1

β , Lk+1

)
the “worst” amount of adaptation rounds is log β

α

β, that

is very big if α is close to β.9

Combining these one can find the explanation of the dependence between α, β, and
the rate of convergence.

In Figure 1b, we add also Gradient Descent algorithm to the list of presented al-
gorithms. To be precise enough, we use Monteiro–Svaiter acceleration without any
adaptation for Lk+1. It means, that fixed constant Lk+1 = Lf is used during algo-
rithm run.

As we could see from the set of hyper parameters (α, β, γ) = (6, 3, 2) again leads to
the slowest version of accelerated algorithm. All the other set ups, also have roughly the
same behavior. Finally, for Gradient Descent acceleration also takes place and even
makes it faster than Steepest Descent without acceleration. An important thing to
notice is the following: Monteiro–Svaiter acceleration for adaptive algorithms (Steepest
Descent) makes them faster than acceleration of non-adaptive (Gradient Descent) in
spite of cost for adaptation.

4.2. RACDM Acceleration

Let us consider quadratic optimization problem

min
x∈Rn

f(x) =
1

2
x>Ax, (15)

for Hilbert matrix [30] with such entries Aij = 1
i+j−1 . This is an example of a Hankel

matrix and is known to be very ill-conditioned (e.g. for n = 6 condition number
≈ 1.5 ·107 [59]). It leads to a degenerate optimization problem, typically very hard for
gradient methods.

In Figure 2 we compare the performance of the method 4 and its M-S accelerated
version with different sets of parameters (α, β, γ) for problem (15).

For the horizontal axis we use number of partial derivative evaluations divided
by dimensionality n of the problem. Our warm start strategy includes running
inner method from the last point yk and with estimates β̂i of smoothness constants
obtained from the previous outer (M-S) iteration. The initial points y0 = z0 entries

9If Lf < Lk+1/β then the scaling by factor of β give us the situation described in this case.

16

were sampled from the standard uniform distribution U(0, 1). L0 was initialized as
0.5Lf and Ld = 0.001Lf , Lu = 100Lf , β

0
i = 1/L0. Here we introduce the relationship

between Ld, Lu, and Lf only from the theoretical interest; however, the dependence
between Ld, Lu, and Lf is never used in the algorithm.1 plots

0 500 1,000 1,500 2,000

10�8

10�6

10�4

10�2

100

iterations

fu
n
ct

io
n
a
l
su

b
o
p
ti

m
al

it
y

(l
og

-s
ca

le
) RACDM

Monteiro-Svaiter RACDM
↵ = 2, � = 1.5, � = 1.1
↵ = 5, � = 3, � = 1.8

0 100 200 300 400 500
10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

al
it
y

(l
og

-s
ca

le
) RACDM

Monteiro-Svaiter RACDM
↵ = 3,� = 2, � = 1.5
↵ = 3,� = 1.5, � = 1.2
↵ = 3,� = 2.5, � = 1.5

1

Figure 2. Results of RACDM acceleration for

quadratic problem (15) with Hilbert matrix, n =
1000.

Consider a simple case of quadratic op-
timization problem (15) with matrix A =
S>DS such that S is a random orthogonal
matrix. The elements of diagonal matrix D
are sampled from standard uniform distri-
bution U(0, 1) and one random Dii is as-
signed to zero to guarantee that the small-
est eigenvalue of the resulting matrix A is
smaller than 10−15 and thus the optimiza-
tion problem is convex but not strongly-
convex (up to machine precision).10

In Figure 3a we compare the perfor-
mance of RACDM and its M-S accelerated
version with different sets of parameters
(α, β, γ).

For the horizontal axis we use number
of partial derivative evaluations divided by
dimensionality n of the problem. Our warm start strategy includes running inner
method from the last point yk and with estimates β̂i of smoothness constants obtained
from the previous iteration. The initial points y0 = z0 are sampled from the standard
uniform distribution U(0, 1). L0 was initialized as 1.6Lf and Ld = 0.005Lf , Lu =
10Lf , β

0
i = 1/L0. We observe that clear acceleration can be achieved not for all sets

of parameters. Concretely, both β and γ affected convergence as one can see from the
plot. Besides, we find out that for higher accuracy the proposed method can show
unstable performance.

Note, that we can obtain provable acceleration by the proposed Adaptive Catalyst
procedure only for convex problems. For strongly convex problems, this is no longer
true either in theory or in our experiments. The reason is that the proposed M-S
accelerated envelope doesn’t take in to account possible strong convexity. Moreover, as
far as we know, this is still an open problem, to propose a fully adaptive accelerated
algorithm for strongly convex problems. The problem is in the strong convexity
parameter. In practice, we met this problem in different places. For example, when
we choose the restart parameter for conjugate gradient methods or try to propose
accelerated (fast) gradient methods that do not require any information about strong
convexity parameter but know all other characteristics of the problem.

Consider logistic loss minimization problem

min
x∈Rn

f(x) =
1

m

m∑
j=1

log(1+exp(−yjz>j x)). (16)

10Frankly speaking, for such objective functions we observe that non-accelerated gradient descent based algo-
rithms converge with linear rate, because of the quadratic nature of the problem and specificity of spectrum.
Since n = 100 in these experiments we typically have that the next eigenvalue after zero is about 0.01. This

value determined the real rate of convergence

17

0 50 100 150 200

10�3

10�2

10�1

100

iterations

fu
n
ct

io
n
a
l
su

b
op

ti
m

a
li
ty

(l
og

-s
ca

le
) RACDM

Monteiro-Svaiter RACDM
↵ = 15,� = 1.5, � = 1.2
↵ = 5, � = 1.5, � = 1.2
↵ = 5, � = 1.2, � = 1.1

0 100 200 300 400 500

100

10�2

10�4

10�6

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

a
li
ty

(l
o
g-

sc
a
le

) RACDM
Monteiro-Svaiter RACDM
↵ = 3,� = 2, � = 1.5
↵ = 3,� = 1.5, � = 1.2
↵ = 3,� = 2.5, � = 1.5

1

(a) Synthetic quadratic problem (15) with matrix

A,n = 100.

0 50 100 150 200

10�3

10�2

10�1

100

iterations

fu
n
ct

io
n
a
l
su

b
op

ti
m

a
li
ty

(l
og

-s
ca

le
) RACDM

Monteiro-Svaiter RACDM
↵ = 15,� = 1.5, � = 1.2
↵ = 5, � = 1.5, � = 1.2
↵ = 5, � = 1.2, � = 1.1

0 100 200 300 400 500

100

10�2

10�4

10�6

iterations

fu
n
ct

io
n
a
l
su

b
op

ti
m

al
it
y

(l
o
g
-s

ca
le

) RACDM
Monteiro-Svaiter RACDM
↵ = 3,� = 2, � = 1.5
↵ = 3,� = 1.5, � = 1.2
↵ = 3,� = 2.5, � = 1.5

1

(b) Logistic regression problem (16) for madelon

dataset.

Figure 3. Results of RACDM acceleration for different problems

In Figure 3a we compare the performance of RACDM and its M-S accelerated ver-
sion with different sets of parameters (α, β, γ) for logistic regression problem with
madelon dataset from LIBSVM [5] repository. Initial parameters for this set up are
L0 = Lf , Ld = 10−5, Lu = 100Lf . Warm start strategy and depicted values for
theot horizontal axis are the same as for the quadratic problem. It is important to
mention that gradient norm computation for checking Monteiro–Svaiter condition∥∥∥∇F k+1

L,x

(
yk+1

)∥∥∥
2
≤ Lk+1

2

∥∥yk+1 − xk+1
∥∥

2
and full gradient step from the outer loop

zk+1 = zk − ak+1∇f
(
yk+1

)
(according to Algorithm 2) were counted as evaluation

of n partial derivative. For this case, we also noted that L0 initialization affects the
convergence significantly at the beginning and it has to be chosen lower than in the
previous cases.

Consider also the following softmax function minimization problem

min
x∈Rn

f(x) = γ ln

(
m∑
i=1

exp

(
[Ax]i
γ

))
− 〈b, x〉, (17)

where matrix A ∈ Rm×n is such that average number of nonzero elements in Ai is
less than s � m and one of the rows Ak is non-sparse. f is Lipschitz smooth with
the constant Lf = maxi=1,...,m ‖Ai‖22 and has component-wise Lipschitz continuous
gradient with constants βj = maxi=1,...,m |Aij |.

In figures 4 and 5 we compare the performance of the Accelerated Coordinate
Descent Method (ACDM) [53], Gradient Method (GM) [51], Fast Gradient Method
(FGM) [51], and proposed approach – accelerated via Algorithm 2 variant of non-
adaptive Coordinate Descent Method (Catalyst CDM) for strongly convex w.r.t. ‖ · ‖2
auxiliary problem, in which ik is drawn from the distribution π defined by [49]

π(ik = j) =
βj∑n
j′=1 βj′

.

In the case of randomly-generated A with Aij ∈ {0, 1}, s ≈ 0.2m, non-sparse row Ak

18

with uniformly random components and γ = 0.6 proposed method converges faster
(in terms of working time) than all comparable methods except FGM. However, in
other setting, for the smaller count of nonzero elements in the matrix (s ≈ 0.75m),
non-sparse row Ak = 1

n, and with higher variation in the sparsity of the rows of A
(0.9m rows with 0.1n nonzero elements and 0.1m rows with 0.9n nonzero elements)
— proposed method converges faster than FGM due to Lf � Lf .

0 5 10 15 20 25 30 35

10−2

100

102

104

T , s

fu
n
ct
io
n
al

su
b
op

ti
m
al
it
y
(l
og
-s
ca
le
)

n = 15000,m = 10000

Figure 4. Softmax problem (17) with random

sparse matrix.

0 50 100 150

102

104

T , s

fu
n
ct
io
n
a
l
su
b
o
p
ti
m
al
it
y
(l
og

-s
ca
le
)

n = 15000,m = 10000

ACDM
GM
FGM
Catalyst CDM

Figure 5. Softmax problem (17) with heteroge-

neous sparse matrix.

4.3. Alternating Least Squares Acceleration

Consider the typical collaborative filtering problem: completion of the user-item pref-
erences matrix with estimated values based on a little count of observed ratings made
by other users on other items. The considered being accelerated AM algorithm is in-
duced by the idea of preferences matrix factorization and estimating unknown rating
rui associated with the user u and the item i as a product x>u yi, where the vectors xu
and yi are being optimized variables. Following the approach set out in [31], formulate
such an optimization problem:

min
x,y

F (x, y) =
∑
u,i

cui

(
pui − x>u yi

)2
+ λ

(∑
u

||xu||22 +
∑
i

||yi||22

)
, (18)

where cui is confidence in observing rui, in our case expressed as cui = 1 + 5rui, pui is
binarized rating:

pui =

{
1 rui > 0,
0 rui = 0,

and λ
(∑

u ||xu||22 +
∑

i ||yi||22
)

— regularization term preventing overfitting during the
learning process (in our case, the regularization coefficient is set to λ = 0.1).

For described objective functional optimization we used modified Algorithm 5 in
that on every iteration functional optimizing with relation to x and y consistently

19

(for that functional we can get the explicit expression for the solutions of equations
∇xf(x, y) = 0 and ∇yf(x, y) = 0, computational effective matrix expressions for
solutions of these auxiliary problems are presented in [31]).

The considered objective function is not convex, so instead of the described Adaptive
Catalyst scheme for accelerating should be used the modified one, in which the step
of updating variable yk replaced with such construction:

ỹk+1 ≈ argmin
y

F k+1
L,x (y)

yk+1 = arg min {f(y) | y ∈ {yk, ỹk+1}}

Used in experiments sparse matrix {rui}u,i generated from radio dataset11 with
ratings made by listeners on compositions of certain artists. Count of considered users
was 70, count of artists — 100, and sparsity coefficient of the matrix was near the 2%.

In Figure 6 we compare the performance of the modified Algorithm 5 and their accel-
erated via Algorithm 2 versions (with a different choice of hyperparameters (α, β, γ)).

The horizontal axis measures the number of variables recomputations. The plot
show that there was the acceleration of the base algorithm and both parameters β
and γ had an impact on the convergence rate.

In addition, consider the performance of the Alternating Least Squares algorithm
for the problem with a larger being estimated matrix {rui}u,i.

In Figure 7 we compare the performance of the Alternating Least Squares algorithm
and its accelerated via Monteiro–Svaiter algorithm versions for problem 18 with λ = 5
and matrix {rui}u,i of the size 150 users × 300 artists, generated from radio dataset.
The horizontal axis measures the number of variables recomputations. The plot shows
that there was the acceleration of the base algorithm and both parameters β and γ
had an impact on the convergence rate.0 1,000 2,000 3,000 4,000 5,000

100

101

102

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

al
it
y

(l
og

-s
ca

le
) Alternating Least Squares

Monteiro-Svaiter ALS
↵ = 2,� = 1.6, � = 2.5
↵ = 2,� = 1.8, � = 3

0 300 600 900 1,200 1,500
10�2

10�1

100

101

102

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

al
it
y

(l
og

-s
ca

le
) Alternating Least Squares

Monteiro-Svaiter ALS
↵ = 1.2, � = 1.19, � = 1.03
↵ = 1.3,� = 1.2, � = 1.1
↵ = 1.15, � = 1.12, � = 1.1

1

Figure 6. Matrix completion problem (18) with

different (α, β, γ).

0 1,000 2,000 3,000 4,000 5,000

100

101

102

iterations

fu
n
ct

io
n
a
l
su

b
op

ti
m

al
it
y

(l
og

-s
ca

le
) Alternating Least Squares

Monteiro-Svaiter ALS
↵ = 2,� = 1.6, � = 2.5
↵ = 2,� = 1.8, � = 3

0 300 600 900 1,200 1,500
10�2

10�1

100

101

102

iterations

fu
n
ct

io
n
al

su
b
op

ti
m

a
li
ty

(l
og

-s
ca

le
) Alternating Least Squares

Monteiro-Svaiter ALS
↵ = 1.2, � = 1.19, � = 1.03
↵ = 1.3,� = 1.2, � = 1.1
↵ = 1.15, � = 1.12, � = 1.1

1

Figure 7. Matrix completion problem (18) with
big matrix.

20

0 500 1,000 1,500

10�4

10�3

10�2

10�1

100

101

102

iterations

fu
n
ct

io
n
a
l
su

b
o
p
ti

m
a
li
ty

(l
o
g
-s

ca
le

) Local SGD
M-S L-SGD
⌧ = 400
⌧ = 200
⌧ = 10
⌧ = 2

0 450 900 1,350 1,800

10�4

10�3

10�2

10�1

100

101

iterations

fu
n
ct

io
n
a
l
su

b
o
p
ti

m
a
li
ty

(l
o
g
-s

ca
le

) Local SGD M-S L-SGD
⌧ = 200 ⌧ = 200
⌧ = 10 ⌧ = 10
⌧ = 2 ⌧ = 2

2

Figure 8. Regularized logistic loss (19) for differ-

ent synchronization intervals τ .

0 500 1,000 1,500

10�4

10�3

10�2

10�1

100

101

102

iterations

fu
n
ct

io
n
al

su
b
o
p
ti

m
al

it
y

(l
o
g-

sc
a
le

) Local SGD
M-S L-SGD
⌧ = 400
⌧ = 200
⌧ = 10
⌧ = 2

0 300 600 900 1,200

10�4

10�3

10�2

10�1

100

101

iterations

fu
n
ct

io
n
al

su
b
o
p
ti

m
al

it
y

(l
o
g-

sc
a
le

)

Local SGD
⌧ = 400
⌧ = 200
M-S L-SGD
b = 1
b = 4000

2

Figure 9. Logistic loss (19) minimization with
minibatching.

4.4. Local SGD Acceleration

Consider the following `2-regularized logistic loss minimization problem:

min
x∈Rn

F (x) =
1

m

m∑
j=1

log(1 + exp (−yjx>pj)) + g(x) (19)

where the features matrix P ∈ Rm×n, labels y ∈ {0, 1}m and g is a regularization
term, aggregated by two different regularizers for the sparse features IS ⊂ [1, n] (with
coefficient λ1) and the dense features ID ⊂ [1, n], IS ∩ ID = ∅ (with coefficient λ2):

g(x) = λ1

∑
i∈IS

x2
i + λ2

∑
i∈ID

x2
i .

In this experiment, we use the adults dataset with one-hot encoded categorical features
and binarized ‘work class‘ feature as a label, m = 40000, n = 100, λ1 = 1.1, λ2 = 2.1,
the sparsity coefficient (percentage of features with a fraction of zeros less than 0.2) is
equal to 4%. Also, the initial value of the model’s weightsis randomly generated from
the uniform distribution x0,i ∼ U(0, 1) ∀i ∈ [1, n].

In Figure 8 we compare the performance of the Local SGD and its accelerated via
Algorithm 2 versions. Parameters used: w = 20 (amount of computing nodes), varying
τ (number of iterations between two consequent synchronization steps), α = 1.15, β =
1.12, γ = 1.1 (for Monteiro–Svaiter).

The horizontal axis measures the number of outer iterations (one outer iteration
includes recomputation of the variables in all computing nodes). The plot shows that
there was the acceleration of the base algorithm and synchronization interval had an
impact on the convergence rate.

In Figure 9 we compare the performance of the Algorithm 6 and its Monteiro–
Svaiter (with parameters α = 1.15, β = 1.12, γ = 1.1 and τ = 200) accelerated versions
(w = 20 and τ ∈ {200, 400}) for problem (19) with applying the minibatch technique
(where parameter b controls the batch size). The horizontal axis measures the number

11https://www.upf.edu/web/mtg/lastfm360k

21

of outer iterations (one outer iteration includes the recomputation of the variables
in all the computing nodes). The plot shows that there was the acceleration of the
base algorithm and, moreover, that using a batch of samples instead of one sample for
calculating the stochastic gradient can improve the convergence rate.

Conclusion

In this work, we present the universal framework for accelerating the non-accelerated
adaptive methods such as Steepest Descent, Alternating Least Squares Minimization,
and RACDM and show that acceleration works in practice (code is available online on
GitHub). Moreover, we show theoretically that for the non-adaptive run proposed in
this paper, acceleration has in a log-factor better rate than via Catalyst. Note, that
this “fight” for the log-factor in accelerated procedure’s become popular in the last
time, see [39, 42] for concrete examples. In this paper, we eliminate log-factor in a
rather big generality.

Acknowledgements

We would like to thank Soomin Lee (Yahoo), Erik Ordentlich (Yahoo), César A. Uribe
(MIT), Pavel Dvurechensky (WIAS, Berlin) and Peter Richtarik (KAUST) for useful
remarks. We also would like to thank anonymous reviewers for their fruitful comments.

References

[1] Z. Allen-Zhu and E. Hazan, Optimal black-box reductions between optimization objectives,
arXiv preprint arXiv:1603.05642 (2016).

[2] A. Bayandina, A. Gasnikov, and A. Lagunovskaya, Gradient-free two-points optimal
method for non smooth stochastic convex optimization problem with additional small noise,
Automation and remote control 79 (2018). arXiv:1701.03821.

[3] A. Beck, First-order methods in optimization, Vol. 25, SIAM, 2017.
[4] S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends®

in Machine Learning 8 (2015), pp. 231–357.
[5] C.C. Chang and C.J. Lin, Libsvm: a library for support vector machines, ACM Transac-

tions on Intelligent Systems and Technology (TIST) 2 (2011), p. 27.
[6] E. De Klerk, F. Glineur, and A.B. Taylor, On the worst-case complexity of the gradient

method with exact line search for smooth strongly convex functions, Optimization Letters
11 (2017), pp. 1185–1199.

[7] J. Diakonikolas and L. Orecchia, Alternating randomized block coordinate descent, arXiv
preprint arXiv:1805.09185 (2018).

[8] J. Diakonikolas and L. Orecchia, Conjugate gradients and accelerated methods unified:
The approximate duality gap view, arXiv preprint arXiv:1907.00289 (2019).

[9] N. Doikov and Y. Nesterov, Contracting proximal methods for smooth convex optimization,
SIAM Journal on Optimization 30 (2020), pp. 3146–3169.

[10] N. Doikov and Y. Nesterov, Inexact tensor methods with dynamic accuracies, arXiv
preprint arXiv:2002.09403 (2020).

[11] J.C. Duchi, M.I. Jordan, M.J. Wainwright, and A. Wibisono, Optimal rates for zero-order
convex optimization: The power of two function evaluations, IEEE Trans. Information
Theory 61 (2015), pp. 2788–2806.

22

https://github.com/AdaptiveCatalyst/Adaptive-Catalyst

[12] D. Dvinskikh, D. Kamzolov, A. Gasnikov, P. Dvurechensky, D. Pasechnyk, V. Matykhin,
and A. Chernov, Accelerated meta-algorithm for convex optimization, Computational
Mathematica and Mathematical Physics 61 (2021).

[13] D. Dvinskikh, S. Omelchenko, A. Gasnikov, and A. Tyurin, Accelerated Gradient Sliding
for Minimizing a Sum of Functions, in Doklady Mathematics, Vol. 101. Springer, 2020,
pp. 244–246.

[14] P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated directional derivative
method for smooth stochastic convex optimization, arXiv:1804.02394 (2018).

[15] P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated method for derivative-
free smooth stochastic convex optimization, arXiv:1802.09022 (2018).

[16] P. Dvurechensky, A. Gasnikov, and A. Lagunovskaya, Parallel algorithms and probability
of large deviation for stochastic convex optimization problems, Numerical Analysis and
Applications 11 (2018), pp. 33–37.

[17] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM
Journal on Optimization 25 (2015), pp. 1997–2023.

[18] A. Gasnikov, Universal gradient descent, MCCME, Moscow, 2021.
[19] A. Gasnikov, A. Lagunovskaya, I. Usmanova, and F. Fedorenko, Gradient-free proximal

methods with inexact oracle for convex stochastic nonsmooth optimization problems on
the simplex, Automation and Remote Control 77 (2016), pp. 2018–2034. Available at
http://dx.doi.org/10.1134/S0005117916110114, arXiv:1412.3890.

[20] A. Gasnikov, Universal gradient descent, arXiv preprint arXiv:1711.00394 (2017).
[21] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C.A.

Uribe, B. Jiang, H. Wang, S. Zhang, S. Bubeck, et al., Near Optimal Methods for Minimiz-
ing Convex Functions with Lipschitz p-th Derivatives, in Conference on Learning Theory.
2019, pp. 1392–1393.

[22] A. Gasnikov, P. Dvurechensky, and I. Usmanova, On accelerated randomized methods,
Proceedings of Moscow Institute of Physics and Technology 8 (2016), pp. 67–100. In
Russian, first appeared in arXiv:1508.02182.

[23] A. Gasnikov, E. Gorbunov, D. Kovalev, A. Mokhammed, and E. Chernousova, Reacha-
bility of optimal convergence rate estimates for high-order numerical convex optimization
methods, in Doklady Mathematics, Vol. 99. Springer, 2019, pp. 91–94.

[24] N. Gazagnadou, R.M. Gower, and J. Salmon, Optimal mini-batch and step sizes for saga,
arXiv preprint arXiv:1902.00071 (2019).

[25] E. Gorbunov, D. Dvinskikh, and A. Gasnikov, Optimal decentralized distributed algorithms
for stochastic convex optimization, arXiv preprint arXiv:1911.07363 (2019).

[26] E. Gorbunov, F. Hanzely, and P. Richtarik, A unified theory of sgd: Variance reduction,
sampling, quantization and coordinate descent (2019).

[27] R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik, Sgd:
General analysis and improved rates, arXiv preprint arXiv:1901.09401 (2019).

[28] S. Guminov, P. Dvurechensky, and A. Gasnikov, Accelerated alternating minimization,
arXiv preprint arXiv:1906.03622 (2019).

[29] H. Hendrikx, F. Bach, and L. Massoulié, Dual-free stochastic decentralized optimization
with variance reduction, Advances in Neural Information Processing Systems 33 (2020).

[30] D. Hilbert, Ein beitrag zur theorie des legendre’schen polynoms, Acta Math. 18 (1894),
pp. 155–159. Available at https://doi.org/10.1007/BF02418278.

[31] Y. Hu, Y. Koren, and C. Volinsky, Collaborative filtering for implicit feedback datasets, in
2008 Eighth IEEE International Conference on Data Mining. Ieee, 2008, pp. 263–272.

[32] A. Ivanova, A. Gasnikov, P. Dvurechensky, D. Dvinskikh, A. Tyurin, E. Vorontsova,
and D. Pasechnyuk, Oracle complexity separation in convex optimization, arXiv preprint
arXiv:2002.02706 (2020).

[33] P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al., Advances and open problems in federated
learning, arXiv preprint arXiv:1912.04977 (2019).

[34] D. Kamzolov, P. Dvurechensky, and A. Gasnikov, Optimal Combination of Tensor Op-

23

http://dx.doi.org/10.1134/S0005117916110114
https://doi.org/10.1007/BF02418278

timization Methods, in Optimization and Applications: 11th International Conference,
OPTIMA 2020, Moscow, Russia, September 28–October 2, 2020, Proceedings. Springer
Nature, p. 166.

[35] D. Kamzolov and A. Gasnikov, Near-optimal hyperfast second-order method for convex
optimization and its sliding, arXiv preprint arXiv:2002.09050 (2020).

[36] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-
gradient methods under the polyak- lojasiewicz condition, in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 2016, pp. 795–
811.

[37] S.P. Karimireddy, S. Kale, M. Mohri, S.J. Reddi, S.U. Stich, and A.T. Suresh, Scaffold:
Stochastic controlled averaging for federated learning, arXiv preprint arXiv:1910.06378
(2019).

[38] A. Khaled, K. Mishchenko, and P. Richtárik, Better communication complexity for local
sgd, arXiv preprint arXiv:1909.04746 (2019).

[39] D. Kovalev, A. Salim, and P. Richtárik, Optimal and practical algorithms for smooth and
strongly convex decentralized optimization, Advances in Neural Information Processing
Systems 33 (2020).

[40] A. Kulunchakov and J. Mairal, A generic acceleration framework for stochastic composite
optimization, arXiv preprint arXiv:1906.01164 (2019).

[41] H. Li and Z. Lin, Revisiting extra for smooth distributed optimization, arXiv preprint
arXiv:2002.10110 (2020).

[42] H. Li, Z. Lin, and Y. Fang, Optimal accelerated variance reduced extra and diging for
strongly convex and smooth decentralized optimization, arXiv preprint arXiv:2009.04373
(2020).

[43] H. Lin, J. Mairal, and Z. Harchaoui, A universal catalyst for first-order optimization, in
Advances in neural information processing systems. 2015, pp. 3384–3392.

[44] H. Lin, J. Mairal, and Z. Harchaoui, Catalyst acceleration for first-order convex optimiza-
tion: from theory to practice, arXiv preprint arXiv:1712.05654 (2018).

[45] T. Lin, C. Jin, and M. Jordan, On gradient descent ascent for nonconvex-concave minimax
problems, in International Conference on Machine Learning. PMLR, 2020, pp. 6083–6093.

[46] K. Mishchenko, F. Iutzeler, J. Malick, and M.R. Amini, A delay-tolerant proximal-gradient
algorithm for distributed learning, in International Conference on Machine Learning. 2018,
pp. 3587–3595.

[47] R.D. Monteiro and B.F. Svaiter, An accelerated hybrid proximal extragradient method
for convex optimization and its implications to second-order methods, SIAM Journal on
Optimization 23 (2013), pp. 1092–1125.

[48] A.S. Nemirovsky and D.B. Yudin, Problem Complexity and Method Efficiency in Opti-
mization, A Wiley-Interscience publication, Wiley, 1983.

[49] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization prob-
lems, SIAM Journal on Optimization 22 (2012), pp. 341–362.

[50] Y. Nesterov and J.P. Vial, Confidence level solutions for stochastic programming, Auto-
matica 44 (2008), pp. 1559–1568.

[51] Y. Nesterov, Lectures on convex optimization, Vol. 137, Springer, 2018.
[52] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky, Primal-dual accelerated

gradient descent with line search for convex and nonconvex optimization problems, arXiv
preprint arXiv:1809.05895 (2018).

[53] Y. Nesterov and S.U. Stich, Efficiency of the accelerated coordinate descent method on
structured optimization problems, SIAM Journal on Optimization 27 (2017), pp. 110–123.

[54] A. Ogaltsov, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and V. Spokoiny, Adap-
tive gradient descent for convex and non-convex stochastic optimization, arXiv preprint
arXiv:1911.08380 (2019).

[55] B. Palaniappan and F. Bach, Stochastic variance reduction methods for saddle-point prob-
lems, in Advances in Neural Information Processing Systems. 2016, pp. 1416–1424.

[56] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui, Catalyst acceleration

24

for gradient-based non-convex optimization, arXiv preprint arXiv:1703.10993 (2017).
[57] N. Parikh, S. Boyd, et al., Proximal algorithms, Foundations and Trends® in Optimiza-

tion 1 (2014), pp. 127–239.
[58] D. Pasechnyuk, A. Anikin, and V. Matyukhin, Accelerated proximal envelopes: Application

to the coordinate descent method, arXiv preprint arXiv:2101.04706 (2021).
[59] B.T. Polyak, Introduction to optimization, Optimization Software, 1987.
[60] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM journal on

control and optimization 14 (1976), pp. 877–898.
[61] S. Shalev-Shwartz and T. Zhang, Accelerated proximal stochastic dual coordinate ascent

for regularized loss minimization, in International conference on machine learning. 2014,
pp. 64–72.

[62] O. Shamir, An optimal algorithm for bandit and zero-order convex optimization with two-
point feedback, Journal of Machine Learning Research 18 (2017), pp. 52:1–52:11.

[63] S.U. Stich, Local sgd converges fast and communicates little, arXiv preprint
arXiv:1805.09767 (2018).

[64] N. Tupitsa, Accelerated alternating minimization and adaptability to strong convexity,
arXiv preprint arXiv:2006.09097 (2020).

[65] N. Tupitsa, P. Dvurechensky, and A. Gasnikov, Alternating minimization methods for
strongly convex optimization, arXiv preprint arXiv:1911.08987 (2019).

[66] A.C. Wilson, L. Mackey, and A. Wibisono, Accelerating Rescaled Gradient Descent: Fast
Optimization of Smooth Functions, in Advances in Neural Information Processing Sys-
tems. 2019, pp. 13533–13543.

[67] B. Woodworth, K.K. Patel, S.U. Stich, Z. Dai, B. Bullins, H.B. McMahan, O. Shamir,
and N. Srebro, Is local sgd better than minibatch sgd?, arXiv preprint arXiv:2002.07839
(2020).

[68] B.E. Woodworth, J. Wang, A. Smith, B. McMahan, and N. Srebro, Graph oracle mod-
els, lower bounds, and gaps for parallel stochastic optimization, in Advances in neural
information processing systems. 2018, pp. 8496–8506.

[69] S.J. Wright, Coordinate descent algorithms, Mathematical Programming 151 (2015), pp.
3–34.

[70] J. Yang, S. Zhang, N. Kiyavash, and N. He, A catalyst framework for minimax optimiza-
tion, Advances in Neural Information Processing Systems 33 (2020).

25

	1 Introduction
	2 The Main Scheme
	3 Applications
	3.1 Steepest Descent
	3.2 Random Adaptive Coordinate Descent Method
	3.3 Alternating Minimization
	3.4 Local Stochastic Gradient Descent
	3.5 Theoretical Guarantees

	4 Experiments
	4.1 Steepest Descent Acceleration
	4.2 RACDM Acceleration
	4.3 Alternating Least Squares Acceleration
	4.4 Local SGD Acceleration

