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Abstract: In this short paper, we describe natural logit population games dynamics that explain
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(Beckmann, Nesterov–de Palma). Composition of the proposed dynamics allows to explain two-
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1. Introduction

The first traffic assignment model was proposed for about 70 years ago in the work
of M. Beckmann [1], see also [2]. Nowadays Beckmann’s type models are rather well
studied [3–7]. The entropy-based origin–destination matrix models are also well developed
nowadays [7–9]. Moreover, as was mentioned in [10], both of these two types of mod-
els can be considered as macrosystem equilibrium for logit (best-response) dynamics in
corresponding congestion games [11].

In this paper, we popularise the results of [10] for English-reading people (The pa-
per [10] was written in Russian and has not been translated yet) and refine the results on
the convergence rate. Moreover, we propose superposition of the considered dynamics to
describe equilibrium in two-stage traffic assignment model [12,13].

One of the main results of the paper is Theorem 1, where it is proved that the natural
logit-choice and best-response Markovian population dynamics in traffic assignment model
(congested population game) converge to equilibrium. By using Cheeger’s inequality we
first time show that mixing time (the time required to reach equilibrium) of these dynamics
Tmix is proportional to ln N, where N is a total number of agents. Note, that in related
works analogues of this theorem were proved without estimating of Tmix [9,11,13]. We
confirm Theorem 1 by numerical experiments.

Another important result is a saddle-point reformulation of two-stages traffic assign-
ment model. We explain how to apply results of Theorem 1 to this model.

2. Traffic Assignment: Problem Statement

Following [14] we describe the problem statement.
Let the urban road network be represented by a directed graph G = (V, E), where

vertices V correspond to intersections or centroids [4] and edges E correspond to roads,
respectively. Suppose we are given the travel demands: namely, let dw (veh/h) be a trip
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rate for an origin–destination pair w from the set OD ⊆ {w = (i, j) : i ∈ O, j ∈ D}. Here,
O ⊆ V is the set of all possible origins of trips, and D ⊆ V is the set of destination nodes.
For OD pair w = (i, j) denote by Pw the set of all simple paths from i to j. Respectively,
P =

⋃
w∈OD Pw is the set of all possible routes for all OD pairs. Agents travelling from node

i to node j are distributed among paths from Pw, i.e., for any p ∈ Pw there is a flow xp ∈ R+

(i.e., xp ≥ 0) along the path p, and ∑p∈Pw xp = dw. Flows from vertices from the set O to
vertices from the set D create the traffic in the entire network G, which can be represented
by an element of

X = X(d) =
{

x ∈ R|P|+ : ∑
p∈Pw

xp = dw, w ∈ OD
}

.

Note that set X can have extremely large number of paths (routes): e.g., for n × n
Manhattan network log |P| = Ω(n) up to a logarithmic factor. Note, that to describe a
state of the network we do not need to know an entire vector x, but only flows on arcs:
fe(x) = ∑p∈P δepxp for e ∈ E, where δep = 1{e ∈ p}. Let us introduce a matrix Θ such
that Θe,p = δep for e ∈ E, p ∈ P, so in vector notation we have f = Θx. To describe an
equilibrium we use both path- (route-) and link-based notations (x, t) or ( f , t).

Beckmann model. An important idea behind the Beckmann model is that the cost
(e.g., travel time) of passing a link e is the same for all agents and depends only on the flow
fe along it. We denote this cost for a given flow fe by te = τe( fe). Another essential point is
a behavioral assumption (the first Wardrop’s principle): each agent knows the state of the
whole network and chooses a path p minimizing the total cost Tp(t) = ∑e∈p te.

We consider τe( fe) to be continuous, non-decreasing, and non-negative. In this case(
x∗ = (x∗p)p∈P, t∗ = (t∗e )e∈E

)
, is an equilibrium state, i.e., it satisfies conditions

t∗e = τe( f ∗e ), where f ∗ = Θx∗,

x∗pw > 0 =⇒ Tpw(t
∗) = Tw(t∗) = min

p∈Pw
Tp(t∗),

if, and only if, x∗ is a minimum of the potential function:

Ψ( f (x)) = ∑
e∈E

∫ fe

0
τe(z)dz︸ ︷︷ ︸

σe( fe)

−→ min
f=Θx, x∈X

⇐⇒ Ψ( f ) = ∑
e∈E

σe( fe) −→ min
f=Θx: x∈X

,

and t∗e = τe( f ∗e ) [2].
According to [5,13], we can construct a dual problem for the potential function in the

following way:

min
f=Θx: x∈X

Ψ( f ) = min
x∈X, f

[
Ψ( f ) + sup

t∈R|E|
〈t, Θx− f 〉

]
= sup

t∈R|E|
min

x∈X, f
[Ψ( f ) + 〈t, Θx− f 〉]

= sup
t∈R|E|

[
−∑

e∈E
max

fe
{te fe − σe( fe)}+ min

x∈X
∑
p∈P

∑
e∈E

teδepxp

]

= max
t∈dom σ∗

−
[

∑
e∈E

σ∗e (te)− ∑
w∈OD

dwTw(t)

]
,

where

σ∗e (te) = sup
fe≥0
{te fe − σe( fe)} = f̄e

(
te − t̄e

t̄eρ

)µ (te − t̄e)

1 + µ
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is the Legendre—Fenchel conjugate function of σe( fe), e ∈ E. At the end we obtain the dual
problem, which solution is t∗:

max
t≥t̄

{
∑

w∈OD
dwTw(t)− ∑

e∈E
σ∗e (te)

}
. (1)

We can reconstruct primal variable f from the current dual variable t:

f ∈ ∂ ∑
w∈OD

dwTw(t).

This condition reflects the fact that every driver choose the shortest route [5]. Another
condition te = τe( fe) can be equivalently rewrite as fe =

d
dte

σ∗e (te). This condition with the
condition f ∈ ∂ ∑w∈OD dwTw(t) form the optimization problem (1).

If µ→ 0+ Beckmann’s model will turn into Nesterov–de Palma model [13,15].
Population games dynamic for (stochastic) Beckmann model. Let us consider each

driver to be an agent in population game, where Pw, w ∈ OD is a set of types of agents.
All agent (drivers) of type Pw can choose one of the strategy p ∈ Pw with cost function
Tp(t( f (x))) := T̃p(x). Assume that every driver/agent independently of anything (in
particular of any other drivers) is considering the opportunity to reconsider his choice of
route/strategy p in time interval [t, t + ∆t) with probability λ∆t + o(∆t), where λ > 0 is
the same for all drivers/agents. It means that with each driver we relate its own Poisson
process with parameter λ. If in moment of time t (when the flow distribution vector is x(t))
the the driver of type Pw decides to reconsider his route, than he choose the route q ∈ Pw
with probability

pq
(
T̃(x(t))

)
= P

(
q = arg max

p∈Pw ;j=1,...,J

{
−T̃p(x(t)) + ξp,j

})
, (2)

where ξp,j are i.i.d. and satisfy Gumbel max convergence theorem [16] when J → ∞ with
the parameter γ (e.g., ξp,j has (sub)exponential tails at ∞). It means that ξp = maxj=1,...,J ξp,j
asymptotically (when J → ∞) has Gumbel distributionP

(
ξp < ξ

)
= exp(− exp(−ξ/γ− E)),

where E ' 0.5772 is Euler constant. Note that Eξp = 0, Var ξp = π2γ2/6. In (2) it means
that every driver try to choose the best route. However, the only available information are
noise corrupted values T̃p. So the driver try to choose the best route focused on the worst
forecasts for each route.

One of the main results of Discrete Choice Theory is as follows [17]

pq
(
T̃(x(t))

)
=

exp
(
−T̃p(x(t))/γ

)
∑q∈Pw exp

(
−T̃q(x(t))/γ

) , (3)

where pq
(
T̃(x(t))

)
was previously defined in (2).

Note that the described above dynamic degenerates into the best-response dynamic
when γ→ 0+ [11].

Theorem 1. Let ∑p∈P xp = N. For all x(0) ∈ X there exists such a constant c(x(0)) that for all
σ ∈ (0, 0.5) and t ≥ Tmix =c(x(0))λ−1 ln N:

P

(∥∥∥∥ x(t)
N
− x∗

∥∥∥∥
2
≤ 2
√

2 + 4
√

ln(σ−1)√
N

)
≥ 1− σ, (4)

where

x∗ = arg min
x∈X(d/N)

{
Ψ̃( f (x)) + γ ∑

p∈P
xp ln xp

}
, (5)
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Ψ̃( f (x)) = ∑e∈E
∫ fe

0 τ̃e(z)dz, τ̃e(z) = τe(zN).

Proof. The first important observation is that the described Markov process is reversible.
That is, it satisfies Kolmogorov’s detailed balance condition (see also [18]) with stationary
(invariant) measure

π(x) =
N!

x1! . . . x|P|!
exp

(
−Ψ( f (x))

γ

)
,

where x ∈ X(d) [11]. The result of type (4) for x(∞) holds true due to Hoeffding’s in-
equality in a Hilbert space [19]. We can apply this inequality for multinomial part N!

x1!...x|P| !
.

The rest part may only strength the concentration phenomenon, especially when γ is
small. The Sanov’s theorem [20] says that x∗ from (5) asymptotically (N → ∞) describe the
proportions in maximum probability state, that is

x∗N ' arg max
x∈X(d)

N!
x1! . . . x|P|!

exp
(
−Ψ( f (x))

γ

)
.

To estimate the mixing time ∼ λ−1 ln N of the considered Markov process we will put
it in accordance with this continuous-time process discrete-time process with step (λN)−1,
which corresponds to the expectation time between two nearest events in continuous-
time dynamic. Additionally, we consider this discrete Markov chain as a random walk
on a proper graph G = 〈VG, EG〉 with starting point corresponds to the vertex s and
transition probability matrix P = ‖pij‖

|VG |
i,j=1. According to a Cheeger’s inequality mixing

time tmix for such a random walk, which approximate stationary measure π with accuracy
ε = O

(
N−1/2

)
(in this case x(tmix) ' x(∞)), is

O
(
(λN)−1h(G)−2

(
ln(π(s)) + ln(ε−1)

))
,

where Cheeger’s constant is determined as

h(G) = min
S⊆VG :π(S)≤1/2

P(S→ S̄ | S) = min
S⊆VG :π(S)≤1/2

∑(i,j)∈EG , i∈S, j∈S̄ π(i)pij

∑i∈S π(i)
,

where S̄ = VG/S [21]. Since G and P correspond to reversible Markov chain with stationary
measure π that exponentially concentrate around x∗N one can prove that isoperimetric
problem of finding optimal set of vertexes S has the following solution, which we described
below roughly up to a numerical constant: S is a set of such states x ∈ X(d) that ‖x −
x∗N‖2 . O

(√
N
)

. Since the the ratio of sphere volume of radius O(
√

N) to the volume

of the ball of the same radius is O(N−1/2), we can obtain that h(G) ∼ N−1/2. So up to a
ln(π(s)) (we put it into c(x(0))) mixing time is indeed ∼ λ−1 ln N.

Note that the describe above approach assumes that we first t→ ∞ and then N → ∞.
If we firstly take N → ∞ than due to Kurtz’s theorem [22] c(t) = limN→∞ x(t)/N satisfies
(for all w ∈ OD, p ∈ Pw)

dcp

dt
= d̄w

exp
(
−T̄p(c(t))

)
∑q∈Pw exp

(
−T̄q(c(t))

) − cp(t),

where d̄ = limN→∞ d/N, T̄p(c(t)) = T̃p(x(t)). Note that Sanov’s type function Ψ̃( f (c)) +
γ ∑p∈P cp ln cp from (5) will be Boltzmann–Lyapunov type function for this system of
ordinary differential equations (SODE), that is decrees along the trajectory of SODE. This
result is a particular case of the general phenomenon: Sanov’s type function for invariant
measure obtained from Markovian dynamics is Boltzmann–Lyapunov type function for
deterministic Kurtz’s kinetic dynamics [18,23,24].
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3. Origin–Destination Matrix Estimation

Origin–destination matrix estimation model can be considered as a particular case of
the traffic assignment model. The following interpretation goes back to [10,13]. Indeed,
let us consider fictive origin o and fictive destination d. So Õ = {o}, D̃ = {d}. Let us
draw fictive edges from o to real origins of trips O. The cost of the trip at edge (o, i) is
λO

i —an average price that each agent pays to live at this origin region i ∈ O. Analogously,
let us draw edges from the vertexes of the real destination set D to d. The cost of the
trip at edge (j, d) is −λD

j , minus average salary that each agent obtains in destination
region j ∈ D. So the set of all possible routes (trips) from o to d can be described by pairs
(i, j) ∈ OD. Each route consist of three edges o → i with cost λO

i , edge i→ j with cost Tij (is
available as an input of the model) and edge j→ d with cost −λD

j . So equilibrium origin-
destination matrix d = {dij}(i,j)∈OD (up to a scaling factor) can be find from entropy-linear
programming problem

min
d≥0: ∑(i,j)∈OD dij=1

∑
i∈O

λO
i ∑

j∈D
dij − ∑

j∈D
λD

j ∑
i∈O

dij + ∑
(i,j)∈OD

Tijdij + γ ∑
(i,j)∈OD

dij ln dij. (6)

In real life, λO
i and λD

j are typically unknown. However, at the same time, the following
agglomeration characters are available

∑
j∈D

dij = Li, i ∈ O, (7)

∑
i∈O

dij = Wj, j ∈ D. (8)

The key observation is that (6) can be considered as Lagrange multipliers principle for
constraint entropy-linear programming problem

min
d≥0: d satisfies (7),(8)

∑
w∈OD

Twdw + γ ∑
w∈OD

dw ln dw, (9)

where λO
i and λD

j are Lagrange multipliers for (7) and (8) correspondingly. The last model
is called Wilson’s entropy origin–destination matrix model [8,9].

The result of Theorem 1 can be applied to this model due to the mentioned
above reduction.

4. Two-Stages Traffic Assignment Model

From the Section 2 we may know that Beckmann’s model requires origin-destination
matrix as an input {dw}w∈OD. So Beckmann’s model allows to calculate t(d). At the same
time, from Section 3, we may know that Wilson’s entropy origin–destination model requires
cost matrix {Tw}w∈OD as an input, where Tw := Tw(t) = minp∈Pw Tp(t). So Wilson’s model
allows to calculate d(T(t)). The solution of the system d = d(T(t(d))) is called two-stage
traffic assignment model [12]. Following [7,13] we can reduce this problem to the following
one (see (1) and (9))

min
d≥0: d satisfies (7),(8)

{
max
t≥t̄

{
∑

w∈OD
dwTw(t)− ∑

e∈E
σ∗e (te)

}
+ γ ∑

w∈OD
dw ln dw

}
. (10)

The problem (10) can be rewritten as a convex-concave (if τ′e(te) ≥ 0) saddle-point
problem (SPP)

min
d≥0: d satisfies (7),(8)

max
t≥t̄

{
∑

w∈OD
dwTw(t)− ∑

e∈E
σ∗e (te) + γ ∑

w∈OD
dw ln dw

}
. (11)

This SPP can be efficiently solved numerically [7].
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Note that, if we consider best-response dynamics from Section 2, with the parameter
λ := λBeck and logit dynamic with the parameter λ := λWil for the origin–destination
matrix estimation and assume that λBeck � λWil than such a dynamic will converge to the
stationary (invariant) measure that is concentrated around the solution of the SPP problem
(11). This result can be derived from the more general result related with hierarchical
congested population games [7].

5. Numerical Experiments

The main result of the paper is Theorem 1. The main new result of this theorem is a
statement that mixing time of the considered Markovian logit-choice and best-response
dynamics Tmix is approximately c1 + c2 · ln N, where N is a number of agents.

We consider Braess’s paradox example [25], see Figure 1. This picture is taken from
Wikipedia. Here, Origin is START and Destination is END. We have one OD-pair and put
d = N, the number of agents. The «paradox» arises when N = 4000. In this case when
there is no road from A to B we have two routes (START, A, END) and (START, B, END)
with 2000 agents at each route. So the equilibrium time costs at each route will be 65. When
the road AB is present (this road has time costs 0) all agents will use the route (START, A,
B, END) and this equilibrium has time costs 80. That is paradoxically larger than it was
without road AB.

Figure 1. Braess’s paradox graph.

In series of experiments (see Figures 2–4) the dependence of mixing time Tmix from
ln N was investigated. Details see in https://github.com/ZVlaDreamer/transport_flows_
project (accessed on 1 November 2022).

Figure 2. Logit-choice dynamic γ = 0.1.

https://github.com/ZVlaDreamer/transport_flows_project
https://github.com/ZVlaDreamer/transport_flows_project
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Figure 3. Logit-choice dynamic γ = 0.01.

Figure 4. Best response dynamic (as a limit of logit-choice dynamics γ→ 0+).

Numerical experiments confirm Theorem 1. Note that in [9] it was described a real-life
experiment oraganized with MIPT students in Experimental Economics Lab. The students
were agents and play in repeated Braess’s paradox game. The result of experiments from [9]
is also well agreed with the described above numerical experiments.

6. Conclusions

In this paper, we investigate logit-choice and best-response population Markovian
dynamics converges to equilibrium in corresponding traffic assignment model. We show
that mixing time is proportional to logarithm from the number of agent. Numerical
experiments confirm that the dependence is probably unimprovable. We also consider
two-stage traffic assignment model and describe how to interpret equilibrium for this
model in an evolutionary manner.
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