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Abstract
We study the complexity of approximating the
Wasserstein barycenter of m discrete measures,
or histograms of size n, by contrasting two al-
ternative approaches that use entropic regulariza-
tion. The first approach is based on the Iterative
Bregman Projections (IBP) algorithm for which
our novel analysis gives a complexity bound pro-
portional to mn2/ε2 to approximate the original
non-regularized barycenter. On the other hand,
using an approach based on accelerated gradi-
ent descent, we obtain a complexity proportional
to mn2/ε. As a byproduct, we show that the
regularization parameter in both approaches has
to be proportional to ε, which causes instability
of both algorithms when the desired accuracy is
high. To overcome this issue, we propose a novel
proximal-IBP algorithm, which can be seen as
a proximal gradient method, which uses IBP on
each iteration to make a proximal step. We also
consider the question of scalability of these al-
gorithms using approaches from distributed opti-
mization and show that the first algorithm can be
implemented in a centralized distributed setting
(master/slave), while the second one is amenable
to a more general decentralized distributed setting
with an arbitrary network topology.

Introduction
Optimal transport (OT) (Monge, 1781; Kantorovich, 1942)
is becoming increasingly popular in the statistics, machine
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learning and optimization communities. Statistical methods
based on optimal transport are readily available (Bigot et al.,
2012; Del Barrio et al., 2015; Ebert et al., 2017; Le Gouic &
Loubes, 2017), as well as many applications in unsupervised
learning (Arjovsky et al., 2017; Bigot et al., 2017), semi-
supervised learning (Solomon et al., 2014), clustering (Ho
et al., 2017), text classification (Kusner et al., 2015), among
others. Optimal transport distances lead to the concept
of Wasserstein barycenter, which allows to define a mean
of a set of complex objects, e.g. images, preserving their
geometric structure (Cuturi & Doucet, 2014). In this paper,
we focus on the computational aspects of optimal transport,
namely on the complexity approximating a Wasserstein
barycenter of a set of histograms.

Starting with Altschuler et al. (2017), several groups of au-
thors addressed the question of the Wasserstein distance
approximation complexity (Chakrabarty & Khanna, 2018;
Dvurechensky et al., 2018b; Blanchet et al., 2018; Lin et al.,
2019). Implementable schemes based on Sinkhorn’s algo-
rithm were first applied to OT in Cuturi (2013), see also
(Genevay et al., 2016). Also, accelerated gradient descent
methods were proposed as an alternative in Dvurechensky
et al. (2018b). Much less is known about the complexity of
approximating Wasserstein barycenter. The works (Staib
et al., 2017; Dvurechensky et al., 2018a), are in some sense
close, but do not provide an explicit answer.

Following Dvurechensky et al. (2018b), we study two alter-
native approaches for approximating Wasserstein barycen-
ters based on entropic regularization (Cuturi, 2013). The
first approach is based on the Iterative Bregman Projection
(IBP) algorithm (Benamou et al., 2015), which can be con-
sidered as a general alternating projections algorithm. The
second approach is based on constructing a dual problem
and solving it by primal-dual accelerated gradient descent.
For both approaches, we show, how the regularization pa-
rameter should be chosen in order to approximate the origi-
nal, non-regularized barycenter.

We also address the question of scalability in the Big Data
regime, i.e., when the size of the histograms n and the num-
ber of histograms m are large. In this case, the dataset of n
histograms can be distributedly produced or stored in a net-
work of agents/sensors/computers with a network structure
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given by an arbitrary connected graph. In a special case of
a centralized architecture, i.e., if there is a central ”master”
node connected by ”slave” nodes, parallel algorithms such
as (Staib et al., 2017) can be applied. In a more general
setup of arbitrary networks it makes sense to use decen-
tralized distributed algorithms in the spirit of distributed
optimization algorithms (Scaman et al., 2017; Nedić et al.,
2017).

Related Work. It is very hard to cover all the increasing
stream of works on OT and we mention the books Villani
(2008); Santambrogio (2015); Peyré & Cuturi (2018) as a
starting point and the references therein. Approximation of
Wasserstein barycenter was considered in Cuturi & Doucet
(2014); Bonneel et al. (2015); Benamou et al. (2015); Staib
et al. (2017); Puccetti et al. (2018); Claici et al. (2018);
Uribe et al. (2018); Dvurechensky et al. (2018a). Consider-
ing the primal-dual approach based on accelerated gradient
descent, our paper shares some similarities with (Cuturi &
Peyré, 2016) with the main difference that we are focused
on complexity and scalability of computations and explicitly
analyzing the algorithm applied to the dual problem.

There is a vast amount of literature on accelerated gradient
descent with the canonical reference being (Nesterov, 1983).
Primal-dual extensions can be found in (Lan et al., 2011;
Tran-Dinh et al., 2018; Yurtsever et al., 2015; Chernov et al.,
2016; Dvurechensky et al., 2016; Gasnikov et al., 2016;
Dvurechensky et al., 2017; Anikin et al., 2017; Nesterov
et al., 2018; Lin et al., 2019). We are focused on the exten-
sions amenable to the decentralized distributed optimization,
so that these algorithms can be scaled for large problems.

Distributed optimization algorithms were considered by
many authors with the classical reference being Bertsekas
& Tsitsiklis (1989). Initial algorithms, such as Distributed
Gradient Descent (Nedic & Ozdaglar, 2009), were relatively
slow compared with their centralized counterparts. How-
ever, recent work has made significant advances towards a
better understanding of the optimal rates of such algorithms
and their explicit dependencies to the function and network
parameters (Lan et al., 2017; Scaman et al., 2017; Uribe
et al., 2018). These approaches have been extended to other
scenarios such as time-varying graphs (Rogozin et al., 2018;
Maros & Jaldén, 2018; Wu & Lu, 2017). The distributed
setup is particularly interesting for machine learning appli-
cations on the big data regime, where the number of data
points and the dimensionality is large, due to its flexibility
to handle intrinsically distributed storage and limited com-
munication, as well as privacy constraints (He et al., 2018;
Wai et al., 2018).

Our contributions. 1. We consider the γ-regularized
Wasserstein barycenter problem and obtain complexity
bounds for finding an approximation to the regularized
barycenter by two algorithms. The first one is Iterative

Bregman Projections algorithm (Benamou et al., 2015),
for which we prove complexity proportional to 1/(γε) to
achieve accuracy ε. The second one is based on accelerated
gradient descent (AGD) and has complexity proportional to
1/(
√
γε). The benefit of the second algorithm is that it is

better scalable and can be implemented in the decentralized
distributed optimization setting over an arbitrary network.

2. We show how to choose the regularization parameter in
order to find an ε-approximation for the non-regularized
Wasserstein barycenter. The resulting complexity for IBP is
proportional to mn2/ε2 and for AGD is be proportional to
mn2.5/ε.

3. We solve the stability issues of the IBP and AGD ap-
proaches, present when the desired accuracy is high, or
conversly when ε is small, by proposing a proximal-IBP
method, which can be considered as a proximal method
using IBP on each iteration to find the next iterate.

The full version of the paper with the proofs can be found
as supplementary material and as (Kroshnin et al., 2019).

1. Problem Statement and Preliminaries
1.1. Notation

We define the probability simplex as Sn(1) = {q ∈ Rn+ |∑n
i=1 qi = 1}. Given two discrete measures p and q in

Sn(1), we introduce the set of coupling measures as

Π(p, q) = {π ∈ Rn×n+ : π1 = p, πT1 = q}.

For coupling measure π ∈ Rn×n+ , we denote the negative
entropy (up to an additive constant) as

H(π) =

n∑
i,j=1

πij (lnπij − 1) = 〈π, lnπ − 11T〉.

We denote as ln(A) (exp(A)), the element-wise loga-
rithm (exponent) of matrix or vector A, and 〈A,B〉 :=∑n
i,j=1AijBij for any A,B ∈ Rn×n. We use symbol 1

as a column of ones. For two matrices A and B, we de-
fine element-wise multiplication and element-wise division
as A � B and A/B respectively. Kullback–Leibler diver-
gence for measures π, π′ ∈ Rn×n+ is defined as the Bregman
divergence associated with H(·):

KL(π|π′) :=

n∑
i,j=1

(
πij ln

(
πij
π′ij

)
− πij + π′ij

)
= 〈π, lnπ − lnπ′〉+ 〈π′ − π,11T〉.

We also define a cost matrix C ∈ Rn×n+ , which element cij
corresponds to the cost of moving an element of bin i to bin
j. ‖C‖∞ denotes the maximal element of this matrix.
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We refer to λmax(W ) as the maximum eigenvalue of a
symmetric matrix W , and λ+

min(W ) as the minimal non-
zero eigenvalue, and define the condition number of ma-
trix W as χ(W ) = λmax(W )/λ+

min(W ). We say that a
function f : Rd → R has L-Lipschitz-continuous gradi-
ent w.r.t. norm ‖ · ‖ if ‖∇f(x) − ∇f(y)‖∗ ≤ L‖x − y‖,
x, y ∈ Rd, where ‖ · ‖∗ is the dual norm defined by
‖g‖∗ = max‖x‖≤1〈g, x〉.

1.2. Wasserstein barycenters and entropic
regularization

Given two probability measures p, q ∈ Sn(1) and a cost
matrix C ∈ Rn×n, following Cuturi (2013), we define
entropy-regularized OT-distance for γ ≥ 0:

Wγ(p, q) := min
π∈Π(p,q)

{〈π,C〉+ γH(π)} . (1)

For γ = 0 we use shortcut notationW(p, q) and refer to it
as non-regularized distance. For a given set of probability
measures {p1, . . . , pm} and cost matrices C1, . . . , Cm ∈
Rn×n+ we define their weighted regularized barycenter with
weights w ∈ Sm(1) as a solution of the following problem:

min
q∈Sn(1)

m∑
l=1

wlWγ(pl, q), (2)

where a solution of this problem for γ = 0 referred to as
non-regularized barycenter.

2. Complexity of WB by Iterative Bregman
Projections

In this section, we provide the theoretical analysis of the
Iterative Bregman Projections algorithm (Benamou et al.,
2015) for the approximation of the regularized Wasser-
stein barycenter and obtain iteration complexity O (c/(γε))
where c := maxl=1,...,m‖Cl‖∞. Then we estimate the bias
introduced by regularization and estimate the value of γ to
obtain an ε-approximation for the non-regularized barycen-
ter. Combining this result with the iteration complexity of
IBP, we obtain a complexity Õ

(
c2mn2/ε2

)
for approximat-

ing a non-regularized barycenter by the IBP algorithm. This
algorithm can be implemented in a centralized distributed
manner such that each node performs Õ

(
c2n2/ε2

)
arith-

metic operations and the number of communication rounds
is Õ

(
c2/ε2

)
. We also introduce proximal-IBP algorithm

and discuss its complexity and scalability.

2.1. Convergence of IBP for the regularized barycenter

In this subsection, we analyze Iterative Bregman Projection
Algorithm (Benamou et al., 2015, Section 3.2) and analyze
its complexity for solving problem (2). We reformulate this
problem as

min
q∈Sn(1),

πl∈Π(pl,q),l=1,...,m

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}
= min
πl1=pl, π

T
l 1=πT

l+11,

πl∈Rn×n
+ , l=1,...,m

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}
, (3)

and construct its dual (see Lemma 2.1). To solve the dual
problem we reformulate the IBP algorithm as a blockwise
minimization, as shown in Algorithm 1 (this equivalence is a
general fact for Dykstra’s algorithm). Notably, our reformu-
lation of the IBP algorithm allows to solve simultaneously
the primal and dual problem and has an adaptive stopping
criterion (see line 7), which does not require to calculate
any objective values.

Our first step is to recall the IBP algorithm from Benamou
et al. (2015). Following the approach of Benamou et al.
(2015), we present problem (3) in a Kullback–Leibler pro-
jection form, i.e.,

min
π∈C1∩C2

m∑
l=1

wlKL (πl|Kl) , (4)

where Kl = exp (−Cl/γ) and the affine convex sets C1 and
C2 with

C1 = {π = [π1, . . . , πm] : ∀l πl1 = pl} ,
C2 =

{
π = [π1, . . . , πm] : πT

1 1 = · · · = πT
m1
}
. (5)

The IBP algorithm consists in alternating projections to the
sets C1 and C2 w.r.t. Kullback–Leibler divergence, and is
a generalization of Sinkhorn’s algorithm and a particular
case of Dykstra’s projection algorithm. This algorithm is
equivalent to alternating minimization of the dual problem
of (3) derived in Lemma 2.1, and leads to Algorithm 1.

Lemma 1. The dual problem of (3) is (up to a multiplicative
constant)

min
u,v∑m

l=1 wlvl=0

f(u, v) :=

m∑
l=1

wl
{
〈1, Bl(ul, vl)1〉−〈ul, pl〉

}
,

(6)
u = [u1, . . . , um], v = [v1, . . . , vm], ul, vl ∈ Rn, and

Bl(ul, vl) := diag (eul)Kl diag (evl) ,Kl := exp
(
−Cl

γ

)
.

Moreover, solution π∗γ to (3) is given by the formula [π∗γ ]l =
Bl(u

∗
l , v
∗
l ), where (u∗, v∗) is the solution of the problem (6).

Proof of Lemma is shown in the supplementary materials.
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Algorithm 1 Dual Iterative Bregman Projection
Input: C1, . . . , Cm, p1, . . . , pm, γ > 0, ε′ > 0

1: u0
l := 0, v0

l := 0, Kl := exp
(
−Cl

γ

)
, l = 1, . . . ,m

2: repeat
3: if t mod 2 = 0 then
4: ut+1

l := ln pl − lnKle
vtl , vt+1 := vt

5: else
6: vt+1

l :=
∑m
k=1 wk lnKT

k e
ut
k −

lnKT
l e

ut
l , ut+1 := ut

7: end if
8: t := t+ 1
9: until

∑m
l=1 wl‖BT

l (utl , v
t
l )1 − q̄t‖1 ≤ ε′ and∑m

l=1 wl‖Bl(utl , vtl )1 − pl‖1 ≤ ε′, where q̄t :=∑m
l=1 wlB

T
l (utl , v

t
l )1

Output: B1(ut1, v
t
1), . . . , Bm(utm, v

t
m)

Before we move to the analysis of the algorithm let us
discuss its scalability by using the centralized distributed
computations framework. This framework includes a master
and slave nodes. Each l-th slave node stores pl, Cl, Kl and
variables utl , v

t
l . At each iteration t, a slave node calculates

KT
l e

ut
l and sends it to the master node, which aggregates

these products as
∑m
k=1 wk lnKT

k e
ut
k and sends this sum

back to the slave nodes. Based on this information, slave
nodes update vtl and utl . Thus, the main computational cost
of multiplying a matrix by a vector, can be distributed on
m slave nodes and the total working time will be smaller.
It is not clear, how this algorithm can be implemented on a
general network, for example when the data is produced by
a distributed network of sensors without one master node.
In contrast, as we illustrate in Section 3, the alternative
accelerated-gradient-based approach can be implemented
on an arbitrary network.
Theorem 1. For given ε′ Algorithm 1 stops in number of
iterations N satisfying

N ≤ 4 +
88 maxl‖Cl‖∞

γε′
= O

(
maxl‖Cl‖∞

γε′

)
.

Proof. Proof mainly follows ideas from (Dvurechensky
et al., 2018b) for Sinkhorn algorithm. First, one can show
that the following results hold:

1. for any t ≥ 0, and l = 1, . . . ,m

max
j

[vtl ]j −min
j

[vtl ]j ≤ Rv ≤ 2
maxl‖Cl‖∞

γ
; (7)

2. for any even t ≥ 2 we have

f̃(ut, vt) := f(ut, vt)−f(u∗, v∗) ≤ Rv
m∑
l=1

wl‖qtl−q̄t‖1,

(8)
where qtl := BT

l (utl , v
t
l )1 and q̄t :=

∑m
l=1 wlq

t
l ;

3. for any odd t ≥ 1 the following bound on the change
of objective function f(·, ·) holds:

f(ut, vt)−f(ut+1, vt+1) ≥ 1

11

(
m∑
l=1

wl‖qtl − q̄t‖1

)2

.

(9)

Now let us move to the proof of complexity bound. To
simplify derivation we define δt := f̃(ut, vt). If t ≥ 2 is
even, then (8), (9), and the stopping criterion give us the
following bound:

δt − δt+1 ≥ max

{
(ε′)2

11
,

(δt)
2

11R2
v

}
.

If t is odd then we have at least δt+1 ≤ δt. These inequali-
ties result in the following estimates:

t ≤ 2 + 22R2
v

(
1

δt
− 1

δ1

)
, (10)

k ≤ 1 +
22(δt − δk)

(ε′)2
≤ 1 +

22δt
(ε′)2

. (11)

To combine the two estimates (10) and (11), we consider
a switching strategy parametrized by number s ∈ (0, δ1).
First t iterations we use (10), resulting in δt becomes below
some s. Then, we use s as a starting point and estimate the
remaining number of iteration by (11). The quantity s can
be found from the minimization

N = t+ k ≤ 4 +
22s

(ε′)2
+

22R2
v

s

(
1

s
− 1

δ1

)
.

Minimizing the r.h.s. of the latter inequality in s leads to

N ≤ 4 +
44Rv
ε′
≤ 4 +

88 maxl‖Cl‖∞
γε′

.

2.2. Approximating Non-regularized WB by IBP

To find an approximate non-regularized barycenter, i.e. so-
lution to problem (2) with γ = 0, we apply Algorithm 1
with a suitable choice of γ and ε′ and average marginals
q1, . . . , qm with weights wl, this leads to Algorithm 2.

Algorithm 2 Finding Wasserstein barycenter by IBP
Input: Accuracy ε; cost matrices C1, . . . , Cm; marginals

p1, . . . , pm
1: Set γ := 1

4
ε

lnn , ε′ := 1
4

ε
maxl‖Cl‖∞

2: Find B1 := B1(ut1, v
t
1), . . . , Bm := Bm(utm, v

t
m) by

Algorithm 1 with accuracy ε′

3: q := 1∑m
l=1 wl〈1,Bl1〉

∑m
l=1 wlB

T
l 1

Output: q

Theorem 2 presents complexity bound for Algorithm 2.
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Theorem 2. For ε > 0, Algorithm 2 returns q ∈ Sn(1) s.t.

m∑
l=1

wlW(pl, q)−
m∑
l=1

wlW(pl, q
∗) ≤ ε,

where q∗ is a solution to non-regularized problem (2) with
γ = 0. Moreover, it requires

O

((
maxl‖Cl‖∞

ε

)2

Mm,n lnn+mn

)

arithmetic operations, where Mm,n is a time complexity of
one iteration of Algorithm 1.

Remark 1. As each iteration of Algorithm 1 requires m
matrix-vector multiplications, the general bound isMm,n =
O(mn2). However, for some specific form of matrices Cl
it’s possible to achieve better complexity, e.g. Mm,n =
O(mn log n) via FFT1 (Peyré & Cuturi, 2018), or Mm,n =
O (n

∑
l rank(Cl)) for low-rank matrices.

Proof. Let π∗ = [π∗1 , . . . , π
∗
m] be a solution to the non-

regularized problem. Equation (7) and duality yields

m∑
l=1

wl〈Cl, Bl〉 ≤
m∑
l=1

wl (〈Cl, π∗l 〉+ γH(π∗l )− γH(Bl))

+ max
l
‖Cl‖∞ε′

≤
m∑
l=1

wlW(pl, q
∗) + 2γ lnn+ max

l
‖Cl‖∞ε′.

Here we used inequalities−2 lnn ≤ H(π)+1 ≤ 0 holding
on Sn×n(1). Consider B̌l ∈ Π(pl, q) s.t. ‖B̌l − Bl‖1 ≤
‖Bl1−pl‖1 +2

∑
j [B

T
l 1−q]

+
j for all l = 1, . . . ,m. Their

existence immediately follows from the proof of Theorem 4
from (Altschuler et al., 2017). If stopping time t is even,
Bl1 = pl, therefore q = q̄t, and ‖Bl − B̌l‖1 ≤ ‖qtl − q̄t‖1.
If t is odd, BT

l 1 = q̄t ≤ q and ‖Bl − B̌l‖1 ≤ ‖Bl1 −
pl‖1. In both cases it follows from stopping criterion that∑m
l=1 wl‖Bl − B̌l‖1 ≤ ε′. Since B̌l ∈ Π(pl, q) for all

1 ≤ l ≤ m, one has

m∑
l=1

wlW(pl, q) ≤
m∑
l=1

wl〈Cl, B̌l〉

≤
m∑
l=1

wl〈Cl, Bl〉+ max
l
‖Cl‖∞

m∑
l=1

wl‖Bl − B̌l‖1

≤
m∑
l=1

wlW(pl, q
∗) + ε.

Complexity bound for the algorithm is a simple corollary of
Theorem 1.

1it is stable only for large enough γ, what is the case for proxi-
mal method, see Subsection 2.3

Remark 2. Notice that according to the proof of Theorem 2,
one can also reconstruct approximated optimal transporta-
tion plans B̌l between pl and approximated barycenter q
using Algorithm 2 from (Altschuler et al., 2017).

2.3. Proximal IBP for Wasserstein barycenter problem

As we see from Theorems 1 and 2, to obtain an
ε-approximation of the non-regularized barycenter, the reg-
ularization parameter γ should be chosen proportional to
the desired accuracy ε, and the complexity of the IBP is
inversely proportional to γ, which leads to large work-
ing time and instability issues. To overcome this obsta-
cle we propose a novel proximal-IBP algorithm. Similarly
to (Xie et al., 2018), where this idea is used for Wasser-
stein distance, our method is inspired by proximal point
algorithm with general Bregman divergence V (x, y) (Chen
& Teboulle, 1993). The idea of this algorithm for mini-
mization of a function f(x) is to perform steps xk+1 =
prox(xk) = arg minx∈Q{f(x) + γV (x, xk)}. We use the
KL-divergence as the Bregman divergence since in this case
the proximal step leads to a similar problem to the entropic-
regularized WB (2). Given the sets C1, C2 defined in (5), we
define proximal operator prox : C1 ∩ C2 → C1 ∩ C2 for
function

∑m
l=1 wlWγ(pl, ql) as follows

prox(πk) = argmin
π∈C1∩C2

m∑
l=1

wl
[
〈Cl, πl〉+ γKL(πl|πkl )

]
= argmin

π∈C1∩C2

m∑
l=1

wlKL
(
πl|πkl � exp

(
−Cl

γ

))
.

The proximal gradient method has the following form

πk+1 = prox(πk). (12)

Then we use Iterative Bregman Projection for finding the
barycenter.

We underline that in this setting, there is no need to choose
γ to be small as it prescribed by Theorem 3. Algorithm
3 has two loops: external loop of proximal gradient step
and inner loop of computing the next iterate πt by IBP and
as a byproduct an approximation qt to the barycenter. The
number of external iterations is proportional to γ/ε, see
(Chen & Teboulle, 1993), and the complexity of inner loop
is O (‖Ctl ‖∞/(γε′)). Slightly modifying algorithm Round
and vectors pl we can ensure that all [πtl ]ij & ε/n2, then it
is enough to choose ε̃ proportional to ε3/n2, and inner loop
complexity is Õ

(
n2‖Cl‖2∞/(γε3)

)
. However, experiments

show that this estimate is too pessimistic, and in practice
number of inner iterations is much smaller, see Section 4.
In practice, one should try to find the optimal γ by using a
restart procedure on the first external loop iteration. That
is, we start with large enough γ and solve internal problem
by IBP, then put γ := γ/2 and solve internal problem once
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again. We stop this repeating procedure at the moment when
the complexity of internal problem growth significantly.
This moment allows us to detect the optimal value of γ. On
the next external iterations one may use this γ.

Algorithm 3 can be implemented in centralized distributed
setting in the same way as Algorithm 1.

Algorithm 3 Finding Wasserstein barycenter by proximal
IBP
Input: T — number of iterations, γ > 0, ε̃ — accuracy

for inner problem, starting transport plans π0
l := 1

np
T
l 1

∀l = 1, . . . ,m
1: for t = 0, . . . , T − 1 do
2: Run Algorithm 1 with cost matrices Ctl := Cl −

γ lnπtl , parameter γ and accuracy ε′ ∝ ε̃
maxl‖Ct

l ‖∞
,

and obtain matrices B1, . . . , Bm
3: πt+1

l := Round
(
Bl, pl, q̄

t+1
)
∈ Π(pl, q̄

t+1),
where Round is Algorithm 2 from (Altschuler et al.,
2017) and q̄t+1 :=

∑m
l=1 wlB

T
l 1

4: end for
Output: q̄T

3. Complexity by Primal-Dual Accelerated
Gradient Descent

In this section, we consider the Primal-Dual Accelerated
Gradient Descent method for approximating Wasserstein
barycenters. First, we consider the regularized barycenter,
construct a dual problem to (2) and apply primal-dual ac-
celerated gradient descent to solve it and approximate the
regularized barycenter. Our dual problem is constructed
via a matrix W , which can be quite general. We explain
how the choice of this matrix is connected to distributed
optimization and allows to implement the algorithm in the
decentralized distributed setting. Then, we show, how the
regularization parameter should be chosen in order to ob-
tain an ε-approximation for the non-regularized Wasserstein
barycenter, and estimate the complexity of the resulting
algorithm. These algorithms can be implemented in a de-
centralized distributed manner such that each node fulfils
Õ(n2.5/ε) arithmetic operations and the number of commu-
nication rounds is Õ(

√
n/ε) .

3.1. Consensus view on the Wasserstein barycenter
problem

We rewrite problem (2) in an equivalent way as

min
q1,...,qm∈Sn(1)
q1=···=qm

Wγ(p, q) :=

m∑
l=1

wlWγ(l)(pl, ql), (13)

where p = [p1, . . . , pm]T and q = [q1, . . . , qm]T , we also
use different regularizer γl = γ(l) for each l-th Wasserstein

distance. Next, we write a dual problem by dualizing the
equality constraints q1 = · · · = qm. This can be done in
many different ways and, following (Lan et al., 2017; Sca-
man et al., 2017; Uribe et al., 2018), we do it by introducing
a matrix W̄ ∈ Rn×n which is a symmetric positive semi-
definite matrix s.t. Ker(W̄) = span(1). Then, defining
W = W̄ ⊗ In and using the fact q1 = · · · = qm ⇐⇒√
Wq = 0, we equivalently rewrite problem (13) as

max
q1,...,qm∈Sn(1),√

Wq=0

−
m∑
l=1

wlWγ(l)(pl, ql), (14)

Therefore, we obtain the dual problem

min
u∈Rmn

max
q∈Rnm

{
m∑
l=1

〈ul, [
√
Wq]l〉 −

m∑
l=1

wlWγ(l)(pl, ql)

}

= min
u∈Rmn

m∑
l=1

wlW∗γ(l),pl
([
√
Wu]l/wl), (15)

where W∗γ(l),pl
(·) is the Fenchel–Legendre transform of

Wγ(l)(pl, ·), [
√
Wq]i and [

√
Wu]i represent the i-th n-

dimensional block of vectors
√
Wq and

√
Wu respectively.

Importantly, the objective in the dual problem (15) has
L-Lipschitz-continuous gradient, where constant L is es-
timated below in Lemma 3. Since the dual problem is
smooth, we apply primal-dual accelerated gradient descent
Algorithm 4 to solve the constructed pair of primal and dual
problems.

Before we move to the theoretical analysis of the algorithm,
let us discuss the scalability of Algorithm 4. Assume that
we have an arbitrary network of agents given by connected
undirected graph G = (V,E) without self-loops with the
set V of n vertices and the set of edges E = {(i, j) :
i, j ∈ V }. Then matrix W̄ can be chosen as the Laplacian
matrix for this graph, which is such that a) [W̄ ]ij = −1
if (i, j) ∈ E, b) [W̄ ]ij = deg(i) if i = j, c) [W̄ ]ij = 0
otherwise. Here deg(i) is the degree of the node i, i.e.,
the number of neighbors of the node. We assume that an
agent i can communicate with an agent j if and only if the
edge (i, j) ∈ E. In particular, the Laplacian matrix for the
star graph, which corresponds to the centralized distributed
computations discussed in Section 2 is

W̄ : {∀i = 1, . . . ,m− 1 W̄ii = 1, W̄im = W̄mi = −1,

W̄mm = m− 1}. (16)

Algorithm 4 allows to perform calculations in an arbitrary
connected undirected network of agents. This is in contrast
to the IBP algorithm as discussed in Section 2.

For simplicity and comparison with the complexity of the
IBP algorithm, we analyze the complexity of Algorithm 4
as if it is implemented on one machine, disregarding that it
can be used for distributed setup.
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Algorithm 4 Accelerated Distributed Computation of
Wasserstein barycenter
Input: Each agent l ∈ V is assigned its measure pl and an

upper bound L for the Lipschitz constant of the gradient
of the dual objective.

1: Each agent finds p̃l ∈ Sn(1) s.t. ‖p̃l − pl‖1 ≤ ε/4 and
mini[p̃l]i ≥ ε/(8n) and redefine pl := p̃l. E.g., p̃l =(
1− ε

8

) (
pl + ε

n(8−ε)1
)

and sets set γ(l) = ε
4mwl lnn ,

η0
l = ζ0

l = λ0
l = q0

l = 0 ∈ Rn, A0 = α0 = 0 and N .
2: For each agent l ∈ V :
3: for k = 0, . . . , N − 1 do
4: Find αk+1 as the largest root of the equation

Ak+1 := Ak + αk+1 = 2Lα2
k+1.

5: λk+1
l = (αk+1ζ

k
l +Akη

k
l )/Ak+1.

6: Calculate∇W∗γ(l),pl
(λk+1
l ):

[∇W∗γ(l),pl
(λk+1
l )]i =∑n

j=1[pl]j
exp(([λk+1

l ]i−[Cl]ij)/γ(l))∑n
r=1 exp(([λk+1

l ]r−[Cl]rj)/γ(l))
, where

[λ]i denotes i− th component of a vector λ.

7: Share ∇W∗γ(l),pl
(λk+1
l ) with {j | (i, j) ∈ E}.

8: ζk+1
l = ζkl − αk+1

∑m
j=1Wlj∇W∗γ(j),pj

(λk+1
j ).

{Gradient step}

9: ηk+1
l = (αk+1ζ

k+1
l +Akη

k+1
l )/Ak+1.{Extrapolation

step}

10: qk+1
l = 1

Ak+1

∑k+1
l=0 αiqi(λ

k+1
l ) =

(αk+1qi(λ
k+1
l ) +Akq

k
l )/Ak+1,

where ql(·) = ∇W∗γ(l),pl
(·) defined in step 4.

{Primal update}
11: end for
Output: qN = [qT1 , . . . , q

T
m]T .

Theorem 3. Algorithm 4 after N =
1
ε

√
64χ(W̄ )mn lnn

∑m
l=1 w

2
l ‖Cl‖2∞ iterations gen-

erates an ε-solution of problem (2) with γ = 0, i.e. finds a
vector qN = [qT1 , . . . , q

T
m]T s.t.

m∑
l=1

wlW(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤ ε, and

‖
√
WqN‖2 ≤ ε/2R, (17)

where q∗ is an unregularized barycenter, i.e. is a solu-
tion to (2) with γ = 0, and R is a bound on the solution
to the dual problem given in Lemma 3. The total num-
ber of arithmetic operations is O

(
N · n(mn+ nnz(W̄ ))

)
.

Moreover, there exists a choice of matrix W̄ such that, if,
without loss of generality, ‖Cl‖∞ ≤ 1, and the weights
wl = 1/m, l = 1, ...,m, the complexity of approximating
non-regularized barycenter by Algorithm 4 is Õ(mn2.5/ε).

The proof is based on the complexity theorem of primal-
dual accelerated gradient descent for a particular pair of
primal-dual problems (13)–(15).

Theorem 4 (see Theorem 2 from (Dvurechensky et al.,
2017)). Let accelerated primal-dual gradient descent be
applied to the pair of problems (13)–(15). Then the inequal-
ities

m∑
l=1

wlWγ(l)(pl, q
N
l )−

m∑
l=1

Wγ(l)(pl, q
∗) ≤ ε/2,

‖
√
WqN‖2 ≤ ε/2R (18)

hold no later than after N =
√

32LR2/ε iterations, where
L is the Lipschitz constant of the gradient of the dual ob-
jective and R is such that ‖u∗‖2 ≤ R, u∗ being an optimal
dual solution.

Our next steps are to find the bounds for L in the next
Lemma and R in Lemma 3 inspired by (Lan et al., 2017).

Lemma 2. Let in (13) γ(l) = γ/wl for some γ > 0, and
W∗γ (u) denote the dual objective in (15). Then its gradient
is L = λmax(W )/γ-Lipschitz continuous w.r.t. 2-norm.

Lemma 3. Let q∗γ be the optimal solution of problem (2)
with minimal 2-norm, then there exists an optimal dual
solution u∗ = [u∗1, . . . , u

∗
m] for problem (15) satisfying

‖u∗‖2 ≤ R with

R2 =
2n
∑m
l=1 w

2
l ‖Cl‖2∞

λ+
min(W )

. (19)

Here λ+
min(W ) is the minimal positive eigenvalue of the

matrix W .

Proof of Theorem 3. Using Theorem 4 and thatKL(π|θ) ∈
[0, 2 lnn] we get the following inequality

m∑
l=1

wlW(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤ ε/2

+ 2 lnn

m∑
l=1

wlγ(l). (20)

Since γ(l) = γ/wl with γ = ε/(4m lnn), we obtain that
the inequality (17) holds. Combining the values of γ, L
from Lemma 2, R from Lemma 3 with the estimate for N
in Theorem 4 and the fact that χ(W ) = χ(W̄ ), we obtain
the desired estimate for the number of iterations of the al-
gorithm. Let us estimate the complexity of the algorithm.
For each l we need to calculate the gradient W∗γ(l),pl

(·),
which requires O(n2) arithmetic operations. To calcu-
late

∑m
j=1Wlj∇W∗γ(l),pl)

(λk+1
j ) one needsO(n·nnz(W̄l))

arithmetic operations, where nnz(W̄l) is the number of non-
zero elements in matrix W̄ in the l-th row. More precisely,
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the dimension of ∇W∗γ(l),pl
(·) is n and the matrix Wlj is

diagonal for each l, j = 1, . . . ,m. Using definition of W
we get that the complexity of calculating the gradient. Other
operations require O(n) operations. Hence, the complexity
of one iteration is

O

(
mn2 +

m∑
l=1

n · nnz(W̄l)

)
= O

(
mn2 + n · nnz(W̄ )

)
and the total complexity follows from multiplying this value
by N . As for the choice of W̄ one can show (by us-
ing graph sparsificators) that it can be chosen such that
χ(W ) = χ(W̄ ) = O(Poly(ln(m))) and nnz(W̄ ) =
O(mPoly(ln(m))). For details on the graph sparsifica-
tors we refer to (Vaidya, 1990; Bern et al., 2006; Spiel-
man & Teng, 2014). Substituting the weights wl = 1/m,
l = 1, ...,m to the bound for N , we obtain that the com-
plexity of approximating non-regularized barycenter by Al-
gorithm 4 is Õ(mn2.5/ε). In the distributed setting, each of
m nodes makes Õ(n2.5/ε) arithmetic operations, while the
number of communications rounds is Õ(

√
n/ε).

4. Numerical Analysis
In this section, we provide numerical analysis for the three
algorithms for the computation of approximate Wasserstein
barycenters. We compare their iteration performance for the
problem of computing the barycenter of a set of 15 discrete
and truncated Gaussian distributions.

Figure 1 (Left) shows the distance to optimality versus the
iteration count for the IBP method and the ProxIBP method.
For the ProxIBP method, we show the performance for
four different cases, namely: γ = 1, γ = 0.1, γ = 0.01,
and varying with γk+1 = γk/2, if γk ≥ 1e−3 (γ0 = 10).
Figure 1 (Right) shows the number of iterations required
in the inner loop step of Algorithm 3 (Line 2) to reach the
desired accuracy ε′ for the same scenarios on γ. Results
show that for smaller values of γ the inner problem requires
larger number of iterations. Particularly for γ = 1 the inner
problem is relatively computationally inexpensive, but the
convergence of the overall method is slow. On the other side,
with varying values of γ an accurate barycenter is found
with low computational cost initially.

Figure 2 shows the performance of the primal-dual accel-
erated gradient descent method. Recall that this method is
particularly suited for decentralized distributed approaches
where the computation is performed over an arbitrary net-
work. We show the distance to optimality and distance to
consensus for the approximate barycenters generated by
Algorithm 4.

Table 1 shows the numerical values of the optimality gap
for a subset of the experiments shown above. The Prox-

Figure 1. Distance to an optimal barycenter for the IBP method
and the ProxIBP method.

Figure 2. Optimality gap and consensus gap for the primal-dual
accelerated gradient descent method for four classes of networks:
complete, star, path and Erdős-Renyi random graph.

IBP algorithm converges much faster than the other two, in
exchange with higher computational loads per interation.

Conclusion
In this paper, we show that the IBP algorithm from Benamou
et al. (2015) for the Wasserstein barycenter problem can be
implemented in a centralized distributed manner such that
each node requires Õ

(
n2/ε2

)
arithmetic operations and

the number of communication rounds is Õ
(
1/ε2

)
. We

note that proper proximal envelope of this algorithm can
sometimes give a significant acceleration.We also describe
accelerated primal-dual gradient algorithm for the same
problem. The proposed algorithm can be implemented in
a more general decentralized distributed setting such that
each node fulfils Õ(n2.5/ε) arithmetic operations and the
number of communication rounds is Õ(

√
n/ε).

Table 1. Optimality Gap for the Approximate Barycenter
ProxIBP IBP Algo. 4

Iter. γ → γ/2 γ = 0.01 γ = 1 Complete Erdős-Renyi
50 8.797e-4 1.779e-3 9.856e-2 0.2585 1.286 1.294
1000 4.17e-07 – 6.818e-2 0.2585 0.471 1.041
2000 – – 4.201e-2 0.0741 0.111 0.463
3000 – – 1.830e-2 0.0691 4.814e-2 0.226
4000 – – 6.408e-3 0.0534 2.797e-2 0.135
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blais. Histoire de l’Académie Royale des Sciences de
Paris, 1781.

Nedic, A. and Ozdaglar, A. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on
Automatic Control, 54(1):48–61, 2009.

Nedić, A., Olshevsky, A., Shi, W., and Uribe, C. A. Geo-
metrically convergent distributed optimization with un-
coordinated step-sizes. In American Control Conference
(ACC), 2017, pp. 3950–3955. IEEE, 2017.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate o(1/k2). Soviet Mathe-
matics Doklady, 27(2):372–376, 1983.

Nesterov, Y., Gasnikov, A., Guminov, S., and Dvurechensky,
P. Primal-dual accelerated gradient methods with small-
dimensional relaxation oracle. arXiv:1809.05895, 2018.
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