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Abstract

Variational inequalities in general and saddle point problems in particular are in-
creasingly relevant in machine learning applications, including adversarial learn-
ing, GANs, transport and robust optimization. With increasing data and problem
sizes necessary to train high performing models across various applications, we
need to rely on parallel and distributed computing. However, in distributed train-
ing, communication among the compute nodes is a key bottleneck during train-
ing, and this problem is exacerbated for high dimensional and over-parameterized
models. Due to these considerations, it is important to equip existing methods
with strategies that would allow to reduce the volume of transmitted information
during training while obtaining a model of comparable quality. In this paper,
we present the first theoretically grounded distributed methods for solving varia-
tional inequalities and saddle point problems using compressed communication:
MASHA1 and MASHA2. Our theory and methods allow for the use of both unbi-
ased (such as Randk; MASHA1) and contractive (such as Topk; MASHA2) com-
pressors. New algorithms support bidirectional compressions, and also can be
modified for stochastic setting with batches and for federated learning with partial
participation of clients. We empirically validated our conclusions using two exper-
imental setups: a standard bilinear min-max problem, and large-scale distributed
adversarial training of transformers.
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1 Introduction

1.1 The expressive power of variational inequalities

Due to their abstract mathematical nature and the associated flexibility they offer in modeling various
practical problems of interests, variational inequalities (VI) have been an active area of research in
applied mathematics for more than half a century [65, 31, 22]. It is well known that VIs can be used
to formulate and study optimization problems, saddle point problems (SPPs), games and fixed point
problems, for example, in an elegant unifying mathematical framework [9].

Recently, a series of works by various authors [15, 26, 58, 13, 49] built a bridge between VIs/SPPs
and GANs [28]. This allows to successfully transfer established insights and well-known techniques
from the vast literature on VIs/SPPs, such as averaging and extrapolation, to the study of GANs. Be-
sides their usefulness in studying GANs and alternative adversarial learning models [57], VIs/SPPs
have recently attracted considerable attention of the machine learning community due to their ability
to model other situations where the minimization of a single loss function does not suffice, such as
auction theory [80], supervised learning with non-separable loss [39] or non-separable regularizer
[7] and reinforcement learning [69, 66, 38].

In summary, VIs have recently become a potent tool enabling new advances in practical machine
learning situations reaching beyond supervised learning where optimization problems and tech-
niques, which can be seen as special instances of VIs and methods for solving them, reign supreme.

1.2 Training of supervised models via distributed optimization

On the other hand, for classical and much better understood supervised machine learn-
ing/minimization problems, researchers and practitioners face other challenges, which, until re-
cently, have been outside of VI’s research. Indeed, the training of modern supervised machine
learning models in general, and deep neural networks in particular, is still extremely challenging.
Due to their desire to improve the generalization of deployed models, machine learning engineers
need to rely on training datasets of ever increasing sizes and on elaborate over-parametrized models
[5]. Supporting workloads of such unprecedented magnitudes would be impossible without com-
bining the latest advances in hardware acceleration, distributed systems and distributed algorithm
design [83].

When training such modern supervised models in a distributed fashion, communication cost is of-
ten the bottleneck of the training system, and for this reason, a lot of effort was recently targeted
at the design of communication efficient distributed optimization methods [45, 76, 25, 29]. A par-
ticularly successful technique for improving the communication efficiency of distributed first order
optimization methods is communication compression. The idea behind this technique is rooted in
the observation that in practical implementations it is often advantageous to communicate messages
compressed via (often randomized) lossy compression techniques instead of communicating the full
messages [75, 2]. If the number of parallel workers is large enough, the noise introduced by com-
pression is reduced, and training with compressed communication will often lead to comparable
test error while reducing the amount of communicated bits, which results in faster training, both in
theory and practice [59, 29].

1.3 Two classes of compression operators

The paper focuses on compression methods for distributed VIs and SPPs. Let us give the main
definitions. We say that a (possibly) stochastic mapping Q : Rd → Rd is an unbiased compression
operator if there exists a constant q ≥ 1 such that

EQ(z) = z, E‖Q(z)‖2 ≤ q‖z‖2, ∀z ∈ Rd. (1)

Further, we say that a stochastic mapping C : Rd → Rd is a contractive compression operator if
there exists a constant δ ≥ 1 such that

E‖C(z)− z‖2 ≤ (1− 1/δ)‖z‖2, ∀z ∈ Rd. (2)

If b is the number of bits needed to represent a single float (e.g., b = 32 or b = 64), then the number
of bits needed to represent a generic vector z ∈ Rd is ‖z‖bits := bd. To describe how much a
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compression operator reduces its input vector on average, we define the notion of expected density,
denoted via β−1 := 1

bdE‖Q(z)‖bits, where ‖Q(z)‖bits is the number of bits needed to represent the
quantized vector Q(z). Note that β ≥ 1. For the Randk operator [3, 10] we have q = β = d/k.

1.4 Towards communication-efficient distributed methods for VIs and SPPs

Classical VI/SPP algorithms such as the Extra Gradient method originally proposed by [46] and
later studied by many authors [62, 41], including in a distributed environment [77, 52, 61, 73].
Among them, a number of works stand out trying to solve the communication bottleneck challenge
using various approaches such as local steps, data-similarity etc.[88, 34, 16, 11, 12]. But despite
the fact that the use of compression is one of the most popular communication-efficient approaches
for distributed minimization problems, no work has yet paid attention to the compression technique
neither for distributed SPPs nor for VIs, with the exception of the work [88], which relies on round-
ing to the nearest integer multiple of a certain quantity. This compression mechanism does not offer
theoretical benefits and does not even lead to convergence to the solution since the errors introduced
through rounding persist and prevent the method from solving the problem.

2 Summary of Contributions

In this paper, we investigate whether it is possible to design communication-efficient algorithms
for solving distributed VI/SPP by borrowing generic communication compression techniques (1)
and (2) from the optimization literature [75, 2, 59, 29, 72] and embedding them into established,
efficient methods for solving VIs/SPPs [46, 62, 41, 1]. Whether or not this is possible is an open
problem. In summary,

we design the first algorithms with compression for solving general distributed VI/SPP (see
Section 3, Equation 3) in the deterministic (see (4)), stochastic (see (44)) and federated (see
(54)) regimes, supporting both unbiased (MASHA1 = Algorithms 1, 5, 7) and contractive
(MASHA2 = Algorithms 2, 6, 8) compressors. Convergence of all our methods are analyzed
in strongly-monotone (strongly convex - strongly concave), monotone (convex - concave)
non-monotone/minty (non-convex-non-concave) cases.

2.1 Two types of compressors

We develop two approaches for distributed VIs/SPPs depending on whether we use unbiased (1) or
contractive (2) compressors, since each type of compressor demands a different algorithmic design
and a different analysis. In particular, contractive compressors are notoriously hard to analyze even
for optimization problems [44, 72]. Our method based on unbiased compressors is called MASHA1
(Algorithm 1), and our method based on contraction compressors is called MASHA2 (Algorithm 2).

2.2 Theoretical complexity results

We establish a number of theoretical complexity results for our methods, which we summarize in Ta-
ble 1 (Appendix A). We consider the strongly monotone (strongly convex - strongly concave), mono-
tone (convex - concave) regimes as well as the more general non-monotone/minty (non-convex-non-
concave) regime. In the strongly monotone case we obtain linear convergence results (O(log 1/ε))
in terms of the distance to solution, in the monotone we obtain fast sublinear convergence results
(O(1/ε)) in terms of the gap function, and in the non-monotone case we have sublinear convergence
results (O(1/ε2)) in terms of the Euclidean norm of the operator. To get an estimate for the num-
ber of information transmitted, one need to multiply the estimates from Table 1 by 1/β. Then we
get that from the point of view of the transmitted information (and also time for communications),
MASHA1 is better by a factor

√
1/β + 1/M (M – number of workers) in comparison with the clas-

sical Extra Gradient. It means that we get an acceleration of min{
√
β;
√
M} times. For example,

ADIANA from [48](the theoretical SOTA method with unbiased compressions for strongly convex
minimization) has the same accelaration. The same situation is with MASHA2. The method has the
same compression dependent multiplier as ECLK from [71] (the theoretical SOTA with contractive
compression for minimization). Based on these facts, we hypothesize that MASHA1 and MASHA2
have unimprovable estimates (see Appendix B).
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2.3 Stochastic case and variance reduction

MASHA1 and MASHA2 are designed to handle the deterministic setting. But often, in practice,
the computation of the full operators/gradients is expensive, then we need to deal with stochastic
realizations. In particular, a popular case is when each operator/gradient has a finite-sum structure
on its own, e.g. , finite-sum of batches. For this issue, we consider two modifications: VR-MASHA1
(Algorithm 5) and VR-MASHA2 (Algorithm 6). Both are enhanced with bespoke variance-reduction
techniques for better theoretical and practical performance. These results can be interesting in the
non-distributed case. As far as we know, we are the first who consider variance reduction for non-
monotone VIs. We found only one paper on non-convex-concave saddle point problems [87] under
the PL condition. See Appendix F for details.

2.4 Federated learning and partial participation

Federated learning [45, 42] is an important and popular branch of distributed methods. Therefore,
a good bonus for the algorithm is that it can be easily adapted for it. In a federated setup where
the computing devices are mobile phones, tablets, personal computers etc, the importance of the
communication bottleneck is even higher. In such circumstances, devices can have weak and slow
connections, or they can even disconnect for a while. At such moments, it is not necessary to
interrupt the learning process, and only available devices can be used. Therefore, we introduce two
modifications: PP-MASHA1 (Algorithm 7) and PP-MASHA2 (Algorithm 8), that support the mode of
partial participation of devices in the learning process. For minimization problems, a combination
of quantization and partial participation occurs in [33, 68, 29]. The results are contained in Appendix
G.

2.5 Bidirectional compression

Most methods, especially with contractive compressors, only use compression when transferring
information from devices to the server. Meanwhile, quite often in practical situations, the transfer
of information from the server to the device is also expensive [32, 81, 68]. In such situations it also
makes sense to compress the information when sending it from the server to the agents. We can
highlight some works on bidirectional unbiased [68] and contractive compressors [90, 81, 55, 23]
for distributed minimization problems. But most of these methods have their small shortcomings
in theoretical analysis such as deterministic setting only, homogeneity of local functions, etc. All
our methods MASHA1, MASHA2 and their modifications support bidirectional compression. See
Appendix D and E for details.

2.6 Experiments

Toy experiments on bilinear problems show that methods with compression for minimization prob-
lems may not work (diverge) for SPPs. Also we verify that MASHA1 and MASHA2 are much better
than the classical Extra Gradient with added unbiased compression. Experiments on adversarial
training of large-scale transformer (ALBERT) show the practical importance of compression in dis-
tributed methods for large SPPs.

3 Problem Formulation and Assumptions

3.1 Problem formulation

We study distributed variational inequality (VI) problem

Find z∗ ∈ Rd such that 〈F (z∗), z − z∗〉 ≥ 0, ∀z ∈ Rd, (3)

where F : Rd → Rd is an operator with certain favorable properties (e.g., Lipschitzness and
monotonicity). We assume that the training data describing F is distributed across M work-
ers/nodes/clients

F (z) :=
1

M

M∑
m=1

Fm(z), (4)
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where Fm : Rd → Rd for all m ∈ {1, 2, . . . ,M}. Next, we give main examples of VIs to show the
breadth of this formalism.

Example 3.1 (Minimization) Consider the minimization problem:

min
z∈Rd

f(z). (5)

Suppose that F (z) := ∇f(z). Then, if f is convex, it can be proved that z∗ ∈ Rd is a solution for
(3) if and only if z∗ ∈ Rd is a solution for (5). And if the function f is non-convex, then z∗ ∈ Rd is
a solution for (3) if and only if∇f(z∗) = 0, i.e. z∗ is a stationary point.

Example 3.2 (Saddle point problem) Consider the saddle point problem:

min
x∈Rdx

max
y∈Rdy

g(x, y). (6)

Suppose that F (z) := F (x, y) = [∇xg(x, y),−∇yg(x, y)] and Z = Rdx × Rdy . Then, if g is
convex-concave, it can be proved that z∗ ∈ Z is a solution for (3) if and only if z∗ ∈ Z is a solution
for (6). And if the function g is non-convex-non-concave, then z∗ ∈ Z is a solution for (3) if and
only if∇xg(x∗, y∗) = 0 and ∇yg(x∗, y∗) = 0, i.e. z∗ is a stationary point.

If minimization problems are widely researched separately from variational inequalities. The study
of saddle point problems often is associated with variational inequalities, therefore saddle point
problems are strongly related to variational inequalities.

Example 3.3 (Fixed point problem) Consider the fixed point problem:

Find z∗ ∈ Rd such that T (z∗) = z∗, (7)

where T : Rd → Rd is an operator. With F (z) = z − T (z), it can be proved that z∗ ∈ Rd is a
solution for (3) if and only if F (z∗) = 0, i.e. z∗ ∈ Rd is a solution for (7).

3.2 Assumptions

Next, we list two key assumptions - both are standard in the literature on VIs.

Assumption 3.4 (Lipschitzness) The operator F is L-Lipschitz continuous, i.e. for all z1, z2 ∈ Rd
we have ‖F (z1)− F (z2)‖ ≤ L‖z1 − z2‖.

Each operator Fm is Lm-Lipschitz continuous, i.e. for all z1, z2 ∈ Rd it holds ‖Fm(z1) −

Fm(z2)‖ ≤ Lm‖z1 − z2‖. Let us define new constant L̃ as follows L̃2 = 1
M

M∑
m=1

L2
m.

For saddle point problems, these properties are equivalent to smoothness.

Assumption 3.5 (Monotonicity) We need three cases of monotonicity

(SM) Strong monotonicity. The operator F is µ-strongly monotone, i.e. for all z1, z2 ∈ Rd we have
〈F (z1)− F (z2), z1 − z2〉 ≥ µ‖z1 − z2‖2.

(M) Monotonicity. The operator F is monotone, i.e. for all z1, z2 ∈ Rd we have 〈F (z1) −
F (z2), z1 − z2〉 ≥ 0.

(NM) Non-monotonicity. The operator F is non-monotone (minty), if and only if there exists z∗ ∈
Rd such that for all z ∈ Rd we have 〈F (z), z − z∗〉 ≥ 0.

The last assumption is called the minty or variational stability condition. It is not a general non-
monotonicity, but is already associated in the community with non-monotonicity [14, 37, 58, 53, 43,
36, 19], particularly with the setup, which is somewhat appropriate for GANS [51, 52, 21, 8].

4 MASHA

In this Section we present new algorithms and their convergence. Section 4.1 is devoted to the algo-
rithm (MASHA1) with unbiased compression. Section 4.2 – to algorithm (MASHA2) with contractive

5



compression. Appendix gives modifications for the stochastic case – Section F, and for the feder-
ated learning – Section G. Appendix B is devoted to the hypothesis about optimality of MASHA1
and MASHA2.

4.1 MASHA1: Handling Unbiased Compressors

Before presenting our algorithm, let us discuss which approaches can be used to construct it. As
discussed in Sections 1 and 2, compression methods play an important role in distributed minimiza-
tion problems. All these methods are modifications of the classical GD. For instance, the authors
of [2] compress stochastic gradients. Therefore, it is a natural idea to use GD-type methods for VIs
as well. But it is a well-known fact that GD-type methods can give bad convergence estimates (see
Section B.1 from [67]) or do not converge at all (see Section 7.2 and 8.2 from [27]) even on the
simplest SPPs and VIs. From a practical point of view, this approach can also fail (see QSGD and
EF in Section 5.1). In the non-distributed case, this problem has long been solved and the Extra
Gradient method [46, 62, 41] is used instead of GD:

zk+1/2 = zk − γF (zk), zk+1 = zk − γF (zk+1/2). (8)

This method is optimal for both VIs and SPPs and has an estimate of convergence Õ(L/µ) in the
strongly monotone case. Therefore, the second idea for the compressed method is to add compres-
sion operators to the method (8), e.g. useQk(F (zk)) andQk+1/2(F (zk+1/2)) instead of F (zk) and
F (zk+1/2). In Section H we analyse this method, but it gives an estimate Õ

(
1 + q/M) · L2

/µ2
)
,

which is considerably worse in terms of L/µ than the original Extra Gradient method. The key
problem is that in the analysis one has to deal with ‖Qk(F (zk+1/2)) − Qk+1/2(F (zk))‖2. With-
out compression operators, such difference is easily evaluated using Assumption 3.4. But when the
compression operators are different (in fact the same, but have different randomness) we cannot
make a good estimate for this term. The idea arises to use the same randomness in both steps of the
method (8), namely to substitute Qk(F (zk)) and Qk(F (zk+1/2)). But then zk+1/2 depends on the
randomness Qk, and hence Qk(F (zk+1/2)) is biased, which further complicates the analysis. For
exactly the same reasons, the various optimistic/single call modifications [70, 26, 35, 60] of the Ex-
tra Gradient method did not work for us either. We have also test the method (8) with compressions
in practice (see CEG in Section 5.1), and it turns out to be worse than the method we will present
below. In the end, the use of variance reduction and negative momentum techniques [1] is key in
creating our algorithm. These tricks are not in themselves relevant to distributed problems, but, in
our case, they help in creating MASHA1 and MASHA2.

Algorithm 1 MASHA1

Parameters: Stepsize γ > 0, parameter τ ∈ (0; 1), number of iterations K.
Initialization: Choose z0 = w0 ∈ Z .
Devices send Fm(w0) to server and get F (w0)
for k = 0, 1, 2, . . . ,K − 1 do

for each device m in parallel do
zk+1/2 = τzk + (1− τ)wk − γF (wk)
Sends gkm = Qdev

m (Fm(zk+1/2)− Fm(wk)) to server
end for
for server do

Sends to devices gk = Qserv
[

1
M

∑M
m=1 g

k
m

]
Sends to devices one bit bk : 1 with probability 1− τ , 0 with with probability τ

end for
for each device m in parallel do

zk+1 = zk+1/2 − γgk
If bk = 1 then wk+1 = zk, sends Fm(wk+1) to server and gets F (wk+1)
else wk+1 = wk

end for
end for

At the beginning of each MASHA1 iteration, all devices know the value of F (wk), hence they can
calculate the value of zk+1/2 locally without communications. Further, each device sends the com-
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pressed version of the difference Fm(zk+1/2) − Fm(wk) to the server. The compression on these
transfers is done by their local {Qdev

m } operators. The server aggregates the information from de-
vices, averages it, compresses by Qserv operator and makes a broadcast to all devices. As a result,
an unbiased estimate of F (zk+1/2) − F (wk) appears at each node. Also, the nodes receive one bit
of information bk. This bit is generated randomly on the server and is equal to 1 with probability
1 − τ (where 1 − τ is small). Note that bk can be generated locally, it is enough to use the same
random generator and set the same seed on all devices. Next, the devices locally make a final update
on zk+1. The final step is an update of wk+1: if bk = 1, then wk+1 = zk or otherwise wk+1 = wk.
In the case when wk+1 = zk, we need to exchange the uncompressed values of Fm(wk+1) in order
to ensure that at the beginning of the next iteration the value of F (wk+1) is known to all agents. We
use a possibly difference compressor on each device and also on the server. To distinguish between
them, we denote the following notation: Qdev

m , qdev
m , βdev

m and Qserv, qserv, βserv.

Theorem 4.1 Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then for some step
γ the following estimates on MASHA1 number of iterations to achieve ε-solution holds

• in strongly monotone case (in terms of E[‖zK − z∗‖2] ∼ ε): O([ 1
1−τ +

Cq
µ
√
1−τ ] log 1

ε );

• in monotone case (in terms of Emaxz∈C [〈F (u), ( 1
K

∑K−1
k=0 zk+1/2)− u〉] ∼ ε): O(

Cq‖z0−z∗‖2

ε
√
1−τ );

• in non-monotone case (in terms of E[ 1
K

∑K−1
k=0 ‖F (wk)‖2] ∼ ε2): O(

C2
q‖z

0−z∗‖2

ε2(1−τ) );

where C2
q = qserv

M2

∑M
m=1(qdev

m L2
m + (M − 1)L̃2).

A full description of the algorithm, as well as a full statement of the theorem with proof, can be
found in Appendix D.

The bounds in Theorem 4.1 are related to τ . Let us find an optimal way to choose it. Note that (in
average) once per 1/(1−τ) iterations (when bk = 1), we send uncompressed information. Based on
this observation, we can find the best option for τ . Let us analyze the case of compressions only on
the devices’ side (qserv = 1). For simplicity, we put Qdev

m = Q with qdev
m = q and βdev

m = β, also
Lm = L̃ = L. Since compression is done only on devices, we assume that the server’s broadcast is
cheap and we only care about devices. Then at each iteration the device sends O (1/β + 1− τ) bits
– each time information compressed by β times and with probability 1−τ we send the full package.
From where we immediately get the optimal choice for τ :

Corollary 4.2 Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then for some step
γ and 1 − τ = 1/β the following estimates on MASHA1 number of iterations to achieve ε-solution
holds
• in strongly monotone case: O([β +

√
qβ
M + β · Lµ ] log 1

ε );

• in monotone case: O(
√

qβ
M + β · L‖z

0−z∗‖2
ε );

• in non-monotone case: O([ qβM + β]L
2‖z0−z∗‖2

ε2 ).

We can see that MASHA1 can outperform the uncompressed Extra Gradient method. Let us compare
them in the strongly monotone case. The communication complexity of the Extra Gradient method is
Õ(L/µ). MASHA1 has communication complexity Õ(

√
q/βM + 1/β ·L/µ). For practical compressors

[10], β ≥ q. Then, one can note that the communication complexity of MASHA1 differs from
the complexity of the uncompressed method by an additional factor (

√
1/M + 1/β). It is easy to

see that even for a small number of devices M and expected density β, this factor is less than 1,
hence MASHA1 outperforms the uncompressed method. We think that this factor (

√
1/M + 1/β) is

theoretically unimprovable and optimal – see Section B for details.

One can also consider the case of bidirectional compression (qserv 6= 1). Table 1 (line 3) shows the
result for qserv = qdev

m = q, βserv = βdev
m = β and 1− τ = 1/β.

4.2 MASHA2: Handling Contractive Compressors

The use of contractive compressions is a more complex issue. In particular, it is known that if one
simply put a contractive cospressor instead of an unbiased one, the method may diverge even for
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quadratic problems [10]. To fix this, an error compensation technique [78, 44, 79] is used. The
point of this approach is to keep untransmitted information and add it to a new package at the
next iteration. This is the main difference between MASHA2 and MASHA1. MASHA2 introduces
additional sequences ek, ekm for the server’s and devices’ error. To define contractive operators on
devices and on the server, we introduce the following notation: Cdev

m , δdev, βdev and Cserv
m , δserv, βserv.

Algorithm 2 MASHA2

Parameters: Stepsize γ > 0, parameter τ , number of iterations K.
Initialization: Choose z0 = w0 ∈ Z , e0m = 0, e0 = 0.
Devices send Fm(w0) to server and get F (w0)
for k = 0, 1, 2, . . . ,K − 1 do

for each device m in parallel do
zk+1/2 = τzk + (1− τ)wk − γF (wk)
Sends gkm = Cdev

m (γFm(zk+1/2)− γFm(wk) + ekm) to server
ek+1
m = ekm + γFm(zk+1/2)− γFm(wk)− gkm

end for
for server do

Sends to devices gk = Cserv
[

1
M

∑M
m=1 g

k
m + ek

]
ek+1 = ek + 1

M

∑M
m=1 g

k
m − gk

Sends to devices one bit bk : 1 with probability 1− τ , 0 with with probability τ
end for
for each device m in parallel do

zk+1 = zk+1/2 − γgk
If bk = 1 then wk+1 = zk, sends Fm(wk+1) to server and gets F (wk+1)
else wk+1 = wk

end for
end for

In the case of MASHA1, the key theoretical issue was the choice of a basic method (we discussed
this at the beginning of Section 4.1). MASHA2 raises another problem for theoretical analysis, how
to combine MASHA1 and the error feedback technique. The analysis of methods with error com-
pensation for the minimization problem minx f(x) is entirely tied to the existence of the function
f [79, 71, 72]. In particular, the differences (f(·) − f(x∗)) appear in the whole analysis and is
key in the technical lemmas. As a result (f(·) − f(x∗)) is used as a convergence criterion even in
the strongly convex case. But for VIs there is no function f , only the operator F (the existence of
g(x, y) in SPP setup does not save the situation). This problem is solved in the proof of Theorem
4.3 by using an additional sequence ‖zk+1/2 − wk‖.

Theorem 4.3 Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then for some step
γ the following estimates on MASHA2 number of iterations to achieve ε-solution holds

• in strongly monotone case (in terms of E[‖ẑK − z∗‖2] ∼ ε): O([ 1
1−τ + δdevδservL̃

µ
√
1−τ ] log 1

ε );

• in monotone case (Emaxz∈C [〈F (u), ( 1
K

∑K−1
k=0 zk+1/2)− u〉] ∼ ε): O( δ

devδservL̃‖z0−z∗‖2

ε
√
1−τ );

• in non-monotone case (in terms of E[ 1
K

∑K−1
k=0 ‖F (wk)‖2] ∼ ε2): O( (δdevδserv)2L̃2‖z0−z∗‖2

ε2(1−τ) ).

A full listing of the algorithm, as well as a full statement of the theorem with proof, can be found in
Appendix E.

The same way as in Section 4.1 we can consider only devices’ or bidirectional compression. In
particular, in the line 2 of Table 1 we put results for δserv = 1, δdev = δ, Lm = L̃ = L and
1 − τ = β. In the line 4 of Table 1 there are results for δserv = δdev = δ, Lm = L̃ = L and
1− τ = β.
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5 Experiments

5.1 Bilinear Saddle Point Problem

We start our experiments with a distributed bilinear problem, i.e. the problem (6) with

gm(x, y) := x>Amy + a>mx+ b>my +
λ

2
‖x‖2 − λ

2
‖y‖2, (9)

where Am ∈ Rd×d, am, bm ∈ Rd. This problem is λ-strongly convex–strongly-concave and,
moreover, all functions gm are ‖Am‖2-smooth. Therefore, such a distributed problem is well suited
for the primary comparison of our methods. We take d = 100 and generate positive definite matrices
Am and vectors am, bm randomly, λ is chosen as maxm ‖Am‖2/105.

The purpose of the experiment is to understand whether the MASHA1 and MASHA2 methods are
superior to those in the literature. As a comparison, we take QGD [2] with Random 30%, classical
Error Feedback [78] with Top 30% compression, as well as CEG (Section H) – Compressed Extra
Gradient, each step of which we use Random 30%. In MASHA1 (Algorithm 1) we also used Random
30%, in MASHA2 (Algorithm 2) – Top 30%. See Figure 1. The stepsizes of all methods are chosen
for best convergence.

Figure 1: Comparison MASHA1 (Algorithm 1) and MASHA2 (Algo-
rithm 2) with Error Feedback, QGD and Compressed Extra Gradient
(CEG) in iterations and in Mbytes for (9).
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We see on Figure 1
that methods based on
gradient descent (QSGD
and EF) converge slowly.
This confirms that one
needs to use method
specifically designed for
saddle point problems
(for example, the extra-
gradient method), and
not classical optimization
methods. The much slower convergence of CEG shows the efficiency of our approach in which
we compress the differences Fm(zk+1/2) − F (wk). MASHA2 wins MASHA1. This shows that
in practice a contractive compressor can perform better than an unbiased one with the same
parameters.

5.2 Adversarial Training of Transformers

We now evaluate how compression performs for variational inequalities (and for saddle point prob-
lems, as a special case) in a more practically motivated scenario. Indeed, saddle point problems
(special case of variational inequalities) have sample applications in machine learning, including ad-
versarial training. And our goal is to show that compression provides important improvements for
such large-scale problems as well. We train a transformer-based masked language model [82, 18, 56]
using a fleet of 16 low-cost preemptible workers with T4 GPU and low-bandwidth interconnect.
For this task, we use the compute-efficient adversarial training regimen proposed for transformers
by [91, 54]. Formally, the adversarial formulation of the problem is the min-max problem

min
w

max
‖ρn‖≤e

1

N

N∑
n=1

l(f(w, xn + ρn, yn)2 +
λ

2
‖w‖2,

where w are the weights of the model, {(xn, yn)}Nn=1 are pairs of the training data, ρ is the so-
called adversarial noise which introduces a perturbation in the data, and λ are the regularization
parameters. To make our setup more realistic, we train ALBERT-large with layer sharing [47], which
was recently shown to be much more communication-efficient during training [74, 20]. We train our
model on a combination of Bookcorpus and Wikipedia datasets with the same optimizer (LAMB)
and parameters as in the original paper [47], use the adversarial training configuration of [91], and
follow system design considerations for preemptible instances [74]. In LAMB optimizer we change
the original positive momentum to negative momentum, as in MASHA. This means that we do not
exactly use MASHA in these experiments, but a combination of MASHA and LAMB. In fact this
approach is typical, e.g., in papers [15, 26, 58, 13, 49], the theoretical methods are combined with
Adam.
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In terms of communication, we consider 4 different setups for gradient compression: the “baseline”
strategy with uncompressed gradients, full 8-bit quantization [17, 50], mixed 8-bit quantization, and
Power compression [84] with rank r=8. For mixed 8-bit quantization and Power we only apply
compression to gradient tensors with more than 216 elements, sending smaller ones uncompressed.
These small tensors represent layer biases and LayerNorm scales [6] that collectively amount to
≤ 1% of the total gradient, but can be more difficult to compress than regular weight tensors. Finally,
since Power is a biased compression algorithm, we use error feedback [44, 72] with a modified
formulation proposed by [84]. For all experimental setups, we report learning curves in terms of the
model training objective, similarly to [24, 74]. To quantify the differences in training loss better, we
also evaluate the downstream performance for each model on several popular tasks from [85] after
each model was trained on approximately 80 billion tokens. Finally, we measure the communication
efficiency of each proposed strategy by measuring the average wall time per communication round
when all 16 workers are active.

Figure 2: (upper left) ALBERT training objective convergence rate
with different compression algorithms; (upper right) ALBERT train-
ing objective convergence rate with different compression algorithms
(zoomed); (lower) Average wall time per communication round with
standard deviation over 5 repetitions and downstream evaluation scores
on GLUE benchmark tasks after at 80 billion training tokens (≈104 op-
timizer steps).
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Setup Avg time CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B WNLI

Baseline 8.79± 0.03 45.2 81.1 83.0 88.3 89.0 67.8 85.5 89.4 18.3
Full 8-bit 4.42± 0.07 N/A N/A N/A N/A N/A N/A N/A N/A N/A
Mixed 8-bit 4.61± 0.08 48.8 81.3 88.7 88.1 85.2 64.3 88.3 87.5 16.9
Power 1.57± 0.05 43.9 80.5 85.6 88.6 86.0 47.2 88.5 88.5 16.9

The learning curves in
Figure 2 (upper) follow
a predictable pattern,
with more extreme
compression techniques
demonstrating slower
per-iteration conver-
gence. One curious
exception to that is full
8-bit quantization, which
was unable to achieve
competitive training
loss. The remaining
three setups converge to
similar loss values below
2. Both the baseline and
mixed 8-bit compression
show similar values in
terms of downstream
performance, with Power
compression showing
mild degradation. But in terms of information transfer time, methods using compression (especially
Power) are significantly superior to the method without compression. This makes it possible to use
such techniques to increase the training time without sacrificing quality.

6 Conclusion

In this paper we present algorithms with unbiased and contractive compressions for solving dis-
tributed VIs and SPPs. Our algorithms are presented in deterministic, stochastic and federated ver-
sions. All basic algorithms and their modifications support bidirectional compression. Experiments
confirm the efficiency of both our algorithms and the use of compression for solving large-scale VIs
in general.

In future works it is important to address the issue of the necessity to forward uncompressed infor-
mation in some iterations. Although full packages are rarely transmitted, this is a slight limitation
of our approach. Lower bounds for compression methods are also an interesting area of research.
At the moment there are neither such results for VIs and SPPs, nor for minimizations. In Appendix
B we only hypothesize the optimality of our methods and back it up with analogies, provable lower
estimates could complete the story with compressed methods.
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learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[60] Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of o(1/k) for op-
timistic gradient and extragradient methods in smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 30(4):3230–3251, 2020.

[61] Soham Mukherjee and Mrityunjoy Chakraborty. A decentralized algorithm for large scale
min-max problems. In 2020 59th IEEE Conference on Decision and Control (CDC), pages
2967–2972, 2020.

[62] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequali-
ties with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15:229–251, 01 2004.

[63] Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and
related problems. Mathematical Programming, 109(2):319–344, 2007.

[64] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[65] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1944.

[66] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian.
Deep decentralized multi-task multi-agent reinforcement learning under partial observability.
In Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70,
pages 2681–2690. PMLR, 2017.

[67] Balamurugan Palaniappan and Francis Bach. Stochastic variance reduction methods for saddle-
point problems. In Advances in Neural Information Processing Systems, pages 1416–1424,
2016.

[68] Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous
settings for distributed or federated learning with partial participation: tight convergence guar-
antees. arXiv preprint arXiv:2006.14591, 2020.

[69] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In International Conference on Machine Learning, 2017.

[70] Leonid Denisovich Popov. A modification of the arrow-hurwicz method for search of saddle
points. Mathematical notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.

14



[71] Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be accel-
erated. arXiv preprint arXiv:2010.00091, 2020.

[72] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better,
and practically faster error feedback. arXiv preprint arXiv:2106.05203, 2021.

[73] Alexander Rogozin, Pavel Dvurechensky, Darina Dvinkikh, Alexander Beznosikov, Dmitry
Kovalev, and Alexander Gasnikov. Decentralized distributed optimization for saddle point
problems. arXiv preprint arXiv:2102.07758, 2021.

[74] Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Mosh-
pit sgd: Communication-efficient decentralized training on heterogeneous unreliable devices,
2021.

[75] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.
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A Table with summary our results

Table 1: Summary of our iteration complexity results for finding an ε-solution for problem (3) in
the deterministic (i.e., (4)) with only device compression, deterministic with bidirectional (device-
server) compression, stochastic (i.e., (4)+(44)) and federated learning/partial participation (i.e.,
(4)+(54)) setups. In the strongly-monotone (strongly convex - strongly convex) case, convergence
is measured by the distance to the solution. In the monotone(convex-concave) case, convergence
is measured in terms of the gap function (11). In non-monotone (non-convex-non-concave) case
convergence is measured in terms of the norm of the operator. Notation: µ = constant of strong
monotonicity of the operator F , L = maximum of local Lipschitz constants Lm, R = diameter (in
Euclidean norm) of the optimization set, R0 = initial distance to the solution, q = the variance pa-
rameter associated with an unbiased compressor (see (1)); δ = the variance parameter associated
with a contractive compressor (see (2)); β, β = expected density (the number of times the operator
compresses information); M = the number of parallel clients/nodes; r = the size of the local dataset
(see (44)); b = the number of clients in Partial Participation (FL) setup. We have results with bidi-
rectional compression also in stochastic and federated setups, but to simplify the bounds, we present
bidirectional results only in the deterministic setup.
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Õ
(
β + r + max{

√
β;
√
r}δ · Lµ

)
O
(
max{

√
β;
√
r}δ · LR2

ε

)
O
(
max{β; r}δ2 · L2R2

ε2

)
Alg 6 Cor F.5

FL
(P

P)
(3

)+
(4

)+
(5

4) PP-MASHA1
Õ
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B Optimality of MASHA1 and MASHA2

In this section, we discuss why the MASHA1 and MASHA2 convergence estimates cannot be im-
proved (it means that the methods are optimal). We emphasise that this is only a hypothesis based
on some analogies. As irrefutable proof we could use lower bounds, but there are no such lower
bounds even for minimization problems (despite their wide research in the community). The fol-
lowing considerations are also outlined in Table 2.

We consider the strongly convex/strongly monotone case. For the deterministic minimization prob-
lem, lower and optimal upper bounds are given in [64]. These bounds are Õ

(√
L/µ
)

. Meanwhile,
methods with unbiased (ADIANA [48]) and contractive (ECLK [71]) compression, but without
compression, are also optimal for the deterministic minimization problem. Iteration complexity of
ADIANA with compression is Õ

(√
qβ/M + β ·

√
L/µ
)

. For ECLK complexities in iterations is

Õ
(
δ
√
β ·
√
L/µ
)

. Note the interesting feature that the compression dependent multiplier can be
improved, but only with a loss in the L/µ-multiplier. For example, DIANA [59] (unbiased) has
Õ ((q/M + 1) · L/µ) iteration complexity, or EF [79] (contractive) has Õ (δ · L/µ) iteration complex-
ity. MASHA1 and MASHA2 without compressions are optimal for Lipschitz continuous strongly
monotone VIs [89] and have a deterministic bound Õ (L/µ). MASHA1 and MASHA2 have the same
compression dependency multipliers as ADIANA and ECLK. This suggests that the dependence of
MASHA1 and MASHA2 on compression properties cannot be improved for variational inequalities
without loss in L/µ. In Section H, we prove the convergence of CEG with unbiased compression,
which achieves Õ

(
(q/M + 1) · L2

/µ2
)

iteration complexity.

As another argument, let us give an example of the situation with the VR approach (finite sum
problem) for minimization problems and for VIs. For minimization, the lower bounds in the smooth
strongly convex case are Õ

(
r +

√
rL/µ

)
[86]. The optimal method is [4]. SVRG [40] has estimates

Õ (r + L/µ) (better in r, worse in L/µ). What about variational inequalities? The lower bounds in
the Lipschitz continuous strongly convex case are Õ (r +

√
rL/µ) [30]. The optimal methods are

[1]. Methods from [67] have estimates Õ
(
r + L2

/µ2
)
. Following this logic, estimates for ADIANA

and ECLK are transformed into estimates for MASHA1 and MASHA2.

The same situation with estimates is in the convex/monotone case.

Table 2: Summary of iteration complexity results for minimization problems and variational in-
equalities in different setups: deterministic, stochastic, distributed with biased and contractive com-
pressions. Notation: µ = constant of strong convexity/monotonicity, L = Lipschitz constant of the
gradient/operator, q = the variance parameter associated with an unbiased compressor; δ = the vari-
ance parameter associated with a contractive compressor; β = expected density (the number of times
the operator compresses information); M = the number of parallel clients/nodes; r = the size of the
local dataset.
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C Basic Facts

Upper bound for a squared sum. For arbitrary integer n ≥ 1 and arbitrary set of vectors a1, . . . , an
we have (

n∑
i=1

ai

)2

≤ m
n∑
i=1

a2i (10)

D MASHA1: Handling Unbiased Compressors

In this section, we provide additional information about Algorithm 1 – MASHA1. We give a full
form of MASHA1 – see Algorithm 3.

Algorithm 3 (Algorithm 1) MASHA1

1: Parameters: Stepsize γ > 0, parameter τ , number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z .
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: for each device m in parallel do
6: z̄k = τzk + (1− τ)wk

7: zk+1/2 = z̄k − γF (wk)
8: Compute Fm(zk+1/2) & send Qdev

m (Fm(zk+1/2)− Fm(wk)) to server
9: end for

10: for server do

11: Compute Qserv
[

1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
& send to devices

12: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
13: end for
14: for each device m in parallel do

15: zk+1 = zk+1/2 − γQserv
[

1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
16: if bk = 1 then
17: wk+1 = zk

18: Compute Fm(wk+1) & send it to server; and get F (wk+1) as a response from server
19: else
20: wk+1 = wk

21: end if
22: end for
23: end for

The following theorem gives the convergence of MASHA1.

Theorem D.1 (Theorem 4.1) Let distributed variational inequality (3) + (4) is solved by Algorithm
3 with unbiased compressor operators (1): on server with qserv parameter, on devices with {qdev

m }.
Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[√

1−τ
2Cq

; 1−τ
2µ

]
(where Cq =

√
qserv

M2

∑M
m=1(qdev

m L2
m + (M − 1)L̃2)):

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
1−τ

2Cq+4L̃
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;
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• in non-monotone case with γ ≤
√
1−τ
2Cq

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

For the monotone case, we use the gap function as convergence criterion:

Gap(z) := sup
u∈C

[〈F (u), z − u〉] . (11)

Here we do not take the maximum over the entire set Rd (as in the classical version), but over C –
a compact subset of Rd. Thus, we can also consider unbounded sets Rd. This is permissible, since
such a version of the criterion is valid if the solution z∗ lies in C; for details see the work of [63].

Let us move on to the choice of τ .

Let us start with the only devices compression, i.e. it is assumed that server-side compression is
not required, because broadcasts from the server are cheap. As noted in the main part of the paper,
then we consider only sendings from devices to the server. Note that the following expression∑M
m=1(qdev

m L2
m + (M − 1)L̃2) occurs in Cq . It means that we can choose qdev

m depending on Lm.
Let us define Lmin = minm Lm and ql = q for l = arg minm Lm. If one put qm = qLmin/Lm,

then we get Cq =
√

1
M (qL2

min + (M − 1)L̃2).

At each iteration, the device sends to the server O
(

1
M

∑M
m=1

1
βm

+ (1− τ)
)

bits – each time in-
formation compressed by βm (for devicem) times and with probability 1−τ the full package. Then
the optimal choice τ is 1− 1

β with 1
β = 1

M

∑M
m=1

1
βm

.

Corollary D.2 (Corollary 4.2) Let distributed variational inequality (3) + (4) is solved by Algo-
rithm 3 without compression on server (qserv = 1) and with unbiased compressor operators (1) on
devices with {qdev

m } (as described in the previous paragraphs). Let Assumption 3.4 and one case of
Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min

[
1
2 ·
(√

qβL2
min

M + βL̃2

)−1
; 1
2µβ

]
:

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
6 ·
(√

qβL2
min

M + βL̃2

)−1
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
2 ·
(√

qβL2
min

M + βL̃2

)−1
:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

In the line 1 of Table 1 we put complexities to achieve ε-solution. For simplicity, we put Qdev
m = Q

with qdev
m = q and βdev

m = β, also Lm = L̃ = L.

Next, we add server compression. Now the transfer from the server is important. Here and after, for
simplicity, we put Qserv = Qdev

m = Q with qdev
m = q and βdev

m = β, also Lm = L̃ = L. One can also
analyze the case with different qm and Lm, as is done in Corollary D.2.

At each iteration, the device is sent to the server and the server to devicesO
(

1
β + 1− τ

)
bits. Then

the optimal choice τ is still 1− 1
β .
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Corollary D.3 Let distributed variational inequality (3) + (4) is solved by Algorithm 3 with unbi-
ased compressor operators (1): on server with qserv = q parameter, on devices with {qdev

m = q}. Let
Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min

[
1
2L ·

(√
q2β
M + β

)−1
; 1
2µβ

]
:

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
6L ·

(√
q2β
M + β

)−1
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
2L ·

(√
q2β
M + β

)−1
:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

In the line 3 of Table 1 we put complexities to achieve ε-solution.

D.1 Proof of the convergence of MASHA1

Proof of Theorem D.1: We start from the following equalities for any z:

‖zk+1 − z‖2 = ‖zk+1/2 − z‖2 + 2〈zk+1 − zk+1/2, zk+1/2 − z〉+ ‖zk+1 − zk+1/2‖2,

‖zk+1/2 − z‖2 = ‖zk − z‖2 + 2〈zk+1/2 − zk, zk+1/2 − z〉 − ‖zk+1/2 − zk‖2.

Then we sum two inequalities:

‖zk+1 − z‖2 = ‖zk − z‖2 + 2〈zk+1 − zk, zk+1/2 − z〉
+ ‖zk+1 − zk+1/2‖2 − ‖zk+1/2 − zk‖2. (12)

Using lines 6, 7, 15, we get

‖zk+1 − z‖2 = ‖zk − z‖2

− 2〈γQserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ γF (wk), zk+1/2 − z〉

+ 2〈τzk + (1− τ)wk − zk, zk+1/2 − z〉
+ ‖zk+1 − zk+1/2‖2 − ‖zk+1/2 − zk‖2

= ‖zk − z‖2

− 2〈γQserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ γF (wk), zk+1/2 − z〉

+ 2(1− τ)〈wk − zk, zk+1/2 − z〉
+ ‖zk+1 − zk+1/2‖2 − ‖zk+1/2 − zk‖2.

The equality 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2 gives

‖zk+1 − z‖2 = ‖zk − z‖2
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− 2〈γQserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ γF (wk), zk+1/2 − z〉

+ 2(1− τ)〈wk − zk+1/2, zk+1/2 − z〉+ 2(1− τ)〈zk+1/2 − zk, zk+1/2 − z〉
+ ‖zk+1 − zk+1/2‖2 − ‖zk+1/2 − zk‖2

= ‖zk − z‖2

− 2〈γQserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ γF (wk), zk+1/2 − z〉

+ (1− τ)‖wk − z‖2 − (1− τ)‖wk − zk+1/2‖2 − (1− τ)‖zk+1/2 − z‖2

+ (1− τ)‖zk+1/2 − zk‖2 + (1− τ)‖zk+1/2 − z‖2 − (1− τ)‖zk − z‖2

+ ‖zk+1 − zk+1/2‖2 − ‖zk+1/2 − zk‖2

= τ‖zk − z‖2 + (1− τ)‖wk − z‖2

− 2〈γQserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ γF (wk), zk+1/2 − z〉

+ ‖zk+1 − zk+1/2‖2 − (1− τ)‖wk − zk+1/2‖2 − τ‖zk+1/2 − zk‖2. (13)

We now consider the three cases of monotonicity separately.

D.1.1 Strongly-monotone case

Let substitute z = z∗, take full mathematical expectation and get

E‖zk+1 − z∗‖2 = τE‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk), zk+1/2 − z∗〉

]
+ E‖zk+1 − zk+1/2‖2 − (1− τ)E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.

With unbiasedness (1) we have

E‖zk+1 − z∗‖2 = τE‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈EQserv,Qdev

[
Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)

]
, zk+1/2 − z∗〉

]
+ E‖zk+1 − zk+1/2‖2 − (1− τ)E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2

= τE‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2), zk+1/2 − z∗〉

]
+ E‖zk+1 − zk+1/2‖2 − (1− τ)E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.

(14)

Let us work with E
[
‖zk+1 − zk+1/2‖2

]
, with (1) we get

E
[
‖zk+1 − zk+1/2‖2

]
= γ2 · E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]∥∥∥∥∥
2


≤ γ2 · q
serv

M2
E

∥∥∥∥∥
M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

∥∥∥∥∥
2


= γ2 · q
serv

M2

M∑
m=1

E
[∥∥∥Qdev

m (Fm(zk+1/2)− Fm(wk))
∥∥∥2]
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+ γ2 · q
serv

M2

∑
m 6=l

E
[
〈Qdev

m (Fm(zk+1/2)− Fm(wk));Qdev
l (Fl(z

k+1/2)− Fl(wk))〉
]

Next we apply (1) and Assumption 3.4 for the first term and independence and unbiasedness of Q
for the second term:

E
[
‖zk+1 − zk+1/2‖2

]
≤ γ2 · q

serv

M2

M∑
m=1

qdev
m L2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

M2

∑
m 6=l

E
[
〈Fm(zk+1/2)− Fm(wk);Fl(z

k+1/2)− Fl(wk)〉
]

≤ γ2 · q
serv

M2

M∑
m=1

qdev
m L2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2M2

∑
m 6=l

E
[
‖Fm(zk+1/2)− Fm(wk)‖2 + ‖Fl(zk+1/2)− Fl(wk)‖2

]

≤ γ2 · q
serv

M2

M∑
m=1

qdev
m L2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2M2

∑
m 6=l

E
[
L2
m‖zk+1/2 − wk‖2 + L2

l ‖zk+1/2 − wk‖2
]

= γ2 · q
serv

M2

M∑
m=1

qdev
m L2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv(M − 1)

M
L̃2E

[
‖zk+1/2 − wk‖2

]
= γ2 · q

serv

M2
E
[
‖zk+1/2 − wk‖2

]
·
M∑
m=1

qdev
m L2

m + (M − 1)L̃2 (15)

Let us define new constant Cq =
√

qserv

M2

∑M
m=1(qdev

m L2
m + (M − 1)L̃2) and then connect (14) and

(15):

E‖zk+1 − z∗‖2 ≤ τE‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2), zk+1/2 − z∗〉

]
− (1− τ − γ2C2

q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2. (16)

Then we use choice of wk+1 (lines 12, 17, 20) and get

E‖wk+1 − z∗‖2 = E
[
Ewk+1‖wk+1 − z∗‖2

]
= τE

∥∥wk − z∗∥∥2 + (1− τ)E‖zk − z∗‖2, (17)

Summing (16) and (17), we obtain

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2), zk+1/2 − z∗〉

]
− (1− τ − γ2C2

q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2. (18)

The property of the solution (3) gives

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2)− F (z∗), zk+1/2 − z∗〉

]
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− (1− τ − γ2C2
q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.

And by Assumption 3.5 in strong monotone case we have

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − 2γµE‖zk+1/2 − z∗‖2

− (1− τ − γ2C2
q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.

With −‖a‖2 ≤ − 1
2‖a+ b‖2 + ‖b‖2 we deduce:

E(‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2)

≤
(

1− µγ

2

)
E
(
‖zk − z∗‖2 + ‖wk − z∗‖2

)
− (1− τ − µγ − γ2C2

q )E‖wk − zk+1/2‖2 − (τ − µγ)E‖zk+1/2 − zk‖2.
(19)

It remains only to choose γ ≤ min
{√

1−τ
2Cq

; 1−τ
2µ

}
and get

E(‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2) ≤
(

1− µγ

2

)
· E
(
‖zk − z∗‖2 + ‖wk − z∗‖2

)
.

Running the recursion completes the proof.

�

D.1.2 Monotone case

We start from (13):

2γ〈F (zk+1/2), zk+1/2 − z〉
= τ‖zk − z‖2 − ‖zk+1 − z‖2 + (1− τ)‖wk − z‖2

− 2γ〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

+ ‖zk+1 − zk+1/2‖2 − (1− τ)‖wk − zk+1/2‖2 − τ‖zk+1/2 − zk‖2.

Adding both sides ‖wk+1 − z‖2 and making small rearrangement we have

2γ〈F (zk+1/2), zk+1/2 − z〉
≤
[
‖zk − z‖2 + ‖wk − z‖2

]
−
[
‖zk+1 − z‖2 + ‖wk+1 − z‖2

]
− τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

− 2γ〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

− τ‖zk+1/2 − zk‖2 − (1− τ)‖zk+1/2 − wk‖2 + ‖zk+1 − zk+1/2‖2.

Then we sum up over k = 0, . . . ,K − 1, take maximum of both sides over z ∈ C, after take
expectation and get

2γ·E

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
‖z0 − z‖2 + ‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

−
K−1∑
k=0

[
τE
[
‖zk+1/2 − zk‖2

]
+ (1− τ)E

[
‖zk+1/2 − wk‖2

]
− E

[
‖zk+1 − zk+1/2‖2

]]
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+ 2γE

[
max
z∈C

K−1∑
k=0

[
〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2), z − zk+1/2〉

]]
.

Applying (15) for E
[
‖zk+1 − zk+1/2

]
, we get

2γ·E

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
‖z0 − z‖2 + ‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

−
K−1∑
k=0

[
τE
[
‖zk+1/2 − zk‖2

]
+ (1− τ − γ2C2

q )E
[
‖zk+1/2 − wk‖2

]]
+ 2γE

[
max
z∈C

K−1∑
k=0

[
〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2), z − zk+1/2〉

]]
.

With γ ≤
√
1−τ
2Cq

we get

2γ·E

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
‖z0 − z‖2 + ‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

+ 2γE

[
max
z∈C

K−1∑
k=0

[
〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2), z − zk+1/2〉

]]
.

(20)

To finish the proof we need to estimate terms in two last lines. We begin with

E
[
max
z∈C

K−1∑
k=0

〈F (zk+1/2)−Qserv
[

1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk), zk+1/2 − z〉

]
.

Let define sequence v: v0 = z0, vk+1 = vk − γδk with δk = F (zk+1/2) −

Qserv
[

1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk). Then we have

K−1∑
k=0

〈δk, zk+1/2 − u〉 =

K−1∑
k=0

〈δk, zk+1/2 − vk〉+

K−1∑
k=0

〈δk, vk − z〉. (21)

By the definition of vk+1, we have

〈γδk, vk − z〉 = 〈γδk, vk − vk+1〉+ 〈vk+1 − vk, z − vk+1〉

= 〈γδk, vk − vk+1〉+
1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
γ2

2
‖δk‖2 +

1

2
‖vk − vk+1‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
γ2

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2.

With (21) it gives
K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
1

γ

K−1∑
k=0

(
γ2

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2

)

≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
γ

2

K−1∑
k=0

‖δk‖2 +
1

2γ
‖v0 − z‖2.
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We take the maximum on z and get

max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
1

2γ
max
z∈C
‖v0 − z‖2

+
γ

2

K−1∑
k=0

‖F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2.

Taking the full expectation, we get

E

[
max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉

]
≤ E

[
K−1∑
k=0

〈δk, zk+1/2 − vk〉

]
+

1

2γ
max
z∈C
‖v0 − z‖2

+
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2

]

= E

[
K−1∑
k=0

〈E

[
F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk) | zk+1/2 − vk

]
, zk+1/2 − vk〉

]

+
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2

]

+
1

2γ
max
z∈C
‖v0 − z‖2

=
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2

]

+
1

2γ
max
z∈C
‖v0 − z‖2. (22)

Now let us estimate E
[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk + z‖2 + ‖wk+1 − z‖2

]]
, for this

we note that

E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

= E

[
max
z∈C

K−1∑
k=0

[
−2〈(1− τ)zk + τwk − wk+1, z〉 − (1− τ)‖zk‖2 − τ‖wk‖2 + ‖wk+1‖2

]]

= E

[
max
z∈C

K−1∑
k=0

[
−2〈(1− τ)zk + τwk − wk+1, z〉

]]

+ E

[
K−1∑
k=0

−(1− τ)‖zk‖2 − τ‖wk‖2 + ‖wk+1‖2
]
.

One can note that by definition wk+1: E
[
(1− τ)‖zk‖2 + τ‖wk‖2 − ‖wk+1‖2

]
= 0, then

E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

= 2E

[
max
z∈C

K−1∑
k=0

〈(1− τ)zk + τwk − wk+1,−z〉

]

= 2E

[
max
z∈C

K−1∑
k=0

〈(1− τ)zk + τwk − wk+1, z〉

]
.
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Further, one can carry out the reasoning similarly to chain for (22):

E

[
max
z∈C

K−1∑
k=0

[
τ‖wk − z‖2 + (1− τ)‖zk − z‖2 − ‖wk+1 − z‖2

]]

≤
K−1∑
k=0

E
[
‖(1− τ)zk+1 + τwk − wk+1‖2

]
+ max

z∈C
‖v0 − z‖2

=

K−1∑
k=0

E
[
‖Ewk+1 [wk+1]− wk+1‖2

]
+ max

z∈C
‖v0 − z‖2

=

K−1∑
k=0

E
[
−‖Ewk+1 [wk+1]‖2 + Ewk+1‖wk+1‖2

]
+ max

z∈C
‖v0 − z‖2

=

K−1∑
k=0

E
[
−‖(1− τ)zk + τwk‖2 + (1− τ)‖zk‖2 + τ‖wk‖2

]
+ max

z∈C
‖v0 − z‖2

=

K−1∑
k=0

τ(1− τ)E
[
‖zk − wk‖2

]
+ max

z∈C
‖v0 − z‖2. (23)

Substituting (22) and (23) in (20) we get

2γE

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
3‖z0 − z‖2 + ‖w0 − z‖2

]
+

K−1∑
k=0

τ(1− τ)E
[
‖zk − wk‖2

]
+ γ2E

[
‖F (zk+1/2)−Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2

]
. (24)

Next we work separately with E
[
‖F (zk+1/2)−Qserv

[
1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
− F (wk)‖2

]
:

E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2)

∥∥∥∥∥
2


= E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]∥∥∥∥∥
2
+ E

[
‖F (zk+1/2)− F (wk)‖2

]

+ E

[
〈Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
;F (zk+1/2)− F (wk)〉

]
.

With (15) we get

E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2)

∥∥∥∥∥
2


≤ C2
qE
[∥∥∥zk+1/2 − wk

∥∥∥2]+ E
[
‖F (zk+1/2)− F (wk)‖2

]
+ E

[
〈 1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk));F (zk+1/2)− F (wk)〉

]

= C2
qE
[∥∥∥zk+1/2 − wk

∥∥∥2]+ 2E
[
‖F (zk+1/2)− F (wk)‖2

]
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≤ C2
qE
[∥∥∥zk+1/2 − wk

∥∥∥2]+
2

M

M∑
m=1

L2
m · E

[∥∥∥zk+1/2 − wk
∥∥∥2] . (25)

With Assumption 3.4 and notation L̃2 = 1
M

M∑
m=1

L2
m from (24) and (25) we have

2γE

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
3‖z0 − z‖2 + ‖w0 − z‖2

]
+

K−1∑
k=0

[
τ(1− τ)E

[
‖zk − wk‖2

]
+ γ2(C2

q + 2L̃2)E
[
‖zk+1/2 − wk‖2

]]
.

With γ ≤
√
1−τ

2
√
C2
q+2L̃2

we deduce to

2γ·E

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
3‖z0 − z‖2 + ‖w0 − z‖2

]
+ (1− τ)

K−1∑
k=0

[
E
[
‖zk+1 − wk‖2

]
+ E

[
‖zk+1/2 − wk‖2

]]
≤ max

z∈C

[
3‖z0 − z‖2 + ‖w0 − z‖2

]
+ 3(1− τ)

K−1∑
k=0

[
E
[
‖zk − zk+1/2‖2

]
+ E

[
‖zk+1/2 − wk‖2

]]
.

Let us go back to (19) with µ = 0, γ ≤
√
1−τ
2Cq

and get that

E(‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2)

≤ E
(
‖zk − z∗‖2 + ‖wk − z∗‖2

)
− 1− τ

2

(
E‖wk − zk+1/2‖2 + E‖zk+1/2 − zk‖2

)
.

Hence substituting this we go to the end of the proof:

2γ·E

[
max
z∈C

K−1∑
k=0

〈F (zk+1/2), zk+1/2 − z〉

]
≤ max

z∈C

[
3‖z0 − z‖2 + ‖w0 − z‖2

]
+ 6

K−1∑
k=0

[
E
(
‖zk − z∗‖2 + ‖wk − z∗‖2

)
− E(‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2)

]
≤ max

z∈C

[
3‖z0 − u‖2 + ‖w0 − z‖2

]
+ 6

(
‖z0 − z∗‖2 + ‖w0 − z∗‖2

)
≤ max

z∈C

[
4‖z0 − z‖2

]
+ 12‖z0 − z∗‖2.

It remains to slightly correct the convergence criterion by monotonicity of F :

E

[
max
z∈C

K−1∑
k=0

[
〈F (zk+1/2), zk+1/2 − z〉

]]

≥ E

[
max
z∈C

K−1∑
k=0

[
〈F (u), zk+1/2 − u〉

]]
.

where we additionally use z̄K = 1
K

K−1∑
k=0

zk+1/2. This brings us to

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
.

�
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D.1.3 Non-monotone case

We start from (18)
E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2), zk+1/2 − z∗〉

]
− (1− τ − γ2C2

q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.
And then use non-monotone case of Assumption 3.5:

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2

− (1− τ − γ2C2
q )E‖wk − zk+1/2‖2 − τE‖zk+1/2 − zk‖2.

With τ ≥ 1
2 we get

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − (1− τ − γ2C2
q )E‖wk − zk+1/2‖2

− 1

4
E‖zk+1/2 − zk‖2 − 1

4
E‖zk+1/2 − zk‖2

= E‖zk − z∗‖2 + E‖wk − z∗‖2 − (1− τ − γ2C2
q )E‖wk − zk+1/2‖2

− 1

4
E‖zk+1/2 − zk‖2 − 1

4
E‖(1− τ)(wk − zk)− γF (wk)‖2.

Using −‖a‖2 ≤ − 1
2‖a+ b‖2 + ‖b‖2 gives

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − (1− τ − γ2C2
q )E‖wk − zk+1/2‖2

− 1

4
E‖zk+1/2 − zk‖2 − γ2

8
E‖F (wk)‖2 +

(1− τ)2

4
E‖wk − zk‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − (1− τ − γ2C2
q )E‖wk − zk+1/2‖2

− 1

4
E‖zk+1/2 − zk‖2 − γ2

8
E‖F (wk)‖2

+
(1− τ)2

2
E‖wk − zk+1/2‖2 +

(1− τ)2

2
E‖zk+1/2 − zk‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − (1− τ − γ2C2
q )E‖wk − zk+1/2‖2

− 1

4
E‖zk+1/2 − zk‖2 − γ2

8
E‖F (wk)‖2

+
1− τ

4
E‖wk − zk+1/2‖2 +

1

8
E‖zk+1/2 − zk‖2

≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 −
(

1− τ
2
− γ2C2

q

)
E‖wk − zk+1/2‖2

− γ2

8
E‖F (wk)‖2.

Choice of γ ≤
√
1−τ
2Cq

gives

E‖zk+1 − z∗‖2 + E‖wk+1 − z∗‖2 ≤ E‖zk − z∗‖2 + E‖wk − z∗‖2 − γ2

8
E‖F (wk)‖2.

Summing over all k from 0 to K − 1 gives

1

K

K−1∑
k=0

E‖F (wk)‖2 ≤ 8E(‖z0 − z∗‖2 + ‖w0 − z∗‖2)

γ2K
.

�
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E MASHA2: Handling Contractive Compressors

In this section, we provide additional information about Algorithm 2 – MASHA2. We give a full
form of MASHA2 – see Algorithm 4.

Similarly with MASHA 1, this Algorithm, locally each device stores three vectors: a current point
zk, a reference point wk and a values F (wk) at this point. At each iteration, performs compressed
communications from devices to the server (line 8) and from the server to devices (line 12). There is
also one bit bk forwarding from the server (line 14). Additionally, communication can occur when
bk is equal to 1 (with a small probability of 1 − τ ) – in this case, each device m updates point
wk+1 = zk, computes Fm at this point, sends Fm(wk+1) to the server without compression, the
server calculates F (wk+1) and sends it to devices also without compression. MASHA 2, similarly
with MASHA 1, uses communications without compression, but very rarely (about once every 1

1−τ
iterations). Because, when bk = 0, wk+1 = wk and all devices have locally value F (wk+1) =
F (wk) obtained sometime in previous communications (when b = 1).

Algorithm 4 MASHA2

1: Parameters: Stepsize γ > 0, parameter τ , number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z , e0m = 0, e0 = 0.
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: for each device m in parallel do
6: z̄k = τzk + (1− τ)wk

7: zk+1/2 = z̄k − γF (wk)
8: Compute Fm(zk+1/2) and send to server Cdev

m (γFm(zk+1/2)− γFm(wk) + ekm)
9: ek+1

m = ekm + γFm(zk+1/2)− γFm(wk)− Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)

10: end for
11: for server do

12: Compute gk = Cserv
[

1
M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm) + ek

]
& send to

devices

13: ek+1 = ek + 1
M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)− gk

14: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
15: end for
16: for each device m in parallel do

17: zk+1 = zk+1/2 − Cserv
[

1
M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm) + ek

]
18: if bk = 1 then
19: wk+1 = zk

20: Compute Fm(wk+1) and it send to server; and get F (wk+1)
21: else
22: wk+1 = wk

23: end if
24: end for
25: end for

Let us introduce the useful notation:

ẑk = zk−ek− 1

M

M∑
m=1

ekm, ẑk+1/2 = zk+1/2−ek− 1

M

M∑
m=1

ekm, ŵk = wk−ek− 1

M

M∑
m=1

ekm.

It is easy to verify that such sequences have a very useful property:

ẑk+1 = zk+1 − ek+1 − 1

M

M∑
m=1

ek+1
m

32



= zk+1/2 − Cserv

[
1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm) + ek

]

− ek − 1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)

+ Cserv

[
1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm) + ek

]

− 1

M

M∑
m=1

[
ekm + γ · Fm(zk+1/2)− γ · Fm(wk)− Cdev

m (γ · Fm(zk+1/2)− γ · Fm(wk) + ekm)
]

= zk+1/2 − ek − 1

M

M∑
m=1

ekm − γ · (F (zk+1/2)− F (wk))

= ẑk+1/2 − γ · (F (zk+1/2)− F (wk)). (26)

The following theorem gives the convergence of MASHA2.

Theorem E.1 Let distributed variational inequality (3) + (4) is solved by Algorithm 4 with τ ≥ 3
4

and biased compressor operators (2): on server with δserv parameter, on devices with δdev. Let
Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[
1−τ
8µ ;

√
1−τ

2L+165δservδdevL̃

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
1−τ

2L+165δservδdevL̃
:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤
√
1−τ

2L+165δservδdevL̃
:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 32E‖z0 − z∗‖2

γ2K
.

Let us start with the only devices compression. For simplicity, we put L̃ = L. We use the same
reasoning as in Section D. At each iteration, the device sends to the server O

(
1
β + 1− τ

)
bits.

Then the optimal choice τ is 1− 1
β .

Corollary E.2 Let distributed variational inequality (3) + (4) is solved by Algorithm 4 without
compression on server (δserv = 1) and with biased compressor operators (2) on devices with δdev =
δ. Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates
holds

• in strongly-monotone case with γ ≤ min
[

1
8µβ ; 1

167δ
√
βL

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
167δ
√
βL

:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
;
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• in non-monotone case with γ ≤ 1
167δ
√
βL

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 32E‖z0 − z∗‖2

γ2K
.

In the line 2 of Table 1 we put complexities to achieve ε-solution.

Next, we add server compression. Now the transfer from the server is important. For simplicity, we
put Qserv = Qdev

m = Q with qdev
m = q and βdev

m = β, also Lm = L̃ = L. At each iteration, the device
is sent to the server and the server to devices O

(
1
β + 1− τ

)
bits. Then the optimal choice τ is still

1− 1
β .

Corollary E.3 Let distributed variational inequality (3) + (4) is solved by Algorithm 4 with τ ≥ 3
4

and biased compressor operators (2): on server with δserv = δ parameter, on devices with δdev = δ.
Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[

1
8µβ ; 1

167δ2
√
βL

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
167δ2

√
βL

:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
167δ2

√
βL

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 32E‖z0 − z∗‖2

γ2K
.

In the line 4 of Table 1 we put complexities to achieve ε-solution.

E.1 Proof of the convergence of MASHA2

Proof of Theorem E.1: We start from the following equalities for any z:

‖ẑk+1 − z‖2 = ‖zk+1/2 − z‖2 + 2〈ẑk+1 − zk+1/2, zk+1/2 − z〉+ ‖ẑk+1 − zk+1/2‖2,

‖zk+1/2 − z‖2 = ‖ẑk − z‖2 + 2〈zk+1/2 − ẑk, zk+1/2 − z〉 − ‖zk+1/2 − ẑk‖2.

Summing up, we obtain

‖ẑk+1 − z‖2 = ‖ẑk − z‖2 + 2〈ẑk+1 − ẑk, zk+1/2 − z〉
+ ‖ẑk+1 − zk+1/2‖2 − ‖zk+1/2 − ẑk‖2. (27)

Using that (10) and (26), we get

‖ẑk+1 − zk+1/2‖2 ≤ 2‖ẑk+1 − ẑk+1/2‖2 + 2‖ẑk+1/2 − zk+1/2‖2

= 2γ2 · ‖F (zk+1/2)− F (wk)‖2 + 2

∥∥∥∥∥ek − 1

M

M∑
m=1

ekm

∥∥∥∥∥
2

≤ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
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≤ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2 . (28)

Additionally, here we use that F is L-Lipschitz (Assumption 3.4). Next, (27) with (28) gives

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 + 2〈ẑk+1 − ẑk, zk+1/2 − z〉

+ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
− ‖zk+1/2 − ẑk‖2. (29)

Now we consider the inner product 〈ẑk+1 − ẑk, zk+1/2 − z〉. Using that

ẑk+1 − ẑk = ẑk+1 − ẑk+1/2 + ẑk+1/2 − ẑk = −γ · (F (zk+1/2)− F (wk)) + zk+1/2 − zk

= −γ · F (zk+1/2) + z̄k − zk, (30)

and using the definition of z̄k (line 6), we get

2〈ẑk+1 − ẑk, zk+1/2 − z〉 = 2〈−γ · F (zk+1/2) + z̄k − zk, zk+1/2 − z〉
= −2γ〈F (zk+1/2), zk+1/2 − z〉+ 2〈z̄k − zk, zk+1/2 − z〉
= −2γ〈F (zk+1/2), zk+1/2 − z〉+ 2(1− τ)〈wk − zk, zk+1/2 − z〉.

Substituting in (29), we obtain

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 − 2γ〈F (zk+1/2), zk+1/2 − z〉+ 2(1− τ)〈wk − zk, zk+1/2 − z〉

+ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
− ‖zk+1/2 − ẑk‖2.

The equality 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2 gives

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 − 2γ〈F (zk+1/2), zk+1/2 − z〉
+ 2(1− τ)〈wk − zk+1/2, zk+1/2 − z〉
+ 2(1− τ)〈zk+1/2 − zk, zk+1/2 − z〉

+ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2 − ‖zk+1/2 − ẑk‖2

= ‖ẑk − z‖2 − 2γ〈F (zk+1/2), zk+1/2 − z〉
+ (1− τ)‖wk − z‖2 − (1− τ)‖wk − zk+1/2‖2 − (1− τ)‖zk+1/2 − z‖2

+ (1− τ)‖zk+1/2 − zk‖2 + (1− τ)‖zk+1/2 − z‖2 − (1− τ)‖zk − z‖2

+ 2γ2L2 · ‖zk+1/2 − wk‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2 − ‖zk+1/2 − ẑk‖2

= ‖ẑk − z‖2 − (1− τ)‖zk − z∗‖2 + (1− τ)‖wk − z‖2

− 2γ〈F (zk+1/2), zk+1/2 − z〉 − (1− τ)‖wk − zk+1/2‖2

+ 2γ2L2‖wk − zk+1/2‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
− ‖zk+1/2 − ẑk‖2 + (1− τ)‖zk+1/2 − zk‖2

≤ ‖ẑk − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− 2γ〈F (zk+1/2), zk+1/2 − z∗〉 − (1− τ)‖wk − zk+1/2‖2
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+ 2γ2L2‖wk − zk+1/2‖2 + 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
− 1

2
‖zk+1/2 − zk‖2 + ‖zk − ẑk‖2 + (1− τ)‖zk+1/2 − zk‖2.

With definition of ẑk we get

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− 2γ〈F (zk+1/2), zk+1/2 − z〉 − (1− τ − 2γ2L2)‖wk − zk+1/2‖2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2. (31)

Next we will consider three cases of monotonicity separately.

E.1.1 Strongly-monotone

We continue with (31) by putting z = z∗ and using optimality condition: 〈F (z∗), zk+1/2−z∗〉 ≤ 0.

‖ẑk+1 − z∗‖2 ≤ ‖ẑk − z∗‖2 − (1− τ)‖zk − z∗‖2 + (1− τ)‖wk − z∗‖2

− 2γ〈F (zk+1/2)− F (z∗), zk+1/2 − z∗〉 − (1− τ − 2γ2L2)‖wk − zk+1/2‖2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2.

Taking a full mathematical expectation, we obtain

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2)− F (z∗), zk+1/2 − z∗〉

]
− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2. (32)

Next, we take into account strong-monotonicity (Assumption 3.5 (SM)):

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γµE‖zk+1/2 − z∗‖2 − (1− τ − 2γ2L2)E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2.

Taking a full mathematical expectation, we obtain

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γµE‖zk+1/2 − z∗‖2 − (1− τ − 2γ2L2)E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2.

Then we use choice of wk+1 (lines 14, 19, 22) and get

E‖wk+1 − z∗‖2 = E
[
Ewk+1‖wk+1 − z∗‖2

]
= τE

∥∥wk − z∗∥∥2 + (1− τ)E‖zk − z∗‖2, (33)

Summing up the two previous expressions gives

E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖ẑk − z∗‖2 + E‖wk − z∗‖2 − 2γµE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 −
(
τ − 1

2

)
E‖zk+1/2 − zk‖2
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+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 .

Then we can weight previous expression by pk and get

K−1∑
k=0

pkE‖ẑk+1 − z∗‖2 +

K−1∑
k=0

pkE‖wk+1 − z∗‖2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ 6 ·
K−1∑
k=0

pkE‖ek‖2 + 6 ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 . (34)

Next we will estimate "error" term:

E‖ek+1‖2 = E

∥∥∥∥∥ek +
1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)

− Cserv

[
1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm) + ek

]∥∥∥∥∥
2

≤
(

1− 1

δserv

)
E

∥∥∥∥∥ek +
1

M

M∑
m=1

Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)

∥∥∥∥∥
2

≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2

+

(
1 +

1

c

)(
1− 1

δserv

)
1

M

M∑
m=1

E
∥∥∥Cdev

m (γFm(zk+1/2)− γFm(wk) + ekm)
∥∥∥2 .

Here we use definition of biased compression (2), (10) and inequality ‖a + b‖2 ≤ (1 + c)‖a‖2 +
(1 + 1/c)‖b‖2 (for c > 0). Is is easy to prove that for baised compressor Cdev

m from (2) it holds that
‖Cdev

m (x)‖2 ≤ 4‖x‖2 (see [10]). Then

E‖ek+1‖2 ≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2

+

(
1 +

1

c

)(
1− 1

δserv

)
4

M

M∑
m=1

E
∥∥∥γFm(zk+1/2)− γFm(wk) + ekm

∥∥∥2
≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2

+ γ2
(

1 +
1

c

)(
1− 1

δserv

)
8

M

M∑
m=1

E
∥∥∥Fm(zk+1/2)− Fm(wk)

∥∥∥2
+

(
1 +

1

c

)(
1− 1

δserv

)
8

M

M∑
m=1

E
∥∥ekm∥∥2

≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2 + 8γ2L̃2

(
1 +

1

c

)(
1− 1

δserv

)
E
∥∥∥zk+1/2 − wk

∥∥∥2
+

(
1 +

1

c

)(
1− 1

δserv

)
8

M

M∑
m=1

E
∥∥ekm∥∥2 .
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In the last we use Assumption 3.4 and definition of L̃ from this Assumption. With c = 1
2(δ−1) we

get

E‖ek+1‖2 ≤
(

1− 1

2δserv

)
E
∥∥ek∥∥2 + 16δservγ2L̃2 · E‖zk+1/2 − wk‖2 + 16δserv · 1

M

M∑
m=1

E
∥∥ekm∥∥2

≤ 16δservγ2L̃2
k∑
j=0

(
1− 1

2δserv

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2
+ 16δserv

k∑
j=0

(
1− 1

2δserv

)k−j
· 1

M

M∑
m=1

∥∥ejm∥∥2 .
We weigh the sequence as follows

K∑
k=0

pkE
∥∥ek∥∥2. Here we also assume p such that pk ≤ pj(1 +

1/4δserv)k−j . Then
K−1∑
k=0

pkE
∥∥ek∥∥2 ≤ 16δservγ2L̃2

K−1∑
k=0

pk
k−1∑
j=0

(
1− 1

2δserv

)k−j−1
· E
∥∥∥zj+1/2 − wj

∥∥∥2
+ 16δserv

K−1∑
k=0

pk
k−1∑
j=0

(
1− 1

2δserv

)k−j−1
· 1

M

M∑
m=1

E
∥∥ejm∥∥2

≤ 16δservγ2L̃2

(1− 1/2δserv)

K−1∑
k=0

k−1∑
j=0

pj
(

1 +
1

4δserv

)k−j (
1− 1

2δserv

)k−j
· E
∥∥∥zj+1/2 − wj

∥∥∥2
+

16δserv

(1− 1/2δserv)

K−1∑
k=0

k−1∑
j=0

pj
(

1 +
1

4δserv

)k−j (
1− 1

2δserv

)k−j
· 1

M

M∑
m=1

E
∥∥ejm∥∥2

≤ 16δservγ2L̃2

(1− 1/2δserv)

K−1∑
k=0

k−1∑
j=0

pj
(

1− 1

4δserv

)k−j
· E
∥∥∥zj+1/2 − wj

∥∥∥2
+

16δserv

(1− 1/2δserv)

K−1∑
k=0

k−1∑
j=0

pj
(

1− 1

4δserv

)k−j
· 1

M

M∑
m=1

E
∥∥ejm∥∥2

≤ 16δservγ2L̃2

(1− 1/2δserv)

K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2 · ∞∑
j=0

(
1− 1

4δserv

)j

+
16δserv

(1− 1/2δserv)

K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 · ∞∑

j=0

(
1− 1

4δserv

)j

≤ 128(δserv)2γ2L̃2
K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2
+ 128(δserv)2

K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 . (35)

Combining (34) with (35), we obtain
K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2
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+ 768(δserv)2γ2L̃2 ·
K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2
+ 768(δserv)2 ·

K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 + 6 ·

K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L2 − 768(δserv)2γ2L̃2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2 + 775(δserv)2 ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 .

Using −‖a‖2 ≤ − 1
2‖a+ b‖2 + ‖b‖2, we get

K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − γµ− 2γ2L2 − 768(δserv)2γ2L̃2) ·

K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2 + 775(δserv)2 ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2

+ γµ ·
K−1∑
k=0

pkE‖zk+1/2 − ẑk‖2

≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − γµ− 2γ2L2 − 768(δserv)2γ2L̃2) ·

K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 2γµ− 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ (775(δserv)2 + 2µγ) ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 .

With γ ≤ 1
2µ we get

K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − γµ− 2γ2L2 − 768(δserv)2γ2L̃2) ·

K−1∑
k=0

pkE‖wk − zk+1/2‖2
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−
(
τ − 2γµ− 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ 776(δserv)2 ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 . (36)

Next, we work with the other "error" term. The same way as for (35) we get

1

M

M∑
m=1

E
∥∥ek+1
m

∥∥2 =
1

M

M∑
m=1

∥∥∥ekm + γ · Fm(zk+1/2)− γ · Fm(wk)− Cdev
m (γ · Fm(zk+1/2)− γ · Fm(wk) + ekm)

∥∥∥2
≤ 1

M

M∑
m=1

(
1− 1

δdev

)∥∥∥ekm + γ · Fm(zk+1/2)− γ · Fm(wk)
∥∥∥2

≤ 1

M

M∑
m=1

(1 + c)

(
1− 1

δdev

)∥∥ekm∥∥2 +

(
1 +

1

c

)(
1− 1

δdev

)
γ2 ·

∥∥∥Fm(zk+1/2)− Fm(wk)
∥∥∥2 .

With c = 1
2(δdev−1)

1

M

M∑
m=1

∥∥ek+1
m

∥∥2 ≤ 1

M

M∑
m=1

(
1− 1

2δdev

)∥∥ekm∥∥2 + 2δdevγ2 ·
∥∥∥Fm(zk+1/2)− Fm(wk)

∥∥∥2
≤
(

1− 1

2δdev

)
· 1

M

M∑
m=1

∥∥ekm∥∥2 + 2δdevγ2L̃2 ·
∥∥∥zk+1/2 − wk

∥∥∥2
≤ 2δdevγ2L̃2

k∑
j=0

(
1− 1

2δdev

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2 .
We weigh the sequence as follows

K∑
k=0

pk 1
M

M∑
m=1

∥∥ekm∥∥2. Here we assume that p such that pk ≤

pj(1 + 1/4δdev)k−j . Then

K−1∑
k=0

pk
1

M

M∑
m=1

∥∥ekm∥∥2 ≤ 2δdevγ2L̃2
K−1∑
k=0

pk
k−1∑
j=0

(
1− 1

2δdev

)k−j−1
·
∥∥∥zj+1/2 − wj

∥∥∥2
≤ 2δdevγ2L̃2

(1− 1/2δdev)

K−1∑
k=0

k−1∑
j=0

pj
(

1 +
1

4δdev

)k−j (
1− 1

2δdev

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2
≤ 2δdevγ2L̃2

(1− 1/2δdev)

K−1∑
k=0

k−1∑
j=0

pj
(

1− 1

4δdev

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2
≤ 2δdevγ2L̃2

(1− 1/2δdev)

K−1∑
k=0

pk
∥∥∥zk+1/2 − wk

∥∥∥2 · ∞∑
j=0

(
1− 1

4δdev

)j

≤ 16(δdev)2γ2L̃2
K−1∑
k=0

pk
∥∥∥zk+1/2 − wk

∥∥∥2 . (37)

(36) together with (37) gives

K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
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− (1− τ − γµ− 2γ2L2 − 13200(δserv)2(δdev)2γ2L̃2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 2γµ− 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2. (38)

With τ ≥ 3
4 , γ ≤ min

[
1−τ
8µ ;

√
1−τ

2L+165δservδdevL̃

]
we obtain

K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
.

Then we just need to take p = 1/(1 − µγ/2) (easy to check that pk ≤ pj(1 + 1/8δserv)k−j and
pk ≤ pj(1 + 1/8δdev)k−j work with our γ ≤

√
1−τ

2L+150δservδdevL̃
) and get

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K (
‖ẑ0 − z∗‖2 + ‖w0 − z∗‖2

)
.

This ends the proof for strongly-monotone case.

�

E.1.2 Monotone

Let us comeback and start from (31):

2γ〈F (zk+1/2), zk+1/2 − z〉 ≤ ‖ẑk − z‖2 − ‖ẑk+1 − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− (1− τ − 2γ2L2)‖wk − zk+1/2‖2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2.

Then we use monotonicity (Assumption 3.5 (M)) and get

2γ〈F (z), zk+1/2 − z〉 ≤ ‖ẑk − z‖2 − ‖ẑk+1 − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− (1− τ − 2γ2L2)‖wk − zk+1/2‖2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2

= ‖ẑk − z‖2 − ‖ẑk+1 − z‖2 + ‖wk − z‖2 − ‖wk+1 − z‖2

‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

− (1− τ − 2γ2L2)‖wk − zk+1/2‖2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2.

Next, we sum from 0 to K − 1:

2γ

K−1∑
k=0

〈F (z), zk+1/2 − z〉

≤ ‖ẑ0 − z‖2 + ‖w0 − z‖2 +

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)
− (1− τ − 2γ2L2) ·

K−1∑
k=0

‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

‖zk+1/2 − zk‖2

41



+ 6 ·
K−1∑
k=0

‖ek‖2 + 6 ·
K∑
k=0

1

M

M∑
m=1

∥∥ekm∥∥2 .
Then we take maximum of both sides over z ∈ C, after take expectation and get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

− (1− τ − 2γ2L2) ·
K−1∑
k=0

E‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2

+ 6 ·
K−1∑
k=0

E‖ek‖2 + 6 ·
K−1∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2 .

We star with using (35) with p = 1 and get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

− (1− τ − 2γ2L2 − 768(δserv)2γ2L̃2) ·
K−1∑
k=0

E‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2 + 775(δserv)2 ·
K∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 .

And then (37) (also with p = 1):

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

− (1− τ − 2γ2L2 − 13200(δserv)2(δdev)2γ2L̃2) ·
K−1∑
k=0

E‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2.

With t ≥ 3
4 and γ ≤

√
1−τ

2L+165δservδdevL̃
we get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]
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≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]
. (39)

Let us estimate E
[
maxz∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]
. For this we

note that

E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

= E

[
max
z∈C

K−1∑
k=0

[
−2〈(1− τ)zk + τwk − wk+1, z〉 − (1− τ)‖zk‖2 − τ‖wk‖2 + ‖wk+1‖2

]]

= E

[
max
z∈C

K−1∑
k=0

[
−2〈(1− τ)zk + τwk − wk+1, z〉

]]

+ E

[
K−1∑
k=0

−(1− τ)‖zk‖2 − τ‖wk‖2 + ‖wk+1‖2
]
.

One can note that by definition wk+1: E
[
(1− τ)‖zk‖2 + τ‖wk‖2 − ‖wk+1‖2

]
= 0, then

E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

= 2E

[
max
z∈C

K−1∑
k=0

〈(1− τ)zk + τwk − wk+1,−z〉

]

= 2E

[
max
z∈C

K−1∑
k=0

〈(1− τ)zk + τwk − wk+1, z〉

]
.

Let define sequence v: v0 = z0, vk+1 = vk − δk with δk = (1 − τ)zk + τwk − wk+1. Then we
have

K−1∑
k=0

〈δk, zk+1/2 − z〉 =

K−1∑
k=0

〈δk, zk+1/2 − vk〉+

K−1∑
k=0

〈δk, vk − z〉. (40)

By the definition of vk+1, we have for all z

〈vk+1 − vk + δk, z − vk+1〉 = 0.

Rewriting this inequality, we get

〈δk, vk − z〉 = 〈δk, vk − vk+1〉+ 〈vk+1 − vk, z − vk+1〉

= 〈δk, vk − vk+1〉+
1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
1

2
‖δk‖2 +

1

2
‖vk − vk+1‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
1

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2.

With (40) it gives

K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+

K−1∑
k=0

(
1

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2

)
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≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
1

2

K−1∑
k=0

‖δk‖2 +
1

2
‖z0 − z‖2.

We take the maximum on z and get

max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉

+
1

2

K−1∑
k=0

‖(1− τ)zk + τwk − wk+1‖2 +
1

2
max
z∈C
‖z0 − z‖2.

Taking the full expectation, we get

E

[
max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉

]
≤ E

[
K−1∑
k=0

〈δk, zk+1/2 − vk〉

]

+
1

2

K−1∑
k=0

E
[
‖(1− τ)zk + τwk − wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

= E

[
K−1∑
k=0

〈Ewk+1

[
(1− τ)zk + τwk − wk+1

]
, zk+1/2 − vk〉

]

+
1

2

K−1∑
k=0

E
[
‖(1− τ)zk + τwk − wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

=
1

2

K−1∑
k=0

E
[
‖(1− τ)zk + τwk − wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

≤ 1

2

K−1∑
k=0

E
[
‖(1− τ)zk + τwk − wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

=
1

2

K−1∑
k=0

E
[
‖Ewk+1 [wk+1]− wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

=
1

2

K−1∑
k=0

E
[
−‖Ewk+1 [wk+1]‖2 + Ewk+1‖wk+1‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

=
1

2

K−1∑
k=0

E
[
−‖(1− τ)zk + τwk‖2 + (1− τ)‖zk‖2 + τ‖wk‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]

=
1

2

K−1∑
k=0

τ(1− τ)E
[
‖zk − wk‖2

]
+

1

2
E
[
max
z∈C
‖z0 − z‖2

]
.

Finally, we have

E

[
max
z∈C

K−1∑
k=0

[
−τ‖wk − z‖2 − (1− τ)‖zk − z‖2 + ‖wk+1 − z‖2

]]

≤
K−1∑
k=0

τ(1− τ)E
[
‖zk − wk‖2

]
+ max

z∈C
‖z0 − z‖2. (41)

Together with (39) we obtain

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
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+ E
[
max
z∈C
‖z0 − z‖2

]
+ (1− τ) ·

K−1∑
k=0

E
[
‖zk − wk‖2

]
≤ E

[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C
‖z0 − z‖2

]
+ 2(1− τ) ·

K−1∑
k=0

(
E
[
‖zk+1/2 − wk‖2

]
+ E

[
‖zk+1/2 − zk‖2

])
. (42)

Let us use (38) with p = 1 and µ = 0 (monotone case):

K−1∑
k=0

(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

(
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − 2γ2L2 − 13200(δserv)2(δdev)2γ2L̃2) ·

K−1∑
k=0

E‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2.

Taking into account that γ ≤
√
1−τ

2L+165δservδdevL̃
we get

K−1∑
k=0

(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

(
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− 1− τ

2
·
K−1∑
k=0

(
E‖wk − zk+1/2‖2 + E‖zk+1/2 − zk‖2

)
.

Small rearrangement gives

2(1− τ) ·
K−1∑
k=0

(
E‖wk − zk+1/2‖2 + E‖zk+1/2 − zk‖2

)
≤ 4

(
E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

)
.

Substituting this expression to (42), we get:

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]
≤ E

[
max
z∈C
‖ẑ0 − z‖2

]
+ 2E

[
max
z∈C
‖z0 − z‖2

]
+ 4

(
E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

)
.

Then we can obtain

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
,

and finish the proof.

�

E.1.3 Non-monotone

Again we start from (31):

E‖ẑk+1 − z‖2 ≤ E‖ẑk − z‖2 − (1− τ)E‖zk − z‖2 + (1− τ)E‖wk − z‖2

− 2γE
[
〈F (zk+1/2), zk+1/2 − z〉

]
− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2
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+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2.

Putting z = z∗ and using non-monotonicity (Assumption 3.5 (NM)), we get

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2. (43)

With τ ≥ 3
4 and rule for zk+1/2 (line 7) we obtain

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − 1

4
‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 − 1

8
E‖zk+1/2 − zk‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − 1

8
E‖τzk + (1− τ)wk − γF (wk)− zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 − 1

8
E‖zk+1/2 − zk‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − 1

8
E‖(1− τ)(wk − zk)− γF (wk)‖2.

Using −‖a‖2 ≤ − 1
2‖a+ b‖2 + ‖b‖2 gives

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 − 1

8
E‖zk+1/2 − zk‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − γ2

16
E‖F (wk)‖2 +

(1− τ)2

8
E‖wk − zk‖2.

And then

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 − 1

8
E‖zk+1/2 − zk‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − γ2

16
E‖F (wk)‖2 +

(1− τ)2

4
E‖zk+1/2 − zk‖2

+
(1− τ)2

4
E‖zk+1/2 − wk‖2

≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ − 2γ2L2)E‖wk − zk+1/2‖2 − 1

8
E‖zk+1/2 − zk‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − γ2

16
E‖F (wk)‖2 +

1

64
E‖zk+1/2 − zk‖2
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+
1− τ

16
E‖zk+1/2 − wk‖2

≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

−
(

1− τ
2
− 2γ2L2

)
E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − γ2

16
E‖F (wk)‖2.

Here we additionally use that τ ≥ 3
4 . Then we add (33)

E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

≤ E‖ẑk − z∗‖2 + E‖wk − z∗‖2 −
(

1− τ
2
− 2γ2L2

)
E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − γ2

16
E‖F (wk)‖2.

Next, we sum over all k from 0 to K − 1 and get

γ2

16

K−1∑
k=0

E‖F (wk)‖2 ≤ E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2 − E‖ẑK − z∗‖2 − E‖wK − z∗‖2

−
(

1− τ
2
− 2γ2L2

)K−1∑
k=0

E‖wk − zk+1/2‖2

+ 6

K−1∑
k=0

E‖ek‖2 + 6

K−1∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2 .

It remains to use (35) and (37) with p = 1:

γ2

16

K−1∑
k=0

E‖F (wk)‖2 ≤ E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2 − E‖ẑK − z∗‖2 − E‖wK − z∗‖2

−
(

1− τ
2
− 2γ2L2

)K−1∑
k=0

E‖wk − zk+1/2‖2

+ 768(δserv)2γ2L̃2
K−1∑
k=0

E
∥∥∥zk+1/2 − wk

∥∥∥2
+ 768(δserv)2

K−1∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2 + 6

K−1∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2

≤ E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

−
(

1− τ
2
− 2γ2L2 − 768(δserv)2γ2L̃2

)K−1∑
k=0

E‖wk − zk+1/2‖2

+ 775(δserv)2
K−1∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2

≤ E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

−
(

1− τ
2
− 2γ2L2 − 768(δserv)2γ2L̃2

)K−1∑
k=0

E‖wk − zk+1/2‖2

+ 12400(δserv)2(δdev)2γ2L̃2
K−1∑
k=0

E
∥∥∥zk+1/2 − wk

∥∥∥2
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≤ E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

− 1

2

(
1− τ − 4γ2L2 − 26400(δserv)2(δdev)2γ2L2

)K−1∑
k=0

E‖wk − zk+1/2‖2.

Then we choose γ ≤
√
1−τ

2L+165δservδdevL̃
and get

1

K

K−1∑
k=0

E‖F (wk)‖2 ≤ 16(E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2)

γ2K
.

�
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F Stochastic case and variance reduction

In this subsection, we assume that the local operators on each node has either a finite-sum form:

Fm(z) := 1
r

r∑
i=1

Fm,i(z). (44)

This case corresponds to the stochastic setting, when it is expensive to calculate the full operator
Fm, and it is cheaper to calculate the value Fm,i one of the terms (batches). For this setup we
additionally assume that

Assumption F.1 Each operator Fm,i is Lm,i-Lipschitz continuous, i.e. for all z1, z2 ∈ Rd it holds

‖Fm,i(z1)− Fm,i(z2)‖2 ≤ Lm,i‖z1 − z2‖. (45)

Let L̃2
m = 1

r

r∑
i=1

L2
m,i and L̂2 = 1

M

M∑
m=1

1
r

r∑
i=1

L2
m,i.

Next, we modify MASHA1 and MASHA2 for this setup. Modifications of the other steps (computing
gk, zk+1, ekm, ek etc.) in VR-MASHA1 and VR-MASHA2 occur according to the new gkm.

F.1 VR-MASHA1: stochastic and batch version

In this section, we provide information about VR-MASHA1. This is a modification of MASHA1 for
the stochastic case of a finite sum. Changes compared to MASHA1 are highlighted in blue – see
Algorithm 5. Note that without compression VR-MASHA1 is an analogue of methods from [1].

Algorithm 5 VR-MASHA1

1: Parameters: Stepsize γ > 0, parameter τ , number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z .
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: for each device m in parallel do
6: z̄k = τzk + (1− τ)wk

7: zk+1/2 = z̄k − γF (wk),
8: Generate πkm from {1, . . . , r} independently
9: Compute Fm,πkm(zk+1/2) & send Qdev

m (Fm,πkm(zk+1/2)− Fm,πkm(wk)) to server
10: end for
11: for server do

12: Compute Qserv
[

1
M

M∑
m=1

Qdev
m (Fm,πkm(zk+1/2)− Fm,πkm(wk))

]
& send to devices

13: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
14: end for
15: for each device m in parallel do

16: zk+1 = zk+1/2 − γQserv
[

1
M

M∑
m=1

Qdev
m (Fm,πkm(zk+1/2)− Fm,πkm(wk))

]
17: if bk = 1 then
18: wk+1 = zk+1

19: Compute Fm(wk+1) & send it to server; and get F (wk+1) as a response from server
20: else
21: wk+1 = wk

22: end if
23: end for
24: end for

The following theorem gives the convergence of VR-MASHA1.
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Theorem F.2 Let distributed variational inequality (3) + (4) + (44) is solved by Algorithm 5 with
unbiased compressor operators (1): on server with qserv parameter, on devices with {qdev

m }. Let
Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[√

1−τ
2C̃q

; 1−τ
2µ

]
(where C̃q =

√
qserv

M2 ·
∑M
m=1(qdev

m L̃2
m + (M − 1)L̃2)):

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
1−τ

2C̃q+4L̃
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤
√
1−τ
2C̃q

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

For VR-MASHA1 we consider the case of only devices compression. For simplicity, we putQdev
m = Q

with qdev
m = q and βdev

m = β, also L̃m = L̃ = L. Let us discuss the difference (with MASHA1) in
choosing τ . When bk = 1, we need not only to send uncompressed information to the server, but
also to compute the full Fm, which in the stochastic case is r times more expensive than computing
one batch Fm,i. Then, at each iteration, we send O

(
1
β + 1− τ

)
bits of information, and also

count O (1 + r(1− τ)) batches. Therefore, the optimal choice of τ depends on two factors and
1− τ = 1

max{β,r} .

Corollary F.3 Let distributed variational inequality (3) + (4) + (44) is solved by Algorithm 5 with-
out compression on server (qserv = 1) and with unbiased compressor operators (1) on devices with
{qdev
m = q}. Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following

estimates holds

• in strongly-monotone case with γ ≤ min

[
1
2L ·

(√
q
M + 1

)−1 · (√max{β, r}
)−1

; 1
2µ · (max{β, r})−1

]
:

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
6L ·

(√
q
M + 1

)−1 · (√max{β, r}
)−1

:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
2L ·

(√
q
M + 1

)−1 · (√max{β, r}
)−1

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

In the line 5 of Table 1 we put complexities to achieve ε-solution.
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F.1.1 Proof of the convergence of VR-MASHA1

Proof of Theorem F.2:

The proof is very close to the proof of Theorem D.1. Only two estimates need to be modified. First
is (15)

E
[
‖zk+1 − zk+1/2‖2

]
= γ2 · E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm,πkm(zk+1/2)− Fm,πkm(wk))

]∥∥∥∥∥
2


≤ γ2 · q
serv

M2
E

∥∥∥∥∥
M∑
m=1

Qdev
m (Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2


= γ2 · q
serv

M2

M∑
m=1

E
[∥∥∥Qdev

m (Fm,πkm(zk+1/2)− Fm,πkm(wk))
∥∥∥2]

+ γ2 · q
serv

M2

∑
m 6=l

E
[
〈Qdev

m (Fm,πkm(zk+1/2)− Fm,πkm(wk));Qdev
m (Fl(z

k+1/2)− Fl,πkl (wk))〉
]

Next we apply (1) and Assumption 3.4 for the first term and independence and unbiasedness of Q
and uniformess of ξ for the second term:

E
[
‖zk+1 − zk+1/2‖2

]
≤ γ2 · q

serv

M2

M∑
m=1

qdev
m

1

r

r∑
i=1

L2
m,iE

[∥∥∥zk+1/2 − wk
∥∥∥2]

+ γ2 · q
serv

M2

∑
m 6=l

E
[
〈Fm(zk+1/2)− Fm(wk);Fl(z

k+1/2)− Fl(wk)〉
]

≤ γ2 · q
serv

M2

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2M2

∑
m 6=l

E
[
‖Fm(zk+1/2)− Fm(wk)‖2 + ‖Fl(zk+1/2)− Fl(wk)‖2

]

≤ γ2 · q
serv

M2

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2M2

∑
m 6=l

E
[
L2
m‖zk+1/2 − wk‖2 + L2

l ‖zk+1/2 − wk‖2
]

= γ2 · q
serv

M2

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv(M − 1)

M
L̃2E

[
‖zk+1/2 − wk‖2

]
= γ2 · q

serv

M2
E
[
‖zk+1/2 − wk‖2

]
·
M∑
m=1

qdev
m L̃2

m + (M − 1)L̃2

Here we can use new C̃q =
√

qserv

M2 ·
∑M
m=1(qdev

m L̃2
m + (M − 1)L̃2).

The second modified estimate is (25):

E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2)

∥∥∥∥∥
2


≤ C̃2
qE
[∥∥∥zk+1/2 − wk

∥∥∥2]+ 2L̃2E
[∥∥∥zk+1/2 − wk

∥∥∥2] .
�
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F.2 VR-MASHA2: stochastic and batch version

In this section, we provide information about VR-MASHA2. This is a modification of MASHA2 for
the stochastic case of a finite sum. Changes compared to MASHA2 are highlighted in blue – see
Algorithm 6.

Algorithm 6 VR-MASHA2

1: Parameters: Stepsize γ > 0, parameter τ , number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z , e0m = 0, e0 = 0.
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: for each device m in parallel do
6: z̄k = τzk + (1− τ)wk

7: zk+1/2 = z̄k − γF (wk)
8: Generate πkm from {1, . . . , r} independently
9: Compute Fm,πkm(zk+1/2) and send Cdev

m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm)

10: ek+1
m = ekm + γFm,πkm(zk+1/2)− γFm,πkm(wk)− Cdev

m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm)

11: end for
12: for server do

13: Compute gk = Cserv
[

1
M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm) + ek

]
&

send to devices
14: ek+1 = ek + 1

M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm)− gk

15: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
16: end for
17: for each device m in parallel do

18: zk+1 = zk+1/2 − Cserv
[

1
M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm) + ek

]
19: if bk = 1 then
20: wk+1 = zk

21: Compute Fm(wk+1) and it send to server; and get F (wk+1)
22: else
23: wk+1 = wk

24: end if
25: end for
26: end for

The following theorem gives the convergence of VR-MASHA2.

Theorem F.4 Let distributed variational inequality (3) + (4) + (44) is solved by Algorithm 6 with
τ ≥ 3

4 and biased compressor operators (2): on server with δserv parameter, on devices with δdev.
Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[
1−τ
8µ ;

√
1−τ

2L+165δservδdevL̂

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
1−τ

2L+165δservδdevL̂
:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 6‖z0 − z∗‖2

γK
;
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• in non-monotone case with γ ≤
√
1−τ

2L+165δservδdevL̂
:

1

K

K−1∑
k=0

E‖F (wk)‖2 ≤ 32E‖z0 − z∗‖2

γ2K
.

We consider the only devices compression. For simplicity, we put L̃ = L̂ = L. We use the same
reasoning as in Section F.1. The optimal choice is 1− τ = 1

max{β,r} .

Corollary F.5 Let distributed variational inequality (3) + (4)+(44) is solved by Algorithm 6 without
compression on server (δserv = 1) and with biased compressor operators (2) on devices with δdev =
δ. Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates
holds

• in strongly-monotone case with γ ≤ min

[
1
8µ · (max{β, r})−1 ; 1

167δL ·
(√

max{β, r}
)−1]

:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
167δL ·

(√
max{β, r}

)−1
:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
167δL ·

(√
max{β, r}

)−1
:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 32E‖z0 − z∗‖2

γ2K
.

In the line 6 of Table 1 we put complexities to achieve ε-solution.

F.2.1 Proof of the convergence of VR-MASHA2

Proof of Theorem F.4: The proofs of Theorem F.4 partially repeat the proofs of Theorem E.1. We
note the main changes in comparison with Theorem E.1.

The first difference is an update of "hat" sequence (26):

ẑk+1 = zk+1 − ek+1 − 1

M

M∑
m=1

ek+1
m

= zk+1/2 − Cserv

[
1

M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm) + ek

]

− ek − 1

M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm)

+ Cserv

[
1

M

M∑
m=1

Cdev
m (γFm,πkm(zk+1/2)− γFm,πkm(wk) + ekm) + ek

]

− 1

M

M∑
m=1

[
ekm + γFm,πkm(zk+1/2)− γFm,πkm(wk)− Cdev

m (γ · Fm,πkm(zk+1/2)− γFm,πkm(wk) + ekm)
]

= zk+1/2 − ek − 1

M

M∑
m=1

ekm − γ ·
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− γFm,πkm(wk))
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= ẑk+1/2 − γ · 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− γFm,πkm(wk)).

Hence, we need to modify (29)

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 + 2〈ẑk+1 − ẑk, zk+1/2 − z〉

+ 2γ2 ·

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 4‖ek‖2 +
4

M

M∑
m=1

∥∥ekm∥∥2
− ‖zk+1/2 − ẑk‖2;

and (30):

ẑk+1 − ẑk = ẑk+1 − ẑk+1/2 + ẑk+1/2 − ẑk

= −γ ·

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ zk+1/2 − zk

= −γ ·

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− γ · F (wk) + z̄k − zk,

Then (31) is also modified:

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− 2γ〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk), zk+1/2 − z〉

− (1− τ)‖wk − zk+1/2‖2 + 2γ2 ·

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2. (46)

Next, we move to different cases of monotonicity.

Strongly-monotone

The same way as in Theorem E.1 we put z = z∗, use property of the solution and then take full
expectation:

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (z∗), zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · E

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈Eπk

[
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk)) + F (wk)− F (z∗)

]
, zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

M

M∑
m=1

E
[
Eπk

∥∥∥Fm,πkm(zk+1/2)− Fm,πkm(wk)
∥∥∥2]
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+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2 − F (z∗), zk+1/2 − z∗〉

]
− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

M

M∑
m=1

E

[
1

r

r∑
i=1

∥∥∥Fm,i(zk+1/2)− Fm,i(wk)
∥∥∥2]

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2 − F (z∗), zk+1/2 − z∗〉

]
− (1− τ)E‖wk − zk+1/2‖2 + 2γ2L̂2E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2. (47)

In the last we use Assumption 3.4 and definition of L̂ from this Assumption. The new inequality
(47) is absolutely similar to inequality (32) (only L is changed to L̂). Therefore, we can safely reach
the analogue of expression (34):
K−1∑
k=0

pkE‖ẑk+1 − z∗‖2 +

K−1∑
k=0

pkE‖wk+1 − z∗‖2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L̂2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ 6 ·
K−1∑
k=0

pkE‖ek‖2 + 6 ·
K−1∑
k=0

pk
1

M

M∑
m=1

E
∥∥ekm∥∥2 . (48)

The only difference in the estimates on "errors" ek and ekm is in the constant L̃. It needs to be
changed to L̂. And we have analogue of (38):

K−1∑
k=0

pk
(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

pk
(

1− µγ

2

) (
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − γµ− 13200(δserv)2(δdev)2γ2L̂2) ·

K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 2γµ− 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2. (49)

Choice τ ≥ 3
4 , γ ≤ min

[
1−τ
8µ ;

√
1−τ

165δservδdevL̂

]
finishes the proof.

�

Monotone case
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We start from (46) with small rearrangements:

2γ〈F (zk+1/2), zk+1/2 − z〉
≤ ‖ẑk − z‖2 − ‖ẑk+1 − z‖2 + ‖wk − z‖2 − ‖wk+1 − z‖2

+ ‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

− 2γ〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

− (1− τ)‖wk − zk+1/2‖2 + 2γ2 ·

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6‖ek‖2 +
6

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2.

The same way as in Theorem E.1 we use monotonicity (Assumption 3.5 (M)) and then sum from 0
to K − 1:

2γ

K−1∑
k=0

〈F (z), zk+1/2 − z〉

≤ ‖ẑ0 − z‖2 + ‖w0 − z‖2

+

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)
− 2γ ·

K−1∑
k=0

〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

− (1− τ) ·
K−1∑
k=0

‖wk − zk+1/2‖2 + 2γ2 ·
K−1∑
k=0

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6 ·
K−1∑
k=0

‖ek‖2 + 6 ·
K∑
k=0

1

M

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
·
K−1∑
k=0

‖zk+1/2 − zk‖2.

Then we take maximum of both sides over z ∈ C, after take expectation and get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

+ 2γE

[
max
z∈C

K−1∑
k=0

−〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

]

− (1− τ) ·
K−1∑
k=0

E‖wk − zk+1/2‖2 + 2γ2 ·
K−1∑
k=0

E

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6 ·
K−1∑
k=0

E‖ek‖2 + 6 ·
K∑
k=0

1

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2.
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The same way as in strongly-monotone case of this Theorem (Theorem F.4) we estimate

2γ2
K−1∑
k=0

E
∥∥∥∥ 1
M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥2 + 6
K−1∑
k=0

E‖ek‖2 + 6
K∑
k=0

1
M

M∑
m=1

E
∥∥ekm∥∥2:

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

+ 2γE

[
max
z∈C

K−1∑
k=0

−〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

]

− (1− τ − 13200(δserv)2(δdev)2γ2L̂2) ·
K−1∑
k=0

E‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2.

With t ≥ 3
4 and γ ≤

√
1−τ

165δservδdevL̂
we get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C

K−1∑
k=0

(
‖wk+1 − z‖2 − (1− τ)‖zk − z‖2 − τ‖wk − z‖2

)]

+ 2γE

[
max
z∈C

K−1∑
k=0

−〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

]
.

Using (41), we obtain

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C
‖z0 − z‖2

]
+ (1− τ) ·

K−1∑
k=0

E
[
‖zk − wk‖2

]
(50)

+ 2γE

[
max
z∈C

K−1∑
k=0

−〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk)− F (zk+1/2), zk+1/2 − z〉

]
.

Let us work with the last line. For this define sequence v: v0 = z0, vk+1 = vk − γδk with

δk = F (zk+1/2)−
(

1
M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk). Then we have

K−1∑
k=0

〈δk, zk+1/2 − z〉 =

K−1∑
k=0

〈δk, zk+1/2 − vk〉+

K−1∑
k=0

〈δk, vk − z〉. (51)
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By the definition of vk+1 we get

〈γδk, vk − z〉 = 〈γδk, vk − vk+1〉+ 〈vk+1 − vk, z − vk+1〉

= 〈γδk, vk − vk+1〉+
1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
γ2

2
‖δk‖2 +

1

2
‖vk − vk+1‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2 − 1

2
‖vk − vk+1‖2

=
γ2

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2.

With (51) it gives
K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
1

γ

K−1∑
k=0

(
γ2

2
‖δk‖2 +

1

2
‖vk − z‖2 − 1

2
‖vk+1 − z‖2

)

≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
γ

2

K−1∑
k=0

‖δk‖2 +
1

2γ
‖v0 − z‖2.

We take the maximum on z and get

max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉 ≤
K−1∑
k=0

〈δk, zk+1/2 − vk〉+
1

2γ
max
z∈C
‖z0 − z‖2

+
γ

2

K−1∑
k=0

‖F (zk+1/2)−

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− F (wk)‖2.

Taking the full expectation, we get

E

[
max
z∈C

K−1∑
k=0

〈δk, zk+1/2 − z〉

]
≤ E

[
K−1∑
k=0

〈δk, zk+1/2 − vk〉

]

+
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− F (wk)‖2

]

+
1

2γ
max
z∈C
‖v0 − z‖2

= E

[
K−1∑
k=0

〈Eπk

[
F (zk+1/2)−

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− F (wk)

]
, zk+1/2 − vk〉

]

+
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− F (wk)‖2

]

+
1

2γ
max
z∈C
‖z0 − z‖2

=
γ

2

K−1∑
k=0

E

[
‖F (zk+1/2)−

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
− F (wk)‖2

]

+
1

2γ
max
z∈C
‖z0 − z‖2

≤ γ
K−1∑
k=0

E

[
1

M

M∑
m=1

‖Fm,πkm(zk+1/2)− Fm,πkm(wk)‖2
]

+ γ

K−1∑
k=0

E
[
‖F (zk+1/2)− F (wk)‖2

]
+

1

2γ
max
z∈C
‖z0 − z‖2

≤ γ(L̂2 + L2)

K−1∑
k=0

E‖zk+1/2 − wk‖2 +
1

2γ
max
z∈C
‖z0 − z‖2. (52)
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Substituting (52) to (50), we get

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ E

[
max
z∈C
‖z0 − z‖2

]
+ (1− τ) ·

K−1∑
k=0

E
[
‖zk − wk‖2

]
+ 2γ2(L̂2 + L2)

K−1∑
k=0

E‖zk+1/2 − wk‖2 + max
z∈C
‖z0 − z‖2.

With γ ≤
√
1−τ

2L+2L̂
we have

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ 2E

[
max
z∈C
‖z0 − z‖2

]
+ 3(1− τ) ·

K−1∑
k=0

E
[
‖zk − zk+1/2‖2

]
+ E

[
‖zk+1/2 − wk‖2

]
. (53)

Taking into account (49) with p = 1 and µ = 0 (monotone case), we get

K−1∑
k=0

(
E‖ẑk+1 − z∗‖2 + E‖wk+1 − z∗‖2

)
≤
K−1∑
k=0

(
E‖ẑk − z∗‖2 + E‖wk − z∗‖2

)
− (1− τ − 13200(δserv)2(δdev)2γ2L̂2) ·

K−1∑
k=0

E‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

E‖zk+1/2 − zk‖2.

With γ ≤
√
1−τ

2L+165δservδdevL̃
we get

1− τ
2
·
K−1∑
k=0

(
E‖wk − zk+1/2‖2 + E‖zk+1/2 − zk‖2

)
≤
(
E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

)
.

Combing this expression with (53), we obtain

2γE

[
max
z∈C

K−1∑
k=0

〈F (z), zk+1/2 − z〉

]

≤ E
[
max
z∈C
‖ẑ0 − z‖2

]
+ E

[
max
z∈C
‖w0 − z‖2

]
+ 2E

[
max
z∈C
‖z0 − z‖2

]
+ 6

(
E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2

)
,

and finish the proof in the monotone case.
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Non-monotone case

We start from (46), put z = z∗, use non-monotonicity assumption and then take a full mathematical
expectation:

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈

(
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

)
+ F (wk), zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · E

∥∥∥∥∥ 1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk))

∥∥∥∥∥
2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈Eπk

[
1

M

M∑
m=1

(Fm,πkm(zk+1/2)− Fm,πkm(wk)) + F (wk)

]
, zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

M

M∑
m=1

E
[
Eπk

∥∥∥Fm,πkm(zk+1/2)− Fm,πkm(wk)
∥∥∥2]

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2, zk+1/2 − z∗〉

]
− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

M

M∑
m=1

E

[
1

r

r∑
i=1

∥∥∥Fm,i(zk+1/2)− Fm,i(wk)
∥∥∥2]

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2L̂2E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6

M

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2.

This expression is the same with (43). Then we repeat all steps from Theorem E.1. And then with
γ ≤

√
1−τ

2L+165δservδdevL̂
we get

1

K

K−1∑
k=0

E‖F (wk)‖2 ≤ 16(E‖ẑ0 − z∗‖2 + E‖w0 − z∗‖2)

γ2K
.
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G Federated learning and partial participation

Here we consider a popular federated learning feature - partial participation. We model it as follows.
At each iteration, only b random devices send information to the server. The rest do not compute
and do not communicate. More formally, at each iteration we

generate subset {ξki }bi=1 of {1, . . . ,M} (54)

devices, which takes part in the current iteration. Next, we show how to modify MASHA1 and
MASHA2 for partial participation.

G.1 PP-MASHA1: federated learning version

In this section, we provide information about PP-MASHA1. This is a modification of MASHA1 for
the federated learning case. Changes compared to MASHA1 are highlighted in blue – see Algorithm
7.

Algorithm 7 PP-MASHA1

1: Parameters: Stepsize γ > 0, parameters τ and b, number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z .
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: Generate subset {ξki }bi=1 of {1, . . . ,M} independently
6: for each device m from {ξki }bi=1 in parallel do
7: z̄k = τzk + (1− τ)wk

8: zk+1/2 = z̄k − γF (wk),
9: Compute Fm(zk+1/2) & send Qdev

m (Fm(zk+1/2)− Fm(wk)) to server
10: end for
11: for server do

12: Compute Qserv
[
1
b

b∑
i=1

Qdev
ξki

(Fξki (zk+1/2)− Fξki (wk))

]
& send to devices

13: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
14: end for
15: for each device m in parallel do

16: zk+1 = zk+1/2 − γQserv
[
1
b

b∑
i=1

Qdev
ξki

(Fξki (zk+1/2)− Fξki (wk))

]
17: if bk = 1 then
18: wk+1 = zk+1

19: Compute Fm(wk+1) & send it to server; and get F (wk+1) as a response from server
20: else
21: wk+1 = wk

22: end if
23: end for
24: end for

The following theorem gives the convergence of PP-MASHA1.

Theorem G.1 Let distributed variational inequality (3) + (4) + (54) is solved by Algorithm 7 with
unbiased compressor operators (1): on server with qserv parameter, on devices with {qdev

m }. Let
Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min
[√

1−τ
2Cbq

; 1−τ
2µ

]
(where Cbq =√

qserv

bM ·
∑M
m=1(qdev

m L̃2
m + (b− 1)L̃2)):

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;
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• in monotone case with γ ≤
√
1−τ

2Cbq+4L̃
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤
√
1−τ
2Cbq

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

For PP-MASHA1 we consider the case of only devices compression. For simplicity, we putQdev
m = Q

with qdev
m = q and βdev

m = β, also L̃m = L̃ = L. Let us discuss the difference (with MASHA1) in
choosing τ . When bk = 1, all devices send uncompressed information to the server, but only
b devices send compressed information (line 9 PP-MASHA1). Then, at each iteration, we send
O
(
b
β +M(1− τ)

)
bits of information. Therefore, the optimal choice of τ is 1− τ = b

βM .

Corollary G.2 Let distributed variational inequality (3) + (4) + (54) is solved by Algorithm 7 with-
out compression on server (qserv = 1) and with unbiased compressor operators (1) on devices with
{qdev
m = q}. Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following

estimates holds

• in strongly-monotone case with γ ≤ min

[
1
2L ·

(√
qβ
b + βM

b

)−1
; b
2µβM

]
:

E
(
‖zK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤ 1
6L ·

(√
qβ
b + βM

b

)−1
:

E

[
max
z∈C

[
〈F (u),

(
1

K

K−1∑
k=0

zk+1/2

)
− u〉

]]
≤

2 maxz∈C
[
‖z0 − z‖2

]
+ 6‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤ 1
2L ·

(√
qβ
b + βM

b

)−1
:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 16‖z0 − z∗‖2

γ2K
.

In the line 7 of Table 1 we put complexities to achieve ε-solution.

G.1.1 Proof of the convergence of PP-MASHA1

Proof of Theorem G.1:

The proof is very close to the proof of Theorem D.1. Only two estimates need to be modified. First
is (15)

E
[
‖zk+1 − zk+1/2‖2

]
= γ2 · E

∥∥∥∥∥Qserv

[
1

b

b∑
i=1

Qdev
ξki

(Fξki (zk+1/2)− Fξki (wk))

]∥∥∥∥∥
2


≤ γ2 · q
serv

b2
E

∥∥∥∥∥
M∑
m=1

Qdev
ξki

(Fξki (zk+1/2)− Fξki (wk))

∥∥∥∥∥
2

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= γ2 · q
serv

b2

b∑
i=1

E
[∥∥∥Qdev

ξki
(Fξki (zk+1/2)− Fξki (wk))

∥∥∥2]
+ γ2 · q

serv

b2

∑
i 6=j

E
[
〈Qdev

ξki
(Fξki (zk+1/2)− Fξki (wk));Qdev

ξkj
(Fξkj (zk+1/2)− Fξkj (wk))〉

]
Next we apply (1) and Assumption 3.4 for the first term and independence and unbiasedness of Q
and uniformess of ξ for the second term:

E
[
‖zk+1 − zk+1/2‖2

]
≤ γ2 · q

serv

b2

b∑
i=1

E
[
Eξk

[
qdev
ξki
L2
ξki

] ∥∥∥zk+1/2 − wk
∥∥∥2]

+ γ2 · q
serv

b2

∑
i 6=j

E
[
〈Fξki (zk+1/2)− Fξki (wk);Fξkj (zk+1/2)− Fξkj (wk)〉

]

≤ γ2 · q
serv

bM

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2b2

∑
i 6=j

E
[
‖Fξki (zk+1/2)− Fξki (wk)‖2 + ‖Fξkj (zk+1/2)− Fξkj (wk)‖2

]

≤ γ2 · q
serv

bM

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv

2b2

∑
i 6=j

E
[
L2
ξki
‖zk+1/2 − wk‖2 + L2

ξkj
‖zk+1/2 − wk‖2

]

= γ2 · q
serv

bM

M∑
m=1

qdev
m L̃2

mE
[∥∥∥zk+1/2 − wk

∥∥∥2]
+ γ2 · q

serv(b− 1)

b
L̃2E

[
‖zk+1/2 − wk‖2

]
= γ2 · q

serv

M2
E
[
‖zk+1/2 − wk‖2

]
·
M∑
m=1

qdev
m L̃2

m + (M − 1)L̃2

Here we can use new Cbq =
√

qserv

bM ·
∑M
m=1(qdev

m L̃2
m + (b− 1)L̃2).

The second modified estimate is (25):

E

∥∥∥∥∥Qserv

[
1

M

M∑
m=1

Qdev
m (Fm(zk+1/2)− Fm(wk))

]
+ F (wk)− F (zk+1/2)

∥∥∥∥∥
2


≤ (Cbq)
2E
[∥∥∥zk+1/2 − wk

∥∥∥2]+ 2L̃2E
[∥∥∥zk+1/2 − wk

∥∥∥2] .
�
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G.2 PP-MASHA2: federated learning version

In this section, we provide information about PP-MASHA2 from Section G. This is a modification
of MASHA2 for the federated learning case. Changes compared to MASHA2 are highlighted in blue
– see Algorithm 8.

Algorithm 8 PP-MASHA2

1: Parameters: Stepsize γ > 0, parameters τ and b, number of iterations K.
2: Initialization: Choose z0 = w0 ∈ Z , e0m = 0, e0 = 0.
3: Server sends to devices z0 = w0 and devices compute Fm(w0) and send to server and get
F (w0)

4: for k = 0, 1, 2, . . . ,K − 1 do
5: Generate subset {ξki }bi=1 of {1, . . . ,M} independently
6: for each device m from {ξki }bi=1 in parallel do
7: z̄k = τzk + (1− τ)wk

8: zk+1/2 = z̄k − γF (wk)
9: Compute Fm(zk+1/2) and send to server Cdev

m (γFm(zk+1/2)− γFm(wk) + ekm)
10: ek+1

m = ekm + γFm(zk+1/2)− γFm(wk)− Cdev
m (γFm(zk+1/2)− γFm(wk) + ekm)

11: end for
12: for devices not from {ξki }bi=1 in parallel do
13: ek+1

m = ekm
14: end for
15: for server do

16: Compute gk = Cserv
[
1
b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ek
ξki

) + ek
]

& send to

devices

17: ek+1 = ek + 1
b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ek
ξki

)− gk.

18: Sends to devices one bit bk: 1 with probability 1− τ , 0 with with probability τ
19: end for
20: for each device m in parallel do

21: zk+1 = zk+1/2 − Cserv
[
1
b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ek
ξki

) + ek
]

22: if bk = 1 then
23: wk+1 = zk

24: Compute Fm(wk+1) and it send to server; and get F (wk+1)
25: else
26: wk+1 = wk

27: end if
28: end for
29: end for

The following theorem gives the convergence of PP-MASHA2.

Theorem G.3 Let distributed variational inequality (3) + (4) is solved by Algorithm 8 with τ ≥ 3
4

and biased compressor operators (2): on server with δserv parameter, on devices with δdev. Let
Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following estimates holds

• in strongly-monotone case with γ ≤ min

[
1−τ
8µ ;

√
1−τ

(30δserv+10δdev M
b +165δdevδserv

√
M
b )L̃

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
1−τ

(30δserv+10δdev M
b +165δdevδserv

√
M
b )L̃

:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 6‖z0 − z∗‖2

γK
;
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• in non-monotone case with γ ≤
√
1−τ

(30δserv+10δdev M
b +165δdevδserv

√
M
b )L̃

:

1

K

K−1∑
k=0

E‖F (wk)‖2 ≤ 32E‖z0 − z∗‖2

γ2K
.

We consider the only devices compression. For simplicity, we put L̃ = L̂ = L. We use the same
reasoning as in Section G.1. The optimal choice is 1− τ = b

βM .

Corollary G.4 Let distributed variational inequality (3) + (4) + (54) is solved by Algorithm 8 with-
out compression on server (δserv = 1) and with biased compressor operators (2) on devices with
δdev = δ. Let Assumption 3.4 and one case of Assumption 3.5 are satisfied. Then the following
estimates holds

• in strongly-monotone case with γ ≤ min

[
1

8µβ ;
√
b3

205δ
√
βM3L

]
:

E
(
‖ẑK − z∗‖2 + ‖wK − z∗‖2

)
≤
(

1− µγ

2

)K
· 2‖z0 − z∗‖2;

• in monotone case with γ ≤
√
b3

205δ
√
βM3L

:

E

[
max
z∈C
〈F (z),

(
1

K

K−1∑
k=0

zk+1/2

)
− z〉

]
≤ 2 maxz∈C ‖z0 − z‖2 + 4‖z0 − z∗‖2

γK
;

• in non-monotone case with γ ≤
√
b3

205δ
√
βM3L

:

E

(
1

K

K−1∑
k=0

‖F (wk)‖2
)
≤ 32E‖z0 − z∗‖2

γ2K
.

In the line 8 of Table 1 we put complexities to achieve ε-solution.

G.2.1 Proof of the convergence of PP-MASHA2

Proof of Theorem G.3: The proofs of Theorem G.3 partially repeat the proofs of Theorem E.1. We
note the main changes in comparison with Theorem E.1.

The first difference is definition of "hat" sequences:

ẑk = zk − ek − 1

b

M∑
m=1

ekm, ẑk+1/2 = zk+1/2 − ek − 1

b

M∑
m=1

ekm, ŵk = wk − ek − 1

b

M∑
m=1

ekm.

Then we modify an update of "hat" sequence (26):

ẑk+1 = zk+1 − ek+1 − 1

b

M∑
m=1

ek+1
m

= zk+1/2 − Cserv

[
1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
) + ek

]

− ek − 1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
)

+ Cserv

[
1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
) + ek

]
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− 1

b

b∑
i=1

[
ekξki

+ γFξki (zk+1/2)− γFξki (wk)− Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
)
]

− 1

b

∑
j /∈{ξki }bi=1

ekj

= zk+1/2 − ek − 1

b

M∑
m=1

ekm − γ ·
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

= ẑk+1/2 − γ · 1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk)).

Hence, we need to modify (29)

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 + 2〈ẑk+1 − ẑk, zk+1/2 − z〉

+ 2γ2 ·

∥∥∥∥∥1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

∥∥∥∥∥
2

+ 4‖ek‖2 +
4M

b2

M∑
m=1

∥∥ekm∥∥2
− ‖zk+1/2 − ẑk‖2;

and (30):

ẑk+1 − ẑk = ẑk+1 − ẑk+1/2 + ẑk+1/2 − ẑk

= −γ ·

(
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

)
+ zk+1/2 − zk

= −γ ·

(
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

)
− γ · F (wk) + z̄k − zk,

Then (31) is also modified:

‖ẑk+1 − z‖2 ≤ ‖ẑk − z‖2 − (1− τ)‖zk − z‖2 + (1− τ)‖wk − z‖2

− 2γ〈

(
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

)
+ F (wk), zk+1/2 − z〉

− (1− τ)‖wk − zk+1/2‖2 + 2γ2 ·

∥∥∥∥∥1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

∥∥∥∥∥
2

+ 6‖ek‖2 +
6M

b2

M∑
m=1

∥∥ekm∥∥2 − (τ − 1

2

)
‖zk+1/2 − zk‖2. (55)

Next, we move to different cases of monotonicity.

Strongly-monotone

The same way as in Theorem E.1 we put z = z∗, use property of the solution and then take full
expectation:

E‖ẑk+1 − z∗‖2 ≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈

(
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

)
+ F (wk)− F (z∗), zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · E

∥∥∥∥∥1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk))

∥∥∥∥∥
2

+ 6E‖ek‖2 +
6M

b2

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2
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≤ E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE

[
〈Eξk

[
1

b

b∑
i=1

(Fξki (zk+1/2)− Fξki (wk)) + F (wk)− F (z∗)

]
, zk+1/2 − z∗〉

]

− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

b

b∑
i=1

E
[
EξkL2

ξki

∥∥∥zk+1/2 − wk
∥∥∥2]

+ 6E‖ek‖2 +
6M

b2

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2 − F (z∗), zk+1/2 − z∗〉

]
− (1− τ)E‖wk − zk+1/2‖2 + 2γ2 · 1

M

M∑
m=1

L2
mE

∥∥∥zk+1/2 − wk
∥∥∥2

+ 6E‖ek‖2 +
6M

b2

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2

= E‖ẑk − z∗‖2 − (1− τ)E‖zk − z∗‖2 + (1− τ)E‖wk − z∗‖2

− 2γE
[
〈F (zk+1/2 − F (z∗), zk+1/2 − z∗〉

]
− (1− τ)E‖wk − zk+1/2‖2 + 2γ2L̃2E‖wk − zk+1/2‖2

+ 6E‖ek‖2 +
6M

b2

M∑
m=1

E
∥∥ekm∥∥2 − (τ − 1

2

)
E‖zk+1/2 − zk‖2. (56)

In the last we use Assumption 3.4 and definition of L̃ from this Assumption. The new inequality (56)

is absolutely similar to inequality (32) (only L is changed to L̃ and a coefficient near
M∑
m=1

E
∥∥ekm∥∥2).

Therefore, we can safely reach the analogue of expression (34):
K−1∑
k=0

pkE‖ẑk+1 − z∗‖2 +

K−1∑
k=0

pkE‖wk+1 − z∗‖2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L̃2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ 6 ·
K−1∑
k=0

pkE‖ek‖2 + 6 ·
K−1∑
k=0

pk
M

b2

M∑
m=1

E
∥∥ekm∥∥2 . (57)

Next, we need modify estimates on "error" terms:

E‖ek+1‖2 = E

∥∥∥∥∥ek +
1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
)

− Cserv

[
1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
) + ek

]∥∥∥∥∥
2

≤
(

1− 1

δserv

)
E

∥∥∥∥∥ek +
1

b

b∑
i=1

Cdev
ξki

(γFξki (zk+1/2)− γFξki (wk) + ekξki
)

∥∥∥∥∥
2

≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2
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+

(
1 +

1

c

)(
1− 1

δserv

)
1

b

b∑
i=1

E
∥∥∥Cdev

ξki
(γFξki (zk+1/2)− γFξki (wk) + ekξki

)
∥∥∥2 .

Here we use definition of biased compression (2), (10) and inequality ‖a + b‖2 ≤ (1 + c)‖a‖2 +
(1 + 1/c)‖b‖2 (for c > 0). Is is easy to prove that for baised compressor Cdev

m from (2) it holds that
‖Cdev

m (x)‖2 ≤ 4‖x‖2 (see [10]). Then

E‖ek+1‖2 ≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2

+

(
1 +

1

c

)(
1− 1

δserv

)
4

b

b∑
i=1

E
∥∥∥γFξki (zk+1/2)− γFξki (wk) + ekξki

∥∥∥2
≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2

+ γ2
(

1 +
1

c

)(
1− 1

δserv

)
8

b

b∑
i=1

E
∥∥∥Fξki (zk+1/2)− Fξki (wk)

∥∥∥2
+

(
1 +

1

c

)(
1− 1

δserv

)
8

b

b∑
i=1

E
∥∥∥ekξki ∥∥∥2

≤ (1 + c)

(
1− 1

δserv

)
E
∥∥ek∥∥2 + 8γ2L̃2

(
1 +

1

c

)(
1− 1

δserv

)
E
∥∥∥zk+1/2 − wk

∥∥∥2
+

(
1 +

1

c

)(
1− 1

δserv

)
8

b

M∑
m=1

E
∥∥ekm∥∥2 .

In the last we use Assumption 3.4 and definition of L̃ from this Assumption. With c = 1
2(δ−1) we

get

E‖ek+1‖2 ≤
(

1− 1

2δserv

)
E
∥∥ek∥∥2 + 16δservγ2L̃2 · E‖zk+1/2 − wk‖2 + 16δserv · 1

b

M∑
m=1

E
∥∥ekm∥∥2

≤ 16δservγ2L̃2
k∑
j=0

(
1− 1

2δserv

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2
+ 16δserv

k∑
j=0

(
1− 1

2δserv

)k−j
· 1

b

M∑
m=1

∥∥ejm∥∥2 .
The same way we can get analogue of (35):

K−1∑
k=0

pkE
∥∥ek∥∥2 ≤ 128(δserv)2γ2L̃2

K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2
+ 128(δserv)2

K−1∑
k=0

pk
1

b

M∑
m=1

E
∥∥ekm∥∥2 . (58)

Combining (57) with (58), we obtain

K−1∑
k=0

pkE‖ẑk+1 − z∗‖2 +

K−1∑
k=0

pkE‖wk+1 − z∗‖2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L̃2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2
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+ 768(δserv)2γ2L̃2
K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2
+

(
768(δserv)2 +

6M

b

)K−1∑
k=0

pk
1

b

M∑
m=1

E
∥∥ekm∥∥2 . (59)

For the other "error" term. Let us note that ‖ek+1
m ‖2 = ‖ekm‖ with probability 1− b

M and ‖ek+1
m ‖2 =

‖ekm + γFm(zk+1/2) − γFm(wk) − Cdev
m (γFm(zk+1/2) − γFm(wk) + ekm)‖ with probability b

M ,
then

1

b

M∑
m=1

E
∥∥ek+1
m

∥∥2 =
1

b

M∑
m=1

b

M
E
∥∥∥ekm + γFm(zk+1/2)− γFm(wk)− Cdev

m (γFm(zk+1/2)− γFm(wk) + ekm)
∥∥∥2

+
1

b

M∑
m=1

(
1− b

M

)
E
∥∥ekm∥∥2

≤ 1

b

M∑
m=1

b

M

(
1− 1

δdev

)∥∥∥ekm + γ · Fm(zk+1/2)− γ · Fm(wk)
∥∥∥2 +

(
1− b

M

)
E
∥∥ekm∥∥2

≤ 1

b

M∑
m=1

b

M
(1 + c)

(
1− 1

δdev

)∥∥ekm∥∥2 +
b

M

(
1 +

1

c

)(
1− 1

δdev

)
γ2 ·

∥∥∥Fm(zk+1/2)− Fm(wk)
∥∥∥2

+
1

b

M∑
m=1

(
1− b

M

)
E
∥∥ekm∥∥2 .

With c = 1
2(δdev−1)

1

b

M∑
m=1

∥∥ek+1
m

∥∥2 ≤ 1

b

M∑
m=1

b

M

(
1− 1

2δdev

)∥∥ekm∥∥2 +
2bδdevγ2

M
·
∥∥∥Fm(zk+1/2)− Fm(wk)

∥∥∥2
+

1

b

M∑
m=1

(
1− b

M

)
E
∥∥ekm∥∥2

≤
(

1− b

2δdevM

)
· 1

b

M∑
m=1

∥∥ekm∥∥2 + 2δdevγ2L̃2 ·
∥∥∥zk+1/2 − wk

∥∥∥2
≤ 2δdevγ2L̃2

k∑
j=0

(
1− b

2δdevM

)k−j
·
∥∥∥zj+1/2 − wj

∥∥∥2 .
And then

K−1∑
k=0

pk
1

b

M∑
m=1

∥∥ekm∥∥2 ≤ 16(δdev)2γ2L̃2M

b

K−1∑
k=0

pk
∥∥∥zk+1/2 − wk

∥∥∥2 . (60)

Hence, (60) together with (59) gives
K−1∑
k=0

pkE‖ẑk+1 − z∗‖2 +

K−1∑
k=0

pkE‖wk+1 − z∗‖2

≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

− (1− τ − 2γ2L̃2) ·
K−1∑
k=0

pkE‖wk − zk+1/2‖2 −
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2

+ 768(δserv)2γ2L̃2
K−1∑
k=0

pkE
∥∥∥zk+1/2 − wk

∥∥∥2
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+

(
768(δserv)2 +

6M

b

)
· 16(δdev)2γ2L̃2M

b

K−1∑
k=0

pk
∥∥∥zk+1/2 − wk

∥∥∥2
≤
K−1∑
k=0

pkE‖ẑk − z∗‖2 +

K−1∑
k=0

pkE‖wk − z∗‖2 − 2γµ

K−1∑
k=0

pkE‖zk+1/2 − z∗‖2

−
(

1− τ − 768(δserv)2γ2L̃2 − 12400γ2(δserv)2(δdev)2
M

b
L̃2 − 96(δdev)2γ2

M2

b2
L̃2

)
·
K−1∑
k=0

pkE‖wk − zk+1/2‖2

−
(
τ − 1

2

)
·
K−1∑
k=0

pkE‖zk+1/2 − zk‖2.

The same as in Theorem E.1 with τ ≥ 3
4 , γ ≤ min

[
1−τ
8µ ;

√
1−τ

(30δserv+10δdev M
b +165δdevδserv

√
M
b )L̃

]
Monotone and Non-monotone cases

The proof of the monotone and non-monotone cases repeat the techniques from Theorem F.4 (modi-
fications of Theorem E.1) + techniques and estimates obtained in the proof of the strongly-monotone
case in Theorem G.3.
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H CEG: additional method

In this section, we present CEG with unbiased compression on devices. This is a very simple method.
We prove its convergence only in the strongly monotone case and need this result to support the
propositions in Sections 4.1 and B.

Algorithm 9 CEG : Compressed Extra Gradient

1: Parameters: Stepsize γ > 0, number of iterations K.
2: Initialization: Choose z0 ∈ Z .
3: Server sends to devices z0
4: for k = 0, 1, 2, . . . ,K − 1 do
5: for each device m in parallel do
6: Compute Fm(zk) & send Qdev

m (Fm(zk)) to server
7: end for
8: for server do

9: Compute 1
M

M∑
m=1

Qdev
m (Fm(zk)) & send to devices

10: end for
11: for each device m in parallel do

12: zk+1/2 = zk − γ · 1
M

M∑
m=1

Qdev
m (Fm(zk))

13: Compute Fm(zk+1/2) & send Qdev
m (Fm(zk+1/2)) to server

14: end for
15: for server do

16: Compute 1
M

M∑
m=1

Qdev
m (Fm(zk+1/2)) & send to devices

17: end for
18: for each device m in parallel do

19: zk+1 = zk − γ · 1
M

M∑
m=1

Qdev
m (Fm(zk+1/2))

20: end for
21: end for

Theorem H.1 Let distributed variational inequality (3) + (4) is solved by Algorithm 9 with unbi-
ased compressor operators (1) on devices with {qdev

m = q}. Let Assumptions 3.4 and 3.5 (SM) are

satisfied. Then the following estimates holds with γ ≤ min
[

µ
48L2 · (1 + q/M)

−1
; 1
4µ

]
:

E‖zK − z∗‖2 ≤
(

1− µγ

2

)K
· ‖z0 − z∗‖2 +

16qγ2

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
;

With Fm(z∗) = 0 we get the following estimates on iteration and bits complexities:

O
([(

1 +
q

M

) L2

µ2

]
log

1

ε

)
, O

([(
1

β
+

q

Mβ

)
L2

µ2

]
log

1

ε

)
.

Proof of Theorem H.1: By a classical analysis of Extra Gradient in the strongly monotone (see [26]
or [11]) case we get

E
[
‖zk+1 − z∗‖2

]
≤ E

[
‖zk − z∗‖2

]
− E

[
‖zk+1/2 − zk‖2

]
− 2γE

[
〈gk+1/2, zk+1/2 − z∗〉

]
+ γ2E

[
‖gk+1/2 − gk‖2

]
,

where gk+1/2 = 1
M

M∑
m=1

Q
(
Fm(xk+1/2)

)
and gk = 1

M

M∑
m=1

Q
(
Fm(xk)

)
. With unbiasedness of

compression we get

E
[
‖zk+1 − z∗‖2

]
≤ E

[
‖zk − z∗‖2

]
− E

[
‖zk+1/2 − zk‖2

]
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− 2γE
[
〈F (zk+1/2), zk+1/2 − z∗〉

]
+ 2γ2E

[
‖gk+1/2 − F (z∗)‖2

]
+ 2γ2E

[
‖F (z∗)− gk‖2

]
.

Then

E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
F (zk)

)
− F (z∗)

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

M

M∑
m=1

[
Q
(
Fm(zk)

)
− Fm(zk) + Fm(zk)

]
− F (z∗)

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
Fm(zk)

)
− Fm(zk)

∥∥∥∥∥
2


+ 2E
∥∥F (zk)− F (z∗)

∥∥2
=

2

M2

M∑
m=1

E
[∥∥Q (Fm(zk)

)
− Fm(zk)

∥∥2]
+

2

M2

M∑
i 6=j

E
[
〈Q
(
Fi(z

k)
)
− Fi(zk), Q

(
Fj(z

k)
)
− Fj(zk)〉

]
+ 2E

[∥∥F (zk)− F (z∗)
∥∥2] .

Using definition of (1), we get

E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
F (zk)

)
− F (z∗)

∥∥∥∥∥
2
 ≤ 2q

M2

M∑
m=1

E
[∥∥Fm(zk)

∥∥2]
+ 2E

[∥∥F (zk)− F (z∗)
∥∥2]

≤ 4q

M2

M∑
m=1

E
[∥∥Fm(zk)− Fm(z∗)

∥∥2]+
4q

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
+ 2

[∥∥F (zk)− F (z∗)
∥∥2] .

With Assumptions 3.4 we get

E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
F (zk)

)
− F (z∗)

∥∥∥∥∥
2
 ≤ 4qL2

M
E
[∥∥zk − z∗∥∥2]+

4q

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
+ 2L2E

[∥∥zk − z∗∥∥2]
≤ 4L2

(
1 +

q

M

)
E
[∥∥zk − z∗∥∥2]+

4q

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
.

The same way we can get

E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
F (zk+1/2)

)
− F (z∗)

∥∥∥∥∥
2
 ≤ 4qL2

M
E
[∥∥zk − z∗∥∥2]+

4q

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
+ 2L2E

[∥∥zk − z∗∥∥2]
≤ 4L2

(
1 +

q

M

)
E
[∥∥∥zk+1/2 − z∗

∥∥∥2]+
4q

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
.

Finally, we obtain

E
[
‖zk+1 − z∗‖2

]
≤ E

[
‖zk − z∗‖2

]
− E

[
‖zk+1/2 − zk‖2

]
− 2γE

[
〈F (zk+1/2), zk+1/2 − z∗〉

]
+ 8γ2L2

(
1 +

q

M

)
E
[∥∥zk − z∗∥∥2]
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+ 8γ2L2
(

1 +
q

M

)
E
[∥∥∥zk+1/2 − z∗

∥∥∥2]+
16qγ2

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
.

With Assumption 3.5(SM) we obtain

E
[
‖zk+1 − z∗‖2

]
≤ E

[
‖zk − z∗‖2

]
− E

[
‖zk+1/2 − zk‖2

]
− 2γµE

[∥∥∥zk+1/2 − z∗
∥∥∥2]+ 8γ2L2

(
1 +

q

M

)
E
[∥∥zk − z∗∥∥2]

+ 8γ2L2
(

1 +
q

M

)
E
[∥∥∥zk+1/2 − z∗

∥∥∥2]+
16qγ2

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
≤ E

[
‖zk − z∗‖2

]
− E

[
‖zk+1/2 − zk‖2

]
− γµE

[∥∥zk − z∗∥∥2]+ 2γµE
[∥∥∥zk+1/2 − zk

∥∥∥2]+ 8γ2L2
(

1 +
q

M

)
E
[∥∥zk − z∗∥∥2]

+ 16γ2L2
(

1 +
q

M

)
E
[∥∥∥zk+1/2 − zk

∥∥∥2]+ 16γ2L2
(

1 +
q

M

)
E
[∥∥zk − z∗∥∥2]

+
16qγ2

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
.

With γ ≤ 1
4µ ; µ

48L2(1+q/M) we have

E
[
‖zk+1 − z∗‖2

]
≤
(

1− γµ+ 24γ2L2
(

1 +
q

M

))
E
[
‖zk − z∗‖2

]
+

16qγ2

M2

M∑
m=1

E
[
‖Fm(z∗)‖2

]
.

Choice γ ≤ µ

48L2(1+ q
M )

finishes the proof.
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