
The Power of First-Order Smooth Optimization for Black-Box
Non-Smooth Problems

Alexander Gasnikov1,2,3, Anton Novitskii1,2, Vasilii Novitskii1, Farshed Abdukhakimov3,
Dmitry Kamzolov3,1, Aleksandr Beznosikov1,4,3, Martin Takáč3, Pavel Dvurechensky5, and

Bin Gu3

1Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia

3Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
4National Research University Higher School of Economics, Moscow, Russian Federation

5Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

March 2, 2023

Abstract

Gradient-free/zeroth-order methods for black-box convex optimization have been extensively
studied in the last decade with the main focus on oracle call complexity. In this paper, besides
the oracle complexity, we focus also on iteration complexity, and propose a generic approach that,
based on optimal first-order methods, allows to obtain in a black-box fashion new zeroth-order
algorithms for non-smooth convex optimization problems. Our approach not only leads to optimal
oracle complexity, but also allows to obtain iteration complexity similar to first-order methods,
which, in turn, allows to exploit parallel computations to accelerate the convergence of our
algorithms. We also elaborate on extensions for stochastic optimization problems, saddle-point
problems, and distributed optimization.

1 Problem Formulation

We consider optimization problem
min

x∈Q⊆Rd
f(x) (1)

in the setting of a zeroth-order oracle. This means that an oracle returns the value f(x) at a
requested point x [13], possibly with some adversarial noise that is uniformly bounded by a small
value ∆ > 0. Let γ > 0 be a small number to be defined later and Qγ := Q+Bd

2(γ), where Bd
2(γ)

is the Euclidean ball with center at 0 and radius γ > 0 in Rd. Using these objects, we make the
following assumptions.1

1Note that, for most of the algorithms in this paper, we can make these assumptions only on the intersection of Qγ
and the ball x0+Bdp(R) for some p ∈ [1, 2], where x0 is the starting point of the algorithm and R = O

(
‖x0 − x∗‖p ln d

)
with x∗ being a solution of (1) closest to x0 [37].

1

ar
X

iv
:2

20
1.

12
28

9v
4

 [
m

at
h.

O
C

]
 1

 M
ar

 2
02

3

• The set Q is convex and the function f is convex on the set Qγ ; 2

• The function f is Lipschitz-continuous with constant M , i.e. |f(y)− f(x)| ≤M‖y − x‖p on Qγ ,
where p ∈ [1, 2] and ‖ · ‖p is the p-norm. If p = 2 we use the notation M2 for the Lipschitz constant.
This class of problems was widely investigated and optimal algorithms in terms of the number

of zeroth-order oracle calls were developed in non-smooth setting [57, 19, 32, 67, 4] and smooth
setting [57, 25, 38]. At the same time, to the best of our knowledge, the development of optimal
algorithms in terms of the number of iterations is still an open research question [19, 10]. The goal
of this paper is to propose a generic approach that allows us to construct algorithms with the best
iteration complexity among the algorithms that have optimal oracle complexity. This can be seen
as a two-criteria optimization problem if one would like to improve both: oracle complexity and
iteration complexity. An important observation of this paper is that there is no need to sacrifice
oracle complexity to obtain better iteration complexity. A special focus is made on the possibility to
use non-Euclidean geometry to define the algorithms.
The simplest and most illustrative result obtained in this work is as follows. Our generic approach
allows to solve problem (1) in the Euclidean geometry in O(d1/4M2R/ε) successive iterations, each
requiring O(d3/4M2R/ε) oracle calls per iteration that can be made in parallel to make the total
working time smaller. The dependence ∼ d1/4/ε corresponds to the first part of the lower bound for
iteration complexity [17, 10] min

{
d1/4ε−1, d1/3ε−2/3

}
. Note that this lower bound is obtained for a

wider class of algorithms that allow Poly
(
d, ε−1

)
oracle calls per iteration. On the contrary, our

algorithm makes minimal possible number of oracle calls in each iteration in such a way that the
total number of oracle calls is optimal.
Due to the page limitation, we next describe the main results and technical details are deferred to
the Appendices.

2 Smoothing Scheme

In this section we describe our main scheme that allows us to develop batch-parallel gradient-free
methods for non-smooth convex problems based on batched-gradient algorithms for smooth stochastic
convex problems. In the following sections, we generalize this scheme to non-smooth stochastic
convex optimization problems and convex-concave saddle-point problems, including the problems
with finite-sum structure.
The first element of our approach is the randomized smoothing for non-smooth objective f . This
approach is rather standard, and goes back to 1970s [27, 53, 70]. The smooth approximation to f is
defined as the function

fγ(x) = Euf(x+ u),

where u ∼ RBd
2(γ), i.e. u is random vector uniformly distributed on Bd

2(γ). The following theorem
is a generalization of the results [78, 18] for non-Euclidean norms.

Theorem 2.1 (properties of fγ). For all x, y ∈ Q, we have
• f(x) ≤ fγ(x) ≤ f(x) + γM2;

2This assumption on the availability of the objective values f in a small vicinity Qγ of the feasible set Q is quite
standard in the literature, see, e.g., [78, 18] and can be established in two ways. The first one is changing the set Q in
problem (1) to a slightly smaller set Q̃ such that Q̃+Bd2 (γ) ⊆ Q, see, e.g., [8]. The second one is the extension of f
to the whole space Rd with preserving the convexity and Lipschitz continuity [61]. More precisely, by changing the
objective to fnew(x) := f

(
projQ(x)

)
+ αminy∈Q ‖x− y‖2.

2

• fγ(x) is M -Lipschitz:
|fγ(y)− fγ(x)| ≤M‖y − x‖p;

• fγ(x) has L =

√
dM

γ
-Lipschitz gradient:

‖∇fγ(y)−∇fγ(x)‖q ≤ L‖y − x‖p,

where q us such that 1/p+ 1/q = 1.

See Appendix A.6 for the proof.
The second very important element of our approach goes back to [67], who proposes a special
unbiased stochastic gradient for fγ with small variance:

∇fγ(x, e) = d
f(x+ γe)− f(x− γe)

2γ
e, (2)

where e ∼ RSd2(1) is a random vector uniformly distributed on Sd2(1) – Euclidean unit sphere with
center at 0 in Rd. To simplify the further derivations, here and below we make a slight abuse of
notation and denote by f the value returned by the oracle, which can be an approximation to the
value of the objective up to a small error, bounded by ∆.

We note that an alternative way to define a stochastic approximation to ∇fγ(x) is based on the
double smoothing technique of B. Polyak [60, 4]. This approach is more complicated and requires
stronger assumptions on the noise ∆ (see Theorem 2.2). Thus, we use the approach of [67].

The following theorem is a combination of the results from [67, 40, 6].

Theorem 2.2 (properties of ∇fγ(x, e)). For all x ∈ Q, we have
• ∇fγ(x, e) is an unbiased approximation for ∇fγ(x):3 Ee [∇fγ(x, e)] = ∇fγ(x);
• ∇fγ(x, e) has bounded variance (second moment):

Ee
[
‖∇fγ(x, e)‖2q

]
≤ κ(p, d) ·

(
dM2

2 +
d2∆2

γ2

)
,

where 1/p+ 1/q = 1 and

κ(p, d) = O
(√

Ee‖e‖4q
)

= O
(

min {q, ln d} d2/q−1
)

=

{
O(1), p = 2 (q = 2)

O ((ln d)/d) , p = 1 (q =∞).

Moreover, if ∆ is sufficiently small, then

Ee
[
‖∇fγ(x, e)‖2q

]
≤ 2κ(p, d)dM2

2 .

See Appendix A.7 for the proof.
3For simplicity, we assume here (and everywhere where we talk about unbiased estimates) that the small noise

in the function value is random (but not not necessary i.i.d.) with zero mean. For the general setting see [6] and
Appendix A.11.

3

Remark 2.3. If the zeroth-order oracle returns an unbiased noisy stochastic function value f(x, ξ)
(Eξf(x, ξ) = f(x)), then with two-point oracle we can introduce the following counterpart of (2)

∇fγ(x, ξ, e) = d
f(x+ γe, ξ)− f(x− γe, ξ)

2γ
e. (3)

Theorem 2.2 remains valid with the appropriate changes of ∇fγ(x, e) to ∇fγ(x, ξ, e), the expectation
Ee to the expectation Ee,ξ, and the redefinition of M2 as a constant satisfying Eξ‖∇xf(x, ξ)‖22 ≤M2

2

for all x ∈ Qγ .
Based on the two elements above, we are now in a position to describe our general approach,

which for shortness, we refer to as the Smoothing scheme (technique).
Assume that we have some batched algorithm A(L, σ2) that solves problem (1) under the assumption
that f is smooth and satisfies

‖∇f(y)−∇f(x)‖q ≤ L‖y − x‖p, ∀x, y ∈ Qγ , (4)

and by using a stochastic first-order oracle that depends on a random variable η and returns at a
point x an unbiased stochastic gradient ∇xf(x, η) with bounded variance:

Eη
[
‖∇xf(x, η)−∇f(x)‖2q

]
≤ σ2. (5)

Further, we assume that, to reach ε-suboptimality in expectation, this algorithm requires N(L, ε)
successive iterations and T (L, σ2, ε) stochastic first-order oracle calls, i.e. A(L, σ2) allows batch-
parallelization with the average batch size B(L, σ2, ε) = T (L, σ2, ε)/N(L, ε).
Our approach consists of applying A(L, σ2) to the smoothed problem

min
x∈Q⊆Rd

fγ(x) (6)

with
γ = ε/(2M2) (7)

and η = e, ∇xf(x, η) = ∇fγ(x, e), where ε > 0 is the desired accuracy for solving problem (1) in
terms of the suboptimality expectation.
According to Theorem 2.1, an (ε/2)-solution to (6) is an ε-solution to the initial problem (1).
According to Theorem 2.1 and (7) we have

L ≤ 2
√
dMM2

ε
, (8)

and, according to Theorem 2.2, we have

σ2 ≤ 2κ(p, d)dM2
2 (9)

if ∆ is sufficiently small.
Thus, we obtain that A(L, σ2) implemented using stochastic gradient (2) is a zeroth-order method
for solving non-smooth problem (1). Moreover, to solve problem (1) with accuracy ε > 0 this method
suffices to make

N

(
2
√
dMM2

ε
, ε

)
successive iterations and

4

2T

(
2
√
dMM2

ε
, 2κ(p, d)dM2

2 , ε

)
zeroth-order oracle calls.

We underline that this approach is flexible and generic as we can take different algorithms as
A(L, σ2). For example, if we take batched Accelerated gradient method [14, 48, 15, 24, 37], then
from (8), (9) we have that

N(L, ε) = O

(√
LR2

ε

)
= O

(
d1/4
√
MM2R
ε

)
, T (L, σ2, ε) = Õ

(
max

{
N(L, ε), σ

2R2

ε2

})
= Õ

(
κ(p,d)dM2

2R
2

ε2

)
,

where Õ (·) is a convergence rate up to a logarithmic factor Here R = O(‖x0 − x∗‖p ln d) with x0

being the starting point and x∗ being the solution to (1) closest to x0. The last equality assumes
also that ε . d−1/4M

3/2
2 R/M1/2 when p = 1.

Theorem 2.4. Based on the batched Accelerated gradient method, the Smoothing scheme applied to
non-smooth problem (1), provides a gradient-free method with

O

(
d1/4
√
MM2R

ε

)
successive iterations and

Õ

(
κ(p, d)dM2

2R
2

ε2

)
=

Õ
(
dM2

2R
2

ε2

)
, p = 2

Õ
(
(ln d)M2

2R
2

ε2

)
, p = 1.

zeroth-order oracle calls.

See Appendix A.8 for the proof.
Next we make several remarks on some related works. First, an important difference between

our Smoothing scheme and the work of [19] is that, unlike them we do not assume the smoothness
of the objective f and we use a different finite-difference approximation (2) due to [67]. Second,
in [64], the authors use a similar smoothing technique to reduce the number of communications in
distributed non-smooth convex optimization algorithms. Unlike their exact first-order oracle setting,
we consider zeroth-order oracle model and construct stochastic approximation to the gradient of
the smoothed function. Finally, the authors of [10] propose a close technique with an accelerated
higher-order method [56, 31, 1] playing the role of A(L, σ2). For the particular setting of p = 2, they
obtain a better in some regimes bound N ∼ d1/3/ε2/3 for the number of iterations. Yet, they have
significantly worse oracle complexity T , which makes it unclear how to use their results in practice.
To sum up, despite some similarities with other works, the proposed Smoothing scheme is, to the
best of our knowledge, new, general, and flexible. Moreover, as we show below it is quite universal
and can be applied to many different problems.

3 Applications Of the Smoothing Scheme

3.1 Stochastic Optimization

Based on Remark 2.3, we can consider the non-smooth stochastic convex optimization problem:

min
x∈Q⊆Rd

{f(x) := Eξf(x, ξ)} (10)

5

with a two-point zeroth-order oracle that returns the values {f(xi, ξ)}2i=1 given two points x1, x2. The
result of Theorem 2.4 still holds4 if M2 is redefined to be a constant satisfying Eξ‖∇xf(x, ξ)‖22 ≤M2

2

for all x ∈ Qγ , η is set to be the pair (ξ, e). e and ξ are independent between iterations with available
samples. Moreover, by using the stochastic gradient clipping [36], we can prove a stronger result and
guarantee ε-suboptimality with high-probability (with exponential concentration) independently of
distribution of ∇xf(x, ξ).

If the two-point feedback as in (3) is not available, our Smoothing technique can utilize the
one-point feedback by using the unbiased estimate [53, 29, 32]:

∇fγ(x, ξ, e) = d
f(x+ γe, ξ)

γ
e,

with [32]

Eξ,e
[
‖∇fγ(x, ξ, e)‖2q

]
≤

{
(q−1)d1+2/qG2

γ2
, q ∈ [2, 2 ln d]

4d(ln d)G2

γ2
, q ∈ (2 ln d,∞),

where γ is defined in (7) and it is assumed that Eξ
[
|f(x, ξ)|2

]
≤ G2 for all x ∈ Qγ . Thus, the

Smoothing technique can be generalized to the one-point feedback setup by replacing the RHS of
(9) by the above estimate. This leads to the same iteration complexity N , but increases the oracle
complexity T , and, consequently, the batch size B at each iteration.

3.2 Finite-sum Problems

As a special case of (10) with ξ uniformly distributed on 1, ...,m, we can consider the finite-sum
(Empirical Risk Minimization) problem

min
x∈Q⊆Rd

f(x) := Eξf(x, ξ) =
1

m

m∑
k=1

fk(x). (11)

Clearly, if we have incremental zeroth-order oracle, i.e. zeroth-order oracle for each fk, we are in the
setting of two-point feedback in the sense of Section 3.1. Thus, we can apply Theorem 2.4, where
M2 is defined as maxk=1,...,m ‖∇fk(x)‖2 ≤M2 for all x ∈ Qγ .

At the same time, problem (11) has specific structure, that allows to split batching among nodes
(to make algorithm centralized distributed among m nodes) if batch size

B =
T

N
' dM2

2R
2/ε2

d1/4M2R/ε
= d3/4

M2R

ε

is greater than m, i.e.5 m . d3/4M2R/ε. As it is known, in Machine Learning applications m can
be as large as O

(
dM2

2R
2/ε2

)
[69, 28] or O

(
M2

2R
2/ε2

)
, if a proper regularization is applied [66, 65].

In both cases m can be very large.
4Note, that for the stochastic optimization problem (10) it is important that A(L, σ2) requires L to be defined

according to (4), rather than as L satisfying

‖∇f(y, ξ)−∇f(x, ξ)‖q ≤ L‖y − x‖p,

for all x, y ∈ Qγ and all ξ. For example, this means that we can not apply the Smoothing technique to batched
Accelerated gradient method with interpolation [77].

5For clarity in this subsection we consider the Euclidean case with p = 2.

6

So, in this case (d3/4M2R/ε . m . d3/2M2
2R

2/ε2), to preserve the total oracle complexity one
can use stochastic Accelerated Variance Reduced algorithms [50, 47, 46, 49] with (see (8), (9))

N(L, ε) = Õ

(
m+

√
mLR2

ε

)
= O

(
d1/4
√
mM2R
ε

)
, T (L, σ2, ε) = Õ

(
max

{
N(L, ε), σ

2R2

ε2

})
=

= Õ
(
dM2

2R
2

ε2

)
.

The number of successive iterations grows, but now m-nodes distribution of batching is possible if

m . B =
T

N
' dM2

2R
2/ε2

d1/4
√
mM2R/ε

= d3/4
M2R√
mε

,

that is

m . d3/2
M2

2R
2

ε2
.

This regime is quite natural for Machine Learning and Statistical applications [65, 68].
The results of this subsection can be generalized to the stochastic optimization problems with
fk(x) := Eξfk(x, ξ), see (Section 3.1).

3.3 Strongly Convex Problems

By using the restart technique [53, 43] we can prove a counterpart of Theorem 2.4 for the case when
f is µ-strongly convex w.r.t. the p-norm for some p ∈ [1, 2] and µ ≥ ε/R2.

Theorem 3.1. Based on the batched Accelerated gradient method, the Smoothing scheme applied to
non-smooth and strongly convex problem (1), provides a gradient-free method with Õ

(
d1/4
√
MM2√
µε

)
successive iterations and Õ

(
κ(p,d)dM2

2
µε

)
zeroth-order oracle calls, where κ(p, d) is bounded as in

Theorem 2.4.
Moreover, the same holds for stochastic optimization problem (10) ifM2 is defined as Eξ‖∇xf(x, ξ)‖22 ≤
M2

2 for all x ∈ Qγ.

See Appendix A.10 for the proof.

3.4 Saddle-point Problems

In this subsection we consider non-smooth convex-concave saddle-point problem

min
x∈Qx⊆Rdx

max
y∈Qy⊆Rdy

f(x, y). (12)

Gradient-free methods for convex-concave saddle-point problems were studied in [8, 7, 34, 63] with
the main focus on the complexity in terms of the number of zeroth-order oracle calls. Unlike these
papers, we focus here also on the iteration complexity.

Applying Smoothing technique separately to x-variables and y-variables, we obtain almost the
same results as for optimization problems with the only difference in Theorem 2.1: instead of

f(x) ≤ fγ(x) ≤ f(x) + γM2

7

we have
f(x, y)− γyM2,y ≤ fγ(x, y) ≤ f(x, y) + γxM2,x.

This leads to a clear counterpart of (7) for choosing γ = (γx, γy), where M2,x, M2,y – corresponding
Lipschitz constants in 2-norm.

If we take as A(L, σ2) the batched Mirror-Prox or the batched Operator extrapolation method
or the batched Extragradient method [41, 44, 35], using (8), (9), we obtain the following bounds

N(L, ε) = O
(
LR2

ε

)
= O

(√
dMM2R2

ε2

)
, T (L, σ2, ε) = O

(
max

{
N(L, ε), σ

2R2

ε2

})
= O

(
κ(p,d)dM2

2R
2

ε2

)
,

where d = max{dx, dy}, M2 = max {M2,x,M2,y}, R depends on the criteria. For example, if ε is
expected accuracy in fair duality gap [41], then R is a diameter in p-norm of Qx ⊗ Qy up to a
ln d-factor, where ⊗ is a Cartesian product of two sets. The last equality assumes that d . (M2/M)2

when p = 1. This result is also correct for stochastic saddle-point problems with proper redefinition
of what is M2, see Section 3.1.
We see that due to the lack of acceleration for saddle-point problems the batch-parallelization effect
is much more modest than for convex optimization problems.
By using the restart technique we can generalize these results to µ-strongly convex, µ-strongly
concave case, see Section 3.3. Alternatively, we can combine the Smoothing technique with Stochastic
Accelerated Primal-Dual method from [81] for (12) with f(x, y) being µx-strongly convex and
µy-strongly concave in 2-norm (Euclidean setup). In this case we obtain the following bounds

N({L}, ε) = Õ
(
Lxx
µx

+
max{Lxy ,Lyx}√

µxµy
+

Lyy
µy

)
= Õ

(√
dxM2

2,x

µxε
+

M2,xM2,y max{√dx,
√
dy}√

µxµyε
+

√
dyM2

2,y

µyε

)
,

T ({L}, {σ2}, ε) = Õ
(

max
{
N({L}, ε), σ

2
x

µxε
+

σ2
y

µyε

})
= Õ

(
dxM2

2,x

µxε
+

dyM2
2,y

µyε

)
,

where we use subscripts corresponding to x or y variables, e.g. Lxx, Lxy, Lyx, Lyy is defined as

‖∇xfγ(x2, y)−∇xfγ(x1, y)‖2 ≤ Lxy‖x2 − x1‖2

‖∇xfγ(x, y2)−∇xfγ(x, y1)‖2 ≤ Lxy‖y2 − y1‖2
‖∇yfγ(x2, y)−∇yfγ(x1, y)‖2 ≤ Lyx‖x2 − x1‖2
‖∇yfγ(x, y2)−∇yfγ(x, y1)‖2 ≤ Lyy‖y2 − y1‖2

for all (x, y) ∈ Qx,γx ⊗Qy,γy . The only non-trivial calculation here is estimation of Lxy, Lyx, see
Appendix A.9 for the proof. The other constants {L} and {σ2} are defined according to the standard
Smoothing scheme with variables x or y corresponding to subscripts.
Note, that most of the results for saddle-point problems (i.e. mentioned result from [81] or finite-sum
composite generalization [75]) with different constants of smoothness and strong convexity/concavity
were obtained based on the Accelerated gradient method for convex problems and Catalyst envelope,
that allows us to generalize it to saddle-point problems [52]. There exist also loop-less (direct)
accelerated methods that save ln(ε−1)-factor in the complexity, for µx-strongly convex, µy-strongly
concave saddle-point problems [45]. But even for composite bilinear saddle-point problems (with
different smoothness and strong convexity constants) there is still a gap between the state-of-the-art
upper bounds [45] and lower bounds [80].

8

3.5 Distributed Optimization

In decentralized distributed convex optimization and convex-concave saddle-point problems optimal
methods (both in terms of communication rounds and oracle calls) were developed in the Euclidean
setup, see, e.g. surveys [39, 20]. In particular, there exists a batched-consensus-projected Accelerated
gradient method [62] that, for µ-strongly convex in 2-norm f from (11) with L-Lipschitz gradient in
2-norm, requires

N(L, ε) = Õ

(√
χ
L

µ

)
= Õ

(√
χd1/4M2√

µε

)
communication rounds and

T (L, σ2, ε) = Õ

(
max

{
N(L, ε),

σ2

µε2

})
= Õ

(
dM2

2

µε

)
oracle calls per node, where M2 is defined in Section 3.2, χ – condition number of the Laplace matrix
of communication network or square of worst-case condition number for time-varying networks [62].
This batched-consensus-projected Accelerated gradient method is optimal (up to a ln(ε−1)-factor)
as a decentralized method, but the Smoothing technique provides a gradient-free method that is
not the best (state-of-the-art) method in terms of communication rounds. The best one requires
Õ
(√
χM2/

√
µε
)
communication rounds [6]. This holds for stochastic decentralized convex problems

with two-point feedback and one-point feedback. For the one-point feedback, optimal decentralized
method is described in [71]. This method is better also by a ∼ d1/4-factor in terms of the number of
communication rounds.
For saddle-point problems, by replacing in the Smoothing scheme the batched-consensus Accelerated
gradient method [62], which is optimal for decentralized convex problems, with the batched-consensus
Extragradient method [9], which is optimal for decentralized convex-concave saddle-point problems,
we lose a ∼

√
d-factor in the number of communication rounds in comparison with optimal gradient-

free methods for non-smooth decentralized saddle-point problems.
To sum up, in distributed optimization, for the first time, we have a situation where the Smoothing
scheme generates a non-optimal method from an optimal one.

4 Discussion

4.1 Superposition Of Different Techniques

In convex optimization and convex-concave saddle-point problems there are several generic techniques
that allow black-box reduction of known methods to develop new methods for new problem classes
[30]. For example, the Restart technique mentioned in Section 3.3 allows to construct methods for
strongly convex problems based on methods for convex problems; the Catalyst envelope mentioned in
Section 3.4 allows to construct methods for convex-concave saddle-point problems based on methods
developed for convex optimization problems; Batching technique mentioned in Section 2 allows to
construct methods for stochastic problems based on methods developed for deterministic problems;
Consensus-projection technique mentioned in Section 3.5 allows to build decentralized distributed
methods for convex problems based on non-decentralized methods developed for non-decentralized
convex problems.
The first important property of all these reduction techniques, informally speaking, is that all of

9

them preserve the optimality of the method: an optimal method after applying any of the techniques
becomes optimal [30] for the new class of problems. We remark that the Catalyst envelope leads
to optimal algorithms only on a certain (yet large enough) class of problems, see Section 3.4 for
details. Also, when considering saddle-point problems with different strong convexity constants, it
is better to use a direct method rather than the Restart technique. Despite these limitations, the
optimality-preserving property is very useful in practice.
The second important property is that a superposition or different combination of these reduction
techniques also preserves the optimality of algorithms. This can be demonstrated via the batched-
consensus-projected Accelerated gradient method from Section 3.5. This algorithm is obtained
via a combination of the Batching technique and the Consensus-projection technique applied to
Accelerated gradient method. Moreover, the Restart technique can be added to this combination in
order to obtain the algorithm for strongly convex problems.
Note that in some cases these techniques require a proper generalization before they can be applied as
a part of combination. For example, when we generalize the batched-consensus-projected Accelerated
gradient method to saddle-point problems, instead of the standard Catalyst envelope developed in
this context in [52], we should use a special decentralized stochastic (batched) version of the Catalyst
envelope, that can be developed from [46, 74].
We expect that the Smoothing scheme (technique) developed in this paper will take its rightful place
in the mentioned above (not exhaustive) list of useful reduction techniques that allow us to develop
new methods based on existing ones.
In the previous (sub)sections we demonstrated that the Smoothing scheme is quite generic and allows
a black box reduction of algorithms for smooth problems to solve non-smooth problems. Moreover,
except the combination with Consensus-projection technique, the Smoothing scheme allows to obtain
optimal algorithms for non-smooth black-box problems with zeroth-order oracle. Thus, as one of
our main contributions in this paper, we consider the observation that the Smoothing
scheme can be developed in a such a way, that it can be used in different combinations
with other reduction techniques.

4.2 Batching Technique

In the Smoothing scheme an input algorithm should be a batched-gradient algorithm, and, thus,
the Smoothing scheme strongly depends on the Batching technique, which we now describe in more
detail. In Section 2 we mentioned some particular algorithms [14, 48, 15, 24] which do not constitute
a generic technique that allows us to utilize an arbitrary algorithm, which solves a deterministic
smooth convex problem. Some attempts to propose a generic Batching technique were made [23, 30]
in a much more general setting of inexact models of the objective, which we do not consider here.
Instead, we describe here a simple version in the convex case and for the Euclidean setting with
p = 2.
First of all, following [15, 23, 20] we introduce the notion of (δ1, δ2, L)-oracle. We say that for the
problem (1) we have an access to (δ1, δ2, L)-oracle at a point x if we can evaluate a vector ∇δf(x)
such that, for all x, y ∈ Qγ ,

−δ1 ≤ f(y)− f(x)− 〈∇δf(x), y − x〉 ≤ L

2
‖y − x‖22 + δ2,

where Eδ1 = 0 (δ1 is independently taken at each oracle call), Eδ2 ≤ δ. Note that the left inequality

10

corresponds to the definition of δ1-(sub)gradient [60] and reduces to the convexity property in the
case δ1 = 0. In this case the LHS holds with ∇δf(x) = ∇f(x). The right inequality in the case
when δ2 = 0 is a consequence6 of (4). Let us consider an algorithm A(L, δ1, δ2) that converges with
the rate7

Ef(xN)− f(x∗) = O

(
LR2

Nα
+Nβδ

)
. (13)

The batching technique, applied to the problem (10) with L-Lipschitz gradient (in 2-norm), is based
on the use of the mini-batch stochastic approximation of the gradient

∇δf(x) =
1

r

r∑
j=1

∇xf(x, ξj)

in A(L, δ1, δ2), where {ξj}rj=1 are sampled independently and r is an appropriate batch size. The
choice of r is based on the following relations

〈∇δf(x)−∇f(x), y − x〉 ≤

≤ 1

2L
‖∇δf(x)−∇f(x)‖22 +

L

2
‖y − x‖22,

E{ξj}
[
‖∇δf(x)−∇f(x)‖22

]
≤ σ2

r
,

where σ2 is the variance of ∇xf(x, ξ), see (5). Hence, if

δ ≤ 1

2L
max
x∈Qγ

E{ξj}rj=1

[
‖∇δf(x)−∇f(x)‖22

]
, i.e.

δ = σ2

2Lr , we have that A(2L, δ1, δ2) converges with the rate given in (13). From (13) we see that to
obtain

Ef(xN)− f(x∗) ≤ ε

it suffices to take

N = O

((
LR2

ε

)1/α
)

and r = O

(
σ2Nβ

Lε

)
.

In particular, for the Accelerated gradient method we have that α = 2, β = 1 [15, 23]. In this case,
we obtain the complexity bounds for batched Accelerated gradient methods mentioned in Section 2:

N = O
(√

LR2/ε
)
, B = r = O

(
σ2R/

(√
Lε3/2

))
, T = N ·B = O

(
σ2R2/ε2

)
.

Note that, based on [72], the described above Batching technique can be applied to saddle-point
problems. In particular, this allows to obtain new methods for stochastic bilinear saddle-point
problems with composites based on the state-of-the-art method of [45]. The latter method, for the
considered class of problems, works better than Stochastic Accelerated Primal-Dual method [81]

6Note, that the right inequality in the case when δ2 = 0 is not equivalent to (4), but is typically sufficient to obtain
optimal (up to constant factors) bounds on the rate of convergence of different methods [73].

7N is a number of iterations which up to a constant factor is equal to the number of (δ1, δ2, L)-oracle calls and x∗
is a solution of (1). We can consider more specific rates of convergence for problems with additional structure and
develop Batching technique in a similar way.

11

which we use in Section 3.4.
Interestingly, our Smoothing scheme is not the only technique for reduction of algorithms for smooth
convex problems to algorithms for non-smooth convex problems. Universal Nesterov’s technique
from [55] claims that if f is M2-Lipschitz, then, for arbitrary δ > 0,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22 + δ,

with L = M2
2 /(2δ). Based on this observation, a generic reduction of algorithms with inexact

gradient for smooth convex problems to algorithms for non-smooth problems is possible. Although
it may seem that this approach combined with full gradient approximation by finite-differences [5]
can be applied for our setting, it is not the case. Firstly, since L = M2

2 /(2δ) and for Accelerated
gradient method δ should be such that Nδ ' ε, since β = 1, we obtain that L ∼ ε−3/2, rather
than L ∼ ε−1 that we have in our Smoothing scheme. Secondly, the full gradient approximation by
finite-differences provably works for smooth objective f [5], which is not our case.
Thus, the proposed Smoothing scheme is better than alternative approaches based on other smoothing
techniques such as the Universal Nesterov’s technique [55], Nesterov’s smoothing via regularization
of dual problem [54] and its different generalizations [16, 58, 76], which are designed and work good
in the setting of first-order methods, but lead to inferior complexity in the zeroth-order setting.
Unlike these approaches, our Smoothing scheme achieves the best known complexity in terms of the
successive iterations number with the best possible number of zeroth-order oracle calls.

5 Experiments

5.1 Reinforcement learning

Reinforcement Learning (RL) is one of the key motivations for the proposed approach. We focus in
this section on the Actor-Critic architecture and assume that the Critic is available to the Actor
during training through a black-box oracle. This situation naturally motivates the application of
zeroth-oder methods in which we only have access to function values. Moreover, the optimization
problem is stochastic and may be convex or non-convex, smooth or non-smooth. Our RL experiments
are carried out in the environment called "Reacher-v2," which is provided by the Open AI Gym
toolkit. The network structure is described in Appendix A.2. We use PyTorch ADAM optimizer
with three alternative inexact gradients for the Actor learning problem: exact gradient (Gradient),
central finite difference (Central) from (2) and forward finite difference (Forward) defined as

∇fγ(x, e) = d
f(x+ γe)− f(x)

γ
e. (14)

For a better visualization, we plot the moving average of the reward with a window size of 250.
Figure 1 shows the convergence of our methods.

5.2 Robust Linear Regression

Least absolute deviation (LAD) is a non-smooth convex problem, one of the variant of a robust
linear regression [79]. It is more robust to outliers in data than the standard Linear Regression. The
problem statement is

min
w∈Rd

{f(w) = 1
n

∑m
k=1|xTi w − yi|}, (15)

12

Figure 1: Actor’s reward for ADAM with Forward and Central differences for various γ and exact
gradient ADAM. lr= 1e-5.

Figure 2: Loss for abalone scale dataset with batch size = 100, learning rate is 0.1 and γ =1e-5.

where (xi, yi) are feature and target pairs. For the experiments we take simple dataset "abalone scale"
from the LibSVM [11]. For this problem, we also implement ZO method with central coordinate and
forward coordinate finite differences for the comparison. Their full definitions can be found in the
Appendix A.3. Figure 2 shows the convergence of our methods.

5.3 Support Vector Machine

Support Vector Machine (SVM) is one of the classical classification algorithms that is still very
popular. The problem statement is:

min
w∈Rd

{f(w) = µ
2‖w‖

2 + 1
n

∑m
k=1(1− yi · xTi w)+}, (16)

where (xi, yi) are feature and label pairs. We use the LibSVM basic dataset "a9a" for our experiments
with this problem. Figure 3 shows the convergence of our methods.

5.4 Conclusion on Experiments

We run experiments with 4 different seeds ranging from 0 to 3 and present mean values as a main
line and a light filling between the maximum and minimum values. The Figures 1, 2 and 3 show
that with a decent choice of γ, ADAM with zeroth-order oracle works nearly as well as ADAM with
exact gradient. Central and Forward differences outperform their coordinate versions, as it can be
seen from Figures 2 and 3. The effect of computational instability appears for tiny γ since x is too
close to x+ γe and we reach the machine precision when computing the function value. However,

13

Figure 3: Loss for a9a dataset with µ =1e-05, batch size = 100, lr = 0.1. γ =1e-5.

Figure 1 demonstrates that the Central approximation is more robust than Forward to such errors
since the distance between points is twice larger than in the Forward case. All these plots show that
our approach is applicable and can compete with gradient-based methods. For more experiments,
see Appendixes A.2, A.3, A.4.

Conclusion

This paper is devoted to the development of a universal smoothing scheme that allows us to construct
efficient zeroth-order/gradient-free methods for non-smooth problems based on batched-gradient
methods for smooth problems. This scheme preserves the efficiency of the input methods transferring
it to the output zeroth-order method. Our smoothing scheme combines well with many other
reduction techniques (batching, restarts, Catalyst acceleration for saddle-point problems, consensus-
projection for decentralized distributed algorithms) that allows us to obtain via our scheme many
algorithms for a wide class of non-smooth problems. As a future work we mention adaptive [21, 26]
and inexact model [72] (composite, max-structure, etc.) generalizations. Another generalization
consist in replacing 2-sphere randomization on 1-sphere randomization in smoothing scheme [33]. In
some special regimes such randomization allows to improve complexity estimates on a logarithmic
factor [2].

Acknowledgements

The work of A. Gasnikov was supported by a grant for research centers in the field of artificial
intelligence, provided by the Analytical Center for the Government of the Russian Federation in
accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the
agreement with the Ivannikov Institute for System Programming of the Russian Academy of Sciences
dated November 2, 2021 No. 70-2021-00142.

References

[1] A. Agafonov, D. Kamzolov, P. Dvurechensky, and A. Gasnikov. Inexact tensor methods and
their application to stochastic convex optimization. arXiv preprint arXiv:2012.15636, 2020.

14

[2] A. Akhavan, E. Chzhen, M. Pontil, and A. B. Tsybakov. A gradient estimator via l1-
randomization for online zero-order optimization with two point feedback. arXiv preprint
arXiv:2205.13910, 2022.

[3] A. Akhavan, M. Pontil, and A. Tsybakov. Exploiting higher order smoothness in derivative-free
optimization and continuous bandits. Advances in Neural Information Processing Systems,
33:9017–9027, 2020.

[4] A. S. Bayandina, A. V. Gasnikov, and A. A. Lagunovskaya. Gradient-free two-point methods
for solving stochastic nonsmooth convex optimization problems with small non-random noises.
Automation and Remote Control, 79(8):1399–1408, 2018.

[5] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. arXiv:1905.01332, 2019.

[6] A. Beznosikov, E. Gorbunov, and A. Gasnikov. Derivative-free method for composite opti-
mization with applications to decentralized distributed optimization. IFAC-PapersOnLine,
53(2):4038–4043, 2020.

[7] A. Beznosikov, V. Novitskii, and A. Gasnikov. One-point gradient-free methods for smooth and
non-smooth saddle-point problems. In International Conference on Mathematical Optimization
Theory and Operations Research, pages 144–158. Springer, 2021.

[8] A. Beznosikov, A. Sadiev, and A. Gasnikov. Gradient-free methods with inexact oracle for
convex-concave stochastic saddle-point problem. In International Conference on Mathematical
Optimization Theory and Operations Research, pages 105–119. Springer, 2020.

[9] A. Beznosikov, V. Samokhin, and A. Gasnikov. Distributed saddle-point problems: Lower
bounds, optimal and robust algorithms, 2020.

[10] S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, A. Sidford, et al. Complexity of highly parallel non-smooth
convex optimization. Advances in neural information processing systems, 2019.

[11] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

[12] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo. Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, Nov 2017.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
Society for Industrial and Applied Mathematics, 2009.

[14] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via accelerated
gradient methods. Advances in Neural Information Processing Systems, 24:1647–1655, 2011.

[15] O. Devolder. Exactness, inexactness and stochasticity in first-order methods for large-scale
convex optimization. PhD thesis, PhD thesis, 2013.

[16] O. Devolder, F. Glineur, and Y. Nesterov. Double smoothing technique for large-scale linearly
constrained convex optimization. SIAM Journal on Optimization, 22(2):702–727, 2012.

15

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[17] J. Diakonikolas and C. Guzmán. Lower bounds for parallel and randomized convex optimization.
J. Mach. Learn. Res., 21:5–1, 2020.

[18] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[19] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information
Theory, 61(5):2788–2806, 2015.

[20] D. Dvinskikh and A. Gasnikov. Decentralized and parallel primal and dual accelerated methods
for stochastic convex programming problems. Journal of Inverse and Ill-posed Problems,
29(3):385–405, 2021.

[21] D. Dvinskikh, A. Ogaltsov, A. Gasnikov, P. Dvurechensky, and V. Spokoiny. On the line-search
gradient methods for stochastic optimization. IFAC-PapersOnLine, 53(2):1715–1720, 2020. 21st
IFAC World Congress.

[22] D. Dvinskikh, V. Tominin, Y. Tominin, and A. Gasnikov. Gradient-free optimization for
non-smooth minimax problems with maximum value of adversarial noise. arXiv preprint
arXiv:2202.06114, 2022.

[23] D. Dvinskikh, A. Tyurin, A. Gasnikov, and S. Omelchenko. Accelerated and nonaccelerated
stochastic gradient descent with model conception. Math. Notes, 108(4):511–522, 2020.

[24] P. Dvurechensky and A. Gasnikov. Stochastic intermediate gradient method for convex problems
with stochastic inexact oracle. Journal of Optimization Theory and Applications, 171(1):121–145,
2016.

[25] P. Dvurechensky, E. Gorbunov, and A. Gasnikov. An accelerated directional derivative method
for smooth stochastic convex optimization. European Journal of Operational Research, 290(2):601–
621, 2021.

[26] A. Ene, H. L. Nguyen, and A. Vladu. Adaptive gradient methods for constrained convex
optimization and variational inequalities. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(8):7314–7321, May 2021.

[27] Y. Ermoliev. Stochastic programming methods, 1976.

[28] V. Feldman. Generalization of erm in stochastic convex optimization: The dimension strikes
back. Advances in Neural Information Processing Systems, 29:3576–3584, 2016.

[29] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit
setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 385–394, 2005.

[30] A. Gasnikov. Universal gradient descent. MCCME, arXiv:1711.00394, 2021.

[31] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C. A. Uribe,
B. Jiang, H. Wang, S. Zhang, S. Bubeck, et al. Near optimal methods for minimizing convex
functions with lipschitz p-th derivatives. In Conference on Learning Theory, pages 1392–1393.
PMLR, 2019.

16

[32] A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko.
Stochastic online optimization. single-point and multi-point non-linear multi-armed bandits.
convex and strongly-convex case. Automation and remote control, 78(2):224–234, 2017.

[33] A. V. Gasnikov, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko. Gradient-free
proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems
on the simplex. Automation and Remote Control, 77(11):2018–2034, 2016.

[34] E. Gladin, A. Sadiev, A. Gasnikov, P. Dvurechensky, A. Beznosikov, and M. Alkousa. Solving
smooth min-min and min-max problems by mixed oracle algorithms. In International Conference
on Mathematical Optimization Theory and Operations Research. Springer, 2021.

[35] E. Gorbunov, H. Berard, G. Gidel, and N. Loizou. Stochastic extragradient: General analysis
and improved rates, 2021.

[36] E. Gorbunov, M. Danilova, and A. Gasnikov. Stochastic optimization with heavy-tailed noise
via accelerated gradient clipping. Advances in Neural Information Processing Systems, 33:15042–
15053, 2020.

[37] E. Gorbunov, D. Dvinskikh, and A. Gasnikov. Optimal decentralized distributed algorithms for
stochastic convex optimization. arXiv preprint arXiv:1911.07363, 2019.

[38] E. Gorbunov, P. Dvurechensky, and A. Gasnikov. An accelerated method for derivative-free
smooth stochastic convex optimization. SIAM J. Optim. arXiv:1802.09022, 2022.

[39] E. Gorbunov, A. Rogozin, A. Beznosikov, D. Dvinskikh, and A. Gasnikov. Recent theoretical
advances in decentralized distributed convex optimization. arXiv preprint arXiv:2011.13259,
2020.

[40] E. Gorbunov, E. A. Vorontsova, and A. V. Gasnikov. On the upper bound for the expectation of
the norm of a vector uniformly distributed on the sphere and the phenomenon of concentration
of uniform measure on the sphere. Mathematical Notes, 106, 2019.

[41] A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

[42] A. Juditsky and A. S. Nemirovski. Large deviations of vector-valued martingales in 2-smooth
normed spaces. arXiv preprint arXiv:0809.0813, 2008.

[43] A. Juditsky and Y. Nesterov. Deterministic and stochastic primal-dual subgradient algorithms
for uniformly convex minimization. Stochastic Systems, 4(1):44–80, 2014.

[44] G. Kotsalis, G. Lan, and T. Li. Simple and optimal methods for stochastic variational inequalities,
i: operator extrapolation. arXiv preprint arXiv:2011.02987, 2020.

[45] D. Kovalev, A. Gasnikov, and P. Richtárik. Accelerated primal-dual gradient method for smooth
and convex-concave saddle-point problems with bilinear coupling, 2021.

[46] A. Kulunchakov. Optimisation stochastique pour l’apprentissage machine à grande échelle:
réduction de la variance et accélération. PhD thesis, Université Grenoble Alpes, 2020.

17

[47] A. Kulunchakov and J. Mairal. Estimate sequences for variance-reduced stochastic composite
optimization. In International Conference on Machine Learning, pages 3541–3550. PMLR, 2019.

[48] G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1):365–397, 2012.

[49] G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020.

[50] G. Lan and Y. Zhou. Random gradient extrapolation for distributed and stochastic optimization.
SIAM Journal on Optimization, 28(4):2753–2782, 2018.

[51] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning, 2019.

[52] T. Lin, C. Jin, and M. I. Jordan. Near-optimal algorithms for minimax optimization. In
J. Abernethy and S. Agarwal, editors, Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pages 2738–2779. PMLR,
09–12 Jul 2020.

[53] A. Nemirovsky and D. Yudin. Problem complexity and method efficiency in optimization.-j.
wiley & sons, new york. 1983.

[54] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[55] Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

[56] Y. Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathematical
Programming, 186(1):157–183, 2021.

[57] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17(2):527–566, 2017.

[58] Q. V. Nguyen, O. Fercoq, and V. Cevher. Smoothing technique for nonsmooth composite
minimization with linear operator. arXiv:1706.05837, 2017.

[59] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

[60] B. T. Polyak. Introduction to optimization. optimization software. Inc., Publications Division,
New York, 1, 1987.

[61] A. Risteski and Y. Li. Algorithms and matching lower bounds for approximately-convex
optimization. Advances in Neural Information Processing Systems, 29:4745–4753, 2016.

[62] A. Rogozin, M. Bochko, P. Dvurechensky, A. Gasnikov, and V. Lukoshkin. An accelerated
method for decentralized distributed stochastic optimization over time-varying graphs. 2021
IEEE Conference on Decision and Control (CDC). arXiv:2103.15598, 2021.

[63] A. Sadiev, A. Beznosikov, P. Dvurechensky, and A. Gasnikov. Zeroth-order algorithms for
smooth saddle-point problems. In International Conference on Mathematical Optimization
Theory and Operations Research, pages 71–85. Springer, 2021.

18

[64] K. Scaman, F. Bach, S. Bubeck, Y. Lee, and L. Massoulié. Optimal convergence rates for convex
distributed optimization in networks. Journal of Machine Learning Research, 20:1–31, 2019.

[65] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[66] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In
COLT, volume 2, page 5, 2009.

[67] O. Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. The Journal of Machine Learning Research, 18(1):1703–1713, 2017.

[68] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on stochastic programming: modeling
and theory. SIAM, 2021.

[69] A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems. In
Continuous optimization, pages 111–146. Springer, 2005.

[70] J. C. Spall. Introduction to stochastic search and optimization: estimation, simulation, and
control, volume 65. John Wiley & Sons, 2005.

[71] I. Stepanov, A. Voronov, A. Beznosikov, and A. Gasnikov. One-point gradient-free methods for
composite optimization with applications to distributed optimization, 2021.

[72] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa,
D. Pasechnyuk, S. Artamonov, and V. Piskunova. Inexact model: a framework for optimization
and variational inequalities. Optimization Methods and Software, 0(0):1–47, 2021.

[73] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161(1):307–345,
2017.

[74] Y. Tian, G. Scutari, T. Cao, and A. Gasnikov. Acceleration in distributed optimization under
similarity, 2021.

[75] V. Tominin, Y. Tominin, E. Borodich, D. Kovalev, A. Gasnikov, and P. Dvurechensky. On
accelerated methods for saddle-point problems with composite structure. arXiv preprint
arXiv:2103.09344, 2021.

[76] Q. Tran-Dinh. Adaptive smoothing algorithms for nonsmooth composite convex minimization.
Computational Optimization and Applications, 66(3):425–451, 2017.

[77] B. Woodworth and N. Srebro. An even more optimal stochastic optimization algorithm:
Minibatching and interpolation learning. arXiv preprint arXiv:2106.02720, 2021.

[78] F. Yousefian, A. Nedić, and U. V. Shanbhag. On stochastic gradient and subgradient methods
with adaptive steplength sequences. Automatica, 48(1):56–67, 2012.

[79] C. Yu and W. Yao. Robust linear regression: A review and comparison. Communications in
Statistics-Simulation and Computation, 46(8):6261–6282, 2017.

19

[80] J. Zhang, M. Hong, and S. Zhang. On lower iteration complexity bounds for the convex concave
saddle point problems. Mathematical Programming, pages 1–35, 2021.

[81] X. Zhang, N. S. Aybat, and M. Gurbuzbalaban. Robust accelerated primal-dual methods for
computing saddle points. arXiv preprint arXiv:2111.12743, 2021.

20

Figure 4: Comparison of different zeroth-order algorithms for generating n = 50 adversarial examples
for digit class "4" with λ = 0.1. Left: Loss (18) with Central, Forward, Central Coord and Forward
Coord where lr = 0.01 and γ = 0.01. Right: Distortion(1n

∑n
i=1 ‖aadvi − ai‖2) average in n = 50

generated adversarial examples.

A Appendix

A.1 Additional Experiments: Adversarial Attack

Adversarial attack is aimed to generate input images with unobtrusive interference introduced to them
to deceive a well trained classifier. These adversarial examples are created to recognize the robustness
of models. In our experiments, we used ZO methods to generate adversarial examples targeted at a
black-box model trained to solve a task of classification of MNIST dataset of handwritten digits.
The output of this model is F (·) = [F1(·), . . . , FK(·)], where Fk(·) is a prediction score of the kth

class. A correctly classified sample image ai is taken from the dataset and its adversarial example is
produced as follows:

aadvi = 0.5 tanh(tanh−1(2ai) + x) (17)

Next, we apply the same individual attacking loss utilized in [12]:

fi(x) = max{logFyi(a
adv
i)−max

t6=yi
logFt(a

adv
i), 0}+ λ‖aadvi − ai‖2 (18)

In our experiments we used sample images for digit class "1" and "4" and set their regularization
parameters as λ = 1 and λ = 0.1 respectively.

Figure 4 shows that methods with coordinate steps require more function computations to
converge which is justified by large d. This can also be observed in Table 1 where randomly generated
adversarial examples were classified similarly by target model, although it is clear that each method
produces different result.

All the experiments were conducted in Python 3 and PyTorch 1.10.1 on an Ubuntu 20.04.3 LTS
machine with Intel(R) Xeon(R) Silver 4215 CPU @ 2.50GHz and 125 GB RAM.

A.2 Additional Experiments: RL experiments

Our RL experiments are carried out in an environment called "Reacher-v2," which is provided by
the Open AI Gym toolkit. This environment simulates an agent (2 DOF robotic arm) tasked with

21

Table 1: Generated adversarial examples for digit “1” class from a random batch of n = 10 images,
where image distortion is defined as 1

n

∑n
i=1 ‖aadvi − ai‖2.

Image ID 7 10 13 18 19 20 21 22 28 29 Image distortion

Original

Central 5.0107

Classified as 4 6 7 4 8 8 8 3 8 8

Forward 5.1004

Classified as 4 6 7 4 8 8 8 3 8 8

Central Coord 4.6761

Classified as 4 6 7 4 8 8 8 3 8 4

Forward Coord 4.4163

Classified as 4 6 7 4 8 8 8 3 8 8

reaching a particular target (red sphere) in a 2D square space. The target is placed at random
at the start of each episode. So, the action belongs to continuous space. Implementation of Deep
Deterministic Policy Gradients (DDPG) algorithm from [51] is used to train the Actor-Critic agent.
This policy π : S → A takes the state of a current environment and maps it to a predicted action.
The Actor and Critic networks are made up of two hidden layers of fully-connected neural networks
with h1 = 400 and h2 = 300 neurons with relu activation functions. To match the constraints of
available actions, the Actor’s output is also scaled by tanh activation multiplied by the maximum
allowed action.

Figure 5 shows the dependence of ZO methods on γ. One can see that: for a fitted learning
rate = 0.0001 at the right side of 5, methods converge for all γ; for a small learning rate =1e-5
at 1, methods converge for all γ except the smallest γ =1e-7; for a big learning rate = 0.001 at
the left side of 5, Gradient method converges but all ZO methods collect errors and slowly diverge;
for a huge learning rate = 0.01 at the right side of 6, all methods diverge. As a result, we find a
regime where ZO methods are stable and very close to gradient methods, but also, we find a regime
where gradient method converges and ZO methods diverge. The left side of 6 shows that all gradient
methods in our experiments converge to the same level. Figure 7 is made for a detailed look on
regime with a huge learning rate = 0.01 at the left side of 5.

A.3 Additional Experiments: Robust Linear Regression

For the learning, we divide dataset "abalone scale" into two parts, where the part for training is
3500 samples. The dimension of features equals to 8. So, it is a very small dataset. We take dataset
with such small dimension to compare Forward and Central with their variants of coordinate steps
that depend on dimension.

22

Figure 5: Left: Actor’s reward for ADAM with Forward and Central with various γ and true gradient
ADAM, where lr = 0.001.
Right: Actor’s reward for ADAM with Forward and Central with various γ and true gradient ADAM,
where lr = 0.0001.

Figure 6: Left: Actor’s reward for true gradient ADAM with different learning rates.
Right: Actor’s reward for 25000 iterations of ADAM with Forward and Central finite difference with
various γ = 1e− 5 and true gradient ADAM, where lr = 0.01.

Figure 7: Left: Actor’s reward for ADAM with Forward and Central for γ = 1e− 3 and true gradient
ADAM, where lr = 0.001.
Middle: Actor’s reward for ADAM with Forward and Central for for γ = 1e− 5 and true gradient
ADAM, where lr = 0.001.
Right: Actor’s reward for ADAM with Forward and Central for γ = 1e− 7 and true gradient ADAM,
where lr = 0.001.

23

Figure 8: Left: Loss for abalone scale dataset with lr = 0.4 batch size = 100, γ =1e-5, and different
µ.
Right: Loss for abalone scale dataset with lr = 0.4 batch size = 100, µ = 0. and different γ.

The Central Coordinate is a zero-order finite difference such that we take (2) approximation d
times by each coordinate. Hence, we get 2d function computations per each step.

The Forward Coordinate is a zero-order finite difference such that we take (14) approximation d
times by each coordinate. Hence, we get d+ 1 function computations per each step.

As a result, coordinate steps are more accurate approximation of the gradient but also, they are
more expansive computationally. We also add some graphics for Robust Linear Regression with
different parameters.

A.4 Additional Experiments: Support Vector Machine

In this subsection one can see additional graphics for SVM with different parameters.
Figure 10 compares performance of ZO methods for a9a dataset with various γ (Left) and

learninng rates (Right). It can be observed (Left) that Central and Forward methods converge
faster than Central Coordinate and Forward Coordinate methods. Also, it is clear that both pairs of
Coordinate and Non-Coordinate methods converge in a similar fashion. However, under extreme
cases of γ some methods do not converge at all. For instance, Forward Coordinate method with
γ = 0.1, Central and Forward methods with γ = 1e−07. Comparison of ZO methods under different
Learning rate values (Right) also supports the above-mentioned corollary that in general Central
and Forward methods converge faster than Central Coordinate and Forward Coordinate methods.
However, it can be seen that larger values of learning rate introduces variance to ZO methods,
although considerably smaller than for true gradient. It is also worth noting that small learning rate
values result Central and Forward methods to converge with the same rate.

24

Figure 9: Left: Loss for abalone scale dataset with lr = 0.4 batch size = 100, γ =1e-5, and different
lr.
Right: Loss for abalone scale dataset with lr = 0.4, µ = 0., γ =1e-5, and different batch size.

Figure 10: Left: Loss for a9a dataset with µ = 1e− 5, batch size = 100, lr = 0.1 and different γ.
Right: Loss for a9a dataset with µ = 1e− 5, batch size = 100, γ =1e-5 and different lr.

25

Figure 11: Loss for a9a dataset with µ =1e-5, batch size = 100, lr = 0.1, γ =1e-5 and different µ.

Figure 12: Loss for a9a dataset with µ =1e-5, lr = 0.1, γ =1e-5 and different batch size.

A.5 Reducing Variance Under Batching In p-norm

Lemma A.1. If σ is determined from

Ee∼RSd2 (1)

exp


∥∥∥∥df(x+ γe)− f(x− γe)

2γ
e−∇fγ(x)

∥∥∥∥2
q

σ2


 ≤ exp(1),

then the variance of batched gradient

σ2B = Var
[
∇Bfγ(x, {ei}Bi=1)

]
≤ σ2

B
· (2χ(p, d) +

√
3πχ(p, d) + 3) =

σ2

B
λ(p, d),

where χ(p, d) = min {q − 1, 2 ln d}, 1
p + 1

q = 1.

Proof:
The batched gradient for the function fγ(x) = Eu [f(x+ γu)] (u ∈ RBd

2(1)) is:

∇Bfγ(x, {ei}Bi=1) =
1

B

B∑
i=1

[
d

2γ
(f(x+ γei)− f(x− γei)) ei

]
,

where ei ∈ RSd2(1) are i.i.d.

For simplicity we denote si =

[
d

2γ
(f(x+ γei)− f(x− γei)) ei

]
, so ∇Bfγ(x, {ei}Bi=1) =

1

B

B∑
i=1

si,

where si are i.i.d. We denote ◦si = si − Esi.

26

From Theorem 2.1 from [42], we have

P

∥∥∥∥∥
B∑
i=1

◦
si

∥∥∥∥∥
q

≥
(√

2χ+
√

2β
)√

Bσ

 ≤ e−β2/3,

where ξ ≤ min (2 ln d, q − 1) (example 3.2 from [42]), q ≥ 2

Var
[
∇Bfγ(x, {ei}Bi=1)

]
= E

∥∥∥∥∥ 1

B

B∑
i=1

◦
si

∥∥∥∥∥
2

q

 =

+∞∫
t=0

P

∥∥∥∥∥ 1

B

B∑
i=1

◦
si

∥∥∥∥∥
q

≥
√
t

 dt

=

2χBσ2∫
t=0

P

∥∥∥∥∥ 1

B

B∑
i=1

◦
si

∥∥∥∥∥
q

≥
√
t

 dt+

+∞∫
t=2χBσ2

P

∥∥∥∥∥ 1

B

B∑
i=1

◦
si

∥∥∥∥∥
q

≥
√
t

 dt.

Substituting
√
t =

(√
2χ+

√
2β
)√

Bσ, we obtain:

Var
[
∇Bfγ(x, {ei}Bi=1)

]
≤ 2χBσ2 +

+∞∫
β=0

P
∥∥∥∥∥ 1

B

B∑
i=1

◦
si

∥∥∥∥∥
q

≥
(√

2χ+
√

2β
)√

Bσ

− 2Bσ2(
√
χ+ β)

 dβ
≤ 2χBσ2 + 2Bσ2

+∞∫
β=0

e−β
2/3(
√
χ+ β)dβ = 2Bσ2

(
χ+

√
3π

2

√
χ+

3

2

)
.

Finally,

σ2B = Var
[
∇Bfγ(x, {ei}Bi=1)

]
= Var


B∑
i=1

si

B

 ≤ σ2

B
· (2χ(q, d) +

√
3πχ(q, d) + 3) =

σ2

B
λ(p, d),

where
λ(p, d) = 2χ(p, d) +

√
3πχ(p, d) + 3, χ(p, d) = min (q − 1, 2 ln d). (19)

For example, for p = 1 (q = ∞) we have σ2B ≤
σ2

B
· O (ln d) and for p = 2 we have σ2B ≤

9σ2

B
,

which coincides with the well known property σ2B =
σ2

B
up to a numerical constant.

A.6 Proof Of Theorem 2.1 (Properties Of fγ)

For all x, y ∈ Q

1. f(x) ≤ fγ(x) ≤ f(x) + γM2;

2. fγ(x) is M -Lipschitz:
|fγ(y)− fγ(x)| ≤M‖y − x‖p;

27

3. fγ(x) has L =
2
√
dM

γ
-Lipschitz gradient:

‖∇fγ(y)−∇fγ(x)‖q ≤ L‖y − x‖p.

where q us such that 1/p+ 1/q = 1.
Proof:
For the first point, we have:
For the first inequality, we use the convexity of function f(x)

fγ(x) = E [f(x+ γu)] ≥ E [f(x) + 〈∇f(x), γu〉] = E [f(x)] = f(x)

For the second inequality:

|fγ(x)− f(x)| = |E [f(x+ γu)]− f(x)| ≤ E [|f(x+ γu)− f(x)|] ≤ E [M2 · ‖γu‖2] ≤ γM2,

using the fact that f is M2-Lipshcitz.
For the second point:

|fγ(y)− fγ(x)| = |E [f(y + γu)− f(x+ γu)] | ≤ E|f(y + γu)− f(x+ γu)| ≤M‖y − x‖p.

In the third point, applying Lemma 11 from [18], we have:

‖∇fγ(y)−∇fγ(x)‖q =
∥∥∥∇EZ∼Bd2 (γ) [f(y + Z)]−∇EZ∼Bd2 (γ) [f(x+ Z)]

∥∥∥
q

=
∥∥∥EZ∼Bd2 (γ) [∇f(y + Z)]− EZ∼Bd2 (γ) [∇f(x+ Z)]

∥∥∥
q

≤M
∫
|µ(z − y)− µ(z − x)|dz︸ ︷︷ ︸

I1

,

where µ(x) =
1

V (Bd
2(γ))

· I
(
x ∈ Bd

2(γ)
)
. Note that f(x) is not assumed to be differentiable but the

Lebesgue measure of the set where the convex function is not differentiable is equal to zero.
Using the bound for Integral I1 from Lemma 8 from [78] and the fact, that

lim
d→∞

κ
d!!

(d− 1)!!√
d

=

√
π

2
,

we obtain

‖∇fγ(y)−∇fγ(x)‖q ≤
√
dM

γ

√
2

π
‖y − x‖2 .

Since ‖y − x‖2 ≤ ‖y − x‖p for p ∈ [1, 2] and π > 2, we obtain:

‖∇fγ(y)−∇fγ(x)‖q ≤
√
dM

γ
‖y − x‖p .

28

A.7 Proof Of Theorem 2.2 (Properties Of ∇fγ(x, e))

For all x ∈ Q

• Unbiased: Ee [∇fγ(x, e)] = ∇fγ(x);

• Bounded variance (second moment):

Ee
[
‖∇fγ(x, e)‖2q

]
= κ(p, d) ·

(
dM2

2 +
d2∆2

γ2

)
,

where 1/p+ 1/q = 1 and

κ(p, d) = O
(√

Ee‖e‖4q
)

=

{
O(1), p = 2

O ((ln d)/d) , p = 1.

If ∆ is sufficiently small, then

Ee
[
‖∇fγ(x, e)‖2q

]
. 2κ(p, d)dM2

2 .

Proof:
For the first point, substitute z = γu, then, according the definition of fγ(x)

fγ(x) =
1

V
(
Bd

2(γ)
) ∫
‖z‖2≤γ

f(x+ z)dz.

Since f(x) is continuous, fγ(x) is continuously differentiable and its gradient can be found from
[53] (see formula 3.2 in chapter 9.3.2):

∇fγ(x) =
1

V
(
Bd

2(γ)
) ∫
‖z‖2=γ

f(x+ z)
z

‖z‖2
dSγ(z),

where dSγ(z) is an element of a spherical surface of radius γ
After normalization to the normalized area (the area of the whole sphere is taken 1) we have

integration with respect to a uniformly distributed probability dσ(e) on S1

∇fγ(x) =
d

γ

∫
‖e‖2=1

f(x+ γe)dσ(e) = Ee∼RSd1 (0)

[
df(x+ γe) · e

γ

]
.

Since f(x+ γe) · e has the same distribution as f(x− γe) · e, we also get:

∇fγ(x) = Ee∼RSd1 (0)

[
d (f(x+ γe)− f(x− γe))

2γ
e

]
= Ee [∇fγ(x, e)] .

The second point is proved in Lemma 2 from [6] (the second statement).

29

A.8 Proof Of Theorem 2.4

It is proven in [48], that algorithm after N iteration gives accuracy for fγ(x) :

E
[
fγ(xN+1

ag)− f(x∗(γ))
]
≤

4LfγR
2

N2
+

4σBR√
N

,

where x∗(γ) = argmin
x∈Qγ

fγ(x), Lfγ =

√
d
√
M2M

γ
.

If we have
ε

2
-accuracy for the function fγ(x) with γ =

ε

2M2
, then we have ε-accuracy for the

function f(x):

f(xagN+1)− f(x∗) ≤ f(xagN+1)− f(x∗(γ)) ≤ fγ(xagN+1) + γM2 − fγ(x∗(γ)) ≤ ε

2
+
ε

2
= ε.

To have
ε

2
-accuracy for fγ(x) we need

4LfγR
2

N2
≤ ε

4

and

4σBR√
N
≤ ε

4
.

Substituting Lfγ from Theorem 2.1 and σ2B from Lemma A.1 we obtain:

N =
4
√

2
√
M2MR

ε
= O

(
d1/4
√
M2MR

ε

)
,

and

B = max

(
1,

256λ(p, d)σ2R2

ε2N

)
= max

(
1, 64
√

2
κ(p, d)λ(p, d)d3/4M2

2R

Mε

)
,

see λ(p, d) in (19).
We obtain total number of oracle calls T :

T = N ·B = max

{
d1/4
√
M2MR

ε
,
256λ(p, d)σ2R2

ε2

}
= max

{
4
√

2
d1/4
√
M2MR

ε
,
512κ(p, d)λ(p, d)dM2

2R
2

ε2

}

= Õ

(
max

{
d1/4
√
M2MR

ε
,
κ(p, d)dM2

2R
2

ε2

})
,

as λ(p, d) = O(log(d)) = Õ(1), see (19).

30

A.9 Lxy Estimate

Applying Lemma 11 from [18], we have:

‖∇xfγ(x, y2)−∇xfγ(x, y1)‖q =
∥∥∇xEZx,Zy [f(x+ Zx, y2 + Zy)]−∇xEZx,Zy [f(x+ Zx, y1 + Zy)]

∥∥
q

=
∥∥EZx,Zy [∇xf(x+ Zx, y2 + Zy)−∇xf(x+ Zx, y1 + Zy)]

∥∥
q

≤Mx

∫
|µy(zy − y2)− µ(zy − y1)|dz︸ ︷︷ ︸

I1(y)

,

where µy(y) =
1

V (B
dy
2 (γy))

· I
(
y ∈ Bdy

2 (γy)
)
. Note that f(x, y) is not assumed to be differentiable

but the Lebesgue measure of the set where the convex-concave function is not differentiable is equal
to zero.

Using the bound for Integral I1(y) from Lemma 8 [78] and the fact, that

lim
d→∞

κ
d!!

(d− 1)!!√
d

=

√
π

2
,

we obtain:

‖∇xfγ(x, y2)−∇xfγ(x, y1)‖q ≤
Mx

√
dy

γy
‖y2 − y1‖2 ≤

Mx

√
dy

γy
‖y2 − y1‖p,

where p ∈ [1, 2].

A.10 Proof Of Theorem 3.1

Based on batched Accelerated gradient method Smoothing scheme gives gradient-free method with

Õ

(
d1/4
√
M2M√
µε

)

successive iterations and

Õ

(
κ(p, d)dM2

2

µε

)
oracle calls, where κ(p, d) defined in Theorem 2.4.

This result will be true for stochastic problem (10) if M2 is defined as Eξ‖∇xf(x, ξ)‖22 ≤M2
2 for

all x ∈ Qγ .
Proof: Below we use restarts scheme described in [43]. For simplicity, we will denote R, Rk

distance from starting, current point to the solution in p-norm up to a O(ln d)-factor in worth case.
Theorem 2.4 proves that to achieve the error εk, we need

Nεk =
4
√

2d1/4
√
M2MRk

εk

31

iterations and

T (εk) = max

{
4
√

2
d1/4
√
M2MRk
εk

,
512κ(p, d)λ(p, d)dM2

2R
2
k

ε2k

}
oracle calls, see λ(p, d) in (19). We can take

Rk =

√
2εk
µ

as the function f and consequently fγ are µ-strongly convex. We take

εk =
µR2

2
· 4−k, εK = ε =⇒ K =

ln

(
µR2

2ε

)
ln 4

.

We obtain the number of iterations and the kth restart

Nk =
4
√

2d1/4
√
M2M

µR
· 2k

and the number of oracle calls

Tk =
2048κ(p, d)λ(p, d)dM2

2

µ2R2
· 4k.

We obtain the total number of iterations

N =
K∑
k=1

Nk ≤ 2K+1 · 4
√

2d1/4
√
M2M

µR
=

8
√

2d1/4
√
M2M√

2µε
= O

(
d1/4
√
M2M√
µε

)
.

The total number of oracle calls (we use that λ(p, d) = O(log(d)) = Õ(1)):

T =

K∑
k=1

Tk ≤ 2 · 4K · 2048κ(p, d)λ(p, d)dM2
2

µ2R2
= 2 · µR

2

2ε
· 2048κ(p, d)λ(p, d)dM2

2

µ2R2
= Õ

(
κ(p, d)dM2

2

µε

)
.

A.11 Noisy Value Of Function

In this section (largely following the work [22]) we estimate the maximum level of admissible noise
∆ in general case, i.e. without simplifying assumptions about unbiasedness.

For simplicity, we consider non-stochastic non-smooth convex optimization problem in the
Euclidean proximal setup on a compact set Q:

min
x∈Q⊆Rd

f(x), (20)

where f is M2-Lipschitz continuous. We replace the objective by its smooth approximation: fγ(x) ,
Euf(x + γu), where u is a vector picked uniformly at random from the Euclidean unit ball {u :
‖u‖2 ≤ 1}. From [19] it follows that

f(x) ≤ fγ(x) ≤ f(x) + γM2. (21)

32

Also from [67] (where ∆ = 0) we have that

∇fγ(x, e) =
d

2γ
(fδ(x+ γe)− fδ(x− γe)) e,

where fδ = f + δ – is the noisy value of f , |δ(x)| ≤ ∆ is a level of noise. Due to [32] for all r ∈ Rd

Ee〈[∇fγ(x, e)]−∇fγ(x), r〉 .
√
d∆‖r‖2γ−1 (22)

and [67, 8]

Ee
[
‖∇fγ(x, e)− Ee∇fγ(x, e)‖22

]
' Ee

[
‖∇fγ(x, e)‖22

]
. dM2

2 + d2∆2γ−2, (23)

where e is random vector uniformly distributed on the Euclidean unit sphere {e : ‖e‖2 = 1}. The
r.h.s. of (22) is

√
d better than in some other works, which used similar inequality [8, 3].

We say that an algorithm A (with ∇fγ(x, e) oracle) is robust for fγ if the bias in the l.h.s. of
(22) does not accumulate over method iterations. That is, if for A with ∆ = 0

Efγ(xN)−min
x∈Q

fγ(x) ≤ ΘA(N),

then with ∆ > 0 and (variance control) d2∆2γ−2 . dM2, see (23):

Efγ(xN)−min
x∈Q

fγ(x) = O
(

ΘA(N) +
√
d∆Dγ−1

)
, (24)

where D is a diameter of Q (in (24) we have to consider N such that the first term in RHS is
not smaller than the second one). Many known methods are robust [22]. In particular batched
Accelerated gradient method from [37] is robust. This method was used in Theorem 2.4.

Below we explain how to obtain the bound on the level of noise ∆.
Approximation. First of all we need smoothed problem to approximate non-smooth one. For

that from (21) we put
γ =

ε

2M2
.

Variance control. From (23) we can observe that stochastic gradient will have the same
variance (second moment) up to a numerical constant if

∆ .
γM2√
d
.

Bias. From (24) we will have more restrictive condition on the level of noise

∆ .
γε

D
√
d
.

Combination of Bias condition and Approximation condition leads to the bound

∆ .
ε2

DM2

√
d
. (25)

The same reasoning holds for Lipschitz noise and for saddle-point problems.
It is important to note that this level of noise is maximum possible, see [61] for details.

33

	1 Problem Formulation
	2 Smoothing Scheme
	3 Applications Of the Smoothing Scheme
	3.1 Stochastic Optimization
	3.2 Finite-sum Problems
	3.3 Strongly Convex Problems
	3.4 Saddle-point Problems
	3.5 Distributed Optimization

	4 Discussion
	4.1 Superposition Of Different Techniques
	4.2 Batching Technique

	5 Experiments
	5.1 Reinforcement learning
	5.2 Robust Linear Regression
	5.3 Support Vector Machine
	5.4 Conclusion on Experiments

	A Appendix
	A.1 Additional Experiments: Adversarial Attack
	A.2 Additional Experiments: RL experiments
	A.3 Additional Experiments: Robust Linear Regression
	A.4 Additional Experiments: Support Vector Machine
	A.5 Reducing Variance Under Batching In p-norm
	A.6 Proof Of Theorem 2.1 (Properties Of f)
	A.7 Proof Of Theorem 2.2 (Properties Of f(x,e))
	A.8 Proof Of Theorem 2.4
	A.9 Lxy Estimate
	A.10 Proof Of Theorem 3.1
	A.11 Noisy Value Of Function

