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ABSTRACT

We study the gradient method under the assumption that an additively inexact gradient is available
for, generally speaking, non-convex problems. The non-convexity of the objective function, as well
as the use of an inexactness specified gradient at iterations, can lead to various problems. For
example, the trajectory of the gradient method may be far enough away from the starting point. On
the other hand, the unbounded removal of the trajectory of the gradient method in the presence of
noise can lead to the removal of the trajectory of the method from the desired exact solution. The
results of investigating the behavior of the trajectory of the gradient method are obtained under the
assumption of the inexactness of the gradient and the condition of gradient dominance. It is well
known that such a condition is valid for many important non-convex problems. Moreover, it leads
to good complexity guarantees for the gradient method. A rule of early stopping of the gradient
method is proposed. Firstly, it guarantees achieving an acceptable quality of the exit point of the
method in terms of the function. Secondly, the stopping rule ensures a fairly moderate distance
of this point from the chosen initial position. In addition to the gradient method with a constant
step, its variant with adaptive step size is also investigated in detail, which makes it possible to
apply the developed technique in the case of an unknown Lipschitz constant for the gradient. Some
computational experiments have been carried out which demonstrate effectiveness of the proposed
stopping rule for the investigated gradient methods.

Keywords: Non-convex Optimization · Polyak-Łojasiewicz Condition · Inexact Gradient ·
Stopping Rule · Adaptive Method
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1. Introduction

Gradient methods are relatively simple, and they require a low iteration cost as well as a small amount of memory,
which explains their popularity. In data analysis, non-convex problems often arise under the standard assumption that
the gradient of the objective function f is Lipschitz-continuous with some constant L > 0 (or in other words, the
function f is L-smooth):

‖∇f(x)−∇f(y)‖ 6 L‖x− y‖ ∀x, y ∈ Rn, (1)
where ‖ · ‖ (here and everywhere in the paper) denotes the Euclidean norm. For these problems, by applying the
gradient-type methods, the generated sub-sequence of points, generated by applying the gradient-type methods,
converges to the zero value of the ‖∇f(x)‖. For this fact we have the following known result (see, for example,
[6, 14]).
Theorem 1.1. Let f be an L-smooth function. Let us consider the gradient method

xk+1 = xk −
1

L
∇f(xk) (2)

for the following optimization problem:
min
x∈Rn

f(x). (3)

Then the following inequality holds:

min
k=0,...,N−1

‖∇f(xk)‖ 6
√

2L(f(x0)− f(x∗))

N
, (4)

where x0 is a starting point of the method and x∗ is one of the exact solutions of the problem (3).

Let f be an L-smooth function and its gradient satisfy the Polyak-Łojasiewicz condition (for brevity, we will write
PL-condition) for some constant µ > 0 [13] (see also the recent papers [8, 1], and the references therein):

f(x)− f∗ 6 1

2µ
‖∇f(x)‖2 ∀x ∈ Rn, (5)

where f∗ = f(x∗) is the value of the function f at one of the exact solutions x∗ of the optimization problem under
consideration. Then the Gradient Descent Method converges at the rate of a geometric progression

f(xN )− f∗ 6
(

1− µ

L

)N
(f(x0)− f∗) 6 exp

(
−µ
L
N
)

(f(x0)− f∗), (6)

‖x∗ − x0‖ 6
√

2L(f(x0)− f∗)
µ

. (7)

From [8] it is known that the PL-condition (5) implies the following so-called quadratic growth condition:

f(x)− f∗ > µ

2
inf
x∗
‖x− x∗‖2 ∀x ∈ Rn,

whence one can obtain that (6) means that the Gradient Descent method also converges in argument at the rate of a
geometric progression

inf
x∗
‖xN − x∗‖2 6

2

µ
exp

(
−µ
L
N
)

(f(x0)− f∗).

It is worth noting that the gradient dominance condition (5) is certainly holds for a strongly convex objective
function f . However, there are known examples, where PL-condition holds, but one cannot be sure even that f is
convex (see, for example, [12]). So from [6], we can consider the problem of finding some solution to a system of
nonlinear equations g(x) = 0 (written in a vector form), where g : Rn → Rm, m 6 n the problem of finding some
solution to this system.

Let us introduce the Jacobian matrix J(x) = ∂g(x)
∂x =

∥∥∥∂gi(x)
∂xj

∥∥∥m,n
i,j=1

of the mapping g and assume that there exists

µ > 0 such that for all x ∈ Rn the Jacobian matrix is uniformly non-singular, i.e. λmin
(
J(x) [J(x)]

>
)
> µ. In this

case, the function f(x) = ‖g(x)‖2 satisfies condition (5) for an arbitrary x∗ such that f(x∗) = 0, i.e. g(x∗) = 0 [10].
We would like to mention separately the review [1], which describes in detail a deep learning-motivated example of
a non-linear equation-related minimization problem with over-parametrization for a non-convex smooth function with
PL-condition.
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1.1. The formulation of the problem

In this paper, we consider the problem of minimizing the function f which satisfies PL-condition (5) and has
L-Lipschitz continuous gradient with some constant L > 0

‖∇f(x)−∇f(y)‖ 6 L‖x− y‖ ∀x, y ∈ Rn. (8)

We suppose that the method has access not to the exact, but to the approximate value of the gradient ∇̃f(x) at any
requested point x, which means the following

∇f(x) = ∇̃f(x) + v(x), and ‖v(x)‖ 6 ∆ (9)

for some fixed ∆ > 0. Then (5) means that

f(x)− f∗ 6 1

µ
(‖∇̃f(x)‖2 + ∆2) ∀x ∈ Rn. (10)

Therefore, ‖∇̃f(x)‖2 + ∆2 > µ(f(x)− f∗), where

‖∇̃f(x)‖2 > µ(f(x)− f∗)−∆2 ∀x ∈ Rn. (11)

It is worth noting that the issue of studying the influence of gradient errors on the estimates of the convergence rate
of the first-order methods attracted many researchers (see, for example, [14, 4, 3, 2, 16]). However, we will focus on
the distinguished class of non-convex problems. The non-convexity of the objective function of the problem, as well
as the use of an inexactness of the specified gradient at iterations, can lead to various problems. In particular, in the
absence of any early stopping rules, divergence of the gradient method trajectory from the starting point can be quite
a large. It is problematic when the initial point of the method already has some appropriate properties. On the other
hand, the unlimited divergence of the trajectory of the Gradient Descent method in the stochastic setting can lead to a
larger distance from the desired exact solution. Let us describe some situations of this type.

As a simple example of a non-strongly convex function that satisfies the gradient dominance condition, we consider

f(x) = 〈Ax, x〉, (12)

where A = diag(L, µ, 0) is a 3-order diagonal matrix with exactly two positive entries L > µ > 0. If for the
problem of minimizing the function (12) we assume that there is a gradient error v(x) = (0, 0,∆) for ∆ > 0, then for
x0 = (0, 0, 0), hk > 0 and xk+1 = xk − hk∇̃f(xk), we have lim

k→∞
‖xk+1‖2 =∞.

Further, we can consider the Rosenbrock function of two variables x = (x(1), x(2)):

f(x) = 100

(
x(2) −

(
x(1)

)2
)2

+
(

1− x(1)
)2

.

Let our method starts from x0 = (1, 1) = x∗. Then at each step of the gradient method, the error of the gradient

v(xk) is such that x(2)
k =

(
x

(1)
k

)2

and without stopping rule the trajectory can go very far from the exact solution
x∗. Similarly, the trajectory of the gradient method can be unbounded for the objective function of two variables
f(x) = (x(2) − (x(1))2)2.

The purpose of this paper is to study the estimate of the distance ‖xN − x0‖ for points xN produced by the
Gradient Descent method and to propose an early stopping rule that guarantees some compromise, such as a significant
divergence of the trajectory from the chosen starting point of the method. Note that the early stopping rules in iterative
procedures are being actively studied for various types of problems. Apparently, for the first time, the ideology of
early stopping of iterations was proposed in [5]. This paper is devoted to a technique for the approximate solution of
ill-posed or ill-conditioned problems arising during regularization (in the mentioned work, the authors considered the
problem of solving a linear equation). In this case, an early stop is aimed at overcoming the problem of the potential
accumulation of errors in the regularization of the original problem. The topic of our paper is related to well-known
approaches related to the early termination of first-order methods in the case of using inexact information about the
gradient at iterations (see [14], Ch. 6, paragraph 1, and also, for example, the recent preprint [16]). However, the results
known to us for convex (not strongly convex) problems differ from those obtained in this note. The main difference
is that usually either the achievement of the worst level in function is guaranteed (compared with the comment after
theorem 2, section 1, chapter 6 of [14]) or estimates such as ‖xN − x∗‖ 6 ‖x0 − x∗‖ without examining ‖xN − x0‖.

3
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Here {xk}k∈N is the sequence generated by the method, x∗ is the exact solution of the minimization problem closest
to the starting point of the method x0.

In this paper, we obtained Theorem 2.2 devoted to the Gradient Descent method with a constant step-size with a
sufficiently small value of the inexact gradient. It indicates the level of accuracy with respect to the function that can
be guaranteed after the proposed early stopping rule is fulfilled. It is important to note that this result can be applied to
any L-smooth non-convex problem. Further, using PL-condition, this result is refined in Theorem 2.3, which describes
the estimate of a sufficient number of iterations to achieve the desired quality of the output point x̂ by the function
f(x̂) − f∗ = O

(
∆2

µ

)
. Moreover, it contains an estimate (26) of the distance from x̂ to the starting point x0. The

obtained results are compared with the well-known distance estimate [13] from the starting point x0 to the nearest
exact solution x∗ (see remark 2.5).

However, the method with a constant step-size imposes the need to efficiently estimate the Lipschitz constant of
the gradient of the objective function, which can be problematic in practice. Moreover, many real problems lead to
functions that have not an Lipschitz continuous gradient, and a condition such as (1) holds for such functions only
locally on some subset Q ⊂ Rn. Therefore, we propose variations of Theorems 2.2 and 2.3 for the Gradient Descent
method with an adaptively selected step-size. This makes it possible to apply an analog of Theorem 2.2 with the early
stopping rule (31) to an arbitrary non-convex problem without additional conditions. If PL-condition is guaranteed,
then the execution of (31) automatically guarantees the achievement of an acceptable quality level for the solution of
the problem of minimizing f by the function.

The last section of the paper is devoted to numerical experiments which explain the purpose of using stopping
rule (21) for some specific examples of object functions in problems: logistic regression, Rosenbrock and
Nesterov-Skokov functions, quadratic function.

2. The Proposed Approach and Main Theoretical Results

2.1. Variant of the Gradient Descent method with a constant step-size

We assume that the values of the parameters L > 0 and ∆ > 0 are known. Also, the Gradient Descent method of the
following form

xk+1 = xk −
1

L
∇̃f(xk) (13)

can be applied to solve the minimization problem of the function f . In view of (8) for the method (13), we get

f(xk+1) 6 f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− 1

L
〈∇f(xk), ∇̃f(xk)〉+

1

2L
‖∇̃f(xk)‖2

= f(xk) +
1

2L

(
‖∇f(xk)‖2 − 2〈∇f(xk), ∇̃f(xk)〉+ ‖∇̃f(xk)‖2

)
− ‖∇f(xk)‖2

2L

= f(xk) +
1

2L
‖∇f(xk)− ∇̃f(xk)‖2 − ‖∇f(xk)‖2

2L

6 f(xk) +
∆2

2L
− 1

2L
‖∇f(xk)‖2,

i.e.

f(xk+1)− f(xk) 6
∆2

2L
− 1

2L
‖∇f(xk)‖2. (14)

Summing up inequalities (14) over k = 0, N − 1 leads us to an estimate

min
k=0,...,N−1

‖∇f(xk)‖ 6
√

∆2 +
2L(f(x0)− f(x∗))

N
6 ∆ +

√
2L(f(x0)− f(x∗))

N
. (15)

Note that, in contrast to (4), the estimate (15) points to the potential divergence of the Gradient Descent method in the
case of an additively inexact gradient. Specific examples of such situations were described above.

Taking into account (5) , we get

f(xk+1)− f(xk) 6
∆2

2L
− 2µ(f(xk)− f∗)

2L
= −µ

L
(f(xk)− f∗) +

∆2

2L
,

4
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thus

f(xk+1)− f∗ 6
(

1− µ

L

)
(f(xk)− f∗) +

∆2

2L

6
(

1− µ

L

)k+1

(f(x0)− f∗) +
∆2

2L

(
1 + 1− µ

L
+ · · ·+

(
1− µ

L

)k)
<
(

1− µ

L

)k+1

(f(x0)− f∗) +
∆2

2µ
,

i.e.

f(xk+1)− f∗ 6
(

1− µ

L

)k+1

(f(x0)− f∗) +
∆2

2µ
. (16)

Remark 2.1. It is important to note that bounds (15) and (16) cannot be improved for the Gradient Descent method
with an additively inexact gradient in the general case. For example, the lower estimates of accuracy with respect to
the function O

(
∆2

2µ

)
are known even on the class of strongly convex functions (see, for example, section 2.11.1 of the

manual [17], as well as references therein). In this regard, we consider the following example:

min
x∈Rn

f(x) :=
1

2

n∑
i=1

λi

(
x(i)
)2

, (17)

where 0 6 µ = λ1 6 λ2 6 . . . 6 λn = L, such that L > 2µ. The exact solution of problem (17) is x∗ = 0 ∈ Rn.
Suppose that an inexact gradient is available at the current point of the feasible area. Besides, the error is only
in the calculation of the first component of the gradient. That is, instead of ∂f(x)/∂x(1) = µx(1), we have only
∂̃f(x)/∂x(1) = µx(1)−∆, for some ∆ > 0. Then for the simplest Gradient Descent method (13) one can obtain that
for x(1)

0 > 0 and sufficiently large k ∈ N (k � L/µ) the following inequality holds:

x
(1)
k >

∆

L

1− (1− µ/L)k

1− (1− µ/L)
' ∆

µ
. (18)

Therefore, f(xk)− f(x∗) & ∆2

2µ .

Further, in view of

‖∇f(xk)‖2 >
‖∇̃f(xk)‖2

2
−∆2,

from (14), the inexact gradient satisfies the following inequality:

f(xk+1)− f(xk) 6
∆2

2L
− 1

2L

(
‖∇̃f(xk)‖2

2
−∆2

)
,

whence we have

f(xk+1)− f(xk) 6
∆2

L
− 1

4L
‖∇̃f(xk)‖2. (19)

Inequality (19) shows that if the value ‖∇̃f(xk)‖ is sufficiently large, it can be guaranteed that f(xk+1) < f(xk).
Thus, for any C > 2, an alternative arises: either the inequality ‖∇̃f(xk)‖ 6 C∆ holds, or

f(xk+1)− f(xk) < −∆2

L

(
C2

4
− 1

)
.

In the first case, the inequality ‖∇̃f(xk)‖ 6 C∆ guarantees the achievement of an acceptable quality of the output
point xk with respect to the function due to PL-condition. In the second case, we can guarantee the decreasing with
respect to the function for C > 2.

So, it is possible to get xk such that the value of f(xk) is close enough to the minimum f∗. For definiteness, let us
choose C =

√
6 (to get a “convenient” coefficient) and consider 2 scenarios:

1. ‖∇̃f(xk)‖ > ∆
√

6, whence, taking (19) into account, we obtain the inequality

f(xk+1)− f(xk) < −∆2

2L
. (20)

5
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2.
‖∇̃f(xk)‖ 6 ∆

√
6, (21)

whence, in view of (10) we have

f(xk)− f∗ 6 7∆2

µ
. (22)

Let us consider estimate (22) acceptable for the function level and agree to terminate process (13) if (21) is
satisfied.

Let us investigate an alternative situation in which for any k = 0, 1, . . . , N − 1, it is true that ‖∇̃f(xk)‖ > ∆
√

6
and (20) holds, where

f(x0)− f(xN ) =

N−1∑
k=0

(f(xk)− f(xk+1)) >
N∆2

2L
,

i.e. N < 2L
∆2 (f(x0)− f∗), which indicates the end of the process. Thus, we have the following result.

Theorem 2.2. Let stopping criterion (21) be satisfied for the first time at the N -th iteration of the Gradient Descent
method (13). Then the output point x̂ = xN is guaranteed to satisfy the inequality

f(x̂)− f∗ 6 7∆2

µ
.

In this case, the following estimate for the number of iterations before stopping criterion is valid

N <
2L

∆2
(f(x0)− f∗). (23)

It is clear that for a small value of the parameter ∆ > 0, the right-hand side of inequality (23) leads to a significantly
overestimated number of iterations. At the same time, the conducted computational experiments (see Section 4, below)
showed no increase in the number of iterations with a significant decrease in ∆ > 0 due to the proposed early stopping
rule (21).

However, in the case of a known µ, the estimate for the number of steps N can be improved if the quality in (22)
is assumed to be sufficient. Using inequality (19) we get 1

4L‖∇̃f(xk)‖2 6 ∆2

L + f(xk) − f(xk+1), and due to
∇̃f(xk) = L(xk − xk+1), we have the following estimation for every k > 0:

‖xk+1 − xk‖2 6
4∆2

L2
+

4(f(xk)− f(xk+1))

L

6
4∆2

L2
+

4(f(xk)− f∗)
L

6
4∆2

L2
+

4∆2

µL
+

4

L

(
1− µ

L

)k
(f(x0)− f∗).

Whence one can obtain the final estimation:

‖xk+1 − xk‖ 6 2∆

√
1

L2
+

1

µL
+ 2

(
1− µ

L

) k
2

√
f(x0)− f∗

L
.

Next, summing the inequalities above for k = 0 . . . N − 1, we have

‖xN − x0‖ 6
N−1∑
k=0

‖xk+1 − xk‖ 6 2N∆

√
1

L2
+

1

µL
+ 2

N−1∑
k=0

(
1− µ

L

) k
2

√
f(x0)− f∗

L
. (24)

If at some step (21) is satisfied, then the required accuracy by function (22) will be achieved. Therefore, we
estimate N in an alternative situation ((21) does not hold for all k = 0, 1, . . . , N − 1). We use inequality (16) and
impose the requirement that the level of approximation with respect to the function f(xN ) − f∗ 6 7∆2

µ . In view
of (16), it suffices to require that (

1− µ

L

)N
(f(x0)− f∗) 6 6∆2

µ
,

6
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or (
1− µ

L

)N
6 e−

µN
L 6

6∆2

µ(f(x0)− f∗)
,

where N 6
⌈
L
µ ln µ(f(x0)−f∗)

6∆2

⌉
. In this case, (24) takes the following form:

‖xN − x0‖ 6
2∆

µ

√
1 +

L

µ

⌈
ln
µ(f(x0)− f∗)

6∆2

⌉
+

4
√
L(f(x0)− f∗)

µ
.

Theorem 2.3. Let one of the following alternatives hold:

1. The Gradient Descent method (13) works N∗ steps where N∗ is such that

N∗ =

⌈
L

µ
ln
µ(f(x0)− f∗)

6∆2

⌉
. (25)

2. For some N 6 N∗, at the N -th iteration of the method (13), stopping criterion (21) is satisfied for the first
time.

Then for the output point x̂ (x̂ = xN or x̂ = xN∗ ) of the method (13), the following inequalities hold:

f(x̂)− f∗ 6 7∆2

µ
,

‖x̂− x0‖ 6
2∆

µ

√
1 +

L

µ

⌈
ln
µ(f(x0)− f∗)

6∆2

⌉
+

4
√
L(f(x0)− f∗)

µ
. (26)

Remark 2.4. Since it is often difficult to estimate the value of the parameter µ and usually f∗ is not known, the
estimate of the number of iterations (25) is difficult to use in practice. If the implementation works only according to
stopping rule (21), then we can only confirm an upper bound on the number of iterations of the form (23), but in this
case we cannot guarantee (26). However, the estimate (24) remains relevant. Moreover, the estimation of the value
‖x̂ − x0‖ can be refined if the value of the parameter µ is not available. Indeed, in view of (19) for the Gradient
Descent method (13) with a constant step-size it holds that 1

4L‖∇̃f(xk)‖2 6 ∆2

L +f(xk)−f(xk+1).Whence we have

‖xk+1 − xk‖2 6 4∆2

L2 + 4(f(xk)−f(xk+1)
L , i.e. ‖xk+1 − xk‖ 6 2∆

L + 2
√

(f(xk)−f(xk+1)
L . Further, after summing the

inequalities above over k = 0, N − 1, we have:

‖x0 − xN‖ 6
N−1∑
k=0

‖xk − xk+1‖ 6
2N∆

L
+ 2

N−1∑
k=0

√
f(xk)− f(xk+1)

L

6
2N∆

L
+
√
N

√√√√N−1∑
k=0

f(xk)− f(xk+1)

L

=
2N∆

L
+ 2
√
N

√
f(x0)− f(xN )

L

6
2N∆

L
+ 2
√
N

√
f(x0)− f∗

L
.

It is clear that for small values of the error ∆ > 0 the following inequality

‖x0 − xN‖ 6
2N∆

L
+ 2
√
N

√
f(x0)− f∗

L

may turn out to be worse than (26). Taking into account (23), we get

‖x0 − xN‖ 6
2∆

L
· 2L(f(x0)− f∗)

∆2
+ 2

√
2L(f(x0)− f∗)

∆2
· f(x0)− f∗

L

=
4 + 2

√
2

∆
(f(x0)− f∗).

7
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Remark 2.5. By (7) and (26) the quantity ‖x̂−x0‖ can be comparable with ‖x∗−x0‖ for a sufficiently small ∆ > 0.
Remark 2.6. In view of (26), it suffices to require that conditions (5) and (8) are satisfied only in R–neighborhood of
the x0, where

R =
2∆

µ

√
1 +

L

µ

⌈
ln
µ(f(x0)− f∗)

6∆2

⌉
+

4
√
L(f(x0)− f∗)

µ
.

2.2. Some Variant of the Gradient Descent Method with an Adaptive Step-Size Policy

In many applied optimization problems, it is difficult to estimate the Lipschitz constant of the gradient of the objective
function. For example, the well-known Rosenbrock function and its multidimensional generalizations (for example,
the Nesterov-Skokov function [11]) have only a locally Lipschitz gradient. Thus, it is impossible to estimate for them
the Lipschitz constant of the gradient without additional restrictions on the domain in which the method operates.
Therefore, we present a generalization of the universal gradient method from [9] for working with an inexact gradient
of the functions satisfying PL-condition.

For L-smooth functions we have the following well-known inequality:

f(x) 6 f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, ∀x, y ∈ Rn.

For the inexact gradient (9) we can get a similar inequality:

f(x) 6 f(y) + 〈∇̃f(y), x− y〉+ L‖x− y‖2 +
∆2

2L
, ∀x, y ∈ Rn.

This inequality contains an exact calculation of the value of the function f at an arbitrary point from the domf .
For most important applications with an inexact gradient, we do not have an opportunity to make such a calculation.
An important example of such problems is some optimization problems in the Hilbert space [15] and, in a particular
case, inverse problems [7]. Therefore, further, we will discuss the possibility of using an inexact function value when
checking the iteration exit criterion.

Let us assume that we can calculate the inexact value f̃ of the function f at any point x, so that

|f(x)− f̃(x)| 6 δ. (27)

Then we have the following inequality:

f̃(x) 6 f̃(y) + 〈∇̃f(y), x− y〉+ L‖x− y‖2 +
∆2

2L
+ 2δ, ∀x, y ∈ Rn. (28)

Further, when µ is known, we select the constant L in such a way that (28) is satisfied for the points from the
neighboring iterations (see Algorithm 1).

Algorithm 1. Adaptive Gradient Descent with Inexact Gradient.

Require: Lmin > 0, L0 > Lmin, δ > 0,∆ > 0.
1: Set k := 0
2: Calculate

xk+1 = xk −
1

2Lk
∇̃f(xk) (29)

3: If the following inequality holds:

f̃(xk+1) 6 f̃(xk) + 〈∇̃f(xk), xk+1 − xk〉+ Lk‖xk+1 − xk‖2 +
∆2

2Lk
+ 2δ, (30)

then k := k + 1, Lk := max
(
Lk−1

2 , Lmin

)
and go to Step 2. Otherwise, Lk := 2Lk and go to Step 3.

4: return xk

Similarly to the approach of the method with a constant step-size proposed above, in the case of a sufficiently small
inexact gradient

‖∇̃f(xk)‖ 6 2∆ (31)

8
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we agree to interrupt Algorithm 1. In this case, according to (10) we can guarantee that f(xk)− f∗ 6 5∆2

µ .

An alternative case, where condition (31) is not satisfied, can be investigated similarly to the constant step-size
case in Section 2.1. A detailed proof is given in Appendix A.

The theoretical results about the operation of Algorithm 1 are presented in the following theorem.
Theorem 2.7. Suppose f(x) satisfies PL-condition (5) and conditions (27), ∆2 > 16Lδ hold. Let the parameter Lmin

in Algorithm 1 be such that Lmin > µ
4 and one of the following alternatives holds:

1. Algorithm 1 works N∗ steps where N∗ is such that

N∗ =

⌈
8L

µ
log

µ(f(x0)− f∗)
∆2

⌉
. (32)

2. For some N 6 N∗, at the N -th iteration of Algorithm 1, stopping criterion (31) is satisfied for the first time.

Then for the output point x̂ (x̂ = xN or x̂ = xN∗ ) of Algorithm 1, we have the following inequalities

f(x̂)− f∗ 6 5∆2

µ
,

‖x̂− x0‖ 6 8
∆

µ

√
1

2
γ2 + 4γ

L

µ
log

µ(f(x0)− f∗)
∆2

+ 16

√
γL(f(x0)− f∗)

µ
, (33)

where γ = L
Lmin

. Also, the total number of calls to the subroutine for calculating inexact values of the objective
function and step (29) is not more than 2N + log 2L

L0
.

As we can see, estimate (33) from Theorem 2.7 for the Gradient Descent with an adaptive step-size differs
significantly from estimate (26) from Theorem 2.3 for the method with a constant step-size, namely, by the presence
of the factor γ. In the worst case, the ratio of these two estimates can be O

(
L
µ

)
. However, as it will be shown in

experiments, the distances ‖x̂ − x0‖ for the methods differ insignificantly. In addition, note, that Algorithm 1 uses
subroutines for finding the inexact value of the objective function more often than the gradient method with a constant
step. But the number of calls to these subroutines in adaptive Algorithm 1 is not more than 2N + log 2L

L0
. This

means that the "cost" of an iteration of the adaptive algorithm is on average comparable to about two iterations of the
non-adaptive method (13). At the same time, the accuracy achieved by the proposed methods is also approximately
equal.
Remark 2.8. Note that condition (31) is satisfied for any Lk > L. By construction, we obtain that Lk 6 2L. In the
estimates above, the quantity 2L estimates the maximum value of the parameter Lk. The estimates above remain valid
if L is replaced by 1

2 maxj6k Lj and γ by maxj6k Lj
2 minj6k Lj

. Similarly, we can replace the algorithm parameter Lmin with
minj6k Lj .
Remark 2.9. Note that the estimate for the number of iterations (32) in Theorem 2.7 indicates the finiteness of the
process, but it is strongly overestimated. In practice, the following relation is a more interesting:

N∗ =

⌈
4L̂

µ
log

µ(f(x0)− f∗)
∆2

⌉
,

where L̂ = µ
4

1

1−
(∏N∗−1

j=0

(
1− µ

4Lj

)) 1
N∗

is a parameter depending on the fitted parameters Lj in Algorithm 1.

Remark 2.10. Also note that we can relax the requirement Lmin > µ
4 to Lmin > 0. In this case, the estimate for the

distance from the starting point to the point xN at the N -th iteration (see the proof of the expression (41)) has the
following form

‖xN − x0‖ 6 N∆

√
1

2L2
min

+
4

µLmin
+ 16

√
L

Lmin

√
L(f(x0)− f∗)

µ
.

But we can no longer use estimate (33) from Theorem 2.7. In this case, it is possible to evaluate the sufficient number
of iterations of Algorithm 1, assuming that the stopping condition ‖∇̃f(xk)‖ 6 2∆ is not satisfied. Further, we obtain
an estimate (see the proof of (37)) for ∆2 > 16Lδ:

N <
2L

∆2 − 16Lδ
(f(x0)− f∗).

9
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For experimental comparison of the Gradient Descent methods with constant and adaptive steps, a single stopping
criterion must be chosen. If we consider criterion (21) for the adaptive Algorithm 1 instead of (31), then the results of
Theorem 2.7 about the number of iterations (32) and the estimate of the distance from x0 to x̂ will remain valid. Thus,
criterion (21) makes it possible to achieve the same theoretical guarantees. Therefore, further in the experimental
comparison of the variants of the gradient method (Algorithms 1 and (13)), we will use stopping criterion (21).

3. Numerical Experiments

3.1. The quadratic form minimization problem

In this section, we compare the number of iterations of method (13), required to stop according to criterion (21), and
the estimate for the number of iterations (25) to achieve estimate (22). To obtain the theoretical estimate for the number
of iterations (25) we need the values of the constants L and µ. Therefore, as the first example, we consider a quadratic
function for which these constants are easy to calculate.

As an inexact gradient, we use an exact gradient with random noise (9). In our experiments, we consider the
following types of the additive inexactness v(x) in (9):

• Random. Randomly generated from a uniform distribution, i.e. v(x) ∼ U (Sn1 (0)), where Sn1 (0) is the n
dimensional sphere with radius 1 at the center 0.

• Antigradient. v(x) = − ∇f(x)
‖∇f(x)‖ .

• Constant. v(x) = v ∈ Rn, such that ‖v‖ = 1.

Let us start with a simple example that allows us to estimate the parameters L and µ. As shown in [13], the function
f(x) = 1

2 〈x,Ax〉 satisfies PL-condition if the operator A is non-negative definite and its spectrum is separated from
zero. In such a case, µ is the smallest nonzero eigenvalue of the matrix A. At the same time, the Lipschitz constant
of the gradient is the largest eigenvalue of the matrix A. Thus, we consider the following problem of quadratic
programming:

min
x∈Rn

n∑
j=k+1

djx
2
j , (34)

where k is the number of zero eigenvalues of the matrix A, and dj are some positive constants. Thus, we have
a quadratic form with a non-negative definite diagonal matrix. In this case, we can explicitly find the constants
µ = min

j=k+1,n
(dj), L = max

j=k+1,n
(dj).

In the conducted experiments, we take L = 1 and change µ from 0 to 1. The parameters dj will be taken uniformly
random from the interval [µ,L]. We take the dimension n = 100 and k = 10 of zero eigenvalues. Let us compare the
required number of iterations to achieve condition (21) and the estimate of N∗ from Theorem 2.3. As an inexactness,
we will take Random noise v(x). The results for problem (34) are presented in Table 1.

µ ∆ N N∗ µ ∆ N N∗

0.01
10−7

10−4

10−1

1528
841
155

3817
2436
1054

0.1
10−7

10−4

10−1

169
104
40

406
267
129

0.9
10−7

10−4

10−1

10
8
5

48
33
17

0.99
10−7

10−4

10−1

6
5
3

44
30
16

Table 1. Comparison of the iteration number N to achieve condition (21) and the estimate N∗ from Theorem 2.3.

In Table 1 we can see that in all cases N < N∗. It means that stopping condition (21) is reached earlier than the
theoretical estimate of the number of iterations N∗ justified using PL-condition (see Theorem 2.3). Also, we can note
that the method converges much faster than the stated estimate for large values of µ. At the same time, for small values
of µ, the value of N∗ exceeds N by at most 2.5 times. For the other types of the noise of the gradient, a similar picture
is observed.
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Now, we compare the results of the Gradient Descent with a constant step-size (13) and the proposed Gradient
Descent method with an adaptive step-size (Algorithm 1) when using stopping criterion (21). In Tables 2 and 3, there
are presented the results of the experiments for the quadratic function (34). The experiments were carried out for the
uniformly distributed noise v(x) on the sphere. In these experiments, the inexactness δ = 16∆2 in the function was
taken. Note that in this case, the correlation of inexactness satisfies the condition of Theorem 2.7.

Constant Adaptive L
µ ∆ Iters Time, ms Iters Time, ms

0.01
10−7

10−4

10−1

1525
837
158

139.02
76.72
14.88

668
421
75

243.45
151.83
24.67

0.1
10−7

10−4

10−1

169
104
42

15.84
10.00
4.40

72
46
19

26.40
16.39
6.62

0.99
10−7

10−4

10−1

6
5
3

1.01
0.92
0.55

6
5
3

2.16
1.75
1.12

Table 2. Comparison of the running time of the algorithms and number of iterations to achieve the accuracy
‖∇̃f(x)‖ 6

√
6∆ for the quadratic problem.

From Table 2, we can see that the adaptive method is inferior in real time to the Gradient Descent for all parameters
µ and ∆. However, it needs a smaller number of iterations for big values of µ.

3.2. The problem of minimizing the logistic regression function

Now let us check the work of the proposed stopping criterion in the case when it is rather difficult to estimate the
constant µ of the function which satisfies PL-condition. In this case, we will not be able to use estimate (25). This
situation has been discussed in Remark 2.4. The detailed experiments presented in B.2.

However, we note that, as shown by the previous experiment, condition (21) can be achieved in a
significantly smaller number of steps compared to the theoretical estimate of the number of iterations N∗ from
Theorem 2.3. We will consider the following optimization problem associated with logistic regression f(x) =

1
m

m∑
i=1

log (1 + exp (−yi〈wi, x〉)) , where y = (y1, . . . , ym)
> ∈ [−1, 1]m is the feasible variable vector, W =

[w1 . . . wm] ∈ Rn×m is the feature matrix, where the vector wi ∈ Rn is from the same space as the optimized
weight vector w.

Note that this problem may not have a finite solution in the general case. So we will create such an artificial
data set that there is a finite vector x∗ minimizing the given function. The details of data generation is presented in
Appendix B.2.

In the conducted experiments, we chose n = 200,m = 700 and k = 10 < min
(
n, m2

)
. We consider in this

section the case of constant inexactness. From Fig. 1 it can be seen that the trajectories of the method are not the same.
Moreover, adding inexactness slows down the convergence. On the other hand, the trajectories have become more
similar compared to the case of the inexactness directed along the minus of the gradient (see Appendix B.2).

However, in this case, in Fig. 2(b) it can be seen that without using the stopping criterion, the distance ‖xk − x0‖
grows rather quickly. Thus, in the case of randomly generated gradient noise after 105 iterations of Gradient Descent
method (13) the distance was 1.25 times larger compared to the result without noise in the gradient. At the same time,
in the case of a constant gradient specification error, these values differ by more than two orders of magnitude (see
Appendix B.2).

3.3. Some experiments with the Rosenbrock-type function

In this subsection, we describe results of our investigation of the behavior of the proposed adaptive Algorithm 1
for some non-convex problems. The detailes are presented in Appendix B.3 and B.4. Firstly, we considered the
well-known two-dimensional Rosenbrock function f(x1, x2) = 100(x2 − (x1)2)2 + (x1 − 1)2.

11
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Fig. 1. The rate of convergence of the gradient method in the gradient norm for different values of ∆ for the problem
of minimizing logistic regression using stopping criterion (21) for the constant v.

(a) (b)

Fig. 2. The results of the gradient method with respect to the norm of the gradient without using the stopping criterion
for ∆ = 0.1 for the problem of logistic regression minimization for the constant inaccuracy ∆v. (a) The convergence
rate with respect to the norm of the gradient; (b) the distance from the starting point to xk.

This function is not convex, and it satisfies the Lipschitz condition for the gradient only locally. Indeed, if we
consider the line x2 = 0, then we get f(x1, 0) = 100x4

1 + (x1− 1)2. The gradient of this function does not satisfy the
Lipschitz condition. On the other hand, the Rosenbrock function satisfies locally PL-condition.

In the conducted experiments, we will vary the value of the parameter ∆ and take δ = ∆2. In Table 4 in
Appendix B.3, we show the results for different types of noise. As previously, from the results presented in Table 4,
we can see that the number of required iterations increases with decreasing ∆ (which also tightens the stopping
condition). Moreover, it increases logarithmically, which coincides with the results of Theorem 2.7. We can also note
that the resulting distance from the starting point x0 to the last point does not exceed the distance from the starting
point x0 to the nearest optimal one x∗ = (1, 1) everywhere. In addition, for all considered types of the gradient error
(noise), a comparable convergence rate is observed according to the number of iterations until stopping criterion (31)
is satisfied, and to the running time for the corresponding values of ∆.

Further, let us consider a system of nonlinear equations g(x) = 0, where g1 = 1
2 (x1−1), gi = xi−2x2

i−1 +1, i =

2, n. The problem of solving this system is equivalent to minimizing the following Nesterov-Skokov function (see [11])

12
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f(x) =
1

4
(1− x1)

2
+

n−1∑
i=1

(
xi+1 − 2x2

i + 1
)2
. (35)

This function is analogous to the Rosenbrock function. It is also non-convex and satisfies the Lipschitz gradient
condition only locally. Also, function (35) has a global minimum at the point (1, 1 . . . 1, 1)> and an optimal value
f∗ = 0. Moreover, this function locally satisfies PL-condition (see the proof in Appendix D).

As it was seen from the results of the previous experiments, our proposed stopping criterion (31) of Algorithm 1 can
work equally well for all considered types of noise in the gradient. In the current experiments for the Nesterov-Skokov
function, we used the random noise of the gradient which is uniformly distributed on the sphere. For the experiments,
the starting point is (−1, 1, . . . 1, 1)> and therefore ‖x0 − x∗‖ = 2. We will vary the value of the inexactness ∆ and
the dimension of the problem n.

Table 5 in Appendix B.4 shows the results of the adaptive gradient method 1 for the Nesterov-Skokov function (35).
Firstly, we see that as the dimension of n increases, the difference between the required time to solve the problem
for different ∆ grows significantly. Secondly, for different n with the same ∆, the method converges to a solution
with significantly different accuracy. We can also note that ‖xN − x0‖ exceeds ‖x0 − x∗‖ by at most 2 times.
Moreover, significant upward deviations are observed for the cases when numerous iterations are made (n = 5 and
∆ = 10−4, 10−3). It can also be noted that even for sufficiently small values of the norm of the gradient, the accuracy
by the function turns out to be quite low (which is typical for the Nesterov-Skokov function).

4. Conclusion

This paper studies stopping criterions for the gradient method with an inexact gradient. The authors focus on the case
of non-convex functions. The paper presents a stopping criterion that finds a compromise between the accuracy of
the obtained point and the distance to the starting point. Moreover, it is shown that the method moves away from the
starting point to a distance comparable to the distance to the nearest solution if the function satisfies PL-condition.

Besides, the paper considers the cases of a constant and adaptive step size in the gradient methods. For both cases,
we present theoretical analysis and the number of iterations required to approach the stopping criterion or to find the
point with the required quality.

In addition, the paper contains numerical experiments demonstrating the work of the stopping criterion. In
particular, there are experiments on a quadratic function (convex, but not strongly convex), demonstrating the stopping
criterion to be approached faster than the theoretical estimation of the iteration number N∗. Also, we present
experiments on the problem of logistic regression where the objective function is convex and meets PL-condition
only locally. The proposed stopping criterion on this function stops the growth of the distance ‖xk − x0‖. Moreover,
we present experiments on non-convex functions: the Rosenbrock function and its multidimensional generalization,
which is the Nesterov-Skokov function. The first function demonstrates that our stopping criterion works with general
types of inexactness. The second function demonstrates that even a small inexactness can lead to quite a high value
of function and this value cannot be improved. Also, we demonstrate that for some noises, the gradient method can
move away quite far on the Nesterov-Skokov function without a stopping criterion.
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A. The proof of Theorem 2.7

In the case, if at some k-th iteration of Algorithm 1 the condition (31) is satisfied, then according to the PL-condition
we obtain that

f(xk)− f∗ ≤ 5∆2

µ
.

Let us study the estimation of the quality of the output point of Algorithm 1 under conditions when (31) is not
satisfied. Note that for each iteration k ≥ 1 condition (30) is satisfied, i.e.

f̃(xk+1) ≤ f̃(xk) + 〈∇̃f(xk), xk+1 − xk〉+ Lk‖xk+1 − xk‖2 +
∆2

2Lk
+ 2δ.

Then by using condition (27), we get

f(xk+1) ≤ f(xk) + 〈∇̃f(xk), xk+1 − xk〉+ Lk‖xk+1 − xk‖2 +
∆2

2Lk
+ 4δ.

Moreover, taking into account (29), we have the following inequality

f(xk+1)− f(xk) ≤ ∆2

2Lk
− 1

4Lk
‖∇̃f(xk)‖2 + 2δ. (36)

This condition, together with the relation for the inexactness 8Lkδ ≤ ∆2, tells us that if ‖∇̃f(xk)‖ ≥ C∆ for
C >

√
3, then f(xk+1) < f(xk) is guaranteed and the method converges to the minimum. For definiteness, we take

C = 2. Then if ‖∇̃f(xk)‖ > 2∆ and (36) holds for every k = 0, 1, . . . , N − 1, then

f(x0)− f(xN ) =

N−1∑
k=0

(f(xk)− f(xk+1)) >
∆2

2

N−1∑
k=0

1

Lk
− 2δN ≥ N∆2

4L
− 4δN,

i.e. at 16Lδ < ∆2, we have

N <
2L

∆2 − 16Lδ
(f(x0)− f∗), (37)

which indicates the end of the process.

On the other hand, from estimate (36) one can get an estimate for the function residual at the k-th iteration. Using
the PL-condition, we get

f(xk+1)− f(xk) ≤ ∆2

2Lk
− µ

4Lk
(f(xk)− f∗) + 4δ,

whence

f(xk+1)− f∗ ≤
(

1− µ

4Lk

)
(f(xk)− f∗) +

∆2

2Lk
+ 2δ

≤
k∏
j=0

(
1− µ

4Lj

)
(f(x0)− f∗) +

∆2

2

 1

Lk
+

k−1∑
j=0

1

Lj

k∏
i=j+1

(
1− µ

4Li

)+

+ 4δ

k−1∑
j=0

k∏
i=j+1

(
1− µ

4Li

) .

Let us estimate the second term. We denote by Sk =

(
1
Lk

+
k−1∑
j=0

1
Lj

∏k−j
i=1

(
1− µ

4Li

))
. Note that Sk with

k ≥ 1 satisfies the recursive formula Sk = 1
Lk

+ Sk−1

(
1− µ

4Lk

)
. Let us consider two cases. In the first case, if

µSk−1 ≥ 4, then Sk = 4−µSk−1

4Lk
+ Sk−1 ≤ Sk−1. In the second case, for µSk−1 < 4 we get that Sk−1 <

4
µ and

Sk <
1
Lk

+ 4
µ

(
1− µ

4Lk

)
= 4

µ . Thus Sk ≤ max
(
Sk−1,

4
µ

)
. By sequentially expanding, we obtain the estimate

Sk ≤ max

(
S0,

4

µ

)
= max

(
1

L0
,

4

µ

)
≤ 4

µ
.
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We also estimate the third term using Lj ≤ 2L as

k−1∑
j=0

k∏
i=j+1

(
1− µ

4Li

)
≤
k−1∑
j=0

(
1− µ

8L

)j
≤ 8L

µ
.

Thus, we obtain the estimate

f(xk+1)− f∗ ≤
k∏
j=0

(
1− µ

4Lj

)
(f(x0)− f∗) +

2∆2

µ
+

32L

µ
δ. (38)

The estimate of (38) depends on how the algorithm works. Using the inequality Lk ≤ 2L, we obtain a result about
the convergence which is determined only by the parameters of the function

f(xk+1)− f∗ ≤
(

1− µ

8L

)k+1

(f(x0)− f∗) +
2∆2

µ
+

32L

µ
δ. (39)

Next, we use the relation for the inexactness 16Lδ ≤ ∆2 and estimate (39):

f(xk+1)− f∗ ≤
(

1− µ

8L

)k+1

(f(x0)− f∗) +
4∆2

µ
. (40)

Let us estimate the distance ‖x0 − xN‖ in the same way as it was done for the gradient descent method with a
constant step. Using inequalities (36), (40) and and taking into account that ∇̃f(xk) = 2Lk(xk+1 − xk), we get the
following estimate

‖xk+1 − xk‖2 =
‖∇̃f(xk)‖2

4L2
k

≤ ∆2

2L2
k

+
f(xk+1)− f(xk)

Lk

≤ ∆2

2L2
k

+
f(xk+1)− f∗

Lk

≤ ∆2

2L2
k

+
4∆2

µLk
+

1

Lk

(
1− µ

8L

)k
(f(x0)− f(x∗))

≤ 4∆2

2L2
min

+
∆2

µLmin
+

1

Lmin

(
1− µ

8L

)k
(f(x0)− f(x∗)).

After summing these inequalities over k from 0 to N − 1, we get the following result

‖xk+1 − xk‖ ≤ ∆

√
1

2L2
min

+
4

µLmin
+
(

1− µ

8L

) k
2

√
f(x0)− f(x∗)

Lmin
.

Thus,

‖xN − x0‖ ≤
N−1∑
k=0

‖xk+1 − xk‖ ≤ N∆

√
1

2L2
min

+
4

µLmin
+ 16

√
L

Lmin

√
L(f(x0)− f∗)

µ
. (41)

We can estimate the number of iterations of Algorithm 1 from the inequality (40) as follows

N ≤
⌈

8L

µ
log

µ(f(x0)− f∗)
2∆2

⌉
.

Let us introduce the notation γ = L
Lmin

. Then we can estimate the final estimation of the distance from the starting
point x0 to the current one xN as follows

‖xN − x0‖ ≤ 8
∆

µ

√
1

2
γ2 + 4γ

L

µ
log

µ(f(x0)− f∗)
2∆2

+ 16

√
γL(f(x0)− f∗)

µ
.

Note that the factor γ = L
Lmin

appeared in this estimate, which depends on an unknown constant and the parameter
of the algorithm Lmin. In the worst case, we have γ = 4L

µ .
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Let us estimate the number of additional calculations of the value of the function and operations of the form (29)
of the adaptive gradient method 1 in comparison with the gradient descent with a constant step-size (13). Let ik
computations of the inexact gradient be made at the k-th step. Then 2i1−1 = 2Lk

Lk−1
. Then we note that

N∏
k=1

2ik−1 =

N∏
k=1

2Lk
Lk−1

= 2N
LN
L0

.

As mentioned above, it is true that LN ≤ 2L. Then the total number of additional function evaluations and steps

of the form (29) I(N) =
N∑
i=1

ik is estimated from above as follows

2I(N)−2N ≤ 2L

L0
.

Therefore,

I(N) ≤ 2N + log
2L

L0
.

B. Numerical Experiments

B.1. The quadratic form minimization problem

In this section, we present additional experiments for quadratic problem presented in Section 3.1.

Fig. 3. Convergence of the gradient method with stopping criterion (21) in the two-dimensional case for different
v: zero (exact), randomly generated at each iteration (random inexactness), co-directional with minus gradient
(Antigradient), and constant (constant inexactness).

Now, let us consider a quadratic form in dimension n = 2 with coefficients 0.05 and 1. In this case, we can
draw the convergence trajectory of the method for different types of noise (see Fig. 3). We chose the starting point
x0 = (10, 0.1)> and noise level ∆ = 10−2. In the case of constant inexactness, the vector v = (1, 1)> was taken.

We can see that, if the inexact gradient is collinear to the exact one, then the trajectories coincide almost completely
for the gradient method with exact and inexact gradients. At the same time, we do not see changes in the coordinate
xk, on which the function almost does not depend. For the constant noise, we observe a constant displacement of the
trajectory from the path of the inexact gradient descent method.

Now we compare the results of the gradient descent with a constant step-size (13) and the proposed gradient
descent method with an adaptive step-size (Algorithm 1) when we use stopping criterion (21). In Tables 2 and 3, there
were presented the results of the experiments for the quadratic function (34). The experiments were carried out for the
uniformly distributed noise v(x) on the sphere. In these experiments, the inexactness δ = 16∆2 in the function was
taken. Note that in this case, the correlation of inexactness satisfies the condition of Theorem 2.7.
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From Table 2, we can see that the adaptive method is inferior in real time to the gradient descent for all parameters
µ and ∆. However, it needs a smaller number of iterations for small µ.

Constant Adaptive L
µ ∆ ‖xN − x0‖ ‖∇f(xN )‖

∆ f(xN )− f∗ ‖xN − x0‖ ‖∇f(xN )‖
∆ f(xN )− f∗

0.01
10−7

10−4

10−1

948.7
948.7
946.2

2.34
2.37
2.39

0.25 · 10−11

0.26 · 10−5

2.50

948.7
948.7
946.5

2.01
2.04
2.30

0.18 · 10−11

0.19 · 10−5

1.93

0.1
10−7

10−4

10−1

948.7
948.7
948.3

2.17
1.95
2.15

0.22 · 10−12

0.17 · 10−6

0.20

948.7
948.7
948.4

1.90
2.14
1.80

0.14 · 10−12

0.19 · 10−6

0.14

0.9
10−7

10−4

10−1

948.7
948.7
948.7

0.93
0.86
0.99

0.46 · 10−14

0.39 · 10−8

0.52 · 10−2

948.7
948.7
948.7

0.92
0.95
0.88

0.45 · 10−14

0.48 · 10−8

0.41 · 10−2

0.99
10−7

10−4

10−1

948.7
948.7
948.7

0.99
0.94
1.02

0.49 · 10−14

0.44 · 10−8

0.52 · 10−2

948.7
948.7
948.6

0.94
0.93
0.99

0.44 · 10−14

0.43 · 10−8

0.49 · 10−2

Table 3. Comparison of algorithms in terms of the achieved accuracy in terms of the gradient norm and the distance
from the start point to the last point. The distance from the starting point to the nearest optimal one is 948.7.

Note that according to the results presented in Table 3, the compared methods lead to the achievement of
approximately the same quality of the approximate solution. In this case, the trajectories of the methods are moved
away approximately equally from the starting point. In this case, the distance ‖xN − x0‖ is approximately equal to
the distance x0 to the nearest exact solution x∗. As we can see, the achieved accuracy is no less than 7∆2

µ .

B.2. The problem of minimizing the logistic regression function

Now let us check the work of the proposed stopping criterion in the case when it is rather difficult to estimate the
constant µ of the function which satisfies the PL-condition. In this case, we will not be able to use estimate (25). This
situation has been discussed in Remark 2.4.

However, we note that, as shown by the previous experiment, condition (21) can be achieved in a significantly
smaller number of steps compared to the theoretical estimate of the number of iterations N∗ from Theorem 2.3. We
will consider the following optimization problem associated with logistic regression:

f(x) =
1

m

m∑
i=1

log (1 + exp (−yi〈wi, x〉)) , (42)

where y = (y1, . . . , ym)
> ∈ [−1, 1]m is the feasible variable vector, W = [w1 . . . wm] ∈ Rn×m is the feature matrix,

where the vector wi ∈ Rn is from the same space as the optimized weight vector w.

Note that this problem may not have a finite solution in the general case. So we will create such an artificial data
set that there is a finite vector x∗ minimizing the given function. To do this, we generate W and y as follows:

1. We construct k ≤ min
(
n, m2

)
orthogonal vectors with the unit norm and combine them into a matrix WB ∈

Rn×k.

2. Construct a matrix W̃ = WBV
> ∈ Rn×m−2k, where V ∈ Rm−2k×k is some random matrix that defines the

expansion of the vectors from the matrix W in the basis WB .

3. Construct some vector x0 and define new vectors ỹ = sign(W̃x0), y1 = sign(WBx0).

4. Define the feasible variable vector y = [y1| − y1|ỹ] ∈ [−1, 1]m.

5. Define the feature matrix W = [WB |WB |W̃ ] ∈ Rm×n.

Proposition B.1. For the function (42) with such data, the following statements hold:

1. The function f satisfies the PL-condition on any compact set K;
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2. The function f has a Lipschitz gradient with the constant L = λmax(W>W )
4m ;

3. There is a finite x∗, where the objective function reaches its minimal value;

4. The set of minimum points X∗ is unbounded if k < n.

The proof of Proposition B.1 is presented in Appendix C.

In the conducted experiments, we chose n = 200,m = 700 and k = 10 < min
(
n, m2

)
. Accordingly, there are

700 objects with 200 features and a feature matrix of rank 10. Thus, the set of the solutions for the minimization
problem of the function f with such data is non-empty and unbounded.

Let us apply the gradient descent method (13) for various inexactness ∆ in the gradient with stopping criterion
(21). As an inexact gradient, we will use a gradient with random noise Random.

Fig. 4. The convergence rate of the gradient method with respect to the norm of the gradient for different values of
the inexactness ∆ for the problem of logistic regression minimization at the first N = 105 iterations without using the
stopping criterion.

In Fig. 4 there was shown the plot of the convergence of the gradient method with different levels of the noise
∆ without using the stopping criterion proposed in this article. It can be seen that the method reaches points with a
gradient norm of order ∆, but it cannot converge closer.

Fig. 5. The convergence rate of the gradient method with respect to the norm of the gradient for different values of the
inexactness ∆ for the problem of logistic regression minimization with the use of stopping criterion (21).
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At the same time, in Fig. 5 there was shown the plot of the convergence of the gradient method with the use of
stopping criterion (21). As we can see, the method stops when it reaches the accuracy ‖∇̃f(xk)‖ ∼ ∆. We also note,
in this example, that the trajectories of the methods practically coincide until the corresponding accuracy is achieved.

(a) (b)

Fig. 6. The results of the gradient method with respect to the norm of the gradient without using the stopping criterion
for ∆ = 0.1 for the problem of logistic regression minimization for the inexactness ∆v(x). (a) The convergence rate
with respect to the norm of the gradient; (b) the distance from the starting point to xk.

In Fig. 6(a) the plot of the convergence of the gradient method with the noise level ∆ = 0.1 without using
the stopping is shown. We can see that, after reaching ‖∇̃f(xk)‖ ∼ ∆ = 0.1, gradient method (13) slows down
significantly compared to the noise-free method (2). Also note that if the gradient method works without using the
stopping criterion, the distance from the starting point grows uncontrollably. Moreover, this growth exceeds the
distance increase for the method without noise.

Next, we consider other types of problems in which the additive inexactness of the gradient proposed in section
3.1 occurs. The results for the inexact case Antigradient are shown in Fig. 7 and 8. In Fig. 7, we can see that the
trajectories of the method begin to noticeably differ from the previous case. The inexact gradient method converges
more slowly as the value of the parameter ∆ increases.

Fig. 7. The convergence rate of the gradient method with respect to the norm of the gradient for different
values of the inexactness ∆ for the problem of logistic regression minimization using stopping criterion (21) for
v = − ∆

‖∇f(x)‖∇f(x).
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However, on the graph 8(b), we can see that when methods use such an inexact gradient, the error does not
accumulate. Indeed, the method stabilizes near a point such that ‖∇f(x)‖ ≈ 0.1 = ∆, as it can be seen from Fig.
8(a). Moreover, the method stops at the distance of ‖xk − x0‖ ≈ 1 and does not move further.

(a) (b)

Fig. 8. The results of the gradient method with respect to the norm of the gradient without using the stopping criterion
for ∆ = 0.1 for the problem of logistic regression minimization for v = − ∆

‖∇f(x)‖∇f(x). (a) The convergence rate
with respect to the norm of the gradient; (b) the distance from the starting point to xk.

Thus, in the case of v = − ∆
‖∇f(x)‖∇f(x), we can see that there is no problem of too large growth of the distance

from the starting point to the resulting one.

The situation is essentially different for the inexactness in form of constant vector v, which is the same at all
iterations. From Fig. 1 it can be seen that the trajectories of the method are also not the same. Moreover, adding
inexactness slows down the convergence somewhat. On the other hand, the trajectories have become more similar
compared to the case of the inexactness directed along the antigradient.

B.3. Some experiments with the Rosenbrock function

In this subsection, we investigate the behavior of the proposed adaptive Algorithm 1 for the well-known
two-dimensional Rosenbrock function

f(x1, x2) = 100(x2 − (x1)2)2 + (x1 − 1)2.

This function is not convex, and it satisfies the Lipschitz condition for the gradient only locally. Indeed, if we
consider the line x2 = 0, then we get f(x1, 0) = 100x4

1 + (x1 − 1)2. The gradient of this function does not satisfy
the Lipschitz condition. On the other hand, the Rosenbrock function satisfies locally the PL-condition. Indeed, let us
consider the system of nonlinear equations g1(x1, x2) = 10(−x2 + (x1)2), g2(x1, x2) = x1− 1. The Jacobian of this
system is

J =

[
20x1 −10

1 0

]
,

and consequently,

JJ> =

[
400x2

1 + 100 20x1

20x1 1

]
� 0.

Thus, for any compact set there exists some constant µ, such that JJ> � µI . Then, according to the results given
in the introduction [10], the Rosenbrock function satisfies the PL-condition with the constant µ on the corresponding
compact set.

In the conducted experiments, we vary the value of the parameter ∆ and take δ = ∆2. The starting point for all
parameters is x1 = 1, x2 = 2. The distance from the initial point to the optimal point 1 = (1, 1) is 1. In Table 4, we
show the results for different types of noise. The vector v = (1, 0)> was taken as a constant noise. In this experiment
(and also in the next subsection), we will use stopping criterion (31).
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Inexactness ∆ Iters Time, ms ‖xN − x0‖ ‖∇f(xN )‖
∆ f(xN )− f∗

Random
10−4

10−3

10−2

7266
5412
3690

2273.26
2594.61
3163.32

0.999
0.994
0.940

2.70
2.90
2.61

0.89 · 10−7

1.00 · 10−5

0.89 · 10−3

Antigradient
10−4

10−3

10−2

7188
5493
3536

2615.61
2490.56
3031.05

0.999
0.993
0.931

2.99
3.00
2.99

0.11 · 10−6

0.11 · 10−4

0.12 · 10−2

Constant
10−4

10−3

10−2

7491
5697
3965

2301.32
2490.32
3485.89

1.000
0.997
0.965

1.54
1.87
1.93

0.27 · 10−7

0.24 · 10−5

0.30 · 10−3

Table 4. The results of the adaptive gradient descent for the 2D Rosenbrock function using stopping criterion (31).

As previously, from the results presented in Table 4, we can see that the number of required iterations increases with
decreasing ∆ (which also tightens the stopping condition). Moreover, it increases logarithmically, which coincides
with the results of Theorem 2.7. We can also note that the resulting distance from the starting point x0 to the last
point does not exceed the distance from the starting point x0 to the nearest optimal one x∗ = (1, 1) everywhere. In
addition, for all considered types of the gradient error (noise), a comparable convergence rate is observed according to
the number of iterations until stopping criterion (31) is satisfied, and to the running time for the corresponding values
of ∆.

Fig. 9. The trajectory of the gradient method on 2D Rosenbrock function with Random Inexactness in gradient

Note that in this example, the gradient method without a stopping criterion approaches some level for the function
and next iterations are meaningless. So, in Fig. 9 we can see that the method stopped to improve the function value
after some iterations.

B.4. Some experiments with the Nesterov-Skokov function

Let us consider a system of nonlinear equations g(x) = 0, where g1 = 1
2 (x1 − 1), gi = xi − 2x2

i−1 + 1, i = 2, n. The
problem of solving this system is equivalent to minimizing the following Nesterov-Skokov function (see [11]):

f(x) =
1

4
(1− x1)

2
+

n−1∑
i=1

(
xi+1 − 2x2

i + 1
)2
. (43)
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This function is analogous to the Rosenbrock function. It is also non-convex and satisfies the Lipschitz gradient
condition only locally. Also, function (43) has a global minimum at the point (1, 1 . . . 1, 1)> and an optimal value
f∗ = 0.

Let J be the Jacobian of the function g. Then note that JJ> is a tridiagonal matrix, and one can easily verify that
all its minors are positive for any x (see the proof in appendix D). Whence it follows that for any compact set there
exists some constant c such that JJ> � cI . Thus, this function locally satisfies the PL-condition.

As it was seen from the results of the previous experiments, our proposed stopping criterion (31) of Algorithm 1 can
work equally well for all considered types of noise in the gradient. In the current experiments, for the Nesterov-Skokov
function, we used the random noise of the gradient which is uniformly distributed on the sphere. For the experiments,
the starting point is (−1, 1, . . . 1, 1)> and therefore ‖x0 − x∗‖ = 2. We vary the value of the inexactness ∆ and the
dimension of the problem n.

n ∆ Iters Time, ms ‖xN − x0‖ ‖∇f(xN )‖
∆ f(xN )− f∗

3
10−4

10−3

10−2

14097
2477
606

230.58
247.64
383.63

1.996
2.155
2.650

2.86
2.93
2.19

0.20 · 10−4

0.11 · 10−2

0.87 · 10−2

5
10−4

10−3

10−2

73028
15765

6

275.03
292.39
200.87

2.930
3.312
0.036

2.93
2.65
1.45

0.30 · 10−3

0.49 · 10−2

0.98

7
10−4

10−3

10−2

2898
103
17

316.51
164.23
104.77

0.049
0.036
0.036

2.69
2.07
1.42

0.98
0.98
0.98

Table 5. The results of the adaptive gradient descent for the Nesterov-Skokov function with the use of stopping
criterion (31).

Table 5 shows the results of the adaptive gradient method 1 for the Nesterov-Skokov function (43). Firstly, we see
that as the dimension of n increases, the difference between the required time to solve the problem for different ∆
grows significantly. Secondly, for different n with the same ∆, the method converges to a solution with significantly
different accuracy. So for ∆ = 10−4 the accuracy for n = 7 and n = 3 differs by more than 100 times. This is
explained by the decrease in the constant µ in the PL-condition as n grows. We can also note that ‖xN − x0‖ exceeds
‖x0 − x∗‖ by at most 2 times. Moreover, significant upward deviations are observed for the cases when numerous
iterations are made (n = 5 and ∆ = 10−4, 10−3). It can also be noted that even for sufficiently small values of the
norm of the gradient, the accuracy by the function turns out to be quite low (which is typical for the Nesterov-Skokov
function). Thus, for n = 7 and ∆ = 10−4 we get a point with ‖∇f(x̂)‖ ≈ 10−4, but f(x̂)− f∗ ≈ 0.98.

(a) (b)

Fig. 10. The convergence of the gradient method for the Nesterov-Skokov function in the 7 dimensional space with
the Antigradient inexactness in the gradient: (a) the function value f(xk)− f∗; (b) the distance ‖xk − x0‖.

In Fig. 10 we can see the convergence rate of the gradient method with the Antigradient inexactness. First, we can
see in Fig. 10(a) that the method approaches level 0.98 quite quickly and does not improve after that. On the other
hand, from Fig. 10(b) one can see that the method without the stopping criterion moves away from the starting point
quite far.
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C. Proof of Proposition B.1

Further, x∗ ∈ X∗. Condition 1 in Proposition B.1 holds to any logistic regression function. Let us estimate the
Lipschitz constant L of the gradient of function (42). It is known that L = maxx∈Rn λmax

(
∇2f(x)

)
. On the other

hand, ∇2f(x) = ∇2g(Ax) = A>Hg(z)
∣∣∣
z=Ax

A, where g(z) = 1
m

m∑
i=1

log (1 + exp (zi)), and A = [−y1w1 · · · −

ymwm]> ∈ Rm×n and the matrix Hg(z) is the Hessian of the function g at the point z. Note that Hg(z) is a diagonal
matrix with entries 1

m
ezi

(ezi+1)2 ≤
1

4m . Thus, we have the following estimate from above:

L ≤ ‖A‖22 max
z
‖Hg(z)‖2 =

‖A‖22
4m

.

So, statement 2 in Proposition B.1 holds.

Further, let us introduce new notations. Let E1 be a subspace given by the basis WB and E2 be a subspace
orthogonal to E1. Note that if k < n, then the dimension of E2 is at least 1. Then if there exists a minimum point x∗,
then at any point from the set x∗ +E2 ⊆ X∗, the objective function takes the minimal value. Therefore, the set of the
solutions is unbounded.

Now let us prove statement 3 in Proposition B.1. Note that the created matrix W has a rank k ≤ n. Accordingly,
all vectors wi belong to the k-dimensional subspace E1, given by the basis WB . Also, for any vector x̃ ∈ E2 from the
subspace orthogonal to E1 and for any vector x ∈ Rn, it is true that f(x + x̃) = f(x). Thus, f(E1) = f(Rn). Note
that function (42) is bounded from below by 0, and hence f∗ = infx f(x) ≥ 0 > −∞. Thus, we consider a sequence
{xj}j ∈ E1 such that f(xj)→ f∗. Let us transform the sum, taking into account that the first 2k vectors wj are rows
of the matrices WB and −WB

m∑
i=1

log (1 + exp (−yi〈wi, xj〉)) ≥
2k∑
i=1

log (1 + exp (−yi〈wi, xj〉))

=

k∑
i=1

log
((

1 + e−yi〈wi,xj〉
)(

1 + eyi〈wi,xj〉
))

=

k∑
i=1

log (2 + 2ch (yi〈wi, xj〉)) .

From the fact that f∗ is finite and from the constructed lower bound, it follows that |〈ai, xj〉| ≤ C, ∀j for some
constant C > 0, i.e. ‖WBxj‖ ≤ kC, ∀j. On the subspace E1, the matrix WB defines an invertible operator. Hence,
‖·‖W>BWB

is a norm on the subspaceE1. Therefore, in view of the equivalence of norms in a finite-dimensional space,
we have that ‖xj‖ ≤ C1∀j for some constant C1 > 0 depending only on the constants C, k and the parameters of the
matrix WB . Thus, any sequence of elements of the space in which the sequence of values of the function converges
to f∗ is bounded. This means that from this bounded sequence, we can extract a convergent subsequence {xjl}l. The
limit of this subsequence is the desired point x∗, which is a finite vector. So, statement 3 in Proposition B.1 holds.

As mentioned before, for any vector x̃ ∈ E2 and for any vector x ∈ Rn, the equality f(x + x̃) = f(x) holds.
By constructing WB , the dimension of E2 is at least 1. So, from this and statement 3, we have that statement 4 in
Proposition B.1 holds.

D. The Nesterov-Skokov function

Let us consider the following known Nesterov-Skokov function [11]

f(x) =
1

4
(1− x1)

2
+

n−1∑
i=1

(
xi+1 − 2x2

i + 1
)2

=

n∑
i=1

g2
i (x), (44)

where g1 = 1
2 (x1 − 1), gi = xi − 2x2

i−1 + 1, i = 2, n. Then the Jacobian of the system g(x) = 0 is a two-diagonal
matrix. On the main diagonal J11 = 1

2 and Jii = 1, on the side diagonal Ji,i−1 = −2xi−1. Then the matrix JJ> is a
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tridiagonal symmetric matrix of the form
1
4 −2x1 0 0 . . . 0 0
−2x1 16x2

1 + 1 −4x2 0 . . . 0 0
0 −4x2 16x2

2 + 1 −4x3 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 16x2
n−2 + 1 −4xn−1

0 0 0 0 . . . −4xn−1 16x2
n−1 + 1

 .

Then the first principal minor is f1 = 1
4 , the second is f2 = 1

4 . The recursive formula for a tridiagonal matrix is
fk = (16x2

k−1 + 1)fk−1 − 16x2
k−1fk−2. Then we can prove that fj ≥ fj−1 for all j > 1. Thus, the matrix is strictly

positive definite for any x. Then for any compact set W , one can choose a constant c which limits from below all
the eigenvalues of the matrix JJ>, which means that JJ> � cI . Then, according to the results [10] given in the
introduction, the function satisfies the PL-condition with a constant c > 0 on the corresponding compact set.
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