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Abstract

We study the decentralized distributed computation of discrete approximations
for the regularized Wasserstein barycenter of a finite set of continuous probability
measures distributedly stored over a network. We assume there is a network of
agents/machines/computers, and each agent holds a private continuous probability
measure and seeks to compute the barycenter of all the measures in the network
by getting samples from its local measure and exchanging information with its
neighbors. Motivated by this problem, we develop, and analyze, a novel accelerated
primal-dual stochastic gradient method for general stochastic convex optimization
problems with linear equality constraints. Then, we apply this method to the decen-
tralized distributed optimization setting to obtain a new algorithm for the distributed
semi-discrete regularized Wasserstein barycenter problem. Moreover, we show
explicit non-asymptotic complexity for the proposed algorithm. Finally, we show
the effectiveness of our method on the distributed computation of the regularized
Wasserstein barycenter of univariate Gaussian and von Mises distributions, as well
as some applications to image aggregation.

1 Introduction

Optimal transport (OT) [32, 26] has become increasingly popular in the machine learning and
optimization community. Given a basis space (e.g., pixel grid) and a transportation cost function (e.g.,
squared Euclidean distance), the OT approach defines a distance between two objects (e.g., images),
modeled as two probability measures on the basis space, as the minimal cost of transportation of the
first measure to the second. Besides images, these probability measures or histograms can model other
real-world objects like videos, texts, etc. The optimal transport distance leads to outstanding results
in unsupervised learning [4, 8], semi-supervised learning [44], clustering [24], text classification [28],
as well as in image retrieval, clustering and classification [40, 12, 41], statistics [20, 38], economics
and finance [5], condensed matter physics [9], and other applications [27]. From the computational
point of view, the optimal transport distance (or Wasserstein distance) between two histograms of
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size n requires solving a linear program, which typically requires O(n3 log n) arithmetic operations.
An alternative approach is based on entropic regularization of this linear program and application of
either Sinkhorn’s algorithm [12] or stochastic gradient descent [22], both requiring O(n2) arithmetic
operations, which can be too costly in the large-scale context.

Given a set of objects, the optimal transport distance naturally defines their mean representative. For
example, the 2-Wasserstein barycenter [2] is an object minimizing the sum of squared 2-Wasserstein
distances to all objects in a set. Wasserstein barycenters capture the geometric structure of objects,
such as images, better than the barycenter with respect to the Euclidean or other distances [13].
If the objects in the set are randomly sampled from some distribution, theoretical results such
as central limit theorem [15] or confidence set construction [20] have been proposed, providing
the basis for the practical use of Wasserstein barycenter. However, calculating the Wasserstein
barycenter of m measures includes repeated computation of m Wasserstein distances. The entropic
regularization approach was extended for this case in [7], with the proposed algorithm having a
O(mn2) complexity, which can be very large if m and n are large. Moreover, in the large-scale
setup, storage and processing of transportation plans, required to calculate Wasserstein distances,
can be intractable for local computation. On the other hand, recent studies [33, 42, 39, 48, 34] on
accelerated distributed convex optimization algorithms demonstrated their efficiency for convex
optimization problems over arbitrary networks with inherently distributed data, i.e., the data is
produced by a distributed network of sensors [37, 36, 35] or the transmission of information is limited
by communication or privacy constraints, i.e., only limited amount of information can be shared
across the network.

Motivated by the limited communication issue and the computational complexity of the Wasserstein
barycenter problem for large amounts of data stored in a network of computers, we use the entropy
regularization of the Wasserstein distance and propose a decentralized algorithm to calculate an
approximation to the Wasserstein barycenter of a set of probability measures. We solve the problem
in a distributed manner on a connected and undirected network of agents oblivious to the network
topology. Each agent locally holds a possibly continuous probability distribution, can sample from
it, and seeks to cooperatively compute the barycenter of all probability measures exchanging the
information with its neighbors. We consider the semi-discrete case, which means that we fix the
discrete support for the barycenter and calculate a discrete approximation for the barycenter.

1.1 Related work

Unlike [46], we propose a decentralized distributed algorithm for the computation of the regularized
Wasserstein barycenter of a set of continuous measures. Working with continuous distributions
requires the application of stochastic procedures like stochastic gradient method as in [22], where
it is applied for regularized Wasserstein distance, but not for Wasserstein barycenter. This idea
was extended to the case of non-regularized barycenter in [45, 11], where parallel algorithms were
developed. The important difference between the parallel and the decentralized setting is that, in
the former, the topology of the computational network is fixed to be a star topology and it is known
in advance by all the machines, forming a master/slave architecture. We seek to further scale up
the barycenter computation to a huge number of input measures using arbitrary network topologies.
Moreover, unlike [45], we use entropic regularization to take advantage of the problem smoothness
and obtain faster rates of convergence for the optimization procedure. Unlike [11], we fix the support
of the barycenter, which leads to a convex optimization problem and allows us to prove complexity
bounds for our algorithm.

The well-developed approach based on Sinkhorn’s algorithm [12, 7, 14] naturally leads to parallel
algorithms. Nevertheless, its application to continuous distributions requires discretization of these
distributions, leading to computational intractability when one desires good accuracy and, hence,
has to use fine discretization with large n, which leads to the necessity of solving an optimization
problem of large dimension. Thus, this approach is not directly applicable in our setting of continuous
distributions, and it is not clear whether it is applicable in the decentralized distributed setting with
arbitrary networks.

Recently, an alternative accelerated-gradient-based approach was shown to give better results than
the Sinkhorn’s algorithm for Wasserstein distance [18, 19]. Moreover, accelerated gradient methods
have natural extensions for the decentralized distributed setting [42, 47, 30]. Nevertheless, existing
distributed optimization algorithms can not be applied to the barycenter problem in our setting of
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continuous distributions as these algorithms are either designed for deterministic problems or for
stochastic primal problem, whereas in our case the dual problem is a stochastic problem. Table 1
summarizes the existing literature on Wasserstein barycenter calculation and shows our contribution.

Table 1: Summary of our contribution.

PAPER DECENTRALIZED CONTINUOUS BARYCENTER

[12, 7, 14] × ×
√

[22] ×
√

×
[45, 11] ×

√ √

THIS PAPER (ALG. 4)
√ √ √

1.2 Contributions

• We propose a novel algorithm for general stochastic optimization problems with linear constraints,
namely the Accelerated Primal-Dual Stochastic Gradient Method (APDSGM).

• We propose a distributed algorithm for the computation of a discrete approximation for regularized
Wasserstein barycenters of a set of continuous distributions stored distributedly over a network
(connected and undirected) with unknown arbitrary topology.

• We provide iteration and arithmetic operations complexity for the proposed algorithms in terms of
the problem parameters.

• We demonstrate the effectiveness of our algorithm on the distributed computation of the regularized
Wasserstein barycenter of a set of Gaussian distributions and a set of von Mises distributions for
various network topologies and network sizes. Moreover, we show some initial results on the
problem of image aggregation for two datasets, namely, a subset of the MNIST digit dataset [31]
and subset of the IXI Magnetic Resonance dataset [1].

1.3 Paper organization

This paper is organized as follows. In Section 2, we present the regularized Wasserstein barycenter
problem for the semi-discrete case and its distributed computation over networks. In Section 3, we
introduce a new algorithm for general stochastic optimization problems with linear constraints and
analyze its convergence rate. Section 4 extends this algorithm and introduces our method for the
distributed computation of regularized Wasserstein barycenter. Section 5 shows the experimental
results for the proposed algorithm. The appendix contains the proofs of stated lemmas and theorems,
as well as additional results of numerical experiments.

Notation. We defineM1
+(X ) – the set of positive Radon probability measures on a metric space

X , and S1(n) = {a ∈ Rn+ |
∑n
l=1 al = 1} the probability simplex. We use C(X ) as the space

of continuous functions on X . We denote by δ(x) the Dirac measure at point x. We refer to
λmax(W ) as the maximum eigenvalue of matrix W. We also use bold symbols for stacked vectors
p = [pT1 , · · · , pTm]T ∈ Rmn, where p1, ..., pm ∈ Rn. In this case [p]i = pi – the i-th block of p. For
a vector λ ∈ Rn, we denote by [λ]l its l-th component. We refer to the Euclidean norm of a vector
‖p‖2 :=

∑n
l=1([p]l)

2 as 2-norm.

2 The Distributed Wasserstein Barycenter Problem

In this section, we present the problem of decentralized distributed computation of regularized
Wasserstein barycenters for a family of possibly continuous probability measures distributed over a
network. First, we provide the necessary background for entropic regularization of optimal transport
and the Wasserstein barycenter problem. Then, we give the details of the distributed formulation of
the optimization problem defining the Wasserstein barycenter, which is a minimization problem with
linear equality constraint. To deal with this constraints, we make a transition to the dual problem,
which, as we show, due to the presence of continuous distributions, is a smooth stochastic optimization
problem.
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2.1 Regularized semi-discrete formulation of the optimal transport problem

We consider entropic regularization for the optimal transport problem and the corresponding regular-
ized Wasserstein distance and barycenter [12]. Let µ ∈M1

+(Y) with density q(y) on a metric space
Y , and a discrete probability measure ν =

∑n
i=1[p]iδ(zi) with weights given by vector p ∈ S1(n)

and finite support given by points z1, . . . , zn ∈ Z from a metric space Z . Denote by ci(y) = c(zi, y)
a cost function for transportation of a unit of mass from point zi ∈ Z to point y ∈ Y . Then we define
regularized Wasserstein distance in semi-discrete setting between continuous measure µ and discrete
measure ν as follows1

Wγ(µ, ν) = min
π∈Π(µ,ν)

{
n∑
i=1

∫
Y
ci(y)πi(y)dy + γ

n∑
i=1

∫
Y
πi(y) log

(
πi(y)

ξ

)
dy

}
, (1)

where ξ is the uniform distribution on Y × Z , and the set of admissible coupling measures π is
defined as follows

Π(µ, ν) =

{
π ∈M1

+(Y)× S1(n) :

n∑
i=1

πi(y) = q(y), y ∈ Y,
∫
Y
πi(y)dy = pi,∀ i = 1, . . . , n

}
.

We emphasize that, unlike [22], we regularize the problem by the Kullback-Leibler divergence from
the uniform distribution ξ, which allows us to find explicitly the Fenchel conjugate forWγ(µ, ν), see
Lemma 1 below.

For a set of measures µi ∈ M1
+(Z), i = 1, . . . ,m, we fix the support z1, . . . , zn ∈ Z of their

regularized Wasserstein barycenter ν and wish to find it in the form ν =
∑n
i=1[p]iδ(zi), where

p ∈ Sn(1). Then the regularized Wasserstein barycenter in the semi-discrete setting is defined as the
solution to the following convex optimization problem2

min
p∈S1(n)

m∑
i=1

Wγ,µi(p), (2)

where we used notationWγ,µ(p) :=Wγ(µ, ν) for fixed probability measure µ.

2.2 Network constraints in the distributed barycenter problem

We now describe the distributed optimization setting for solving problem (2). To do so, we rewrite
the problem (2) in an equivalent form

min
p1=···=pm

p1,...,pm∈S1(n)

m∑
i=1

Wγ,µi(pi). (3)

We assume that each measure µi is held by an agent i on a network and this agent can sample from
this measure. We model such a network as a fixed connected undirected graph G = (V,E), where V
is the set of m nodes and E is the set of edges. We assume that the graph G does not have self-loops.
The network structure imposes information constraints, specifically, each node i has access to µi only
and can exchange information only with its immediate neighbors, i.e. nodes j s.t. (i, j) ∈ E.

We represent the communication constraints imposed by the network by introducing a single equality
constraint instead of the constraints p1 = · · · = pm in (3). To do so, we define the Laplacian matrix
W̄∈ Rm×m of the graph G as

[W̄ ]ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0, otherwise,

1Formally, the ρ-Wasserstein distance for ρ ≥ 1 is (W0(µ, ν))
1
ρ if Y = Z and ci(y) = dρ(zi, y), d being a

distance on Y . For simplicity, we refer to (1) as regularized Wasserstein distance in a general situation since our
algorithm does not rely on any specific choice of cost ci(y).

2For simplicity, we assume equal weights for eachWγ,µi(p) and do not normalize the sum dividing by m.
Our results can be directly generalized to the case of non-negative weights summing up to 1.
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where deg(i) is the degree of the node i, i.e., the number of neighbors of the node. Finally, we define
the communication matrix (also referred to as an interaction matrix) by W := W̄ ⊗ In, where ⊗
denotes the Kronecker product of matrices.

Since the graph G is undirected and connected, the Laplacian matrix W̄ is symmetric and positive
semidefinite. Furthermore, the vector 1 of all ones is the unique (up to a scaling factor) eigenvector
associated with the zero eigenvalue. In respect that the matrix W inherits the properties of W̄ , i.e., it
is symmetric and positive, we conclude that

Wp = 0 if and only if p1 = · · · = pm,

where p = [pT1 , · · · , pTm]T ∈ Rmn. Moreover, this identity holds for
√
W :=

√
W̄ ⊗ In, i.e.

√
Wp = 0 if and only if p1 = · · · = pm.

Using this fact, we equivalently rewrite problem (2) as the maximization problem with linear equality
constraint

max
p1,...,pm∈S1(n)√

Wp=0

−
m∑
i=1

Wγ,µi(pi). (4)

2.3 Dual formulation of the barycenter problem

Given that problem (4) is an optimization problem with linear constraints, we introduce a vector
of dual variables λ = [λT1 , · · · , λTm]T ∈ Rmn for the constraints

√
Wp = 0 in (4). Then, the

Lagrangian dual problem for (4) is

min
λ∈Rmn

max
p1,...,pm∈S1(n)

{
m∑
i=1

〈λi, [
√
Wp]i〉 −Wγ,µi(pi)

}
= min

λ∈Rmn

m∑
i=1

W∗γ,µi([
√
Wλ]i), (5)

where [
√
Wp]i and [

√
Wλ]i denote the i-th n-dimensional block of vectors

√
Wp and

√
Wλ re-

spectively, the equality
m∑
i=1

〈λi, [
√
Wp]i〉 =

m∑
i=1

〈[
√
Wλ]i, pi〉 was used, andW∗γ,µi(·) is the Fenchel-

Legendre transform of Wγ,µi(pi). The following Lemma states that each W∗γ,µi(·) is a smooth
function with Lipschitz-continuous gradient and can be expressed as an expectation of a function of
additional random argument.
Lemma 1. Given a positive Radon probability measure µ ∈M1

+(Y) with density q(y) on a metric
space Y , the Fenchel-Legendre dual function forWγ,µ(p) has the following explicit form

W∗γ,µ(λ̄) = EY∼µγ log

(
1

q(Y )

n∑
`=1

exp

(
[λ̄]` − c`(Y )

γ

))
,

and its gradient is 1/γ-Lipschitz continuous w.r.t. 2-norm with following l-th component

[∇W∗γ,µ(λ̄)]l = EY∼µ
exp(([λ̄]l − cl(Y ))/γ)∑n
`=1 exp(([λ̄]` − c`(Y ))/γ)

, l = 1, . . . , n,

where Y ∼ µ means that random variable Y is distributed according to measure µ.

Denote λ̄ =
√
Wλ = [[

√
Wλ]T1 , . . . , [

√
Wλ]Tm]T = [λ̄T1 , . . . , λ̄

T
m]T andW∗γ (λ) – the dual objec-

tive in the r.h.s. of (5). Then, by the chain rule, the l-th n-dimensional block of∇W∗γ (λ) is[
∇W∗γ (λ)

]
l

=

[
∇

m∑
i=1

W∗γ,µi([
√
Wλ]i)

]
l

=

m∑
j=1

√
W lj∇W∗γ,µj (λ̄j), l = 1, ...,m. (6)

From Lemma 1 and the expression (6) for the gradient of the dual objective, we can see that the
dual problem (5) is a smooth stochastic convex optimization problem. This is in contrast to [30],
where the primal problem is a stochastic optimization problem. Moreover, as opposed to the existing
literature on stochastic convex optimization, we not only need to solve the dual problem but also
need to reconstruct an approximate solution for the primal problem (4), which is the barycenter. In
order to do this, in the next section, we develop a novel accelerated primal-dual stochastic gradient
method for a general smooth stochastic optimization problem, which is dual to some optimization
problem with linear equality constraints. Further, in Section 4, we apply our general algorithm to the
particular case of primal-dual pair of problems (4) and (5).
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3 General Primal-Dual Framework for Stochastic Optimization

In this section, we consider a general smooth stochastic convex optimization problem which is dual to
some optimization problem with linear equality constraints. Extending our works [16, 21, 10, 17, 19,
3, 18], we develop a novel algorithm for its solution and reconstruction of the primal variable together
with convergence rate analysis. We underline that the material of this section is not standard. Unlike
prior works, we consider the stochastic primal-dual pair of problems and one of our contributions
consists in providing a primal-dual extension of the accelerated stochastic gradient method. We
believe that our algorithm can be used for problems other than regularized Wasserstein barycenter
problem and, thus, we, first, provide a general algorithm and, then, apply it to the barycenter problem.
We introduce new notation since this section is independent of the others and is focused on a general
optimization problem.

3.1 General setup and assumptions

For any finite-dimensional real vector space E, we denote by E∗ its dual, by 〈λ, x〉 the value
of a linear function λ ∈ E∗ at x ∈ E. Let ‖ · ‖ denote some norm on E and ‖ · ‖∗ denote
the norm on E∗ which is dual to ‖ · ‖, i.e. ‖λ‖∗ = max{〈λ, x〉 : ‖x‖ ≤ 1}. For a linear
operator A : E1 → E2, we define the adjoint operator AT : E∗2 → E∗1 in the following way
〈u,Ax〉 = 〈ATu, x〉, ∀ u ∈ E∗2 , x ∈ E1. We say that a function f : E → R has a L-Lipschitz
continuous gradient w.r.t. norm ‖ · ‖∗ if it is continuously differentiable and its gradient satisfies
Lipschitz condition ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀ x, y ∈ E. Note that, from this inequality,
it follows that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2, ∀ x, y ∈ E. (7)

The main problem, we consider in this section, is a whereQ is a simple closed convex set,A : E → H
is given linear operator, b ∈ H is given, Λ = H∗. We define

ϕ(λ) := 〈λ, b〉+ max
x∈Q

(
−f(x)− 〈ATλ, x〉

)
= 〈λ, b〉+ f∗(−ATλ) (8)

and assume it to be smooth with L-Lipschitz continuous gradient. Here f∗ is the Fenchel-Legendre
conjugate function for f . We also assume that f∗(−ATλ) = EξF ∗(−ATλ, ξ), where ξ is random
vector and F ∗ is the Fenchel-Legendre conjugate function to some function F (x, ξ), i.e. it satisfies
F ∗(−ATλ, ξ) = max

x∈Q
{〈−ATλ, x〉 − F (x, ξ)}. F ∗(λ̄, ξ) is assumed to be smooth and, hence

∇λ̄F ∗(λ̄, ξ) = x(λ̄, ξ), where x(λ̄, ξ) is the solution of the maximization problem

x(λ̄, ξ) = arg max
x∈Q
{〈λ̄, x〉 − F (x, ξ)}.

Further, we assume that the dual problem (D) can be accessed by a stochastic oracle
(Φ(λ, ξ), ∇Φ(λ, ξ)) with Φ(λ, ξ) = 〈λ, b〉+ F ∗(−ATλ, ξ) and∇Φ(λ, ξ) = b−A∇F ∗(−ATλ, ξ)
satisfying

EξΦ(λ, ξ) = ϕ(λ), Eξ∇Φ(λ, ξ) = ∇ϕ(λ), Eξ‖∇Φ(λ, ξ)−∇ϕ(λ)‖22 ≤ σ2, λ ∈ H∗. (9)

Finally, we assume that dual problem (D) has a solution λ∗ and there exists some R > 0 such that
‖λ∗‖2 ≤ R < +∞.

3.2 An accelerated stochastic gradient method

To solve the primal-dual pair of problems (P )− (D), our first step, which we do in this subsection,
is to introduce and analyse an accelerated stochastic gradient method (see Algorithm 1) for a general
stochastic optimization problem and obtain some basic properties of the generated sequences, see
Theorem 1. In the next subsection, we apply it to the dual problem (D). Algorithm 1 is close in its
form to the one in [29], but we use a different analysis extending [19] for the stochastic case.

To describe our algorithm, we introduce proximal setup, which is usually used in proximal gradient
methods, see e.g. [6]. We choose some norm ‖ · ‖ on the space of vectors λ and a prox-function
d(λ) : Λ→ R which is convex, continuous on Λ, continuously differentiable and 1-strongly convex
on Λ0 = {λ ∈ Λ : ∂d(λ) 6= ∅} with respect to ‖·‖, i.e., ∀ λ ∈ Λ, ζ ∈ Λ0 d(λ)−d(ζ)−〈∇d(ζ), λ−
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ζ〉 ≥ 1
2‖λ− ζ‖

2. Here ∂d(λ) is the subdifferential of d and∇d(x) is its subgradient. We define also
the corresponding Bregman divergence V [ζ](λ) := d(λ)− d(ζ)− 〈∇d(ζ), λ− ζ〉, λ ∈ Λ, ζ ∈ Λ0.
It is easy to see that

V [ζ](λ) ≥ 1

2
‖λ− ζ‖2, ∀ λ ∈ Λ, ζ ∈ Λ0. (10)

Algorithm 1 Accelerated Stochastic Gradient Method (ASGD)
Input: Starting point λ0 ∈ Λ, prox-setup: d(λ) – 1-strongly convex w.r.t. ‖ · ‖, the number of iterations N ,

Bregman divergence V [ζ](λ) := d(λ)− d(ζ)− 〈∇d(ζ), λ− ζ〉, λ ∈ Λ, ζ ∈ Λ0.
1: C0 = α0 = 0, η0 = ζ0 = λ0.
2: for k = 0, . . . , N − 1 do
3: Find αk+1 as the largest root of the equation

Ck+1 := Ck + αk+1 = 2Lα2
k+1. (11)

4:
λk+1 =

αk+1ζk + Ckηk
Ck+1

. (12)

5:
ζk+1 = arg min

λ∈Λ
{V [ζk](λ) + αk+1(Φ(λk+1, ξk+1) + 〈∇Φ(λk+1, ξk+1), λ− λk+1〉)}. (13)

6:
ηk+1 =

αk+1ζk+1 + Ckηk
Ck+1

. (14)

7: end for
Output: The point ηN .

Theorem 1. Let the sequences {λN , ηN , ζN , αN , CN}, N > 0 be generated by Algorithm 1. Then,
for all N > 0, it holds that

CNϕ(ηN ) ≤ min
λ∈Λ

{
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉) + V [ζ0](λ)

}

+

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖2∗. (15)

3.3 Accelerated primal-dual stochastic gradient method

In this subsection, we develop an accelerated algorithm for the primal-dual pair of problems (P )−(D).
The idea is to apply the algorithm of the previous subsection to the dual problem (D), endow it with
a step in the primal space and, using the result of Theorem 1, show that the new algorithm allows
to approximate also the solution to the primal problem. Since the feasible set in the problem (D) is
unbounded, we choose the Euclidean proximal setup in H∗ and denote the standard Euclidean norm
by ‖ · ‖2. We use Euclidean proximal setup with the prox-function d(λ) = 1

2‖λ‖
2
2 and the Bregman

divergence V [ζ](λ) = 1
2‖λ− ζ‖

2
2.

Note that, in this case, the dual norm is also Euclidean and the step 5 of the algorithm simplifies. We
additionally assume that the variance of the stochastic approximation∇Φ(λ, ξ) for the gradient of ϕ
can be controlled and made as small as we desire. This can be done, for example by mini-batching the
stochastic approximation. Finally, since ∇Φ(λ, ξ) = b − A∇F ∗(−ATλ, ξ) = b − Ax(−ATλ, ξ),
on each iteration, to find ∇Φ(λ,ξ) we find the vector x(−ATλ, ξ) and use it for the primal iterates.
Theorem 2. Let ϕ have L-Lipschitz continuous gradient w.r.t. 2-norm and ‖λ∗‖2 ≤ R, where λ∗ is a
solution of dual problem (D). Assume that at each iteration of Algorithm 2, the stochastic approxima-
tion∇Φ(λk, ξk) of the gradient is chosen in such a way that Eξ‖∇Φ(λk, ξk)−∇ϕ(λk)‖22 ≤ εLαk

Ck
.

Then, for any ε > 0 and N ≥ 0, the output x̂N generated by the Algorithm 2 satisfies

f(Ex̂N )− f∗ ≤ 16LR2

N2
+
ε

2
and ‖AEx̂N − b‖2 ≤

16LR

N2
+

ε

2R
, (20)

where the expectation is taken w.r.t. all the randomness ξ1, . . . , ξN .
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Algorithm 2 Accelerated Primal-Dual Stochastic Gradient Method (APDSGD)
Input: starting point λ0 = 0, the number of iterations N .
1: C0 = α0 = 0, η0 = ζ0 = λ0 = x̂0 = 0.
2: for k = 0, . . . , N − 1 do
3: Find αk+1 as the largest root of the equation

Ck+1 := Ck + αk+1 = 2Lα2
k+1. (16)

4:
λk+1 =

αk+1ζk + Ckηk
Ck+1

. (17)

5:
ζk+1 = ζk − αk+1∇Φ(λk+1, ξk+1). (18)

6:
ηk+1 =

αk+1ζk+1 + Ckηk
Ck+1

. (19)

7: Set

x̂k+1 =
1

Ck+1

k+1∑
i=0

αix(−ATλi, ξi) =
αk+1x(−ATλk+1, ξk+1) + Ckx̂k

Ck+1
.

8: end for
Output: The points x̂N , ηN .

In step 7 of Algorithm 2 we can use a batch of size M and 1
M

∑M
r=1 x(λk+1, ξ

r
k+1) to update

x̂k+1. Then, under reasonable assumptions, x̂N concentrates around Ex̂N [23] and, if f is Lipschitz-
continuous, we obtain that (20) holds with large probability with x̂N instead of Ex̂N .

4 Solving the Barycenter Problem

In this section, we apply the general algorithm APDSGD from the previous section to solve the
primal-dual pair of problems (4)-(5) and approximate the regularized Wasserstein barycenter which
is a solution to (4). First, in Lemma 2, we make a number of technical steps to take care of the
assumptions of Theorem 2. We estimate the Lipschitz constant of the dual objective’s gradient
in (5), introduce mini-batch stochastic approximation for the gradient of the dual objective and
estimate its variance. Then, we introduce a change of dual variable so that a gradient-type step for
the dual objective, e.g., the step 5 of Algorithm 2, becomes feasible for the decentralized distributed
setting. Then, for simplicity, we consider a non-accelerated algorithm for regularized Wasserstein
barycenter problem to illustrate the combination of gradient methods, a stochastic approximation of
the gradient and decentralized distributed computations. Finally, we present our accelerated algorithm
for regularized Wasserstein barycenter problem with its complexity analysis.
Lemma 2. The gradient of the dual objective functionW∗γ (λ) in the dual problem (5) is λmax(W )/γ-
Lipschitz continuous w.r.t. 2-norm. If its stochastic approximation is defined as

[∇̃W∗γ (λ)]i =

m∑
j=1

√
W ij∇̃W∗γ,µj (λ̄j), i = 1, ...,m, with (21)

∇̃W∗γ,µj (λ̄j) =
1

M

M∑
r=1

pj(λ̄j , Y
j
r ), j = 1, ...,m, and (22)

[pj(λ̄j , Y
j
r )]l =

exp(([λ̄j ]l − cl(Y jr ))/γ)∑n
`=1 exp(([λ̄j ]` − c`(Y jr ))/γ)

, j = 1, ...,m, l = 1, ..., n, r = 1, ...,M (23)

where M is the batch size, Y j1 , ..., Y
j
r is a sample from the measures µj , j = 1, ...,m. Then

E∇̃W∗γ (λ) = ∇W∗γ (λ) and

E‖∇̃W∗γ (λ)−∇W∗γ (λ)‖22 ≤
λmax(W )m

M
, λ ∈ Rmn,
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where the expectation is taken w.r.t. all samples (Y j1 , . . . Y
j
M ) from measure µj , j = 1, . . . ,m.

Let us consider a simple stochastic gradient step for the particular dual problem (5). Note that the step
5 of Algorithm 2 has the same form. Using (6), the stochastic gradient step λk+1 = λk− 1

L∇̃W
∗
γ (λk)

can be written block-wise as

[λk+1]i = [λk]i −
1

L

m∑
j=1

√
W ij∇̃W∗γ,µj ([

√
Wλk]j), for each agent i = 1, ...,m,

where ∇̃W∗γ,µj (·) is defined in (22) with the batch sizeM = 1, and L = λmax(W )/γ. Unfortunately,
this update can not be made in the decentralized setting since the sparsity pattern of

√
W ij can be

different from Wij and this will require some agents to get information not only from their neighbors.
To overcome this obstacle, we change the variable and denote λ̄ =

√
Wλ. Then the gradient step

becomes

[λ̄k+1]i = [λ̄k]i −
1

L

m∑
j=1

Wij∇̃W∗γ,µj ([λ̄k]j), for each agent i = 1, ...,m.

Algorithm 3 presents a non-accelerated primal-dual stochastic gradient method, combining distributed
updates and stochastic gradient step described above. This algorithm solves the primal-dual pair
of problems (4)-(5) and approximates the regularized Wasserstein barycenter which is a solution
to (4). The algorithm has a loop, indexed by iteration number k and the index i corresponds to the
agent’s number. At each iteration k of the algorithm, each agent i samples from the measure µi and
forms a stochastic approximation of the gradient ofWγ,µi(·). Then each agent shares this vector
with its neighbors. After that, each agent calculates a step direction based on its information and
information gathered from the neighbors. Note that the matrix W provides communications only
between neighboring nodes and step 6 requires only local information.

Algorithm 3 Non-accelerated Distributed Computation of Wasserstein barycenter
Input: Each agent i ∈ V is assigned its measure µi.

1: All agents set [λ̄0]i = 0 ∈ Rn, [p̂0]i = 0 ∈ Rn, and N .
2: For each agent i ∈ V :
3: for k = 0, . . . , N − 1 do
4: Sample Y i from the measure µi and set ∇̃W∗γ,µi([λ̄k]i) as defined in (22) with M = 1.
5: Share ∇̃W∗γ,µi([λ̄k]i) with {j | (i, j) ∈ E}
6:

[λ̄k+1]i = [λ̄k]i −
1

L

m∑
j=1

Wij∇̃W∗γ,µj ([λ̄k]j).

7: [p̂k+1]i = [p̂k]i + 1
N pi([λ̄k+1]i, Y

i), where pi(·, ·) is defined in (23).
8: end for

Output: p̂N .

Finally, we apply accelerated primal-dual stochastic gradient method (APDSGD) from the previous
section to solve the primal-dual pair of problems (4)-(5) and calculate the regularized Wasserstein
barycenter. As above, we introduce the change of dual variables λ̄ =

√
Wλ, η̄ =

√
Wη, ζ̄ =

√
Wζ,

which makes the step 5 of Algorithm 2 feasible for the decentralized distributed setting. The result
is Algorithm 4. At each iteration k each agent i generates a sample of size Mk from measure µi,
forms a stochastic approximation of the gradient ofWγ,µi(·) according to (22) and shares it with the
neighbors. The mini-batch size Mk is chosen such that Mk ≥ mγCk

αkε
, which, by Lemma 2, means

that E‖∇̃W∗γ (λ)−∇W∗γ (λ)‖22 ≤ εLαk
Ck

and the assumptions of Theorem 2 hold.

3Note that we can use also 1
Mk+1

∑Mk+1
r=1 pi([λ̄k+1]i, Y

i
r ) instead of pi([λ̄k+1]i, Y

i
1 ). This does not change

the statement of Theorem 3, but reduces the variance of p̂N in practice. Thus, in the experiments, we use this
estimator for the primal variable. Moreover, under mild assumptions, we can obtain high-probability analogue to
inequalities (24).
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Algorithm 4 Accelerated Distributed Computation of Wasserstein barycenter
Input: Each agent i ∈ V is assigned its measure µi.

1: All agents i ∈ V set [η̄0]i = [ζ̄0]i = [λ̄0]i = [p̂0]i = 0 ∈ Rn, C0 = α0 = 0 and N .
2: For each agent i ∈ V :
3: for k = 0, . . . , N − 1 do
4: Find αk+1 as the largest root of the equation Ck+1 := Ck + αk+1 =

2λmax(W )α2
k+1

γ .
5:

Mk+1 = max

{
1,
⌈mγCk+1

αk+1ε

⌉}
.

6:

[λ̄k+1]i =
αk+1[ζ̄k]i + Ck[η̄k]i

Ck+1
.

7: Generate Mk+1 samples {Y ir }
Mk+1

r=1 from the measure µi and set ∇̃W∗γ,µi([λ̄k]i) as in (22)
with M = Mk.

8: Share ∇̃W∗γ,µi([λ̄k+1]i) with {j | (i, j) ∈ E}.
9:

[ζ̄k+1]i = [ζ̄k]i − αk+1

m∑
j=1

Wij∇̃W∗γ,µj ([λ̄k+1]j).

10:

[η̄k+1]i =
αk+1[ζ̄k+1]i + Ck[η̄k+1]i

Ck+1
.

11:

[p̂k+1]i =
1

Ck+1

k+1∑
i=0

αipi([λ̄k+1]i, Y
i
1 ) =

αk+1pi([λ̄k+1]i, Y
i
1 ) + Ck[p̂k]i

Ck+1
,

where pi(·, ·) is defined in (23). 3

12: end for
Output: p̂N .

Theorem 3. Let the assumptions of Section 2 hold and R be such that ‖λ∗‖2 ≤ R. Then Algorithm 4
after N =

√
32λmax(W )R2/(εγ) iterations returns an approximation p̂N for the barycenter, which

satisfies
m∑
i=1

Wγ,µi(E[p̂N ]i)−
m∑
i=1

Wγ,µi([p
∗]i) ≤ ε, ‖

√
WEp̂N‖2 ≤ ε/R. (24)

Moreover, the total complexity is O
(
mnmax

{√
λmax(W )R2

εγ , λmax(W )mR2

ε2

})
arithmetic opera-

tions.

We underline that even if the measures µi, i = 1, ...,m are discrete with large support size, it can
be more efficient to apply our stochastic algorithm than to apply a deterministic algorithm. We now
explain it in more details. If a measure µ is discrete, thenW∗γ,µ(λ̄) in Lemma 1 is represented as
a finite expectation, i.e., is a sum of functions instead of an integral, and can be found explicitly.
In the same way, its gradient and, hence, the gradient of the dual objective W∗γ (λ) in (6) can be
found explicitly in a deterministic way. Then a deterministic accelerated primal-dual decentralized
algorithm can be applied to approximate the regularized barycenter. Let us assume for simplicity
that the support of measure µ is of the size n. Then the calculation of the exact gradient ofW∗γ,µ(λ̄)

requires O(n2) arithmetic operations and the overall complexity of the deterministic algorithm
is O

(
mn2

√
λmax(W )R2/γε

)
. For comparison, the complexity of our randomized approach in

Theorem 3 is proportional to n, but not to n2. So, our randomized approach is superior in the regime
of large n.
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Figure 1: Dual function value and distance to consensus for 200, 100, 10, 500 agents, Mk = 100 and γ = 0.1.

It is also interesting to compare the complexity of the accelerated method in Theorem 3
with the complexity of non-accelerated Algorithm 3. Similarly to the proof of Theorem 2,
extending the convergence rate proof of stochastic Mirror Descent [25] for the primal-dual
pair of problems (P ) − (D), we obtain the complexity of the non-accelerated method to be
O
(
mnmax

{
λmax(W )R2/(εγ), λmax(W )mR2/ε2

})
. As we see, acceleration improves the de-

pendence on the λmax(W )R2/(εγ), which is important, for example, for the limiting case γ → 0,
corresponding to approximation of the non-regularized barycenter.

5 Experimental Results

In this section, we present experimental results for Algorithm 4. Initially, we consider a set of agents
over a network, where each agent i can query realizations (i.e., samples) from a privately held random
variable Yi ∼ N (θi, v

2
i ), where N (θ, v2) is a univariate Gaussian distribution with mean θ and

variance v2. Moreover, we set θi ∈ [−4, 4] and vi ∈ [0.1, 0.6]. The objective is to compute a discrete
distribution p ∈ S1(n) that solves (2). We assume n = 100 and the support of p is a set of 100
equally spaced points on the segment [−5, 5]. Figure 1 shows the performance of Algorithm 4 for
four classes of networks: complete, cycle, star, and Erdős-Rényi. Moreover, we show the behavior
for different network sizes, namely: m = 10, 100, 200, 500. Particularly we use two metrics: the
function value of the dual problem and the distance to consensus, i.e.,W∗γ (λ) =

∑m
i=1W∗γ,µi([λ̄]i)

and C(p̂) := ‖
√
W p̂‖2. As expected, when the network is a complete graph, the convergence to the

final value and the distance to consensus decreases rapidly. Nevertheless, the performance in graphs
with degree regularity, such as the cycle graph and the Erdős-Rényi random graph, is similar to a
complete graph with much less communication overhead. For the star graph, which has the worst
case between the maximum and minimum number of neighbors among all nodes, the algorithms
performs poorly. The reason is that despite the diameter of the graph is 2, λmax(W ), which appears
in the complexity bounds, is of the order of number of vertices m.

Figure 2(a) shows a sample of the local barycenters of 10 agents on an Erdős-Rényi random graph,
with local Gaussian distributions, at different times of the Algorithm 4, N = 1, 100, 200, 500. The
local barycenters of all the agents in the network converge to a common distribution. Similarly,
Figure 2(b) shows the convergence of the local barycenters of the agents on the same Erdős-Rényi
random graph when the local distributions are von Mises distributions. Particularly, for the cases of
von Mises distributions, we have used the angle between to points distance function.

Figure 3 shows the computed local barycenter of 9 agents in a network of 500 nodes at different
iteration numbers. Each agent holds a local copy of a sample of the digit 2 (56 × 56 image) from
the MNIST dataset [31]. All agents converge to the same image that structurally represents the
aggregation of the original 500 images held over the network. Finally, Figure 4 shows a simple
example of an application of Wasserstein barycenter on medical image aggregation where we have 4
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(b) Local von Mises distributions
Figure 2: Local barycenter of a set of Gaussian distribution and von Mises distributions. Barycenter is generated
by the Algorithm 4 for a set of 10 agents over an Erdős-Rényi random graph at different iteration numbers. Each
agent can access private realizations from a von Mises random variable.

N = 1 N = 1000 N = 2000 N = 3000 N = 4000
Figure 3: Wasserstein barycenter of a subset of images of the digit 2 from the MNIST dataset [31]. Each block
shows a subset of 9 randomly selected local barycenters, generated by Algorithm 4 at different time instances.
The 9 agents are selected from a network of 500 agents on an Erdős-Rényi random graph.

N = 1 N = 100 N = 1000 N = 6000 N = 10000
Figure 4: Wasserstein barycenter for a subset of images from the IXI dataset [1]. Each block shows the local
barycenters, of 4 agents, generated by Algorithm 4 at different time instances. The 4 agents are connected on a
cycle graph.

agents connected over a cycle graph and each agent holds a magnetic resonance image (256× 256)
from the IXI dataset [1].

6 Conclusions and Future Directions

We propose a novel distributed algorithm for the computation of the regularized Wasserstein barycen-
ter of a set of continuous measures stored distributedly over a network of agents. Moreover, we
provide explicit and non-asymptotic iteration and sample complexity analysis in terms of the problem
parameters and the network topology. Our algorithm is based on a new general algorithm for the
solution of stochastic convex optimization problems with linear constraints. In contrast to the recent
literature, our algorithm can be executed over arbitrary connected and static networks where nodes are
oblivious to the network topology, which makes it suitable for large-scale network optimization set-
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ting. Additionally, our analysis indicates that the randomization strategy provides faster convergence
rates than the deterministic procedure when the support size of the barycenter is large.

The presented experiments were carried out in a single machine and implementation of our algorithm
on real networks is a major research thrust for future projects. Extending fast distributed algorithms
for the case of time-varying and directed graph networks remains an open question. Notably, it is not
clear what is the effect of the network dynamics in the quality of the solution of specific problems
such as the Wasserstein barycenter. Moreover, efficient communication strategies between nodes
should be considered as well. The extension to the decentralized distributed setting of Sinkhorn-type
algorithms [7] for regularized Wasserstein barycenter and other related algorithms, e.g., Wasserstein
propagation [43], requires further work.
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A Proofs and Additional Numerical Results

In this appendix, we present the complete proofs of the Lemmas and Theorems stated in the main article.
Moreover, we show additional experimental results. The contents of the Appendix are organized as follows:

• Subsection A.1, Subsection A.2, Subsection A.3, Subsection A.4, and Subsection A.5 present the
complete proofs of the Lemmas and Theorems of the main paper.

• Subsection A.6 shows a graphic representation of the network topologies used for the experimental
results, namely: complete graph, star graph, cycle graph and Erdős-Rényi random graph.

• Subsection A.7 shows, for various time instances, the local Wasserstein barycenter of 10 agents
connected on an Erdős-Rényi random graph. Each agent holds a private Gaussian measure from which
it can query samples. Different colors represent different agents. Time evolves with the number of
iterations.

• Subsection A.8 shows, for various time instances, local Wasserstein barycenter of 10 agents connected
on an Erdős-Rényi random graph. Each agent holds a private von Mises measure from which it can
query samples. Different colors represent different agents. Time evolves with the number of iterations.

• Subsection A.9: shows, for various time instances, local Wasserstein barycenter of 100 agents
connected on an Erdős-Rényi random graph. Each agent holds a private sample of the digit 2 from the
MNIST dataset. We assume the normalize image as a probability distribution from which agents can
sample from. Time evolves with the number of iterations.

• Subsection A.10: shows, for various time instances, local Wasserstein barycenter of 4 agents connected
on an cycle graph. Each agent holds a private sample of an magnetic resonance image from the IXI
dataset. We assume the normalize image as a probability distribution from which agents can sample
from. Time evolves with the number of iterations.

• Attached videos

– Gauss_ex1.avi: Example 1. The local Wasserstein barycenter of 10 agents connected on
an Erdős-Rényi random graph. Each agent holds a private Gaussian measure from which it can
query samples. Different colors represent different agents. Time evolves with the number of
iterations.

– Gauss_ex2.avi: Example 2. The local Wasserstein barycenter of 10 agents connected on
an Erdős-Rényi random graph. Each agent holds a private Gaussian measure from which it can
query samples. Different colors represent different agents. Time evolves with the number of
iterations.

– MNIST_digit2.avi: The local Wasserstein barycenter of 100 agents connected on an Erdős-
Rényi random graph. Each agent holds a private sample of the digit 2 from the MNIST dataset.
We assume the normalize image as a probability distribution from which agents can sample from.
Time evolves with the number of iterations.

– MNIST_digit3.avi: The local Wasserstein barycenter of 100 agents connected on an Erdős-
Rényi random graph. Each agent holds a private sample of the digit 3 from the MNIST dataset.
We assume the normalize image as a probability distribution from which agents can sample from.
Time evolves with the number of iterations.

– von_mises_ex1.avi: Example 1. The local Wasserstein barycenter of 10 agents connected
on an Erdős-Rényi random graph. Each agent holds a private von Mises measure from which it
can query samples. Different colors represent different agents. Time evolves with the number of
iterations.

– von_mises_ex2.avi: Example 2. The local Wasserstein barycenter of 10 agents connected
on an Erdős-Rényi random graph. Each agent holds a private von Mises measure from which it
can query samples. Different colors represent different agents. Time evolves with the number of
iterations.

– ixi_mr.avi: The local Wasserstein barycenter of 4 agents connected on an cycle graph. Each
agent holds a private sample of an magnetic resonance image from the IXI dataset. We assume
the normalize image as a probability distribution from which agents can sample from. Time
evolves with the number of iterations.
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A.1 Proof of Lemma 1

Primal and dual optimal transport problem corresponding to the regularized Wasserstein distance can be written
as follows

Wγ,µ(p) = min
π∈Π(µ,ν)

{
n∑
l=1

∫
Y
cl(y)πl(y)dy + γ

n∑
l=1

∫
Y
πl(y) log πl(y)dy − γ log ξ

}

= max
λ̄∈Rn,v∈C(X )

{
n∑
l=1

[p]l[λ̄]l +

∫
Y
q(y)v(y)dy − γ

n∑
l=1

∫
Y

exp

(
[λ̄]l − cl(y) + v(y)

γ
− 1

)
dy

}

= max
λ̄∈Rn

{
〈p, λ̄〉 − γ

∫
Y

log

(
1

q(y)

n∑
l=1

exp

(
[λ̄]l − cl(y)

γ

))
q(y)dy

}
,

where we used that ξ is the uniform distribution on Y × Z . By the definition of Fenchel-Legendre transform,
using thatWγ,µ(p) = (Wγ,µ(p))∗∗, we get the first statement of the Lemma

W∗γ,µ(λ̄) = γ

∫
Y

log

(
1

q(y)

n∑
l=1

exp
(
([λ̄]l − cl(y))/γ

))
q(y)dy

= EY∼µγ log

(
1

q(Y )

n∑
l=1

exp
(
([λ̄]l − cl(Y ))/γ

))
,

where Y ∼ µ means that random variable Y distributed according to measure µ.

Differentiating, we obtain that the l-th component of the gradient ofW∗γ,µ(λ̄) is

[∇W∗γ,µ(λ̄)]l =

∫
Y

exp(([λ̄]l − cl(y))/γ)∑n
`=1 exp(([λ̄]` − c`(y))/γ)

q(y)dy

= EY∼µ
exp(([λ̄]l − cl(Y ))/γ)∑n
`=1 exp(([λ̄]` − c`(Y ))/γ)

, l = 1, . . . , n.

To prove the Lipschitz continuity of this gradient, we calculate the diagonal elements of the Hessian

[∇2W∗γ,µ(λ̄)]ll =
1

γ

∫
Y

exp(([λ̄]l − cl(y))/γ)
∑n
`=1 exp(([λ̄]` − c`(y))/γ)− exp2(([λ̄]l − cl(y))/γ)(∑n
`=1 exp(([λ̄]` − c`(y))/γ)

)2 q(y)dy

and estimate its trace

Tr(∇2W∗γ,µ(λ̄)) ≤ 1

γ

∫
Y

∑n
l=1 exp(([λ̄]l − cl(y))/γ)

∑n
`=1 exp(([λ̄]` − c`(y))/γ)(∑n

`=1 exp(([λ̄]` − c`(y))/γ)
)2 q(y)dy

=
1

γ

∫
Y
q(y)dy =

1

γ
.

This inequality proves that∇W∗γ,µ(λ̄) is 1
γ

- Lipschitz continuous with respect to the 2-norm.

A.2 Proof of Theorem 1

Let us fix an arbitrary λ ∈ Λ. From the optimality condition in (13), we have
〈∇V [ζk](ζk+1) + αk+1∇Φ(λk+1, ξk+1), λ− ζk+1〉 ≥ 0. (25)

Further,
αk+1〈∇Φ(λk+1, ξk+1), ζk − λ〉 =

= αk+1〈∇Φ(λk+1, ξk+1), ζk − ζk+1〉+ αk+1〈∇Φ(λk+1, ξk+1), ζk+1 − λ〉
(25)
≤ αk+1〈∇Φ(λk+1, ξk+1), ζk − ζk+1〉+ 〈−∇V [ζk](ζk+1), ζk+1 − λ〉
= αk+1〈∇Φ(λk+1, ξk+1), ζk − ζk+1〉+ V [ζk](λ)− V [ζk+1](λ)− V [ζk](ζk+1)

(10)
≤ αk+1〈∇Φ(λk+1, ξk+1), ζk − ζk+1〉+ V [ζk](λ)− V [ζk+1](λ)− 1

2
‖ζk − ζk+1‖2

(12),(14)
= Ck+1〈∇Φ(λk+1, ξk+1), λk+1 − ηk+1〉+ V [ζk](λ)− V [ζk+1](λ)−

C2
k+1

2α2
k+1

‖λk+1 − ηk+1‖2

(11)
= Ck+1

(
〈∇Φ(λk+1, ξk+1), λk+1 − ηk+1〉 −

2L

2
‖λk+1 − ηk+1‖2

)
+ V [ζk](λ)− V [ζk+1](λ).
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Add and subtract the term Ck+1〈∇ϕ(λk+1), λk+1 − ηk+1〉, then

αk+1〈∇Φ(λk+1, ξk+1), ζk − λ〉 ≤ Ck+1 (〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), λk+1 − ηk+1〉

−2L

2
‖λk+1 − ηk+1‖2 + 〈∇ϕ(λk+1), λk+1 − ηk+1〉

)
+ V [ζk](λ)− V [ζk+1](λ). (26)

Using Fenchel inequality 〈g, x〉 ≤ 1
2ζ
‖g‖2∗ + ζ

2
‖x‖2, we estimate

〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), λk+1 − ηk+1〉 ≤

≤ 1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗ +

L

2
‖λk+1 − ηk+1‖2.

Therefore, we can rewrite (26) as

αk+1〈∇Φ(λk+1, ξk+1), ζk − λ〉 ≤

≤ Ck+1

(
1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗

+ 〈∇ϕ(λk+1), λk+1 − ηk+1〉 −
L

2
‖λk+1 − ηk+1‖2

)
+ V [ζk](λ)− V [ζk+1](λ)

= Ck+1

(
〈∇ϕ(λk+1), λk+1 − ηk+1〉 −

L

2
‖λk+1 − ηk+1‖2

)
+ V [ζk](λ)− V [ζk+1](λ)

+
Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗

(7)
≤ Ck+1 (ϕ(λk+1)− ϕ(ηk+1)) + V [ζk](λ)− V [ζk+1](λ)

+
Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗. (27)

Similarly, adding and substracting the term 〈∇ϕ(λk+1), ηk − λk+1〉, we have

〈∇Φ(λk+1, ξk+1), ηk − λk+1〉 ≤
≤ 〈∇ϕ(λk+1), ηk − λk+1〉+ 〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉
conv-ty
≤ ϕ(ηk)− ϕ(λk+1) + 〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉. (28)

Finally,

αk+1〈∇Φ(λk+1, ξk+1), λk+1 − λ〉 =

= αk+1〈∇Φ(λk+1, ξk+1), λk+1 − ζk)〉+ αk+1〈∇Φ(λk+1, ξk+1), ζk − λ)〉
(11),(12)

= Ck〈∇Φ(λk+1, ξk+1), ηk − λk+1〉+ αk+1〈∇Φ(λk+1, ξk+1), ζk − λ〉
(27),(28)
≤ Ck (ϕ(ηk)− ϕ(λk+1) + 〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉)

+ Ck+1 (ϕ(λk+1)− ϕ(ηk+1)) + V [ζk](λ)− V [ζk+1](λ)

+
Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗

(11)
= αk+1ϕ(λk+1) + Ckϕ(ηk)− Ck+1ϕ(ηk+1) + V [ζk](λ)− V [ζk+1](λ)

+ Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉

+
Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗

Rearranging terms, we obtain

Ck+1ϕ(ηk+1)− Ckϕ(ηk) ≤
≤ αk+1 (ϕ(λk+1) + 〈∇Φ(λk+1, ξk+1), λ− λk+1〉) + V [ζk](λ)− V [ζk+1](λ)

+ Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉

+
Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗.
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Summing these inequalities for k = 0, . . . , N − 1, we get

CNϕ(ηN )− C0ϕ(η0) ≤
N−1∑
k=0

αk+1 (ϕ(λk+1) + 〈∇Φ(λk+1, ξk+1), λ− λk+1〉)

+ V [ζ0](λ)− V [ζN ](λ) +

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

+

N−1∑
k=0

Ck+1

2L
‖∇Φ(λk+1, ξk+1)−∇ϕ(λk+1)‖2∗.

Since C0 = α0 = 0 and V [ζk](λ) ≥ 0, we end up with

CNϕ(ηN ) ≤
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉) + V [ζ0](λ)

+

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖2∗.

Since λ ∈ Λ was chosen arbitrarily, we take the minimum in λ in the right hand side of this inequality and
obtain the statement of the Theorem.

A.3 Proof of Theorem 2

Let us introduce a set ΛR := {λ ∈ H∗ : ‖λ‖2 ≤ 2R}. Then, from (15) since ζ0 = 0 and V [ζ](λ) = 1
2
‖λ−ζ‖22,

we have

CNϕ(ηN ) ≤ min
λ∈Λ

{
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉) +
1

2
‖λ‖22

}

+

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖22.

≤ min
λ∈ΛR

{
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉) +
1

2
‖λ‖22

}

+

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖22

≤ min
λ∈ΛR

{
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉)

}
+ 2R2

+

N−1∑
k=0

Ck〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+

N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖22. (29)

Our next goal is to take the expectation from the both sides of this inequality with respect to the seqence
ξ0, ..., ξN . To do so, we iteratively, for each j from N to 0 fix the history ξ0, ..., ξj−1 and take the expectation
w.r.t ξj .

Since Eξk+1 [∇Φ(λk+1, ξk+1)|ξ1, . . . , ξk] = ∇ϕ(λk+1), λk+1 and ηk are deterministic functions of
(ξ1, . . . , ξk), we have Eξ1,...ξk 〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉 = 0. By the Theorem assumption

Eξk
[
‖∇Φ(λk, ξk)−∇ϕ(λk)‖22 |ξ1, . . . , ξk−1

]
≤ εLαk

Ck
.

Thus, after taking the full expectation E, the last three terms in the r.h.s. of (29) satisfy

E

[
2R2 +

N−1∑
k=0

Ck+1〈∇Φ(λk+1, ξk+1)−∇ϕ(λk+1), ηk − λk+1〉+
N∑
k=0

Ck
2L
‖∇Φ(λk, ξk)−∇ϕ(λk)‖22

]

≤ 2R2 +
CNε

2
, (30)

where we used that CN =
∑N
k=0 αk.
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Let us now estimate the expectation of the first term in the r.h.s. of (29). By the definition of F (x, ξ) and
F ∗(−ATλ, ξ) in subsection 3.1, we have

F ∗(−ATλk, ξk) + 〈A∇F ∗(−ATλk, ξk), λk〉 = 〈−ATλk, x(−ATλk, ξk)〉

− F (x(−ATλk, ξk), ξk) + 〈Ax(−ATλk, ξk), λk〉

= −F (x(−ATλk, ξk), ξk). (31)

On the other hand, by Fenchel duality,

EξkF (x(−ATλk, ξk), ξk) = Eξk max
λ̃
{〈x(−ATλk, ξk), λ̃〉 − F ∗(λ̃, ξ)}

≥ max
λ̃
{〈Eξkx(−ATλk, ξk), λ̃〉 − EξkF

∗(λ̃, ξ)} = f
(
Eξkx(−ATλk, ξk)

)
.

(32)

Hence,
Eξk (F ∗(−ATλk, ξk) + 〈A∇F ∗(−ATλk, ξk), λk〉) ≤ −f(Eξkx(−ATλk, ξk))

Using this inequality, (8) and that∇Φ(λk, ξk) = b−A∇F ∗(−ATλk, ξk) = b−Ax(−ATλk, ξk), we obtain

Eξk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉) = 〈b, λk〉+ EξkF
∗(−ATλk, ξk) + Eξk 〈b−A∇F

∗(−ATλk, ξk), λ− λk〉

= Eξk (F ∗(−ATλk, ξk) + 〈A∇F ∗(−ATλk, ξk), λk〉)

+ Eξk 〈b−Ax(−ATλk, ξk), λ〉

≤ −f(Eξkx(−ATλk, ξk)) + 〈b−AEξkx(−ATλk, ξk), λ〉. (33)

Taking the full expectation from the first term in the r.h.s. of (29) and iteratively applying (33), we obtain

E min
λ∈ΛR

{
N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉)

}
≤ min
λ∈ΛR

{
E

N∑
k=0

αk (ϕ(λk) + 〈∇Φ(λk, ξk), λ− λk〉)

}

≤ min
λ∈ΛR

{
N∑
k=0

αk(−f(Ex(−ATλk, ξk)) + 〈b−AEx(−ATλk, ξk), λ〉)

}
≤ CN min

λ∈ΛR
{−f(Ex̂N ) + 〈b−AEx̂N , λ〉} ≤ −CNf(Ex̂N ) + CN min

λ∈ΛR
〈b−AEx̂N , λ〉

= −CNf(Ex̂N )− 2CNR‖b−AEx̂N‖2, (34)

where we also used the convexity of f , equality
∑N
k=0 αk = CN , and definitions of x̂N and ΛR.

Taking the expectation in (29) and combining it with (30) and (34), we obtain

Eϕ(ηN ) + f(Ex̂N ) ≤ −2R‖AEx̂N − b‖2 +
2R2

CN
+
ε

2
. (35)

Hence, by weak duality −f(x∗) ≤ ϕ(η∗),

f(Ex̂N )− f(x∗) ≤ f(Ex̂N ) + ϕ(η∗) ≤ f(Ex̂N ) + Eϕ(ηN ) ≤ 2R2

CN
+
ε

2
. (36)

Since λ∗ is an optimal solution of Problem (D), we have, for any x ∈ Q, f(x∗) ≤ f(x) + 〈λ∗, Ax− b〉. Then
using assumption ‖λ∗‖2 ≤ R and choosing x = Ex̂N , we get

f(Ex̂N ) ≥ f(x∗)−R‖AEx̂N − b‖2 (37)

Using this and weak duality −f(x∗) ≤ ϕ(η∗) and taking the expectation, we obtain

Eϕ(ηN ) + f(Ex̂N ) ≥ ϕ(η∗) + f(Ex̂N ) ≥ −f(x∗) + f(Ex̂N )
(37)
≥ −R‖AEx̂N − b‖2

Using this and (35), we get

‖AEx̂N − b‖2 ≤
2R

CN
+

ε

2R
(38)

It remains to estimate the growth of coefficientsCN . So, we prove by induction that the coefficientsCk generated
by Algorithm 4 satisfy the following condition

Ck ≥
(k + 1)2

8L
. (39)

Since C0 = 0 for k = 1 C1
(16)
= 1

2L
and (39) holds. Let us now assume that (39) holds for some k ≥ 1 and prove

that it holds for k + 1. By (11), αk+1 is the largest root of the equation 2Lα2
k+1 − αk+1 − Ck = 0. Thus,

αk+1 =
1 +
√

1 + 8LCk
4L

=
1

4L
+

√
1

8L2
+
Ck
2L
≥ 1

4L
+

√
Ck
2L
≥ 1

4L
+

1√
2L

k + 1

2
√

2L
=
k + 2

4L
. (40)
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Using the induction assumption, (11), (39) and (40), we obtain that (39) holds for k + 1

Ck+1 = Ck + αk+1 ≥
(k + 1)2

8L
+
k + 2

4L
≥ (k + 2)2

8L
.

Combining (36), (38), and (39), we finish our proof.

A.4 Proof of Lemma 2

First, let us estimate the Lipschitz constant of∇W∗γ (λ)

‖∇W∗γ (λ1)−∇W∗γ (λ2)‖22
(6)
=

∥∥∥∥∥∥∥
√
W

 ∇W
∗
γ,µ1

([λ̄1]1)

...

∇W∗γ,µm([λ̄1]m)

−√W
 ∇W

∗
γ,µ1

([λ̄2]1)

...

∇W∗γ,µm([λ̄2]m)


∥∥∥∥∥∥∥

2

2

≤ (λmax(
√
W ))2

∥∥∥∥∥∥∥
∇W∗γ,µ1

([λ̄1]1)−∇W∗γ,µ1
([λ̄2]1)

...

∇W∗γ,µm([λ̄1]m)−∇W∗γ,µm([λ̄2]m)

∥∥∥∥∥∥∥
2

2

= (λmax(
√
W ))2

m∑
i=1

∥∥∇W∗γ,µi([λ̄1]i)−∇W∗γ,µi([λ̄2]i)
∥∥2

2

≤ (λmax(
√
W ))2

m∑
i=1

1

γ2

∥∥[λ̄1]i − [λ̄2]i
∥∥2

2

=
(λmax(

√
W ))2

γ2

m∑
i=1

∥∥∥[
√
W (λ1 − λ2)]i

∥∥∥2

2

=
(λmax(

√
W ))2

γ2

∥∥∥√W (λ1 − λ2)
∥∥∥2

2

≤ (λmax(
√
W ))4

γ2
‖λ1 − λ2‖22 ,

where we used notation λ̄ =
√
Wλ, the definition of matrix

√
W , 1/γ-Lipschitz continuity of ∇W∗γ,µi(λ̄i)

for all i = 1, . . . ,m. Since (λmax(
√
W ))4 = (λmax(W ))2, we obtain that the dual function W∗γ (λ) has

λmax(W )/γ-Lipschitz continuous gradient.

By Lemma 1, vectors pj(λ̄j , Y jr ), j = 1, ...,m, r = 1, ...,M defined in (23) satisfy E
Y
j
r
pj(λ̄j , Y

j
r ) =

∇W∗γ,µj (λ̄j). Thus, by (6), (21), (22) we have E∇̃W∗γ (λ) = ∇W∗γ (λ).

Further, for j = 1, ...,m, we estimate the variance of pj(λ̄j , Y j)

EY j∼µj‖pj(λ̄j , Y
j)−∇W∗γ,µj (λ̄j)‖

2
2 = EY j∼µj

n∑
l=1

(
exp

(
([λ̄j ]l − cl(Y ))/γ

)∑n
`=1 exp

(
([λ̄j ]` − c`(Y ))/γ

) − [∇W∗γ,µj (λ̄j)]l

)2

=

n∑
l=1

EY j∼µj
exp2

(
([λ̄j ]l − cl(Y ))/γ

)(∑n
`=1 exp

(
([λ̄j ]` − c`(Y ))/γ

))2 − n∑
l=1

[∇W∗γ,µj (λ̄j)]
2
l

≤
n∑
l=1

∫
Y

exp2(([λ̄j ]l − cl(y))/γ)q(y)(∑n
`=1 exp(([[λ̄]j ]` − c`(y))/γ)

)2 q(y)dy

=

∫
Y

∑n
l=1 exp2(([λ̄j ]l − c(y, zi))/γ)(∑n
`=1 exp(([[λ̄]j ]` − c`(y))/γ)

)2 q(y)dy ≤
∫
Y
q(y)dy = 1.

Hence, by (22), for j = 1, ...,m, we have

E
Y
j
r ∼µj ,r=1,...,M

‖∇̃W∗γ,µj (λ̄j)−∇W
∗
γ,µj (λ̄j)‖

2
2 ≤

1

M
. (41)
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By the same arguments as above for the estimate of the Lipschitz constant for∇W∗γ (λ), we estimate the variance
of ∇̃W∗γ (λ). Denoting E = E

Y
j
r ∼µj ,j=1,...,m,r=1,...,M

, we have

E‖∇̃W∗γ (λ)−∇W∗γ (λ)‖22
(6),(21)

= E

∥∥∥∥∥∥∥
√
W

 ∇̃W
∗
γ,µ1

([λ̄]1)

...

∇̃W∗γ,µm([λ̄]m)

−√W
 ∇W

∗
γ,µ1

([λ̄]1)

...

∇W∗γ,µm([λ̄]m)


∥∥∥∥∥∥∥

2

2

≤ (λmax(
√
W ))2E

∥∥∥∥∥∥∥
∇̃W∗γ,µ1

([λ̄]1)−∇W∗γ,µ1
([λ̄]1)

...

∇̃W∗γ,µm([λ̄]m)−∇W∗γ,µm([λ̄]m)

∥∥∥∥∥∥∥
2

2

= (λmax(
√
W ))2E

m∑
i=1

∥∥∥∇̃W∗γ,µi([λ̄]i)−∇W∗γ,µi([λ̄]i)
∥∥∥2

2

(41)
≤ (λmax(

√
W ))2m

M
=
λmax(W )m

M
,

which finishes the proof of the Lemma.

A.5 Proof of Theorem 3

Combining Lemma 2 and Theorem 2 for our particular case of primal-dual pair of problems (4)-(5) with
A =

√
W , b = 0, L = λmax(W )/γ, since N =

√
32λmax(W )R2/(εγ), we obtain the first statement of the

theorem.

Let us now estimate the overall complexity of Algorithm 4. For each agent i, the complexity of each iteration is
dominated by the complexity of calculation of stochastic approximation ∇̃W∗γ,µi([λ̄k]i) for the gradient. This
complexity is O(mnMk). Thus, to get the overall complexity, we need to estimate

∑N
k=1 Mk

N∑
k=1

Mk =

N∑
k=1

max

{
1,

⌈
mγCk
αkε

⌉}
(16)
≤ max

{
N,

⌈
2λmax(W )m

ε

N∑
k=1

αk

⌉}

= max

{
N,

⌈
2λmax(W )m

ε
CN

⌉}
where we used that

∑N
k=1 αk = CN . From (38) and definition of N it follows that

2R

CN
≤ ε

2R
and

2R

CN−1
≥ ε

2R
.

Then

CN−1 ≤ 4R2/ε (42)

From (40)

αN =
1

4L
+

√
1

8L2
+
CN−1

2L
≤ 1

2L
+

√
CN−1

2L

(16)
=

1

2L
+ αN−1 (43)

On the other hand, from (40) it follows that

αN−1 =
1

4L
+

√
1

8L2
+
CN−2

2L
≥ 1

4L
(44)

Hence, from (43) and (44) we have

αN ≤ 2αN−1 + αN−1 = 3αN−1

(16)
≤ 3CN−1

Since this inequality and (16) we obtain CN ≤ 4CN−1. Then using (42) we have

N∑
k=1

Mk ≤ max

{√
32λmax(W )R2

εγ
,

32λmax(W )mR2

ε2

}
, (45)

where in last equality we used N =
√

32λmax(W )R2/(εγ). To obtain the total complexity, we multiply the
above estimate for

∑N
k=1 Mk by mn.
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A.6 Visualization of the Network Topologies used in Simulations

(a) Star Graph (b) Cycle Graph (c) Erdős-Rényi random graph

(d) Complete Graph

Figure 5: Example of Network Topologies.
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A.7 Additional Example on Gaussian Distributions
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8.5 Additional Example on Gaussian Distributions405

8.6 Additional Example on von Mises Distributions406

17

Figure 6: Local Wasserstein barycenter of 10 agents connected on an Erdős-Rényi random graph.
Each agent holds a private Gaussian measure from which it can query samples. Different colors
represent different agents.
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A.8 Additional Example on von Mises Distributions
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Figure 7: Local Wasserstein barycenter of 10 agents connected on an Erdős-Rényi random graph.
Each agent holds a private von Mises measure from which it can query samples. Different colors
represent different agents.
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A.9 Additional Information for the MNIST Dataset

Figure 8: Local Wasserstein barycenter of 100 agents connected on an Erdős-Rényi random graph.
Each agent holds a private sample of the digit 2 from the MNIST dataset. We assume the normalize
image as a probability distribution from which agents can sample from.
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A.10 Additional Information for the IXI Dataset

Figure 9: The samples from the IXI dataset held by four agents.

Figure 10: Local Wasserstein barycenter of 4 agents connected on a cycle graph. Each agent holds a
private sample of an magnetic resonance image from the IXI dataset. We assume the normalize image
as a probability distribution from which agents can sample from. Time evolves with the number of
iterations.
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