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Abstract. The challenges of black box optimization arise due to im-
precise responses and limited output information. This article describes
new results on optimizing multivariable functions using an Order Ora-
cle, which provides access only to the order between function values and
with some small errors. We obtained convergence rate estimates for the
one-dimensional search method (golden ratio method) under the condi-
tion of oracle inaccuracy, as well as convergence results for the algorithm
on a "square" (also with noise), which outperforms its alternatives. The
results obtained are similar to those in problems with oracles providing
significantly more information about the optimized function. Addition-
ally, the practical application of the algorithm has been demonstrated in
maximizing a preference function, where the parameters are the acidity
and sweetness of the drink. This function is expected to be convex or at
least quasi-convex.

Keywords: Nesterov’s method · Linear search · Order Oracle with in-
accuracy.

1 Introduction

The search for the minimum of a function is a common problem. In optimiza-
tion, the concept of a "black box" [3] is traditionally used, where providing an
input point yields the function value (zeroth-order oracle) or gradient (first-order
oracle) at that point. However, when dealing with human feedback, such infor-
mation is often unavailable. In such cases, one can ask, "Which point do you
prefer, x or y?" Human preferences may be imprecise, introducing small errors
known as noise. This leads us to the concept of an order oracle.

This particular type of oracle has been receiving special attention for some
time now. The Stochastic Three Points Method proposed by Bergou et al. (2020)
[2] uses an oracle that compares three function values at once and achieves a
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complexity of O(dL/µ log(1/ε)) iterations in the strongly convex case (nota-
tions are defined here 2). Saha et al. (2021) [9] introduced another algorithm
where the oracle compares two function values only once per iteration. The
analysis of this algorithm is based on the Sign SGD and achieves a complexity
of O(dL/µ log(1/ε)) iterations in the strongly convex case. Tang et al.’s work
(2023) [11] demonstrated the extensive use of the Order Oracle in Reinforcement
Learning with Human Feedback, providing an estimate of oracle complexity as
O(d/ε2) iterations specifically in the non-convex case. There have been many
other notable results in this field [6,4,7].

There has long been an algorithm that can work with order oracle in one-
dimensional space: the golden ratio algorithm (GRM). There were also attempts
to generalize it to two-dimensional space [5].

Our proposed algorithm uses a line search via GRM and is particularly effec-
tive for small-scale problems even in the presence of noise. For sufficiently large
ε on a square with side length R and noise ∆, its complexity is
O(log(MR/ε) log(MR/∆)) iterations.

Moreover, we demonstrate its application in the practical task of maximizing
the preference function for a sour-sweet beverage.

2 Definitions and designations

f : D → R, D ∈ Rd — a function the minimum of which needs to be found. We
will assume that it is convex and differentiable (otherwise the problem immedi-
ately becomes much more difficult).

Let’s formalize the oracle order. It will be a function

ψ(x, y) = sign(f(x)− f(y) + δ(x, y)),

where δ(x, y) is a real noise function, which we consider bounded: |δ(x, y)| ⩽ ∆
for all x, y.

ε — accuracy in the function value with which we want to evaluate the point of
minimum. In other words, we are looking for such an x0, that f(x0)−minf(x) ⩽
ε.

We will also assume that the function f has Lipschitz properties:

1. Lipschitzness with respect to the argument: |f(x)− f(y)| ⩽M · ∥x− y∥ for
all x, y.

2. Lipschitzness with respect to the gradient: |∇f(x) − ∇f(y)| ⩽ L · ∥x − y∥
for all x, y.

Sometimes we will need to consider a narrower class of functions — strongly
convex ones:
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a function f is strongly convex with a coefficient µ, if for all x, y the inequality
is satisfied

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2

Note that∆, ε,M,L, as well as in case of strong convexity, µ are positive numbers
and we consider them known unlike the function f and the noise function δ
themselves.

3 Main algorithms

Let’s start by considering the simplest case — one-dimensional: d = 1, that is,
when f is a function of a single variable. This case is very important, as all
further algorithms will be based on it. The fastest algorithm here is the so-called
golden ratio method 4.

Next is the general case, where f is a function of multiple variables. There are
already many possible algorithms, such as the coordinate descent method, ac-
celerated methods, and others. A detailed discussion of them with consideration
of different problem formulations can be found here [7].

There is also an algorithm that works well in low dimensions (here consid-
ered in a two-dimensional variant) based on Nesterov’s method 5. The original
algorithm, which works for a first-order oracle (i.e., capable of computing the
value and gradient of the function at a point), can be found here [8].

4 Golden ratio method

Algorithm description. Let’s find the minimum of a convex function f with good
accuracy in the interval [a, b]. Let a0 = a, b0 = b, s0 = b− b−a

ϕ , t0 = a+ b−a
ϕ . Thus,

each of the marked points s and t divides the interval [a, b] in the golden ratio:
b0−s0
s0−a0

= ϕ, t0−a0

b0−t0
= ϕ. The current interval on which we are trying to find the

minimum is [a0, b0]. After i iterations of the algorithm, we have an interval [ai, bi],
with points si and ti marked on it, dividing it in the golden ratio: bi−si

si−ai
= ϕ,

ti−ai

bi−ti
= ϕ. We request the comparison result of the function values at points si

and ti, that is ψ(si, ti). If it turns out that ψ(si, ti) = ”+”, then f(si) is greater
or insignificantly less than f(ti) (an erroneous result can occur due to noise), and
in this case we "discard" the interval [a, si], moving on to consider the interval
[si, b] (assuming that the minimum is not in [a, si]). Thus, ai+1 = si, bi+1 = bi,
si+1 = bi+1− bi+1−ai+1

ϕ , ti+1 = ai+1+
bi+1−ai+1

ϕ . Note that si+1 and ti+1 could be
recalculated as follows: si+1 = ti, ti+1 = ai+1 + bi+1 − si+1. If ψ(si, ti) = ”− ”,
by analogy, ai+1 = ai, bi+1 = ti, ti+1 = si, si+1 = ai+1 + bi+1 − ti+1. After
performing n such iterations, we take an+bn

2 as the answer.
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Algorithm 1 Golden Ratio Method

1: ϕ←
√
5+1
2

2: a0 ← a
3: b0 ← b
4: s0 ← b− b−a

ϕ

5: t0 ← a+ b−a
ϕ

6: for i = 0, 1, ..., n− 1 do
7: if ψ(si, ti) = ” + ” then
8: ai+1 ← si
9: bi+1 ← bi

10: si+1 ← ti
11: ti+1 ← ai+1 + bi+1 − si
12: end if
13: if ψ(si, ti) = ”− ” then
14: ai+1 ← ai
15: bi+1 ← ti
16: ti+1 ← si
17: si+1 ← ai+1 + bi+1 − ti
18: end if
19: end for
20: answer = an+bn

2

It turns out that by performing not so many iterations, we quickly obtain
a fairly accurate answer. Let’s make some estimates on the optimal number of
steps and the accuracy of the found solution.

Theorem 1. Let the function f be defined on the interval [0, R]. The golden
ratio ϕ =

√
5+1
2 , e — Euler’s number. Let C = eRM lnϕ

2ϕ . Then, if we perform
n0 = logϕ(

C
e∆ ) iterations of the algorithm, the error in terms of the value of

the function at the midpoint of the remaining interval will be not worse than
ϕ∆ logϕ(

C
∆ ).

Proof. Let [ak, bk] be the residual interval after k iterations. [a0, b0] = [0, R]. It
is easy to see that bk − ak = R

ϕk . Let mk = min
x∈[ak,bk]

f(x). Consider the next

iteration of the algorithm. At this point, the residual interval is [ak, bk]. Let the
points where values are compared be denoted as s and t (ak < s < t < bk). We
aim to prove that

mk+1 −mk ⩽ ϕ∆. (1)

Without loss of generality, assume that the oracle claims f(s) > f(t). Then there
are two cases:

1. The oracle is correct. In this case, mk+1 = mk, and inequality (1) is obvious.
2. The oracle is incorrect. Then 0 ⩽ f(t)−f(s) ⩽ ∆. The new residual interval

will be [s, bk]. By convexity, we have

∀x ∈ [ak, s] f(x) ⩾ f(s)− s− x

t− s
(f(t)−f(s)) ⩾ f(s)− s− ak

t− s
∆ = f(s)−ϕ∆,
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which implies mk ⩾ mk+1 − ϕ∆, and inequality (1) is proven.

Summing up inequality (1) over k, we obtain that after n iterations of the algo-
rithm

mn ⩽ nϕ∆+m0. (2)

The midpoint x0 is chosen on the interval [an, bn]. By Lipschitzness with respect
to the argument, we have

f(x0)−m0 ⩽
bn − an

2
M =

RM

2ϕn
.

Consequently, using (2), we get

f(x0)−m0 ⩽ f(x0)−mn + nϕ∆ ⩽
RM

2ϕn
+ nϕ∆. (3)

By performing n0 = logϕ(
C
e∆ ) = logϕ(

RM lnϕ
2ϕ∆ ) iterations, we achieve an accuracy

of
RM

2ϕn
+ nϕ∆ =

ϕ∆

lnϕ
+ logϕ(

C

e∆
)ϕ∆ = ϕ∆ logϕ(

C

∆
)

Lemma 1. Let the function f be defined on the interval [0, R], and let it be
strongly convex with a coefficient µ. Suppose a point x0 has been found with
accuracy ε in terms of function value. Then x0 is a minimum with accuracy
δ =

√
2ε
µ in terms of the argument, that is, x0 − argmin f(x) ⩽ δ.

Proof. Let x∗ be the point of minimum. From strong convexity, we have

f(x0) ⩾ f(x∗) + ⟨∇f(x∗), x0 − x∗⟩+ µ

2
∥x∗ − x0∥2 = f(x∗) +

µ

2
|x0 − x∗|2,

since ∇f(x∗) = 0. Manipulating the inequality, we obtain

ε ⩾ f(x0)− f(x∗) ⩾
µ

2
|x0 − x∗|2.

Hence, we conclude that x0 − x∗ ⩽
√

2ε
µ , and thus the lemma is proven.

5 Method for finding the minimum on a square

Let’s move on to the two-dimensional case. Suppose the function f is defined on
a square Π ⊂ R2 with side length R.

Algorithm description. On the horizontal midline of the square, we find the
minimum point A (with some level of accuracy). This line divides the square
into two rectangles. Then, on the vertical line passing through A we also find
the minimum point — B. We keep the rectangle into which point B falls and
discard the remaining one. We repeat a similar procedure with the remaining
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rectangle, first dividing it by a vertical midline and then by a horizontal one,
which means after pruning, we are left with a square half the size of the original
one. We repeat these procedures a certain number of times and then take the
central point of the remaining small square.

Algorithm 2 Two-dimensional Search
1: LinearSearch((x1, y1), (x2, y2)) — result of one-dimensional search between points

(x1, y1) and (x2, y2) (it is a point)
2: a — x-coordinate of the center of the square
3: b — y-coordinate of the center of the square
4: d — half the side of the square
5: for i = 0, 1, ..., n− 1 do
6: result1 ← LinearSearch((a− d, b), (a+ d, b))
7: result2 ← LinearSearch((result1.x, b− d), (result1.x, b+ d))
8: if result2.y ⩽ result1.y then
9: b← b+ d

2

10: else
11: b← b− d

2

12: end if
13: result1 ← LinearSearch((a, b− d

2
), (a, b+ d

2
))

14: result2 ← LinearSearch((a− d, result1.y), (a+ d, result1.y))
15: if result2.x ⩽ result1.x then
16: a← a+ d

2

17: else
18: a← a− d

2

19: end if
20: end for
21: answer = (a, b)

Theorem 2. Let the auxiliary one-dimensional problems be solved with accuracy

δ =
ε

2(2 +
√
10)LR

. (4)

Then, we are guaranteed to obtain a point with the desired accuracy (ε) in terms
of the function value by performing

n = log2
MR

√
2

ε
(5)

iterations (transition from one square to a square half the size counts as one
iteration).

Proof.

1. Let’s denote the remaining square after j iterations as Kj (K0 = Π). Since
each subsequent square is half the size of the previous one, the diagonal of
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Kn is R
√
2

2n . Then, if x is the center of Kn, we have

f(x)− min
x∈Kn

f(x) ⩽M∥x− arg min
x∈Kn

f(x)∥ ⩽M
R
√
2

2n
1

2

(5)
=

ε

2
. (6)

Now, if we can show that

min
x∈Kn

f(x)−min
x∈Π

f(x) ⩽
ε

2
, (7)

by adding (6) and (7), we obtain the required inequality.
2. After j iterations, the square Kj with a side length of Rj =

R
2j remains. At

the current iteration, it is divided into two rectangles — Q and Z, and Q
remains. Let’s denote the horizontal midline as l1. A point xδ (corresponding
to point A in the algorithm description) is found on this line. Let x0 be the
point where the minimum on l1 is achieved. Then ∥xδ − x0∥ ⩽ δ. The line
passing vertically through xδ is denoted as l2. A point xδ (corresponding to
point B in the algorithm description) is found on this line. Let x′0 be the
point where the minimum on l2 is achieved. Then ∥x′δ −x′0∥ ⩽ δ. Let’s prove
that

min
x∈Q

f(x)− min
x∈Kj

f(x) ⩽ Lδ
Rj

√
10

2
. (8)

Assume that (8) does not hold. Then x∗ := arg min
x∈Kj

f(x) lies in Z. We will

consider two cases of the location of x′0.
(a) x′0 ∈ Q.

Since x0 is the minimum point on l1, and f is convex and achieves a
minimum on Z, the gradient vector ∇f(x0) ⊥ l1 and points towards Q.
Additionally, since x′0 — is the minimum point on l2, and x′0 ∈ Q, the
gradient vector ∇f(xδ) projected onto l2 points towards Z, thus it itself
points towards Z. The angle between the gradient vectors at points x0
and xδ is not acute. Using the fact that the largest side of a triangle is
opposite to the obtuse angle, we can write the following inequality:

∥∇f(x0)∥ ⩽ ∥∇f(xδ)−∇f(x0)∥ ⩽ L∥xδ − x0∥ ⩽ Lδ. (9)

Due to the convexity of f and x∗ lying in Z, x0 is the minimum over all
of Q. Also note that ∥x∗−x0∥ is not greater than the diagonal of Z, i.e.,
Rj

√
5

2 . Therefore, we obtain

min
x∈Q

f(x)− min
x∈Kj

f(x) = f(x0)− f(x∗) ⩽ ⟨∇f(x0), x∗ − x0⟩

⩽ ∥∇f(x0)∥ · ∥x∗ − x0∥
(9)
⩽ Lδ

Rj

√
5

2
.

Thus, (8) holds. Contradiction.
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(b) x′0 ∈ Z.
By similar reasoning, we have ∇f(x0) ⊥ l1 ⊥ l2 ⊥ ∇f(x′0). Since Q
is the rectangle that remains, x′δ ∈ Q. However, x′0 ∈ Z. Therefore,
∥xδ − x′0∥ ⩽ δ. Then

∥x0 − x′0∥ =
√
∥xδ − x′0∥2 + ∥xδ − x0∥2 ⩽

√
2δ. (10)

The gradient vectors at points x0 and x′0 are perpendicular, so

∥∇f(x0)∥ ⩽ ∥∇f(x0)−∇f(x′0)∥ ⩽ L∥x0 − x′0∥
(10)
⩽ L

√
2δ. (11)

Now, similarly to the previous case, we get

min
x∈Q

f(x)− min
x∈Kj

f(x) = f(x0)− f(x∗) ⩽ ⟨∇f(x0), x∗ − x0⟩

⩽ ∥∇f(x0)∥ · ∥x∗ − x0∥
(11)
⩽ Lδ

Rj

√
10

2
.

And once again, (8) holds. Contradiction.
Thus, (8) is proven.

3. Similarly, we can obtain an estimate for the difference in minima when tran-
sitioning from Q to Kj+1. The only change will be the maximum distance
between points within one region - it will decrease from Rj

√
5

2 to Rj

√
2

2 . Thus,
we obtain an estimate analogous to (8):

min
x∈Q

f(x)− min
x∈Kj

f(x) ⩽ LδRj . (12)

4. Using (8) and (12), we have

min
x∈Kn

f(x)− min
x∈K0

f(x) =

n−1∑
j=0

min
x∈Kj+1

f(x)− min
x∈Kj

f(x) ⩽

⩽
n−1∑
j=0

Lδ
Rj

√
10

2
+ LδRj = Lδ

n−1∑
j=0

R

2j
(

√
10

2
+ 1) ⩽ LδR(2 +

√
10)

(4)
=

ε

2

We have obtained (7), which concludes the proof of the theorem.

Now we can combine the results obtained in one-dimensional and two-dimensional
cases.

Theorem 3. Let the function f be defined on the square Π ⊂ R2 with side
length R, where it is strongly convex with a coefficient µ. And let C = eRM lnϕ

2ϕ .
Then in the algorithm from the theorem 2, under the condition that

ε ⩾

√
2ϕ∆ logϕ(

C
∆ )

µ
· 2(2 +

√
10)LR,
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it is sufficient to perform

n = 4 · log2
MR

√
2

ε
· logϕ(

C

e∆
)

operations to achieve accuracy in the function value of ε.

Proof. By combining the theorem 1 and the lemma 1, we obtain that in solving
a one-dimensional problem, after n0 = logϕ(

C
e∆ ) operations, accuracy in the

argument δ =

√
2ϕ∆ logϕ(

C
∆ )

µ . is achieved. In the algorithm from the theorem 2
the one-dimensional problem is solved 4 times for each iteration (2 times when
transitioning from a square to a rectangle and 2 times from a rectangle to a
square). The number of iterations performed is k = log2

MR
√
2

ε . Therefore, the
total number of operations will be 4kn0 = 4 · log2 MR

√
2

ε · logϕ( C
e∆ ). Moreover,

based on the theorem 2, to achieve accuracy ε in the function value with this
method, it is sufficient to satisfy the relationship δ ⩽ ε

2(2+
√
10)LR

, which holds

when ε ⩾
√

2ϕ∆ logϕ(
C
∆ )

µ · 2(2 +
√
10)LR.

6 Optimizing preference function

We want to find the maximum of the individual preference function for a sweet
and sour drink

One should note that this problem is a noisy one. Because a person’s re-
sponses may depend on mood swings and other external factors.

Preference functions are likely to be concave [7]. We used logarithmic coordi-
nates because we expect from Stevens’ law that the sensation of taste is a power
function of the amount of ingredient [10,1].

The preference function maps the sourness and sweetness of the water onto
the drink. f : [1, 4] × [1, 4] → R. The first coordinate of the point (x, y) cor-
responds to the level of acidity, and the second coordinate corresponds to the
level of sweetness of water on a logarithmic scale. The exact formula for acidity:
mass fraction of citric acid = 0.05% ∗ 3x. The exact formula for sweetness: mass
fraction of sugar = 2%∗2y. The boundary values were not chosen at random, but
corresponded roughly to the limit of distinguishability or repugnance of taste.
The relative mass fraction error in the preparation of water solutions was less
than 5%.

To find the position of the maximum of the function we will use the algorithm
described in paragraph 5. Linear search via GRM operations will stop when a
person cannot choose which drink they like more. After 4 iterations of linear
search, the area of the region where the optimal point is found is reduced by
4 times. The algorithm reduced the search area 16 times in just 20 pairwise
comparisons.
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Fig. 1: The progress of a squared algorithm for finding the maximum of the preference
function of a sweet-and-sour drink. The x-axis is the acidity of water and the y-axis is
its sweetness. The area where the optimal point is located is highlighted in gray. The
dotted line shows the area where the linear search via GRM was performed. The bold
red line connects two points where a person could not choose which drink they liked
better. The search was stopped when the diameter of the square was of the same order
of magnitude as the size of the red lines.

The code for the experiments can be found at the link: https://colab.
research.google.com/drive/1jNX7_Naag-cL4D2lsmetV0B-3Q6GX1l3?usp=sharing

7 Conclusion

In this study, the Nesterov’s method [8] was modified to work with an Order
Oracle: there is no longer a need to compute the subgradient or function values
at individual points. Theoretical estimates accounting for noise were obtained.

The method for estimating the increase in the function minimum when
transitioning to a smaller region performed well in finding the asymptotics for
both one-dimensional and two-dimensional problems, showing approximately the
same results as those for first-order oracle problems. Although not explicitly
addressed in the study, similar reasoning can naturally be extended to higher
dimensions.

In practice, the method converged faster than the theoretical estimates antic-
ipated. The algorithm described in the study is suitable for real-world problems
where only function values at points can be compared, but numerical function
values at each individual point cannot be determined.

Acknowledgement. The research is supported by the Ministry of Science and
Higher Education of the Russian Federation (Goszadaniye) No. 075-03-2024-117,
project No. FSMG-2024-0025.
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