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ABSTRACT
In this paper, we investigate accelerated first-order methods for smooth convex op-
timization problems under inexact information on the gradient of the objective. The
noise in the gradient is considered to be additive with two possibilities: absolute
noise bounded by a constant, and relative noise proportional to the norm of the
gradient. We investigate the accumulation of the errors in the convex and strongly
convex settings with the main difference with most of the previous works being that
the feasible set can be unbounded. The key to the latter is to prove a bound on the
trajectory of the algorithm. We also give a stopping criterion for the algorithm and
consider extensions to the cases of stochastic optimization and composite nonsmooth
problems.

1. Introduction

We consider convex optimization problem on a closed convex (not necessarily bounded)
set Q ⊆ Rn:

min
x∈Q

f(x). (1)

We assume that the objective f is Lf -smooth and strongly convex with the parameter
µ > 0, i.e., for all x, y ∈ Q:

‖∇f(y)−∇f(x)‖2 6 Lf‖y − x‖2,

f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 6 f(y).
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In the convergence rate analysis of different first-order methods these assumptions
are typically used in the form of an upper and lower quadratic bounds [4, 6, 9, 14, 20,
23, 24, 27, 28, 37, 40, 51, 53] for the objective:

f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 6 f(y)

6 f(x) + 〈∇f(x), y − x〉+
Lf
2
‖y − x‖22. (2)

Note that the last relation is a consequence of the Lf -smoothness and, in general, is
not equivalent, to it [28, 52].

In many applications, instead of an access to the exact gradient ∇f(x) an algo-
rithm has access only to its inexact approximation ∇̃f(x). Typical examples include
gradient-free (or zeroth-order) methods which use a gradient estimator based on finite
differences [7, 11, 47], and optimization problems in infinite-dimensional spaces related
to inverse problems [29, 34]. The two most popular definitions of gradient inexactness
in practice are [45] as follows: for all x ∈ Q it holds that

‖∇̃f(x)−∇f(x)‖2 6 δ, (absolute error) or (3)

‖∇̃f(x)−∇f(x)‖2 6 α‖∇f(x)‖2, α ∈ [0, 1) (relative error). (4)

Under assumption (3), many results exist for non-accelerated and accelerated first-
order methods, see, e.g., [1, 10, 12, 45]. These results are in a sense pessimistic in
general with the explanation going back to the analysis in [44]. We can explain this
by a very simple example. Consider the following problem

min
x∈Rn

{
f(x) =

1

2

n∑
i=1

λi · (xi)2

}
, (5)

where 0 6 µ = λ1 6 λ2 6 ... 6 λn = Lf , Lf ≥ 2µ. Clearly, the solution of this problem
is x∗ = 0. Assume that the inexactness takes place only in the first component x1, i.e.,
instead of ∂f(x)/∂x1 = µx1 we have access to ∂̃f(x)/∂x1 = µx1 − δ, where δ is the
error. For the simple gradient descent

xk = xk−1 −
1

Lf
∇̃f(xk−1),

we can conclude that if x1
0 > 0, then for all k ∈ N large enough, i.e., k � L/µ, it holds

that

x1
k >

δ

L

1− (1− µ/Lf )k

1− (1− µ/Lf )
' δ

µ
. (6)
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Hence,1

f(xk)− f(x∗) &
δ2

2µ
.

From this result, we see that it may be problematic to approximate f(x∗) with any
desired accuracy, especially in the ill-conditioned setting when the strong convexity
constant µ is smaller than the desired accuracy ε. For accelerated gradient methods the
situation may be even worse since they are more sensitive to the gradient errors and
such errors may even be accumulated by the algorithm [15, 21, 28]. This drawback
may be overcome by proposing a certain stopping rule so that the algorithm does
not try to minimize below some threshold given by the gradient error or by adding a
strongly convex regularizer with coefficient µ of the same order as the desired accuracy
ε, see [28, 38, 44, 45]. Roughly speaking, for non-accelerated algorithms it was proved
in [44, 45] that if δ is of the order ε2, then it is possible to reach ε-accuracy in the
objective residual function in almost the same number of iterations as in the exact
case δ = 0 by applying a computationally convenient stopping rule.

In this paper, we analyze an accelerated gradient method in both convex and
strongly convex settings and estimate how the gradient error defined in (3) influences
the convergence rate. An important part of our contribution is that our analysis is
made without an assumption that the feasible set Q is bounded. The main key for this
development is a recurrent estimate for the distance between the current iterates and
the optimal solution closest to the starting point. In particular, our results imply that
it is sufficient to assume that δ is of the order ε in order to obtain objective residual
of the order ε. We also present a stopping rule and prove that if it is satisfied at some
iteration, the algorithm solves problem (1) with certain accuracy. Moreover, we prove
that until this rule is fulfilled, the trajectory of the algorithm is bounded (which helps
us to treat the setting of possibly unbounded set Q) and that it is fulfilled for sure in
a number of iterations which is optimal for the class of smooth convex optimization
problems.

Under assumption (4), non-accelerated gradient method for strongly convex prob-

lems is shown in [45] to have linear convergence with condition number O
(

1
1−α ·

Lf
µ

)
,

i.e. 1
1−α times worse than in the exact case. Yet, convergence to any small error is

guaranteed unlike the case of inexactness (3). This result holds also under the relaxed
strong convexity assumption [28] known as Polyak–Lojasiewicz or gradient domination
condition. We are not aware of any such results for accelerated gradient methods.

In this paper, we analyze an accelerated gradient method under inexact gradients
satisfying (4) and answer the question of what is the maximum value of α such that
the accelerated algorithm with inexact gradients converges with the same rate as the
exact accelerated algorithm. For the case µ 6= 0 our answer is that α should satisfy α =

O
(
µ
Lf

)
. We hypothesise that this bound can be improved to α = O

((
µ
Lf

)1/2
)

and,

for the case µ = 0, the iteration-dependent value αk should satisfy αk = O
((

1
k

)3/2)
,

where k is the iteration counter. Numerical experiments demonstrate that, in general,
for α larger than the mentioned above thresholds the convergence may slow down a
lot up to divergence for the considered accelerated method.

1This bound corresponds to the worst-case philosophy, i.e., choosing the worst example for the considered

class of methods [9, 28, 39, 40]. We expect more interesting results by considering average-case complexity
[43, 49].
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Close results with the bound α = O

((
µ
Lf

)5/4
)

in the case µ � ε were recently

obtained using another techniques in stochastic optimization with decision depen-
dent distribution [17] and policy evaluation in reinforcement learning via reduction
to stochastic variational inequality with Markovian noise [36]. In [17, 36], the authors
assumed that

‖∇̃f(x)−∇f(x)‖2 6 B‖x− x∗‖2. (7)

Since x∗ is a solution, when Q = Rn, we have ∇f(x∗) = 0. Therefore,

‖∇f(x)‖2 = ‖∇f(x)−∇f(x∗)‖2 6 Lf‖x− x∗‖2.

Thus, if (4) holds, then (7) also holds with B = αLf .

2. Ideas behind the results

2.1. Absolute noise

Important results on gradient error accumulation for first-order methods were devel-
oped in a series of works by O. Devolder, F. Glineur and Yu. Nesterov 2011–2014
[13–16]. In these works, the authors were motivated by inequalities (2). Their idea was
to relax (2), assuming inexactness in the gradient, introducing the inexact gradient
∇̃f(x), satisfying for all x, y ∈ Q

f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖y − x‖22 − δ 6 f(y)

6 f(x) + 〈∇̃f(x), y − x〉+
Lf
2
‖y − x‖22 + δ. (8)

This assumption allows to develop a theory for error accumulation for first-order meth-
ods. In particular, they obtained the following convergence rates for non-accelerated
gradient methods:

f(xk)− f(x∗) = O

(
min

{
LfR

2

k
+ δ, LfR

2 exp

(
− µ

Lf
k

)
+ δ

})
, (9)

and for accelerated methods:

f(xk)− f(x∗) = O

(
min

{
LfR

2

k2
+ kδ, LfR

2 exp

(
−
√

µ

Lf

k

2

)
+

√
Lf
µ
δ

})
, (10)

where R is such that ‖xstart − x∗‖2 6 R, i.e., an estimate for the distance between
the starting point xstart and a solution x∗. If x∗ is not unique, one may take x∗ to
be the closest point to xstart. Both of these bounds are unimprovable [15, 16]. See
also [14, 21, 35] for “intermediate” situations between accelerated and non-accelerated
methods and extensions for stochastic optimization.

Following [16], it is possible to make a reduction of the “absolute noise” inexactness

4



in the sense of (3) to the inexactness in the sense of (8) by setting

δ = δ(8) =
δ2

(3)

2Lf
+
δ2

(3)

µ
'
δ2

(3)

µ
(11)

and setting Lf,(8) = 2Lf,(2), µf,(8) = µf,(2)/2. The key observations here are that

〈∇̃f(x)−∇f(x), y − x〉 6 1

2Lf
‖∇̃f(x)−∇f(x)‖22 +

Lf
2
‖y − x‖22,

〈∇̃f(x)−∇f(x), y − x〉 > 1

µ
‖∇̃f(x)−∇f(x)‖22 −

µ

4
‖y − x‖22.

From this reduction, we see that when µ > 0, for non-accelerated methods. the result
(9) is almost the same as in the example in (5). We see also, that, if the error can be
controlled, to guarantee that f(xk) − f(x∗) 6 ε for non-accelerated method when 2

µ = Ω(ε) we should set δ(3) = O(ε), which is an expected result. Unfortunately, for

accelerated methods, such reduction leads to the bound δ(3) = O(ε3/2), which is worse
than our bound indicated in Section 1. The key to our improvement is a more refined
version of (8).

In the works [15, 18, 19, 50, 51], the following refined version of (8) is used:

f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖y − x‖22 − δ1‖y − x‖2 6 f(y)

6 f(x) + 〈∇̃f(x), y − x〉+
Lf
2
‖y − x‖22 + δ2. (12)

These inequalities lead to the following counterparts of (9) and (10), respectively, for
non-accelerated gradient methods:

f(xk)− f(x∗)

= O

(
min

{
LfR

2

k
+ R̃δ1 + δ2, LfR

2 exp

(
− µ

Lf
k

)
+ R̃δ1 + δ2

})
, (13)

and for accelerated gradient methods [15, 19]:

f(xk)− f(x∗)

= O

(
min

{
LfR

2

k2
+ R̃δ1 + kδ2, LfR

2 exp

(
−
√

µ

Lf

k

2

)
+ R̃δ1 +

√
Lf
µ
δ2

})
, (14)

where R̃ is the maximum distance between the sequences of iterates generated by the
algorithm and the solution x∗ closest to the starting point.

2If µ . ε, we can regularize the problem and guarantee that µ = Ω(ε), see [28]. Another advantage of
strong convexity is the possibility to use the norm of inexact gradient for the stopping criteria, see [28, 44].

Yet, regularization requires [28] some prior knowledge about the distance to the solution. Since we typically

don not have such information the procedure becomes more difficult via applying the restart technique, see
[27, 28].
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From (13), (14), we see that if R̃ is bounded,3 then by setting

δ1 = δ(3), δ2 =
δ2

(3)

2Lf
,

we obtain the desired result: it is possible to guarantee f(xk)− f(x∗) 6 ε with δ(3) =
O(ε).

Previous works mainly rely on the assumption that R̃ is bounded. As we may see
from example (5), in general, when the strong convexity parameter µ is small compared
to the desired accuracy ε, only a bound

R̃ ' R+
δ(3)

µ
& R+

δ(3)

ε

is possible to obtain [28]. This bound leads to very pessimistic estimates. Moreover,
the growth of R̃ is observed in different numerical experiments and in theoretical
estimates caused by error accumulation. In our work, we investigate this problem and,
in particular, propose an alternative to regularization4 approach that is based on “early
stopping”5 of the considered iterative procedure by developing proper stopping rule.

2.2. Relative noise

We now explain a way of reduction of the relative inexactness in the sense of (4) to the
inexactness in the sense of (8), which allows us to apply (10) when µ� ε. Since f(x)
has Lipschitz gradient, from (4), (8), we can derive that after k iterations (where k
is greater than

√
Lf/µ by a logarithmic factor log

(
LfR

2/ε
)

with ε being the desired
accuracy in terms of the objective residual):

f(xk)− f(x∗)
(10),(11)
' ε

2
+

√
Lf
µ

δ2
(3)

µ
'

√
Lf
µ

δ2
(3)

µ

(4),(8)
'

√
Lf
µ

α2 maxt=1,...,k ‖∇f(xt)‖22
µ

≤

√
Lf
µ

2Lfα
2 maxt=1,...,k(f(xk)− f(x∗))

µ

.

√
Lf
µ

4Lfα
2 (f(x0)− f(x∗))

µ
. (15)

Choosing α = O

((
µ
Lf

)3/4
)

, we guarantee that the following restart condition holds

f(xk)− f(x∗) 6
1

2
(f(x0)− f(x∗)) .

When the restart condition holds, we restart the method. Then, after log (∆f/ε)
restarts we can guarantee the desired ε-accuracy in terms of the objective residual. In

3In many situations this is true. For example, when Q is bounded or when µ� ε.
4By using regularization we can guarantee µ ∼ ε and therefore with δ(3) ∼ ε we have the desired estimate

R̃ ' R.
5This terminology is popular also in Machine Learning community, where “early stopping” is used also as

an alternative to regularization to prevent overfitting [31].
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ill-conditioned setting, i.e., when µ is small, the calculations are more involved. Yet,
the main idea remains the same and replacing

√
Lf/µ with k (cf. (10)) we obtain that

the inequality αk .
(

1
k

)3/2
allows us to obtain the same convergence rate as in the

exact gradients case.
Among many types of accelerated gradient methods, we choose to consider methods

with one projection (Similar Triangles Methods (STM)), see [10, 23, 30, 32, 50] and
references therein. We choose this type of accelerated methods since: 1) it is primal-
dual [22, 30]; 2) it is possible to bound R̃ in the absence of noise [30, 40, 50] and when
the noise is present [32, 33]; 3) has previously been intensively investigated, see [23]
and references therein.

3. Some motivation for inexact gradients

In this section, we describe two, among many others, research directions where inexact
gradients play an important role. We emphasise that, although the results below are
not new, the way they are presented is of some value in our opinion and can be useful
for the specialists in these directions.

3.1. Gradient-free methods

In this subsection, we consider convex optimization problem:

min
x∈Q⊆Rn

f(x),

where Q is a convex and closed set. In some applications we do not have an access to
the gradient ∇f(x) of the objective function, but we can calculate the value 6 of f(x)
with accuracy δf [11], i.e., one can evaluate f̃(x) s.t.

|f̃(x)− f(x)| 6 δf .

An interesting question in this setting is as follows. If the accuracy δf of the approx-
imation can be controlled, how should it be chosen in order to guarantee a desired
accuracy ε when solving problem (1)? A related question is what is the largest level
of noise δf such that the algorithm can still achieve a desired accuracy ε?

In the considered setting, a number of options exists for approximating the gradient,
see, e.g., [7] and references therein. We consider the following examples, assuming that
f has Lp-Lipschitz p-th order derivatives w.r.t. the Euclidean norm.

• (p-th order finite-differences). In this case, the gradient approximation is
constructed via finite differences of inexact values f̃(x), which, e.g., in the case
of p = 2 lead to the following approximation to the i-th partial derivative

∇̃if(x) =
f̃(x+ hei)− f̃(x− hei)

2h
, i ∈ {1, ..., n},

6The approach we describe requires that the function values are available not only in Q, but also in some
(depends on a particular approach) vicinity of Q. This problem can be solved in two different ways. The first

one is “slightly shrink the feasible set” approach [8]. The second one is “continuation” of f to Rn preserving
its convexity and Lipschitz continuity [47]: fnew(x) := f

(
projQ(x)

)
+ αminy∈Q ‖x− y‖2.
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where ei is the i-th coordinate vector and h > 0 is a parameter. For general
values of p, we have that (3) holds with

δ =
√
nO

(
Lph

p +
δf
h

)
,

see [7]. The optimal choice of h guarantees that δ=O
(√

nδ
p

p+1

f

)
. From Section 1,

we know that it is possible to solve problem (1) with accuracy ε = O(δ) in terms
of the objective value. Hence, in order to guarantee ε-accuracy, we should choose

δf ∼
(

ε√
n

) p+1

p

.

Unfortunately, such a simple idea does not allow one to reach the following lower
bound in the class of algorithms that have sample complexity O

(
nc1
εc2

)
, for some

c1, c2 > 1: [47]

δf ∼ max

{
ε2

√
n
,
ε

n

}
. (16)

Note that, instead of the finite-difference approximation approach, in some appli-
cations we can use the kernel approach [3, 46] which has recently a got renowned
interest [2, 42].
• (Gaussian Smoothed Gradients). In this case, the approximate gradient is

formally defined as

∇̃f(x) =
1

h
Ef̃(x+ he)e,

where e ∈ N(0, In) is the standard Gaussian random vector. This implies that
(3) holds with

δ = O

(
np/2Lph

p +

√
nδf
h

)
,

see [7, 41]. The optimal choice of h guarantees that δ=O
(

(nδf )
p

p+1

)
. Hence, in

order to guarantee ε-accuracy, we should choose

δf = O

(
ε
p+1

p

n

)
.

This bound does not match the lower bound (16) as well. Moreover, here (and
in the next approach) we have an additional difficulty since ∇̃f(x), in general,
is not possible to evaluate exactly and only an inexact approximation is pos-
sible, for example, by the Monte Carlo approach [7], which leads to additional
computational price for the better quality of approximation.
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• (Sphere Smoothed Gradients). In this case, the approximate gradient is
formally defined as

∇̃f(x) =
n

h
Ef̃(x+ he)e,

where e is random vector with uniform distribution in the unit sphere in Rn with
the center at 0. This implies that (3) holds with

δ = O

(
Lph

p +
nδf
h

)
,

see [7]. The optimal choice of h guarantees δ = O
(

(nδf )
p

p+1

)
. Hence, in order

to guarantee ε-accuracy, we should choose

δf = O

(
ε
p+1

p

n

)
.

This bound does not match the lower bound (16) as well. It may seem that the
this and the previous approaches are almost the same, but below we give a more
accurate result for the Sphere smoothing. We are not aware of a way to obtain
such a result for the Gaussian smoothing. The result is as follows [15, 47]: for
the Sphere smoothed gradient, we have that (8) holds with

δ ' 2L0h+

√
nδf R̃

h
, (17)

where L0 is the Lipschitz constant of f and in (8) Lf = min
{
L1,

7L2
0

h

}
when

p = 1 and Lf = 7L2
0

h , when p = 0. The bound (17) is more accurate than the
previous bounds since it corresponds to the first part of the lower bound (16).

Indeed, by choosing a proper h in (17) we obtain ε ∼ δ ∼ n1/4δ
1/2
f . Hence, in

order to guarantee ε-accuracy, we should choose

δf = O

(
ε2

√
n

)
.

The other part of the lower bound (16), i.e., the case when δf = O
(
ε
n

)
, is also

tight, see [5]. Here we can also repeat the remark that the sphere smoothed gra-
dient approximation ∇̃f(x), in general, is not available and needs to be approxi-
mated by a stochastic inexact gradient. In Section 6, we describe an extension of
our analysis of accelerated gradient method with absolute noise in the gradient
to the setting of stochastic gradients.

The bound in (17) and its consequences additionally illustrate that the inexactness
and algorithms we describe in Section 2 and develop below are also tight (optimal)
enough. Otherwise, it would not be possible to achieve the lower bound using the
reduction of gradient-free methods to gradient methods with inexact oracle and the
proposed analysis of the error accumulation for gradient-type methods.
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3.2. Inverse problems

Another rather important research direction where gradients are typically available
only approximately is optimization in Hilbert spaces [54], arising, in particular, in
inverse problems theory [34].

We start by recalling a way to calculate a derivative in a general Hilbert space.
Let J(q) := J(q, u(q)), where u(q) is the unique solution of the equation G(q, u) = 0.
Assume that the partial q-derivative Gq(q, u) of the operator G(q, u) is invertible.
Then, we have

Gq(q, u) +Gu(q, u)∇u(q) = 0, and ∇u(q) = − [Gu(q, u)]−1Gq(q, u).

Therefore,

∇J(q) = Jq(q, u) + Ju(q, u)∇u(q) = Jq(q, u)− Ju(q, u) [Gu(q, u)]−1Gq(q, u).

The same result can be obtained by considering the Lagrange functional

L(q, u;ψ) = J(q, u(q)) + 〈ψ,G(q, u)〉

with

Lu(q, u;ψ) = 0, Gq(q, u) = 0, and ∇J(q) = Lq(q, u;ψ).

Indeed, by simple calculations, we can connect these two approaches by setting

ψ(q, u) = −
[
Gu(q, u)T

]−1
Ju(q, u)T .

Next, we demonstrate this technique on an inverse problem based on an elliptic
initial-boundary-value problem. Let u(x, y) be the solution of the following problem,
which we refer to as (P)

uxx + uyy = 0, x, y ∈ (0, 1) ,

u (1, y) = q (y) , y ∈ (0, 1) ,

ux (0, y) = 0, y ∈ (0, 1) ,

u (x, 0) = u (x, 1) = 0, x ∈ (0, 1) .

Here we use subscripts x, y to denote the corresponding partial derivatives. The first
two relations constitute the system of equations G(q, u) = Ḡ · (q, u) = 0, and the last
two ones constitute the feasible set Q.

Assume that the goal is to solve an inverse problem of estimating q(y) ∈ L2(0, 1) by
observing b(y) = u(0, y) ∈ L2(0, 1), where u(x, y) ∈ L2 ((0, 1)× (0, 1)) is the (unique)
solution of (P) [34]. We can reduce this problem to an optimization problem [34]:

min
q

{
J(q) := min

u: Ḡ·(q,u)=0,u∈Q
J(q, u) := J(u) =

∫ 1

0
|u(0, y)− b(y)|2dy

}
, (18)

which can be solved numerically since it is a convex quadratic optimization problem.
We can also directly apply Lagrange multipliers principle to (18), see [54]. For that we
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introduce Lagrange multipliers ψ := (ψ(x, y), λ(y)) and write the Lagrange function:

L (q, u;ψ, λ) = J(u) + 〈ψ, Ḡ · (q, u)〉 =

∫ 1

0
|u(0, y)− b(y)|2dy−∫ 1

0

∫ 1

0
(uxx + uyy)ψ(x, y)dxdy +

∫ 1

0
(q(y)− u(1, y))λ(y)dy.

To obtain a conjugate problem for ψ, we need to vary L (q, u;ψ) in δu satisfying u ∈ Q:

δuL (q, u;ψ) = 2

∫ 1

0
(u(0, y)− b(y)) δu(0, y)dy−∫ 1

0

∫ 1

0
(δuxx + δuyy)ψ(x, y)dxdy −

∫ 1

0
δu(1, y)λ(y)dy, (19)

where

δux (0, y) = 0, y ∈ (0, 1) ,

δu (x, 0) = δu (x, 1) = 0, x ∈ (0, 1) .

Using the integration by part, from (19), we derive

δuL (q, u;ψ) =

∫ 1

0
(2 (u(0, y)− b(y))− ψx(0, y)) δu(0, y)dy−∫ 1

0
ψ(1, y)δux(1, y)dy −

∫ 1

0
ψ(x, 1)δuy(x, 1)dx+

∫ 1

0
ψ(x, 0)δuy(x, 0)dy+∫ 1

0

∫ 1

0
(ψxx + ψyy) δu(x, y)dxdy +

∫ 1

0
(ψx(1, y)− λ(y)) δu(1, y)dy.

Consider now the corresponding conjugate problem, which we refer to as (D):

ψxx + ψyy = 0, x, y ∈ (0, 1) ,

ψx (0, y) = 2 (u(0, y)− b(y)) , y ∈ (0, 1) ,

ψx (0, y) = 2 (u(0, y)− b(y)) , y ∈ (0, 1) ,

ψ (x, 0) = ψ (x, 1) = 0, x ∈ (0, 1)

and additional relation between Lagrange multipliers

λ(y) = ψx(1, y), y ∈ (0, 1) . (20)

These relations appear since δuL (q, u;ψ) = 0, and δu(0, y), δux(1, y), δu(1, y) ∈
L2(0, 1); δuy(x, 1), δuy(x, 0) ∈ L2(0, 1); δu(x, y) ∈ L2 ((0, 1)× (0, 1)) are arbitrary.

Since by [48] it holds that

J(q) = min
u:(q,u)∈(P )

J(u) = min
u: Ḡ·(q,u)=0,u∈Q

J(u) = min
u∈Q

max
ψ∈(D)

L(q, u;ψ),
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from the Demyanov–Danskin’s theorem [48], we have7

∇J(q) = ∇q min
u∈Q

max
ψ∈(D)

L(q, u;ψ) = Lq(q, u(q);ψ(q)),

where u(q) is the solution of (P) and ψ(q) is the solution of (D), where

ψx (0, y) = 2 (u(0, y)− b(y)) , y ∈ (0, 1)

and u(0, y) depends on q(y) via (P) and, at the same time, the pair (u(q), ψ(q)) is the
solution of the saddle-point problem

min
u∈Q

max
ψ∈(D)

L(q, u;ψ).

Since δψL(q, u;ψ) = 0 entails Ḡ · (q, u) = 0, that is from (P), if we add u ∈ Q and
δuL(q, u;ψ) = 0, then u ∈ Q entails (D) as we have shown above. Note also that

Lq(q, u(q);ψ(q))(y) = λ(y), y ∈ (0, 1) .

Hence, by (20), we have that

∇J(q)(y) = ψx(1, y), y ∈ (0, 1) .

Thus we reduced the calculation of ∇J(q)(y) to the solution of two correct initial-
boundary-value problems for elliptic equation on a square, namely problems (P) and
(D) [34].

This result can be also interpreted in a slightly different manner if we introduce a
linear operator

A : q(y) := u(1, y) 7→ u(0, y).

Here u(x, y) is the solution of problem (P). It was shown in [34] that

A : L2(0, 1)→ L2(0, 1).

The conjugate operator is [34]

A∗ : p(y) := ψx(0, y) 7→ ψx(1, y), A∗ : L2(0, 1)→ L2(0, 1).

Here ψ(x, y) is the solution of the conjugate problem (D). Thus, considering

J(q)(y) = ‖Aq − b‖22,

we have

∇J(q)(y) = A∗ (2 (Aq − b)) ,

7The same result in a more simple situation (without additional constraint u ∈ Q) we considered at the
beginning of this section. In that case we do not apply Demyanov–Danskin’s theorem and use the inverse
function theorem.
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which completely corresponds to the scheme as described above:
1. Based on q(y) we solve (P) and obtain u(0, y) = Aq(y) and define p(y) =

2 (u(0, y)− b(y)).
2. Based on p(y) we solve (D) and calculate ∇J(q)(y) = A∗p(y) = ψx(1, y).
Summarizing, the inexactness in the gradient ∇J(q) arises since we can solve (P)

and (D) only numerically up to some accuracy.
The described above technique can be applied to many different inverse problems

[34] and optimal control problems [54]. Note that, for optimal control problems, in
practice another strategy is widely used. Namely, instead of approximate calculation
of the gradient, optimization problem is replaced by an approximate one (for example,
by using finite-differences schemes). For this approximate (finite-dimensional) problem
the gradient is typically available precisely [25]. Moreover, in [25] the described above
Lagrangian approach is used to explain the core of automatic differentiation, where the
function calculation tree is represented as a system of explicitly solvable interlocking
equations.

4. Absolute noise in the gradient

In this section, we consider problem (1) in the absolute noise setting (see (3)), i.e., we
assume that the inexact gradient ∇̃f(x) satisfies uniformly in x ∈ Q the inequality

‖∇̃f(x)−∇f(x)‖2 6 δ. (21)

We underline that Q can be unbounded, for example Rn. Under this assumption,
we present several important relations concerning “inexact smoothness” and “inexact
strong convexity”. Then, we present and analyze an accelerated gradient method,
study its error accumulation, and propose a stopping rule.

4.1. Auxiliary facts

We start with some auxiliary facts and assumptions. Let xstart be some starting point
for an algorithm and assume that there is a constant R such that

‖xstart − x∗‖2 6 R,

where x∗ is a solution to problem (1). If x∗ is not unique we take x∗ that is the closest
to xstart. We assume that the function f has Lipschitz gradient with constant Lf , i.e.,
is Lf -smooth:

∀x, y ∈ Q, ‖∇f(x)−∇f(y)‖2 6 Lf‖x− y‖2. (22)

This implies the inequality

∀x, y ∈ Q, f(y) 6 f(x) + 〈∇f(x), y − x〉+
Lf
2
‖x− y‖22. (23)

In what follows, we use the following simple lemma.
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Lemma 4.1 (Fenchel inequality). Let (E , 〈·, ·〉) be a Euclidean space, then ∀λ ∈
R+,∀u, v ∈ E,

〈u, v〉 6 1

2λ
‖u‖2E +

λ

2
‖v‖2E .

Let us introduce several constants, which will be used below in this section:

L = 2Lf , δ1 = δ, δ2 =
δ2

L
.

From the Lf -smoothness assumption, we obtain the following upper bound for the
objective through the inexact oracle.

Claim 4.1. For all x, y ∈ Q, the following estimate holds:

f(y) 6 f(x) + 〈∇̃f(x), y − x〉+
L

2
‖x− y‖22 + δ2,

where L = 2Lf , δ2 = δ2

2Lf
.

Proof. The proof is given by the following chain of inequalities:

f(y) 6 f(x) + 〈∇f(x), y − x〉+
Lf
2
‖x− y‖22

6 f(x) + 〈∇̃f(x), y − x〉+
1

2Lf
‖∇f(x)− ∇̃f(x)‖22 +

Lf
2
‖x− y‖22 +

Lf
2
‖x− y‖22

6 f(x) + 〈∇̃f(x), y − x〉+
L

2
‖x− y‖22 + δ2.

We also assume that f is strongly convex with parameter µ > 0, where the case
µ = 0 corresponds to just convexity of f . This means that for all x, y ∈ Q:

f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖22 6 f(y). (24)

Based on this assumption and our assumption on the inexactness of the oracle, we
can obtain two lower bounds for the objective. The first one is given by the following
result.

Claim 4.2. For all x, y ∈ Q, the following estimate holds:

f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖x− y‖22 − δ1‖x− y‖2 6 f(y),

where δ1 = δ.
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Proof. Using the Cauchy inequality and (24) we obtain:

f(y) > f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖22

= f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖x− y‖22 − 〈∇̃f(x)−∇f(x), y − x〉

> f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖x− y‖22 − ‖∇̃f(x)−∇f(x)‖2‖x− y‖2

> f(x) + 〈∇̃f(x), y − x〉+
µ

2
‖x− y‖22 − δ1‖x− y‖2

For the second estimate, we assume that µ 6= 0 and introduce

δ3 =
δ2

µ
, µ 6= 0.

Claim 4.3. For all x, y ∈ Q, if in (24) µ 6= 0, the following estimate holds:

f(x) + 〈∇̃f(x), y − x〉+
µ

4
‖y − x‖22 − δ3 6 f(y),

where δ3 = δ2

µ .

Proof. Clearly,

f(x) + 〈∇̃f(x), y − x〉+
µ

4
‖x− y‖22 − δ3

= f(x) + 〈∇f(x), y − x〉+ 〈∇̃f(x)−∇f(x), y − x〉+
µ

4
‖x− y‖22 − δ3.

Using Lemma 4.1, we obtain:

f(x) + 〈∇̃f(x), y − x〉+
µ

4
‖x− y‖22 − δ3

6 f(x) + 〈∇f(x), y − x〉+
δ2

µ
+
µ

4
‖x− y‖22 +

µ

4
‖y − x‖22 − δ3 6 f(y).

To unify the derivations based on Claims 4.2 and 4.3, we use the notation µτ ,
τ ∈ {1, 2}, where τ = 1 and µ1 = µ correspond to the bound in Claim 4.2 and τ = 2
and µ2 = µ

2 correspond to the bound in Claim 4.3 and the case when µ 6= 0.

4.2. Similar Triangles Method and its properties

In this section, we introduce a variant of accelerated gradient method called Similar
Triangles Method (STM). The design of STM is similar to that of the algorithm in
[30] with the main difference being that here we use inexact gradient with absolute
inexactness instead of exact gradient. This change required us to modify accordingly
the analysis in order to take into account the presence of absolute inexactness in the
gradient and possible unboundedness of the feasible set Q.
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Algorithm 1 STM (L, µτ , xstart), Q ⊆ Rn

1: Input: Starting point xstart, number of steps N .
2: Set x̃0 = xstart, α0 = 1

L , A0 = 1
L .

3: Set ψ0(x) = 1
2‖x− x̃0‖22 + α0

(
f(x̃0) + 〈∇̃f(x̃0), x− x̃0〉+ µτ

2 ‖x− x̃0‖22
)

.

4: Set z0 = argminy∈Q ψ0(y), x0 = z0.
5: for k = 1 . . . N do
6: Find αk from (1 + µτAk−1)(Ak−1 + αk) = Lα2

k,
7:

8: or equivalently αk = 1+µτAk−1

2L +

√
(1+µτAk−1)2

4L2 + Ak−1(1+µτAk−1)
L ,

9: Ak = Ak−1 + αk,

10: x̃k = Ak−1xk−1+αkzk−1

Ak
,

11: ψk(x) = ψk−1(x) + αk

(
f(x̃k) + 〈∇̃f(x̃k), x− x̃k〉+ µτ

2 ‖x− x̃k‖
2
2

)
,

12: zk = argminy∈Q ψk(y),

13: xk = Ak−1xk−1+αkzk
Ak

.
14: end for
15: Output: xN .

Figure 1. Geometry of Similar Triangles Method, Algorithm 1.

Figure 1 illustrates the iterates of the algorithm and justifies the name Similar Tri-
angles Method (STM): by construction xk − x̃k = αk

Ak
(zk − zk−1), i.e., the triangles

(zk−1, xk−1, zk) and (x̃k, xk−1, xk) are similar. When Q = Rn, the main step of the
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algorithm can be simplified to

zk = zk−1 −
αk

1 +Akµτ

(
∇̃f(x̃k)+µτ (zk−1 − x̃k)

)
using the first-order optimality condition in the definition of the point zk. This method
is quite simple to implement, since it requires only one projection, which can be elimi-
nated in the absence of constraints, and also has a geometric interpretation. Functions
ψk(x) contain first-order information, and are also chosen in such a way that the in-
equalities guaranteed by convexity or strong convexity can be used to estimate the
objective from below, providing an estimating functions sequence. Moreover, since the
functions ψk(x) accumulate the first-order information from the previous iterations,
the update of the variable zk can be seen as a momentum step that leads to the accel-
erated convergence rate. As it will be seen in Remark 6.2 and Section 6.1, this method
can be modified for composite nonsmooth optimization problems and stochastic prob-
lems.

In the analysis, we use the following identities that easily follow from the construc-
tion of the algorithm:

Ak(xk − x̃k) = αk(zk − x̃k) +Ak−1(xk−1 − x̃k),
1 + µτAk−1

2Ak
‖zk − zk−1‖22 =

L

2
‖xk − x̃k‖22,

Ak−1‖x̃k − xk−1‖2 = αk‖x̃k − zk−1‖2.

(25)

The following is the main technical result which will be used later in the analysis.

Lemma 4.2. For all k > 1, the following inequality holds:

ψk(zk) > ψk−1(zk−1) +
1 + µτAk−1

2
‖zk − zk−1‖22

+ αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
.

Proof. By the definition of ψk, we have

ψk(zk) = ψk−1(zk) + αk

(
f (x̃k) + 〈∇̃f (x̃k) , zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
=

1

2
‖zk − x̃0‖22 +

k−1∑
j=0

αj

(
f (x̃j) + 〈∇̃f (x̃j) , zk − x̃j〉+

µτ
2
‖zk − x̃j‖22

)
+ αk

(
f (x̃k) + 〈∇̃f (x̃k) , zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
. (26)

Further, by construction, the function ψk−1 has its minimum at the point zk−1, which
implies, by the optimality condition,

〈∇ψk−1(zk−1), zk − zk−1〉 > 0

⇔ 〈zk−1 − x̃0, zk − zk−1〉 >
k−1∑
j=0

αj〈∇̃f(x̃j) + µτ (zk−1 − x̃j), zk−1 − zk〉. (27)
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We also have the identity

1

2
‖zk − x̃0‖22 =

1

2
‖zk−1 − zk‖22 +

1

2
‖zk−1 − x̃0‖22 + 〈zk−1 − x̃0, zk − zk−1〉. (28)

Combining the above, we have

ψk(zk)
(26),(28)

=
1

2
‖zk−1 − x̃0‖22 + 〈zk−1 − x̃0, zk − zk−1〉+

1

2
‖zk−1 − zk‖22

+

k−1∑
j=0

αj

(
f(x̃j) + 〈∇̃f(x̃j), zk − x̃j〉+

µτ
2
‖zk − x̃j‖22

)
(27)

>
k−1∑
j=0

αj

(
〈∇̃f(x̃j) + µτ (zk−1 − x̃j), zk−1 − zk〉

)

+

k−1∑
j=0

αj

(
f(x̃j) + 〈∇̃f(x̃j), zk − x̃j〉+

µτ
2
‖zk − x̃j‖22

)
+ αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
+

1

2
‖zk−1 − x̃0‖22 +

1

2
‖zk−1 − zk‖22.

Applying the identity

〈zk−1 − x̃j , zk−1 − zk〉 =
1

2
‖zk−1 − x̃j‖22 +

1

2
‖zk − zk−1‖22 −

1

2
‖zk − x̃j‖22,

and the definition of the sequence {Ak}, we finally get

ψk(zk) >
1

2
‖zk−1 − x̃0‖22 +

1 + µτAk−1

2
‖zk−1 − zk‖22

+

k−1∑
j=0

αj

(
f(x̃j) + 〈∇̃f(x̃j), zk−1 − x̃j〉+

µτ
2
‖zk−1 − x̃j‖22

)
+ αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
= ψk−1(zk−1) +

1 + µτAk−1

2
‖zk − zk−1‖22

+ αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)

Remark 4.1. In the case when µ = 0, we obtain the following particular case of the
result of Lemma 4.2:

ψk(zk) = ψk−1(zk) + αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉

)
⇒ ψk(zk) > ψk−1(zk−1) +

1

2
‖zk − zk−1‖22 + αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉

)
.
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We finish this subsection by a series of technical results that estimate the growth
of the sequence {Ak} and related sequences.

Claim 4.4. If µ 6= 0, then for all k > 1 the following inequality holds:

Ak > Ak−1λµτ ,L,

where

θµτ ,L =
µτ
L
, λµτ ,L =

(
1 +

1

2
θµτ ,L +

√
θµτ ,L

)
.

Proof. Using the relation between αk, Ak, Ak−1:

Ak(1 + µτAk−1) = Lα2
k,

we obtain a quadratic equation for Ak:

Ak(1 + µτAk−1) = L(Ak −Ak−1)2,

Ak(1 + µτAk−1) = LA2
k − 2LAk−1Ak + LA2

k−1,

LA2
k −Ak (1 + µτAk−1 + 2LAk−1) = 0 + LA2

k−1.

Solving this equation, we get

Ak > Ak−1

(
1 +

µτ + 1

L
+

√
µτ
L

)
> Ak−1

(
1 +

µτ
2L

+

√
µτ
L

)
.

Using that, for x < 1, 1 + x > e
x

2 , we obtain the following result.

Corollary 4.3.

λµτ ,L =
(

1 +
µτ
2L

+
√
θµτ ,L

)
>
(

1 +
√
θµτ ,L

)
> e

1

2

√
θµτ ,L .

Claim 4.5. If µ 6= 0, then for all k > 1 the following inequality holds:

1

Ak

k∑
j=0

Aj 6 1 +

√
L

µτ
.

Proof. Using the previous claim, we get Ak > Ak−jλ
j
µτ ,L

, and, hence, Ak−j
Ak

6 λ−jµτ ,L.
This gives

1

Ak

k∑
j=0

Aj 6
k∑
j=0

λ−jµτ ,L =
λk+1
µτ ,L
− 1

λk+1
µτ ,L
− λkµτ ,L

6
λµτ ,L

λµτ ,L − 1
6 1 +

√
L

µτ
.
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Claim 4.6. If µ = 0, then for all k > 1,

Ak >
(k + 1)2

4L
.

Proof. If µ = 0, then Ak = Lα2
k, and, solving the quadratic equation, we get

αk =
1 +

√
1 + 4L2α2

k−1

2L
>

1 + 2Lαk−1

2L
=

1

2L
+ αk−1.

Then, by induction, it is easy to see that

αk >
k + 1

2L
⇒ Ak = La2

k >
(k + 1)2

2L
.

Claim 4.7. If µ = 0, then for all k > 1

1

Ak

k∑
j=0

Aj 6 k + 1.

Proof. The proof follows from the simple calculations since {Ak} is non-decreasing:

1

Ak

k∑
j=0

Aj 6
1

Ak
(k + 1)Ak = k + 1.

4.3. Convergence rates under the absolute inexactness

In this section we obtain main convergence rate results for Algorithm 1. We will use
the following sequence

R̃k = max
06j6k

{‖zj − x∗‖2, ‖xj − x∗‖2, ‖x̃j − x∗‖2}. (29)

Proposition 4.4. The sequences {xk}, {x̃k}, {zk} generated by Algorithm 1 satisfy
for all k > 0 the inequality

Akf(xk) 6 ψk(zk) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2.

Proof. We prove the result by induction. The induction basis for k = 0 follows from
the facts that A0 = α0 = 1

L and

ψ0(x) = α0

(
f(x̃0) + 〈∇̃f(x̃0), x− x̃0〉+

µτ
2
‖x− x̃0‖22

)
+

1

2
‖x− x̃0‖22,
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which imply, by Claim 4.1, and since x0 = z0, that

f(x0) 6 f(x̃0) + 〈∇̃f(x̃0), x0 − x̃0〉+
L

2
‖x0 − x̃0‖22 + δ2

= Lψ0(z0)− µτ
2
‖z0 − x̃0‖22 + δ2 6 Lψ0(z0) + δ2.

To make the induction step, we start from the following corollary of Claim 4.1:

Akf(xk)−Ak−1δ1‖xk−1 − x̃k‖2

6 Ak

(
f(x̃k) + 〈∇̃f(x̃k), xk − x̃k〉+

L

2
‖xk − x̃k‖22 + δ2

)
−Ak−1δ1‖xk−1 − x̃k‖2.

Using equations (25), this gives

Akf(xk)−Ak−1δ1‖xk−1 − x̃k‖2

6 Ak−1

(
f(x̃k) + 〈∇̃f(x̃k), xk−1 − x̃k〉

)
+ αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉

)
+

(1 + µτAk−1)

2
‖zk − zk−1‖22 +Akδ2 −Ak−1δ1‖xk−1 − x̃k‖2

6 Ak−1f(xk−1) + αk(f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉)

+
1 + µτAk−1

2
‖zk − zk−1‖22 +Akδ2.

By the induction hypothesis and since µτ
2 ‖zk − x̃k‖

2
2 > 0, we further obtain

Akf(xk)−Ak−1δ1‖xk−1 − x̃k‖2 6 ψk−1(zk−1) + δ2

k−1∑
j=0

Aj + δ1

k−1∑
j=1

αj‖x̃j − zj−1‖2

+αk

(
f(x̃k) + 〈∇̃f(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22

)
+

1 + µτAk−1

2
‖zk−zk−1‖22+Akδ2.

Using Lemma 4.2, we get

Akf(xk) 6 Ak−1δ1‖xk−1 − x̃k‖2 + ψk(zk) + δ2

k∑
j=0

Aj + δ1

k−1∑
j=1

αj‖x̃j − zj−1‖2

(25)
= ψk(zk) + δ2

k∑
j=0

Aj + δ1

k−1∑
j=1

αj‖x̃j − zj−1‖2 + αkδ1‖x̃k − zk−1‖2,

which finishes the induction step and the proof.

Using the definition of {R̃k} and {Ak}, we obtain the following simple corollary of
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the above proposition:

Akf(xk) 6 ψk(zk) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2

6 ψk(zk) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj(‖zk−1 − x∗‖2 + ‖x̃k − x∗‖2)

6 ψk(zk) + δ2

k∑
j=0

Aj + 2R̃kδ1Ak. (30)

We note that the above estimates hold both in the case of µ 6= 0 and in the case of
µ = 0.

The proof of the following result repeats verbatim the proof of Proposition 4.4,
except for Claim 4.2 being replaced by Claim 4.3.

Proposition 4.5. If µ 6= 0, the sequences {xk}, {x̃k}, {zk} generated by Algorithm 1
satisfy for all k > 0 the inequality

Akf(xk) 6 ψk(zk) + δ2

k∑
j=0

Aj + δ3

k−1∑
j=0

Aj .

Proposition 4.6. Assume that the oracle error δ satisfies δ = 0 and that ‖x̃0−x∗‖2 6
R for some R. Then, for all k > 1, R̃k 6 R.

Proof. We first prove that, for all k > 0, ‖zk − x∗‖2 6 R. Let us fix k > 0. By
Proposition 4.4, we have Akf(xk) 6 ψk(zk). Further, ψk(x) is strongly convex with
the constant at least 1. At the same time, by the strong convexity of f , we have

f(x̃j) + 〈∇f(x̃k), x
∗ − x̃k〉+

µτ
2
‖x∗ − x̃k‖22 6 f(x∗) 6 f(xk).
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Using these three facts and the definition of ψk(x), we obtain:

1

2
‖zk − x∗‖22 =

1

2
‖zk − x∗‖22 +Akf(xk)−Akf(xk)

6 ψk(zk) +
1

2
‖zk − x∗‖22 −Akf(xk)

6 ψk(x
∗)−Akf(xk)

6
k∑
j=0

αj

(
f(x̃j) + 〈∇f(x̃k), x

∗ − x̃k〉+
µτ
2
‖x∗ − x̃k‖22

)
+

1

2
‖x∗ − x̃0‖22 −Akf(xk)

6
k∑
j=0

αjf(x∗) +
1

2
R2 −Akf(xk)

= Ak (f(x∗)− f(xk)) +
1

2
R2 6

1

2
R2.

For the remaining two sequences, {x̃k} and {xk} the proof is organized by induction.
Clearly, ‖x̃0−x∗‖ 6 R. Since, by construction, x0 = z0, we have ‖x0−x∗‖ 6 R. Then,
by construction of the algorithm and the induction hypothesis, we have

‖xk − x∗‖2 =

∥∥∥∥Ak−1

Ak
(xk−1 − x∗) +

αk
Ak

(zk − x∗)
∥∥∥∥

2

6
Ak−1

Ak
‖xk−1 − x∗‖2 +

αk
Ak
‖zk − x∗‖2 6 R.

In the same way, we obtain ‖x̃k − x∗‖ 6 R using the definition

x̃k =
αk
Ak

zk−1 +
Ak−1

Ak
xk−1.

Using the above results, we obtain the following convergence rate result for the STM
algorithm.

Theorem 4.7 (Main Theorem). Let ‖x̃0 − x∗‖2 6 R for some R. If µ 6= 0, the se-
quences {xk}, {x̃k}, {zk} generated by Algorithm 1 satisfy for all N > 0 the inequalities

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ1

L
N

)
+

(
1 +

√
L

µ1

)
δ2 + 3R̃Nδ1,

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ2

L
N

)
+

(
1 +

√
L

µ2

)
δ2 +

(
1 +

√
L

µ2

)
δ3.

If µ = 0, the sequences {xk}, {x̃k}, {zk} generated by Algorithm 1 satisfy for all N > 0
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the inequality

f(xN )− f(x∗) 6
4LR2

N2
+ 3R̃Nδ1 +Nδ2, (31)

where the sequence {R̃k} is defined in (29).

Proof. The proofs of the first and second inequalities are nearly the same with the
only difference that the proof of the first inequality is based on Proposition 4.4 and
Claim 4.2, whereas the proof of the second inequality is based on Proposition 4.5
and Claim 4.3. Thus, we give only the proof of the first inequality. From (30), by the
definition of {zN} and {ψN (·)}, and Claim 4.2, we have

ANf(xN ) 6 ψN (zN ) + δ2

N∑
j=0

Aj + 2R̃Nδ1AN

6
1

2
‖x∗ − x̃0‖22 + δ2

N∑
j=0

Aj

+ 2R̃Nδ1AN +

N∑
j=0

αk(f(x̃j) + 〈∇̃f(x̃j), x
∗ − x̃j〉+

µ1

2
‖x∗ − xi‖22)

6 δ2

N∑
j=0

Aj + 2R̃Nδ1AN +

N∑
j=0

αk(R̃jδ1 + f(x∗)) +
1

2
R2

= δ2

N∑
j=0

Aj + 3R̃Nδ1AN +ANf(x∗) +
1

2
R2

⇐⇒ f(xN )− f(x∗) 6
R2

2AN
+ δ2

1

AN

N∑
j=0

Aj + 3R̃Nδ1.

Using Claim 4.4 with Corollary 4.3 and Claim 4.5 we get:

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ1

L
N

)
+

(
1 +

√
L

µ1

)
δ2 + 3R̃Nδ1.

Repeating the same steps and using Claim 4.6 and 4.7, we prove the third inequality.

Commenting on the results obtained in Theorem 4.7, we can conclude that in the
case of strong convexity and the presence of absolute noise, STM converges in terms of
the objective value up to some limiting accuracy. Namely, the convergence rate bound
is the sum of the convergence rate of the optimal method for the class of strongly
convex and Lipschitz-smooth problems and the term characterizing the limiting error
caused by the noise is (

1 +

√
L

µ2

)
(δ2 + δ3) .
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In the case when µ = 0, we obtain a weaker convergence rate statement since in the
estimate we see a linear accumulation of the noise in the term Nδ2, as well as in the
term 3R̃Nδ1 (Note that Proposition 4.6 gives the estimate for R̃N in the absence of
noise). This motivates us to use the regularization technique to make a reduction of the
convex case to the strongly convex case, which is considered in the next Remark 4.2.
Another way to deal with the noise accumulation is to introduce a stopping rule, which
is done below in Section 4.4.

Remark 4.2. We can make a reduction of the setting when µ = 0 to the setting when
µ 6= 0. Indeed, suppose that µ = 0 and consider the following regularized problem:

min
x∈Q

{
fµ(x) := f(x) +

µ

2
‖x− x̃0‖22

}
.

Then, we have

∇fµ(x) = ∇f(x) + µ(x− x̃0),

∇̃fµ(x) = ∇̃f(x) + µ(x− x̃0),

‖∇̃fµ(x)−∇fµ(x)‖2 = ‖∇̃f(x)−∇f(x)‖2 6 δ.

Clearly, fµ(x) has Lipschitz gradient. Indeed, ∀x, y ∈ Q:

‖∇fµ(x)−∇fµ(y)‖2 = ‖(∇f(x)−∇f(y)) + µ(x− y)‖2
6 ‖∇f(x)−∇f(y)‖2 + µ‖x− y‖2
6 Lf‖x− y‖2 + µ‖x− y‖2 6 (Lf + µ)‖x− y‖2.

Since µ 6 L, we have that fµ(x) is Lµ-smooth with Lµ = 4Lf = 2L. Moreover, fµ(x)
is strongly convex and we can apply the derivations corresponding to the case τ = 2.
Using Theorem 4.7, and setting x∗µ = argminx∈Q f

µ(x), Rµ s.t. ‖x∗µ − x̃0‖2 6 Rµ, we
obtain the following inequalities

fµ(xk)− fµ(x∗µ) 6 2LR2
µ exp

(
−1

2

√
µ

4L
k

)
+

(
1 +

√
4L

µ

)(
1

2L
+

1

µ

)
δ2,

fµ(x∗µ) 6 f(x∗) +
µ

2
R2.

Translating this to the original objective f , we obtain

f(xk)− f(x∗) 6 fµ(xk)− f(x∗)

6 fµ(xk)− f(x∗µ) +
µ

2
R2

6 2LR2
µ exp

(
−1

2

√
µ

4L
k

)
+

(
1 +

√
4L

µ

)(
1

2L
+

1

µ

)
δ2 +

µ

2
R2.

By the strong convexity of the function fµ, we get:

f(x∗) +
µ

2
R2
µ 6 f(x∗µ) +

µ

2
R2
µ = fµ(x∗µ) 6 fµ(x∗) = f(x∗) +

µ

2
R2 ⇒

Rµ 6 R.
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Finally, we get the convergence rate as follows:

f(xk) − f(x∗) 6 2LR2 exp

(
−1

2

√
µ

2L
k

)
+

(
1 +

√
4L

µ

)(
1

2L
+

1

µ

)
δ2 +

µ

2
R2.

To obtain an error ε in the r.h.s., we choose µ = 2
3
ε
R2 .

4.4. Stopping rule under the absolute inexactness

In this subsection, we consider the setting with τ = 1 and µ = 0. In this case, a
possible drawback of the convergence rate obtained in Theorem 4.7

f(xN )− f(x∗) 6
4LR2

N2
+ 3R̃Nδ1 +Nδ2

can be that the sequence {R̃N} may increase as N increases. To overcome this, we
formulate a certain condition (stopping rule) and prove that if it is satisfied at iteration
N , the algorithm solves problem (1) with certain accuracy, and if it is not satisfied at
iteration N , then R̃N 6 R. Moreover, we estimate the maximum number of iterations
to satisfy this condition.

Theorem 4.8. Consider the setting τ = 1 and µ = 0 and assume that for some R,
‖x̃0−x∗‖2 6 R. Let ε > 0 be the desired solution accuracy. Let N be the first iteration
such that

f(xN )− f(x∗) 6
δ2

AN

N∑
j=0

Aj + 3Rδ1 + ε. (32)

Then, for all k ∈ {0, . . . , N − 1}, we have that R̃k 6 R. Moreover,

N 6 Nmax :=

⌈√
2LR2

ε

⌉
. (33)

Proof. Fixing any k > 0, applying Proposition 4.4, the fact that 1-strongly convex
function ψk(·) attains its minimum at the point zk, the definition of this function, and
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Claim 4.2, we obtain

1

2
‖zk − x∗‖22 +Akf(xk) 6

1

2
‖zk − x∗‖2 + ψk(zk) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2

6 ψk(x
∗) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2

=
1

2
‖x̃0 − x∗‖22 +

k∑
j=0

αj(f(x̃j) + 〈∇̃f (x̃j) , x
∗ − x̃j〉)

+ δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2

6
R2

2
+Akf(x∗) + δ1

k∑
j=0

αj‖x̃j − x∗‖2 + δ2

k∑
j=0

Aj

+ δ1

k∑
j=1

αj‖x̃j − zj−1‖2. (34)

Whence,

1

2
‖zk − x∗‖22 6

R2

2
+Ak

(
f(x∗)− f(xk) +

δ1α0

Ak
‖x̃0 − x∗‖2

+
δ1

Ak

k∑
j=1

αj(2‖x̃j − x∗‖2 + ‖zj−1 − x∗‖2) +
δ2

Ak

k∑
j=0

Aj

)
. (35)

Setting k = 0, since ‖x̃0− x∗‖2 6 R and, by the Theorem assumption, inequality (32)
does not hold for k 6 N − 1, we obtain

1

2
‖z0 − x∗‖22 6

R2

2
+A0

(
f(x∗)− f(x0) +

δ1α0

A0
R+ δ2

)

6
R2

2
+A0

(
− δ2 − 3Rδ1 − ε+

δ1α0

A0
R+ δ2

)
6
R2

2
,

where we also used that α0 = A0. Thus, we obtain that ‖z0 − x∗‖2 6 R, and, since
x0 = z0, that ‖x0 − x∗‖2 6 R. Hence, R̃0 6 R. Let us now assume that for some
k 6 N − 1, R̃k−1 6 R (see (29) for the definition of {R̃k}). Then, by the definition of
x̃k in Algorithm 1 and convexity of the norm, we have that ‖x̃k − x∗‖2 6 R. Further,
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since k 6 N −1, we have that inequality (32) does not hold. Thus, from (35), we have:

1

2
‖zk − x∗‖22 6

R2

2
+Ak

(
f(x∗)− f(xk) +

δ1α0R

Ak
+
δ1

Ak

k∑
j=1

αj · 3R+
δ2

Ak

k∑
j=0

Aj

)

6
R2

2
+Ak

(
− δ2

Ak

k∑
j=0

Aj − 3Rδ1 − ε+ 3Rδ1 +
δ2

Ak

k∑
j=0

Aj

)
6
R2

2
.

This implies that ‖zk − x∗‖2 6 R, and, by the definition of xk and the convexity of
the norm, that ‖xk − x∗‖2 6 R. Hence, R̃k 6 R. In summary, we obtain by induction
that for all k ∈ {0, . . . , N − 1}, R̃k 6 R. This also implies that ‖x̃N − x∗‖2 6 R.

We now prove the second statement of the Theorem. Let us assume the opposite,
i.e., N > Nmax. We use (34) with k = N − 1 and obtain, since R̃N−1 6 R, that

f(xN−1)− f(x∗) 6
R2

2AN−1
+ 3Rδ1 +

δ2

AN−1

N−1∑
j=0

Aj

6
2LR2

N2
+ 3Rδ1 +

δ2

AN−1

N−1∑
j=0

Aj

< ε+ 3Rδ1 +
δ2

AN−1

N−1∑
j=0

Aj ,

where we used Claim 4.6 and that N > Nmax. Thus, we see that after N−1 iterations,
inequality (32) holds. This is a contradiction with the definition of N as the first
iteration number for which this inequality holds. This finishes the proof.

Combining (32) with Claim 4.7 and the fact that N 6 Nmax, we obtain that

f(xN )− f(x∗) 6 δ2(Nmax + 1) + 3Rδ1 + ε.

Thus, if we redefine ε → ε
3 , and set δ2 6 ε

3(Nmax+1) , δ1 6 ε
9R , we guarantee that

f(xN )− f(x∗) 6 ε.

Remark 4.3. In some situations we have at our disposal the value of f(x∗) or its
estimate. For example, when solving systems of linear equations by reformulating
them as minimization problems:

Ax = b,

min
x

{
f(x) = ‖Ax− b‖22

}
,

if a solution exists, we have f∗ = f(x∗) = 0. This allows us, based on (34), to change
the inequality (32) to a more adaptive version, which can be checked online and which
can be fulfilled much earlier than (32). Such counterpart of (32) reads as

f(xN )− f(x∗) 6
δ2

AN

N∑
j=0

Aj +Rδ1 + δ1

N∑
j=1

αj‖x̃j − zj−1‖2 + ε. (36)
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If this inequality is not fulfilled at iteration k, we have that R̃k 6 R. If it is fulfilled
at iteration k, we obtain that

f(xk)− f(x∗) 6 δ2(k + 1) + 3Rδ1 + ε.

Moreover, we also obtain that (36) holds after no more than Nmax iterations.

5. Relative noise in the gradient

In this section, we consider problem (1) in the relative noise setting (see (4)), i.e., we
assume that the inexact gradient ∇̃f(x) satisfies uniformly in x ∈ Q the inequality

‖∇̃f(x)−∇f(x)‖ 6 α‖∇f(x)‖2.

As in the previous section, we assume that f is Lf -smooth. We also assume that f is
strongly convex with µ 6= 0 and that Q = Rn. For this setting, we analyze a slightly
different version of accelerated gradient method, adopted from [50].

Algorithm 2 STM2 (L, µτ , xstart), Q ⊆ Rn

1: Input: Starting point xstart, number of steps N
2: Set y0 = u0 = x0 = xstart,
3: Set A0 = 1

L , α0 = A0.
4: for k = 1 . . . N do
5: Find αk from (1 + µ2Ak−1)(Ak−1 + αk) = Lα2

k,
6:

7: or equivalently αk = 1+µ2Ak−1

2L +

√
(1+µ2Ak−1)2

4L2 + Ak−1(1+µ2Ak−1)
L ,

8: Ak = Ak−1 + αk,

9: yk = Ak−1xk−1+αkuk−1

Ak
,

10:

11: φk(x) = αk〈∇̃f(yk), x− yk〉+ 1+µ2Ak−1

2 ‖uk−1 − x‖22 + µ2αk
2 ‖yk − x‖

2
2,

12:

13: uk = argminu∈Q φk(u),

14: xk = Ak−1xk−1+αkuk
Ak

.
15: end for
16: Output: xN .

Since Q = Rn, the main step of the algorithm can be simplified to

uk+1 =
1 + µ2Ak

1 + µ2Ak+1
uk +

µ2αk+1

1 + µ2Ak+1
yk+1 −

αk+1

1 + µ2Ak+1
∇̃f(yk+1).

Combining Definition 3.3 of [50] with Claims 4.1, 4.3 and particular choice V [y](x) =
1
2‖x− y‖

2
2, we have that δ in Definition 3.3 of [50] can be set to δ = 3

2
δ2

µ2
> δ2

2Lf
+ δ2

µ =

δ2 + δ3, where we used that µ 6 Lf and that µ2 = µ/2. Further, L in Definition 3.3
of [50] can be set to L in our paper, and µ in Definition 3.3 of [50] can be set to
µ2 = µ/2 in our paper. Algorithm 2 is a particular case of Algorithm 2 in [50]. Since
in this section, we are in the setting of relative inexactness (4), in each iteration of
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this algorithm we have a different error δk = α‖∇f(yk)‖2, which gives the following

expression for δk in Algorithm 2 in [50]: δk = 3α2‖∇f(yk)‖22
2µ2

.

Applying Theorem 3.4 of [50], we obtain the following convergence rate for allN > 0:

f(xN )− f(x∗) 6
R2

AN
+

N∑
k=1

3α2Ak‖∇f(yk)‖22
µ2AN

:=
κ

AN
,

‖uN − x∗‖22 6
1

1 +ANµ2

[
R2 +

N∑
k=1

3α2Ak‖∇f(yk)‖22
µ2

]
:=

κ

1 +ANµ2
.

Since we assumed that Q = Rn, we have that ∇f(x∗) = 0 and that, for all x ∈ Q,
f(x) − f(x∗) 6 L

4 ‖x − x
∗‖22, where we used (23) and our definition L = 2Lf . Then,

using convergence rate for {uk}, we obtain

f(uk)− f(x∗) 6
L

4
‖uk − x∗‖22 6

Lκ

4(1 +Akµ2)
.

Using the convexity of f and the definition of the sequence {yk} we get:

f(yN+1)− f(x∗) 6
αN+1

AN+1
[f(uN )− f(x∗)] +

AN
AN+1

[f(xN )− f(x∗)]

6
αN+1

AN+1
· Lκ

4(1 +Akµ2)
+

AN
AN+1

· κ

AN
.

Our next goal is to estimate αN+1

AN+1
· L

4(1+Akµ2) from above. Using the inequalities
Ak

1+µ2Ak
6 1

µ2
and
√
x+ y 6

√
x+
√
y, and the definition of the sequence {αk}:

αk =
1 + µ2Ak−1

2L
+

√
(1 + µ2Ak−1)2

4L2
+
Ak−1(1 + µ2Ak−1)

L
,

we have

αN+1

AN+1
· L

4(1 +Akµ2)

=
L

4AN+1

1

1 + µ2AN

(
1 + µ2AN

2L
+

√
(1 + µ2AN )2

4L2
+
AN (1 + µ2AN )

L

)

6
L

4

1

AN+1

(
1

2L
+

1

2L
+

√
1

Lµ2

)
6

1

4AN+1

√
L

µ2
.

This gives us the following estimate

f(yN+1)−f∗ 6 κ

4AN+1

√
L

µ2
+

κ

AN+1
6

1

4

√
L

µ2

(
5R2

AN+1
+

N∑
k=1

15α2Ak‖∇f(yk)‖22
µ2AN+1

)
,

where we used that L/µ2 > 1 and the definition of κ.
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Since f is Lf -smooth, L = 2Lf and ∇f(x∗) = 0, we obtain for any x ∈ Q that

‖∇f(x)‖22 6 L (f(x)− f(x∗)) .

Whence, using the previous bound,

f(yN+1)− f(x∗) 6
1

4

√
L

µ2

(
5R2

AN+1
+

N∑
k=1

15α2AkL(f(yk)− f∗)
µ2AN+1

)
.

Introducing the following notations λ = 5R2

4

√
L
µ2

, θ = 15α2

4

√
L3

µ3
2
, ∆k = f(yk)− f(x∗),

we obtain the following recurrence

∆N 6
λ

AN
+ θ

N−1∑
k=0

Ak
AN

∆k,

where we add the term corresponding to k = 0 to the sum to simplify the proof that
will follow. Analyzing this recurrence, we obtain.

Claim 5.1. For all k > 1 it holds that

∆k 6
(1 + θ)k−1

Ak
λ+ θ

A0 (1 + θ)k−1

Ak
∆0.

Proof. The induction basis k = 1 is obvious. Induction step:

∆k 6
λ

Ak
+ θ

k−1∑
j=0

Aj
Ak

∆j

6
λ

Ak
+ θ

k−1∑
j=1

Aj
Ak

∆j + θ
A0

Ak
∆0

6
λ

Ak
+ θ

k−1∑
j=1

(
Aj
Ak

(1 + θ)j−1

Ak
λ+ θ

A0(1 + θ)j−1

Ak
∆0

)
+
A0

Ak
∆0

6
λ

Ak
+ θ

k−2∑
j=0

(
λ(1 + θ)j

Ak
+ θ

A0(1 + θ)j

Ak
∆0

)
+
A0

Ak
∆0

=
1

Ak

(
λ+ λ

[
(1 + θ)k−1 − 1

]
+ θA0∆0

[
(1 + θ)k−1 − 1

]
+A0∆0

)
=

(1 + θ)k−1

Ak
λ+ θ

A0 (1 + θ)k−1

Ak
∆0.

This gives us the following result

f(yk)− f(x∗) 6
λ(1 + θ)k

Ak
+ θ

A0(1 + θ)k

Ak
(f(y0)− f(x∗)) .
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By the definition of θ = 15α2

4

√
L3

µ3
2
, we obtain, that, if we choose α as

α 6
1

7

µ2

L
= Θ

(µ
L

)
, (37)

then

1 +

√
µ2

L

(
1

2
+

15

196
+

15

392

)
6 1 +

√
µ2

L

√
1

2

⇔ 1 + θ +
1

2

√
µ2

L
+

1

2

√
µ2

L
θ 6 1 +

√
µ2

2L

⇔ 1 + θ

1 +
√

µ2

2L

6
1

1 + 1
2

√
µ2

L

.

Combining this with Claim 4.4 and Corollary 4.3, we obtain that

(1 + θ)k

Ak
6

(
1 + θ

1 +
√

µ2

2L

)k
1

A0
6

(
1

1 + 1
2

√
µ2

L

)k
1

A0
6 L exp

(
−k

4

√
µ2

L

)
. (38)

As a result, we get the following theorem.

Theorem 5.1. Assume that the objective f is Lf -smooth and strongly convex with
µ 6= 0, that the inexactness in the gradient is described by (4), and that Q = Rn. Also
assume that α is chosen according to (37). Then, for all k > 1, the sequence {yk}
generated by Algorithm 2 satisfies

f(yk)− f(x∗) 6

(
5LR2

4
+

15

196

√
2L

µ
[f(y0)− f(x∗)]

)
exp

(
−k

4

√
µ

2L

)
.

6. Extensions

In this section, we extend the analysis of Algorithm 1 with absolute noise to two
settings. The first extension is an extension to stochastic optimization setting where
the error in the gradient has stochastic nature. The second one is the extension to
structured nonsmooth setting of composite minimization, where the objective is given
as a sum of smooth part with inexact gradient and a simple convex function. In
both cases, the analysis mainly follows the lines of Section 4. Thus, we underline the
differences and skip in the proofs some steps that are similar to the analysis in that
section.

6.1. Random additive noise in the gradient

In this subsection, we extend the analysis of Algorithm 1 for the setting of random
absolute noise in the gradient. We assume that an algorithm can use the stochastic
gradient ∇̃f(x, ξ), which is assumed to have bounded variance for all, possibly random,
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x ∈ Q:

Eξ
[
‖∇̃f(x, ξ)−∇f(x)‖22

∣∣∣ x] 6 δ2. (39)

Similarly to Section 4, we assume Lf -smoothness and µ-strong convexity of f , i.e.,
that (23),(24) hold. As before, we set L = 2Lf and

δ1 = δ, δ2 =
δ2

L
, δ3 =

δ2

µ
,

where the latter quantity is defined whenever µ > 0.
One of the main motivations for such stochastic problems is machine learning. For

example, Empirical Risk Minimization problem with the finite-sum structure of the
objective

f(x) =
1

M

M∑
i=1

fi(x)

can be considered as a stochastic optimization problem with stochastic gradient

∇̃f(x, ξ) =
1

m

∑
i∈ξ
∇fi(x); ξ ⊂ {1 . . .M}, |ξ| = m, m < M,

where ξ is a random subset of {1 . . .M}. It should be noted that the error δ2 can
be reduced by the use of mini-batches. Namely increasing the size of ξ from 1 to m
decreases the variance from δ2 to δ2

m .
The first step of the analysis is to obtain the counterparts of Claims 4.1, 4.2, and

4.3 in the stochastic setting.

Claim 6.1. Assume that x, y are random vectors. Then,

E [f(y)] 6 E
(
f(x) + 〈∇̃f(x, ξ), y − x〉+

L

2
‖x− y‖22

)
+ δ2.

Proof. Using the Lf -smoothness, we obtain

E
[
f(y)

∣∣∣ x] 6 E
[
f(x) + 〈∇f(x), y − x〉+

Lf
2
‖y − x‖22

∣∣∣ x]
(39)

6 E
[
f(x) + 〈∇̃f(x, ξ), y − x〉+

L

2
‖y − x‖22

∣∣∣ x]+ δ2,

where L = 2Lf . Taking the full expectation of both sides, we get the required.

Using the same steps as in the proof of Claim 6.1, we get the counterparts of
Claims 4.2, 4.3.

Claim 6.2. Assume that x, y are random vectors. Then,

E
[
f(x) + 〈∇̃f(x, ξ), y − x〉+

µ

2
‖x− y‖22 − δ1‖x− y‖2

∣∣∣ x] 6 E
[
f(y)

∣∣∣ x] .
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Claim 6.3. Assume that x, y are random vectors and that µ 6= 0. Then,

E
[
f(x) + 〈∇̃f(x, ξ), y − x〉+

µ

4
‖y − x‖22

∣∣∣ x]− δ3 6 E
[
f(y)

∣∣∣ x] .
The following sequence is the counterpart of the sequence {R̃k}:

B̃k = max
06j6k

{E‖zj − x∗‖2,E‖xj − x∗‖2,E‖x̃j − x∗‖2}. (40)

Using the above, we obtain the following counterparts of Propositions 4.4 and 4.5
under the assumptions of this subsection.

Proposition 6.1. The sequences generated by Algorithm 1 satisfy for all k > 0 the
inequality:

AkE [f(xk)] 6 E [ψk(zk)] + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αjE [‖x̃j − zj−1‖2] .

Proposition 6.2. If µ 6= 0, the sequences generated by Algorithm 1 satisfy for all
k > 0 the inequality:

AkE [f(xk)] 6 E [ψk(zk)] + δ2

k∑
j=0

Aj + δ3

k−1∑
j=0

Aj .

The proofs of these propositions repeat the same induction steps as in the proofs of
Propositions 4.4, 4.5, but using the new Claims 6.1, 6.2, and 6.3. Using the last two
propositions, we finally obtain the following counterpart of convergence Theorem 4.7
for the stochastic setting.

Theorem 6.3 (Convergence rate of stochastic STM).
Let ‖x̃0 − x∗‖2 6 R for some R, function f be Lf -smooth and strongly convex with

parameter µ > 0. Let the stochastic gradient ∇̃f(x, ξ) satisfy

Eξ
[
‖∇̃f(x, ξ)−∇f(x)‖22

∣∣∣ x] 6 δ2. (41)

Then, if µ 6= 0, the sequence {xN} generated by Algorithm 1 satisfy for all N > 0 the
inequalities

Ef(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ1

L
N

)
+

(
1 +

√
L

µ1

)
δ2 + 3B̃Nδ1,

Ef(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ2

L
N

)
+

(
1 +

√
L

µ2

)
δ2 +

(
1 +

√
L

µ2

)
δ3.

If µ = 0, the sequences {xk}, {x̃k}, {zk} generated by Algorithm 1 satisfy for all N > 0
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the inequality

Ef(xN )− f(x∗) 6
4LR2

N2
+ 3B̃Nδ1 +Nδ2.

Here the sequence {B̃k} is defined in (40).

As we see, Algorithm 1 has the same convergence rate in the stochastic setting as
in the deterministic setting. The proof of the above theorem repeats the same steps
as the proof of Theorem 4.7. Thus, we omit the proof.

Remark 6.1. Usually, in the context of stochastic optimization, the analysis of algo-
rithms relies also on the assumption of unbiased stochastic gradient:

E
[
∇̃f(x, ξ)

∣∣∣ x] = ∇f(x).

Our analysis does not require this assumption.

6.2. Nonsmooth objective

In this subsection, we consider the problem of structured nonsmooth optimization,
usually referred to as composite minimization,

min
x∈Q
{f(x) = L(x) + r(x)} . (42)

We assume that the function L is Lf -smooth and µ-strongly-convex (see (22), (24)),
the function r(x) is convex and relatively simple. We further assume that inexact
gradient ∇̃L(x) with absolute noise (cf. (3)) is available for L.

This setting is motivated, in particular, by machine learning problems, for example,
logistic regression loss minimization problem with the l1 regularization and dataset
{(Xi, yi)}Ki=1, where yi ∈ {0, 1} for i ∈ {1,K}. For this problem, we have

L(x) =

K∑
i=1

yi ln pi(x) + (1− yi) ln (1− pi(x)),

pi(x) = σ(〈x,Xi〉), σ(z) =
1

1 + exp (−z)
,

r(x) = λ1‖x‖1.

In the setting of composite minimization, Algorithm 1 requires only one change in
the definition of the function sequence {ψk(·)} as follows:

ψ0(x) =
1

2
‖x− x̃0‖22 + α0

(
L(x̃0) + 〈∇̃L(x̃0), x− x̃0〉+

µτ
2
‖x− x̃0‖22 + r(x)

)
,

ψk(x) = ψk−1(x) + αk

(
L(x̃k) + 〈∇̃L(x̃k), x− x̃k〉+

µτ
2
‖x− x̃k‖22 + r(x)

)
.

(43)

For such modified algorithm, in the concept of absolute noise (3), the convergence
result remains the same. However, some intermediate statements, such as Lemma 4.2,
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require a different analysis. Therefore, we make a different analysis to obtain an esti-
mate in the spirit of Proposition 4.4.

Lemma 6.4 (auxiliary statement for ψk’s). Under the assumptions of this subsection,
for the modified sequence {ψk(·)}, we have

ψk+1(zk+1) > ψk(zk) +
1 + µτAk

2
‖zk − zk+1‖22

+ αk

(
L(x̃k) + 〈∇̃L(x̃k), x− x̃k〉+

µτ
2
‖x− x̃k‖22 + r(x)

)
.

Proof. The function ψk defined in (43) is 1+µτAk
2 -strongly-convex. Thus, since zk is

its minimizer, we have

ψk(zk+1) > ψk(zk) +
1 + µτAk

2
‖zk − zk+1‖22.

Using the recurrent definition of ψk+1 we obtain the required by induction.

Using Lemma 6.4 instead of Lemma 4.2 and convexity of the function r(x), we can
obtain a result similar to Proposition 4.4.

Proposition 6.5. The sequences {xk}, {x̃k}, {zk} generated by Algorithm 1 modified
for structured nonsmooth optimization satisfy for all k > 0 the inequality

Akf(xk) 6 ψk(zk) + δ2

k∑
j=0

Aj + δ1

k∑
j=1

αj‖x̃j − zj−1‖2.

Proof. The induction basis k = 0 is obvious and repeats the proof of Proposition 4.4
since

f(x0) 6 Lψ0(z0) + δ2.

Let us consider iteration k > 0. Since r(x) is convex, by the definition of xk, we get:

Akr(xk) 6 Ak−1r(xk−1) + αkr(zk).

By this inequality, Claim 4.1 applied to L(x), the definition of the sequences {xk},
{x̃k}, we have

Akf(xk) 6 Ak

(
L(x̃k) + 〈∇̃L(x̃k), xk − x̃k〉+

L

2
‖xk − x̃k‖22 + δ2 + r(xk)

)
6 Ak−1

(
L(x̃k) + 〈∇̃L(x̃k), xk−1 − x̃k〉+ r(xk−1)

)
+ αk

(
L(x̃k) + 〈∇̃L(x̃k), zk − x̃k〉+ r(zk)

)
+Akδ2 +

Lα2
k

Ak
‖zk − zk−1‖22

6 Ak−1f(xk−1) + αk

(
L(x̃k) + 〈∇̃L(x̃k), zk − x̃k〉+ r(zk)

)
+

1 + µτAk−1

2
‖zk − zk−1‖22 +Akδ2 +Ak−1δ1‖xk−1 − x̃k‖2,
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where in the last inequality we used the equation in Step 6 of Algorithm 1 and Claim 4.2
applied to L. By the induction hypothesis and since µτ

2 ‖zk−x̃k‖
2
2 > 0, we further obtain

Akf(xk)−Ak−1δ1‖xk−1 − x̃k‖2 6 ψk−1(zk−1) + δ2

k−1∑
j=0

Aj + δ1

k−1∑
j=1

αj‖x̃j − zj−1‖2

+ αk

(
L(x̃k) + 〈∇̃L(x̃k), zk − x̃k〉+

µτ
2
‖zk − x̃k‖22 + r(zk)

)
+

1 + µτAk−1

2
‖zk − zk−1‖22 +Akδ2.

Using Lemma 6.4, we can finish the proof in a similar way as in the proof of Proposi-
tion 4.4.

We finally obtain the following counterpart of Theorem 4.7 for composite minimiza-
tion problems.

Theorem 6.6. Let the modified Algorithm 1 be applied to composite problem (42),
where the function L(x) is Lf -smooth and µ-strongly-convex and the function r(x) is
convex. If µ 6= 0, the sequences {xk}, {x̃k}, {zk} generated by the modified Algorithm
1 satisfy for all N > 0 the inequalities

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ1

L
N

)
+

(
1 +

√
L

µ1

)
δ2 + 3R̃Nδ1,

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ2

L
N

)
+

(
1 +

√
L

µ2

)
δ2 +

(
1 +

√
L

µ2

)
δ3.

If µ = 0, the sequences {xk}, {x̃k}, {zk} generated by the modified Algorithm 1 satisfy
for all N > 0 the inequality

f(xN )− f(x∗) 6
4LR2

N2
+ 3R̃Nδ1 +Nδ2,

where the sequence {R̃k} is defined in (29).

As we see, for composite problems, modulo a small modification of the algorithm,
the main result is the same as in the smooth case.

7. Conclusions and observations

In this section, we give a number of remarks in order to discuss the obtained results.
In particular, the convergence rate results obtained so far explicitly include the or-
acle inexactness, and we can look at these results from a little bit different angle of
controlling the inexactness. In particular, if the oracle error can be controlled, we can
estimate how small should be the oracle error if our goal is to obtain an ε-solution
to the problem. Such bound also give an estimate for the largest tolerable error not
preventing the algorithm from obtaining an ε-solution.
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Remark 7.1. In Sections 6.1, 6.2, we considered the extensions of Algorithm 1 with
absolute noise to the settings of stochastic optimization and structured nonsmooth
optimization. We strongly believe that it is possible to combine these two extensions
into one since the analysis in both cases follows the same lines as the analysis in Section
4. We believe that the same can be also done with the analysis of Algorithm 2 under
the relative noise in the gradient (see stochastic version of this condition in [55]). We
leave these developments for the future work.

Remark 7.2. The results of Theorem 4.7 and Proposition 4.6 are obtained for possi-
bly unbounded feasible set Q. If this set is compact, we can set R = diam(Q), i.e., the
diameter of the set Q. This simplifies the results and derivations since, in this case, by
the construction of Algorithm 1, R̃k 6 R for all k > 0.

Remark 7.3. When considering the absolute noise, in Section 4.1, we had two pos-
sibilities for dealing with “inexact strong convexity”: according to Claim 4.2 when
µ > 0 and according to Claim 4.3 when µ > 0. This resulted in two different bounds
in Theorem 4.7 in the setting when µ > 0. Recalling that

δ1 = δ, δ2 =
δ2

L
, δ3 =

δ2

µ
,

and comparing the two bounds in Theorem 4.7, we see that if

δ <
3R̃

1+
√

L

µ

µ +

√
L

µ
(
√

2−1)

L

,

then the model corresponding to τ = 2, that is described in Claim 4.3, leads to a
smaller term in the convergence rate bound due to the error accumulation than the
model corresponding to τ = 1, that is described in Claim 4.2

The above results are valid for uncontrolled and unknown values of the error δ in
the model of absolute noise. At the same time, in some cases, it may happen that
the error δ can be controlled and made as small as one desires. For example, in the
setting of Section 3.2, the gradient can be approximated using finite-difference solution
of primal and adjoint systems of equations, and δ can be decreased by decreasing the
discretization step. In the setting of Section 6.1, the error δ can be made smaller by
the means of using mini-batches of stochastic gradients. Thus, a natural question is
how small should one choose the accuracy δ if the goal is to find an ε-approximate
solution, i.e., guarantee f(xk)−f(x∗) 6 ε? A similar question could be as follows: given
a target accuracy ε, how large is the error δ that can be tolerated by an algorithm
still guaranteeing the target accuracy ε? This, in particular, allows one to compare
the robustness of different algorithms with respect to the noise. In the following series
of remarks, we address these questions by deriving the relations between δ and ε.

Remark 7.4. Let us consider the “inexact strong convexity” model corresponding
to τ = 2, µ > 0, µ2 = µ

2 , and δ2 = δ2

2Lf
, L = 2Lf , δ3 = δ2

µ (see Claims 4.1, 4.3). In

this case, we can write explicit expressions for the dependence of the error δ and the
iteration number N on the target accuracy ε. Substituting the above values into the
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bound in Theorem 4.7, we obtain

f(xN )− f(x∗) 6 LR2 exp

(
−1

2

√
µ

2L
N

)
+

(
1 +

√
L

µ2

)
δ2 +

(
1 +

√
L

µ2

)
δ3

= 2LfR
2 exp

(
−1

2

√
µ

4Lf
N

)
+

(
1 +

√
4Lf
µ

)(
2Lf + µ

2µLf

)
δ2.

Thus, choosing

δ 6
√
ε

√
µLf

µ+ 2Lf

(
1 +

√
4Lf
µ

)− 1

2

6

 Lfε

1 + 2Lfµ + 2
√

Lf
µ + 4

Lf
√
Lf

µ
√
µ


1

2

= O

(
√
µε

(
µ

Lf

) 1

4

)
;

N > 2

√
4Lf
µ

(
ln 4LfR

2 + ln ε−1
)

= O

(√
Lf
µ

ln
LfR

2

ε

)
,

we guarantee that

f(xN )− f(x∗) 6 ε.

Remark 7.5. Let us consider the setting of Remark 4.2, where we made a reduction
of the convex case µ = 0 to the strongly convex case by introducing a quadratic
regularization with regularization parameter µ. Recall that this led to the bound

f(xN )−f(x∗) 6 LR2 exp

(
−1

2

√
µ

2(L+ 2)
N

)
+

(
1 +

√
2L+ 4

µ

)(
1

L
+

1

µ

)
δ2+

µ

2
R2,

where R is such that ‖x̃0 − x∗‖2 ≤ R. We choose the regularization parameter µ, the
error level δ, and the number of iterations N such that each of the three terms in this
bound are smaller than ε

3 . Then, choosing

µ =
2

3

ε

R2
,

δ 6

(
2

243

) 1

4 1√
1 +
√

2L+ 4
R−

3

2 ε
5

4 = O
(
L−

1

4R−
3

2 ε
5

4

)
,

N >
√

12L+ 24R ln 2LR2 + 2
√

2L+ 4
1√
ε

ln
1

ε
= O

(√
LR2

ε
ln
LR2

ε

)
,

we guarantee that

f(xN )− f(x∗) 6 ε.

39



Remark 7.6. Let us apply Theorem 4.8 for solving linear inverse problems. Let A ∈
Rn×n be such that det(A) 6= 0 and consider the following linear system for finding
xRn: Ax = b. Solving this problem is equivalent to solving the convex optimization
problem:

min
x∈Rn

{
f(x) =

1

2
‖Ax− b‖22

}
.

If we solve the latter problem with accuracy ε = ε20
2 , then we guarantee that ‖Ax−b‖2 6

ε0.
Let us assume that the solution x∗ satisfies ‖x∗‖2 6 R∗ and that Algorithm 1 starts

from the point 0. Then, we can take R = R∗. According to Theorem 4.8, given a
target accuracy ζ > 0, we have that Algorithm 1 stops after Nstop iterations such that

Nstop ≤
√

2LR2
∗

ζ + 1. Moreover, we have that

f(xNstop
)− f(x∗) 6

δ2

AN

Nstop∑
j=0

Aj + 3δ1R∗ + ζ 6 Nstopδ2 + 3δ1R∗ + ζ

since {Aj} is an increasing sequence.

Choosing ζ 6 ε
3 and δ 6 min

{(
L

1
4

6
√

3R∗

)
ε

3

4 , ε
9R∗

}
, we guarantee that f(xNstop

) −
f(x∗) 6 ε and, hence, ‖Ax−b‖2 6 ε0. Moreover, the number of iterations to guarantee
such a solution is bounded as

Nε0 =

√
6LR2

∗
ε0

+ 1.

Remark 7.7. In the setting of relative noise in the gradient, Theorem 5.1 says that
whenever α 6 O

(µ
L

)
, STM converges linearly in the same way as accelerated gradient

method in the exact setting, i.e., with the rate O
((

1−
√

µ
L

)k)
which is faster than the

convergence rate O
((

1− µ
L

)k)
of gradient descent. Here k is the iteration counter. The

paper [26] considers, in particular, accelerated method, called the Triple Momentum
Method, in the presence of relative noise in the gradient. They show that when α <√

χ+1
4χ−3

√
χ+1 = O

(√µ
L

)
, where χ = L

µ , the Triple Momentum Method converges with a

linear rate as well. At the same time, their convergence rate depends on the noise level
α, is no better than the accelerated rate, and is equal to it only in the case α = 0.
Figure 2 illustrates the situation for two different values of the condition number χ.
The black dashed line shows the threshold, below which STM with relative inexactness
in the gradient has linear convergence rate similar to exact STM, and the latter rate
is denoted by the orange line. Green line shows the convergence rate of the gradient
method. Finally, the blue line shows the dependence of the convergence rate in [26]
on the inexactness level α. As we see, it can be even worse than that of the gradient
method for large values of α.
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Figure 2. Comparison of the convergence rate of Triple Momentum Method and STM

As our experiments show, STM is more robust in the relative noise setting, that
is, numerically estimating the dependence of the largest possible α = α∗ for given
problem parameters µ,L, we get a larger upper bound. More detailed information can
be found in Section 8. This leads us to the hypothesis that the condition α 6 O

( µ
L

)
for inexact STM may be weakened.

8. Numerical experiments

In this section, we provide a series of numerical experiments to illustrate the practical
performance of the considered algorithms under absolute and relative noise. The noise
was generated as independent random uniform and unbiased.

We start with the experiments in the setting of µ = 0 using the following objective
function described in [40, p. 69] and known as the worst-case function for first-order
methods:

f(x) =
L

8

x2
1 +

k−1∑
j=0

(xj − xj+1)2 + x2
k

− L

4
x1,

x∗ =

(
1− 1

k + 1
, . . . , 1− k

k + 1
, 0, . . . , 0

)T
,

1 6 k 6 dimx.

The next two plots show the convergence of STM at the first 50 000 and 10 000
iterations, respectively, in the absolute noise setting with different values of δ.
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Figure 3. First test – the performance of STM for µ = 0 for the first 50 000 iterations.

Figure 4. First test – the performance of STM for µ = 0 for the first 10 000 iterations.

We can observe that, as predicted by Theorem 4.7, we see that the increasing third
term in the convergence rate (31) at some point starts to overweight the first decreasing
term.
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We further compare the convergence in two different settings of the noise: absolute
and relative.

Figure 5. Second test – the performance of STM for µ = 0 with relative and additive types of noise.

As was expected from the theory, for sufficiently small α, the convergence of inexact
method is very close to the convergence of the exact method. Since in this experiment
the noise is stochastic, this effect can be possibly explained using the theoretical results
obtained in [55]: under the strong growth condition (SGC)

Eξ‖∇̃f(x, ξ)‖22 6 ρ‖∇f(x)‖22,

Lf -smoothness and convexity, SGD with Nesterov’s acceleration has the following
convergence rate:

Ef(xk)− f(x∗) 6
2ρ2Lf
k2
‖x0 − x∗‖22,

i.e., similar to the deterministic method despite that the gradients are stochastic. SGC
can be translated into the relative noise condition (4), making them related. Although
a different method is used in our paper, the obtained results make it reasonable to
expect a similar convergence in the concept of relative noise as in the absence of any
noise.

The next plot illustrates the convergence of STM in the setting of µ = 0 and relative
noise in the gradient for different values of the parameter α.
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Figure 6. Third test – the performance of STM with relative noise and µ = 0 for different values of α.

As we see, for α 6 0.71, the convergence of the method does not deteriorate and
the value α∗ ≈ 0.71 can be seen as a threshold above which the method diverges.

We next explore the strongly convex setting with µ > 0 using the worst-case function
[40, p.78]:

f(x) =
µ (χ− 1)

8

x2
1 +

n−1∑
j=1

(xj − xj+1)2 − 2x1

+
µ

2
‖x‖22,

χ =
L

µ
.

We first consider the performance of STM with absolute noise for different values
of δ. Dashed lines represent the corresponding theoretical bound.

Figure 7. Fourth test – the performance of STM for µ > 0 and absolute noise δ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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The next plot confirms Theorem 4.7 and Remark 7.4.

Figure 8. Fifth test – mean of 30 tests, level of approximation and required number of steps.

Next, similarly to the degenerate case µ = 0, we consider the behavior of the method
for different parameters α when a relative noise is present in the gradient.

Figure 9. Sixth test – the performance of STM with relative noise and µ > 0 for different values of α.

Note that, in the strongly convex case, we observe a similar effect as in the degen-
erate case: the algorithm converges for α-values smaller than a certain threshold value
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α∗.

Figure 10. Seventh test – the performance of STM with relative noise and µ > 0 for different values of α.

Finally, we compare STM and triple momentum method. Figures 11 and 12 show,
that for the same parameters of the problem, STM is capable of converging at a much
higher noise level than triple momentum algorithm.
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Figure 11. Eigth test – threshold α∗ for different L and µ = 0.1, for STM

Figure 12. Nineth test – threshold α∗ for different L and µ = 0.1, for the Triple Momentum Method
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