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Advances in Low-Memory Subgradient
Optimization

Pavel E. Dvurechensky, Alexander V. Gasnikov, Evgeni A. Nurminski and Fedor S.

Stonyakin

Abstract

One of the main goals in the development of non-smooth optimization is to cope

with high dimensional problems by decomposition, duality or Lagrangian relaxation

which greatly reduces the number of variables at the cost of worsening differen-

tiability of objective or constraints. Small or medium dimensionality of resulting

non-smooth problems allows to use bundle-type algorithms to achieve higher rates

of convergence and obtain higher accuracy, which of course came at the cost of ad-

ditional memory requirements, typically of the order of n2, where n is the number

of variables of non-smooth problem. However with the rapid development of more

and more sophisticated models in industry, economy, finance, et all such memory

requirements are becoming too hard to satisfy. It raised the interest in subgradient-

based low-memory algorithms and later developments in this area significantly im-

proved over their early variants still preserving O(n) memory requirements. To re-

view these developments this chapter is devoted to the black-box subgradient algo-

rithms with the minimal requirements for the storage of auxiliary results, which are

necessary to execute these algorithms. To provide historical perspective this survey
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starts with the original result of N.Z. Shor which opened this field with the appli-

cation to the classical transportation problem. The theoretical complexity bounds

for smooth and non-smooth convex and quasi-convex optimization problems are

briefly exposed in what follows to introduce to the relevant fundamentals of non-

smooth optimization. Special attention in this section is given to the adaptive step-

size policy which aims to attain lowest complexity bounds. Unfortunately the non-

differentiability of objective function in convex optimization essentially slows down

the theoretical low bounds for the rate of convergence in subgradient optimization

compared to the smooth case but there are different modern techniques that allow

to solve non-smooth convex optimization problems faster then dictate lower com-

plexity bounds. In this work the particular attention is given to Nesterov smoothing

technique, Nesterov Universal approach, and Legendre (saddle point) representa-

tion approach. The new results on Universal Mirror Prox algorithms represent the

original parts of the survey. To demonstrate application of non-smooth convex opti-

mization algorithms for solution of huge-scale extremal problems we consider con-

vex optimization problems with non-smooth functional constraints and propose two

adaptive Mirror Descent methods. The first method is of primal-dual variety and

proved to be optimal in terms of lower oracle bounds for the class of Lipschitz-

continuous convex objective and constraints. The advantages of application of this

method to sparse Truss Topology Design problem are discussed in certain details.

The second method can be applied for solution of convex and quasi-convex opti-

mization problems and is optimal in a sense of complexity bounds. The conclusion

part of the survey contains the important references that characterize recent devel-

opments of non-smooth convex optimization.

Introduction

We consider a finite-dimensional non-differentiable convex optimization problem

(COP)

min
x∈E

f (x) = f⋆ = f (x⋆),x⋆ ∈ X⋆ , (1)

where E denotes a finite-dimensional space of primal variables and f : E → R is a

finite convex function, not necessarily differentiable. For a given point x the subgra-

dient oracul returns value of objective function at that point f (x) and subgradient

g ∈ ∂ f (x). We do not make any assumption about the choice of g from ∂ f (x). As

we are interested in computational issues related to solving (1) mainly we assume

that this problem is solvable and has nonempty and bounded set of solutions X⋆.

This problem enjoys a considerable popularity due to its important theoretical

properties and numerous applications in large-scale structured optimization, dis-

crete optimization, exact penalization in constrained optimization, and others. Non-

smooth optimization theory made it possible to solve in an efficient way classi-

cal discrete min-max problems [23], l1-approximation and others, at the same time
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opening new approaches in bi-level, monotropic programming, two-stage stochastic

optimization, to name a few.

As a major steps in:the development of different algorithmic ideas we can start

with the subgradient algorithm due to Shor (see [71] for the overview and references

to earliest works).

1 Example Application: Transportation Problem and The First

Subgradient Algorithm

From utilitarian point of view the development of non-smooth (convex) optimization

started with the classical transportation problem

min ∑m
i=1 ∑n

j=1 ci jxi j

∑m
i=1 xi j = a j, j = 1,2, . . . ,n;

∑n
j=1 xi j = bi, i = 1,2, . . . ,m

xi j ≥ 0, i = 1,2, . . . ,m; j = 1,2, . . . ,n

(2)

which is widely used in many applications.

By dualizing this problem with respect to balancing constrains we can convert

(2) into dual problem of the kind

max Φ(u,v) (3)

where u = (ui, i = 1,2, . . . ,m);v = (v j, j = 1,2, . . . ,n) are dual variables associated

with the balancing constraints in (2) and Φ(u,v) is the dual function defined as

Φ(u,v) = inf
x≥0

L(x,u,v) (4)

and L(x,u,v) is the Lagrange function of the problem:

L(x,u,v) =
m

∑
i=1

n

∑
j=1

ci jxi j +
n

∑
j=1

u j(
m

∑
i=1

xi j− a j)+
m

∑
i=1

vi(
n

∑
j=1

xi j− bi).

By rearranging terms in this expression we can obtain the following expression for

the dual function

Φ(u,v) =−m∑n
j=1 u ja j− n∑m

i=1 vibi +∑m
i=1 ∑n

j=1 infx≥0 xi j{ci j + u j + vi}=
−m∑n

j=1 u ja j− n∑m
i=1 vibi− IndD(u,v),

(5)

where

IndD(u,v) =

{
0 when ci j + ui + v j ≥ 0;

∞ otherwise.
(6)

is the indicator function of the set D = {u,v : ci j + u j + vi ≥ 0, i = 1,2, . . . ,m; j =
1,2, . . . ,n} which is the feasible set of the dual problem.
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Of course, by explicitely writing feasibility constraints for (3) we obtain the lin-

ear dual transportation problem with a fewer variables but with much higher number

of constraints. This is bad news for textbook simplex method so many specialized

algorithms were developed, one of them was simple-minded method of generalized

gradient which started the development of non-smooth optimization.

This method relies on subgradient of concave function Φ(u,v) which we can

transform into convex just by changing signs and replacing inf with sup

Φ(u,v) = m∑n
j=1 u ja j + n∑m

i=1 vibi +

∑m
i=1 ∑n

j=1 supx≥0 xi j{ci j + u j + vi}=
= m∑n

j=1 u ja j + n∑m
i=1 vibi + IndD(u,v),

and ask for its minimization.

According to convex analysis [65] the subdifferential ∂cΦ(u,v) exists for any

v,u ∈ intdom(IndD), and in this case just equals to the (constant) vector gL =
(gu,gv) = (a,b) of a linear objective in the interior of D. The situation becomes

more complicated when u,bv happens to be at the boundary of D, the subdiffer-

ential set ceases to be a singleton and becomes even unbounded, roughly speaking

certain linear manifolds are added to gL but we will not go into details here. The

difficulty is that if we mimic gradient method of the kind

uk+1 = uk−λ gu
L = uk−λ a;vk+1 = vk−λ gv

L = vk−λ b;k = 0,1, . . . (7)

with a certain step-size λ > 0, we inevitably violate the dual feasibility constraints

as a,b > 0. Than the dual function (7) becomes undefined and correspondently the

subdifferential set becomes undefined as well.

There are at least two simple ways to overcome this difficulty. One is to incor-

porate in the gradient method certain operations which restore feasibility and the

appropriate candidate for it is the orthogonal projection operation where one can

make use of the special structure of constraints and sparsity. However it will still

require computing projection operator of the kind BT (BBT )−1B for basis matri-

ces B with rather uncertain number of iteration and of matrices of the size around

(n+m)×(n+m). Neither computers speed nor memory sizes at that time where not

up to demands to solve problems of n+m≈ 104 which was required by GOSPLAN!

The second ingenious way was to take into account that if ∑n
j=1 a j = ∑m

i=1 bi =V ,

which is required anyway for solvability of transportation problem in a closed form.

The flow variables may be uniformally bounded by V and the dual function can be

redefined as

ΦV (u,v) = m∑n
j=1 u ja j + n∑m

i=1 vibi−
∑m

i=1 ∑n
j=1 max0≤x≤V xi j{ci j + u j + vi}=

= m∑n
j=1 u ja j + n∑m

i=1 vibi +PV (u,v)

where the penalty function PV (u,v) is easily computed by component-wise maxi-

mization:
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PV (u,v) = ∑m
i=1 ∑n

j=1 maxxi j∈[0,V ] xi j{ci j + u j + vi}=
∑m

i=1 ∑n
j=1 V{ci j + u j + vi}+

where {·}+ = max{0, ·}. Than the dual objective function becomes finite, the opti-

mization problem — unconstrained and we can use simple subgradient method with

very low requirements for memory and computations.

Actually even tighter bounds xi j ≤ min(ai,b j) can be imposed on the flow vari-

ables which may be advantageous for computational reasons.

In both cases there is a fundamental problem of recovering optimal primal n×m

primal solution from n+m dual. This problem was studied by many authors and

recent advances in this area can be studied from the excellent paper by A. Nedic and

A. Ozdoglar [46]. Theoretically speaking, nonzero positive values of ci j + u⋆j + v⋆i ,

where u⋆,v⋆ are the exact optimal solutions of the dual problem (3) signal that

the corresponding optimal primal flow x⋆i j is equal to zero. Hopefully after exclud-

ing these variables we obtain nondegenerate basis and can compute the remaining

variables by simple and efficient linear algebra, especially taking into account the

uni-modularity of basis.

However the theoretical gap between zeros and non-zeros is exponentially small

even for modest length integer data therefore we need an accuracy unattainable by

modern 64-128 bits hardware. Also the real life computations are always accompa-

nied by numerical noise and we face the hard choice in fact guessing which dual

constraints are active and which are not.

To connect the transportation problem with non-smooth optimization notice that

the penalty function PV (u,v) is finite with the subdifferential ∂cPV (u,v) which can

be represented as a set of n×m matrices

gi j =





V if ci j + u j + vi > 0

0 if ci j + u j + vi < 0

cone(0,V ) if ci j + u j + vi = 0

so the subdifferential set is a convex hull of up to 2(n+m) extreme points — enormous

number even for a modest size transportation problem. Nevertheless it is easy to

get at least single member of subdifferential and consider the simplest version of

subgradient method:

xk+1 = xk−λ ḡk,k = 0,1, . . .

where x0 is a given starting point, λ > 0 — fixed step-size and ḡk = gk/‖gk‖ is a

normalized subgradient gk ∈ ∂ f (xk). Of course we assume that gk 6= 0 otherwise xk

is already a solution.

Of course, there is no hope of classical convergence result such that xk→ x⋆ ∈X⋆,

but the remarkable theorem of Shor [68] establishes that this simplest algorithm de-

termines at least the approximate solution. As a major step in the development of

different algorithmic ideas we can start with the subgradient algorithm due to Shor

(see [71] for the overview and references to earliest works). Of course, there is no

hope of classical convergence result such that xk → x⋆ ∈ X⋆, but the remarkable
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theorem of Shor [68] establishes that this very simple algorithm provides an ap-

proximate solution of (1) at least theoretically.

Theorem 1. Let f is a finite convex function with a subdifferential ∂ f and the se-

quence {xk} is obtained by the recursive rule

xk+1 = xk−λ gk
ν ,k = 0,1, . . . (8)

with λ > 0 and gk
ν = gk/‖gk‖,gk ∈ ∂ f (xk), gk 6= 0 is a normalized subgradient at

the point xk. Then for any ε > 0 there is an infinite set Zε ⊂ Z such that for any

k ∈ Zε

f (x̃k) = f (xk) and dist(x̃k,X⋆)≤ λ (1+ ε)/2.

The statement of the theorem is illustrated on Fig. 1 together with the idea of the

proof. The detailed proof of the theorem goes like following: Let x⋆ ∈ X⋆ and esti-

ḡk

xk{x
: f

(x)
=
f(
x
k )}

x⋆

δk

µk

x̃k

Fig. 1 The statement and the idea of the proof of Shor theorem

mate

‖xk+1− x⋆‖2 = ‖xk− x⋆−λ gk
ν‖2 = ‖xk− x⋆‖2 +λ 2− 2λ ḡk(xk− x⋆).

The last term in fact equals
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min

z ∈ Hk

‖x⋆− z‖2 = ‖x⋆− zk‖2 = δk,

where Hk = {z : zgk
ν = xkgk

ν is a hyperplane, orthogonal to gk
ν and passing through

the point xk, so

‖xk+1− x⋆‖2 = ‖xk− x⋆‖2 +λ 2− 2λ δk, k = 0,1,2, . . . (9)

If λ 2− 2λ δk ≤−λ 2ε for any k ∈ Z then

‖xk+1− x⋆‖2 ≤ ‖xk− x⋆‖2−λ 2ε, k = 0,1,2, . . . (10)

therefore

0≤ ‖xk+1− x⋆‖2 ≤ ‖x0− x⋆‖2 ≤−kλ 2ε →−∞ (11)

when k→∞. This contradiction proves that there is k0 such that λ 2−2λ δk0
>−λ 2ε

or δk0
< λ (1+ ε)/2.

To complete the proof notice that by convexity f (zk0 )≥ f (xk0
) and therefore

min
z: f (z)= f (xk0 )

‖x⋆− z‖2 = ‖x⋆− z̄k0‖2 = min
z: f (z)≥ f (xk0 )

‖x⋆− z‖2 ≤ ‖x⋆− zk0‖2 = δk0
.

(12)

By setting x̃0 = zk0 we obtain ‖x⋆− x̃0‖2 < λ (1+ ε)/2.

By replacing x0 in (11) by x̃0 and repeating the reasoning above we obtain x̃1

such that ‖x⋆− x̃1‖2 < λ (1+ ε)/2, then in the same manner x̃2, x̃3 and so on with

‖x⋆− x̃k‖2 < λ (1+ ε)/2,k = 2,3, . . . which complete the proof.

2 Complexity Results for Convex Optimization

At this section we describe the complexity results for non-smooth convex opti-

mization problems. Most of the results mentioned below can be found in books

[50, 64, 60, 15, 9]. We start with the ‘small dimensional problems’, when

N ≥ n = dimx,

where N is a number of oracle calls (number of subgradient calculations or/and

calculations of separation hyperplane to some simple set at a given point).

Let’s consider convex optimization problem

f (x)→min
x∈Q

, (13)

where Q – is a compact and simple set (it’s significant here!). Based on at least N

subgradient calculations (in general, oracle calls) we would like to find such a point

xN that

f
(
xN
)
− f∗ ≤ ε,
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where f∗ = f (x∗) is an optimal value of function in (13), x∗ – the solution of (13).

The lower and the upper bounds for the oracle complexity is (up to a multiplier,

which has logarithmic dependence on some characteristic of the set Q)

N ∼ n ln
(
∆ f
/

ε
)
,

where ∆ f = sup
x,y∈Q

{ f (y)− f (x)}. The center of gravity method [45, 62] converges

according to this estimate. The center of gravity method in n = 1 is a simple binary

search method [12]. But in n > 1 this method is hard to implement. The complex-

ity of iteration is too high, because we required center of gravity oracle [15]. Well

known ellipsoid method [69, 50] requires1 N = Õ
(
n2 ln

(
∆ f
/

ε
))

oracle calls and

O
(
n2
)

iteration complexity. In [76, 15] a special version of cutting plane method

was proposed. This method (Vayda’s method) requires N = Õ
(
n ln
(
∆ f
/

ε
))

ora-

cle calls and has iteration complexity Õ
(
n2.37

)
. In the work [44] there proposed a

method with N = Õ
(
n ln
(
∆ f
/

ε
))

oracle calls and iteration complexity Õ
(
n2
)
. Un-

fortunately, for the moment it’s not obvious that this method is very practical one

due to the large log-factors in Õ ().
Based on ellipsoid method in the late 70-th Leonid Khachyan showed [40] that

LP is in P in byte complexity. Let us shortly explain the idea. The main question

is whether Ax ≤ b is solvable or not, where n = dimx, m = dimb and all elements

of A and b are integers. We would like also to find one of the exact solutions x∗.
This problem up to a logarithmic factor in complexity is equivalent to the problem

to find the exact solution of LP problem 〈c,x〉 → min
Ax≤b

with integer A, b and c. We

consider only inequality constraints as it is known that to find the exact solution of

Ax = b one can use polynomial Gauss elimination algorithm with O
(
n3
)

arithmetic

operations (a.o.) complexity.

Let us introduce

Λ =
m,n

∑
i, j=1,1

log2

∣∣ai j

∣∣+
m

∑
i=1

log2 |bi|+ log2 (mn)+ 1.

If Ax≤ b is compatible, then there exists such x∗ that ‖x∗‖∞ ≤ 2Λ , Ax∗ ≤ b other-

wise

min
x
‖(Ax−b)+‖∞ ≥ 2−(Λ−1).

Thus, the question of compatibility of Ax≤ b is equivalent to the problem of finding

minimum of the following non-smooth convex optimization problem

‖(Ax−b)+‖∞→ min
‖x∗‖∞≤2Λ

.

1 Here and below for all (large) n: Õ(g(n)) ≤C · (lnn)rg(n) with some constants C > 0 and r ≥ 0.

Typically, r = 1. If r = 0, then Õ(·) = O(·).
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The approach of [40] is to apply ellipsoid method for this problem with ε = 2−Λ .

From the complexity of this method, it follows that in O(nΛ)-bit arithmetic with

Õ
(
mn+ n2

)
cost of PC memory one can find x∗ (if it exists) in Õ

(
n3
(
n2 +m

)
Λ
)

a.o.

Note, that in the ideal arithmetic with real numbers it is still an open question

[10] whether it is possible to find the exact solution of LP an problem (with the

data given by real numbers) in polynomial time in the ideal arithmetic (π ·e – costs

O(1)).
Now let us consider ‘large dimensional problems’

N ≤ n = dimx.

Table 1 describes (for more details see [9, 15, 60]) optimal estimates for the number

of oracle calls for convex optimization problem (13) in the case when N ≤ n. Now

Q is not necessarily compact set.

Table 1 Optimal estimates for the number of oracle calls

N ≤ n | f (y)− f (x)| ≤M ‖y−x‖ ‖∇ f (y)−∇ f (x)‖∗ ≤ L‖y−x‖
f (x) convex O

(
M2R2

ε2

)
O

(√
LR2

ε

)

f (x) µ−strongly convex

in ‖·‖-norm

Õ
(

M2

µε

)
Õ
(√

L
µ

⌈
ln
(

µR2

ε

)⌉)
(∀ N)

Here R is a “distance” (up to a lnn-factor) between starting point and the nearest

solution

R = Õ
(∥∥x0− x∗

∥∥) .
Let’s describe optimal method in the most simple case: Q =R

n, ‖·‖= ‖·‖2 [64, 54].

Define

Bn
2 (x∗,R) = {x ∈ R

n : ‖x− x∗‖2 ≤ R} .
The main iterative process is (for simplicity we’ll denote arbitrary element of ∂ f (x)
as ∇ f (x))

xk+1= xk− h∇ f
(

xk
)
. (14)

Assume that under x ∈ Bn
2

(
x∗,
√

2R
)

‖∇ f (x)‖2 ≤M, (15)

where R =
∥∥x0− x∗

∥∥
2
.

Hence, from (14), (15) we have

∥∥∥x− xk+1
∥∥∥

2

2
=

∥∥∥x− xk + h∇ f
(

xk
)∥∥∥

2

2
=
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=
∥∥∥x− xk

∥∥∥
2

2
+ 2h

〈
∇ f
(

xk
)
,x− xk

〉
+ h2

∥∥∥∇ f
(

xk
)∥∥∥

2

2
≤

≤
∥∥∥x− xk

∥∥∥
2

2
+ 2h

〈
∇ f
(

xk
)
,x− xk

〉
+ h2M2. (16)

Here we choose x = x∗ (if x∗ isn’t unique, we choose the nearest x∗ to x0)

f

(
1

N

N−1

∑
k=0

xk

)
− f∗ ≤

1

N

N−1

∑
k=0

f
(

xk
)
− f (x∗)≤

1

N

N−1

∑
k=0

〈
∇ f
(

xk
)
,xk− x∗

〉
≤

≤ 1

2hN

N−1

∑
k=0

{∥∥∥x∗− xk
∥∥∥

2

2
−
∥∥∥x∗− xk+1

∥∥∥
2

2

}
+

hM2

2
=

=
1

2hN

(∥∥x∗− x0
∥∥2

2
−
∥∥x∗− xN

∥∥2

2

)
+

hM2

2
.

If

h =
R

M
√

N
, x̄N =

1

N

N−1

∑
k=0

xk, (17)

then

f
(
x̄N
)
− f∗ ≤

MR√
N
. (18)

Note that the precise lower bound for fixed steps first-order methods for the class of

convex optimization problems with (15) [25]

f
(
xN
)
− f∗ ≥

MR√
N + 1

.

Inequality (18) means that (see also Table 1)

N =
M2R2

ε2
, h =

ε

M2
.

So, one can mentioned that if we will use in (14)

xk+1= xk− hk∇ f
(

xk
)
, hk =

ε

‖∇ f (xk)‖2
2

(19)

the result (18) holds with [54]

x̄N =
1

N−1

∑
k=0

hk

N−1

∑
k=0

hkxk.

If we put in (19),

hk =
R

‖∇ f (xk)‖2

√
N
,
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like in (17), the result similar to (18) also holds

min
k=0,...,N−1

f
(

xk
)
− f∗ ≤

MR√
N

not only for the convex functions, but also for quasi-convex functions [13, 52]:

f (αx+(1−α)y)≤max{ f (x), f (y)} for all x,y ∈ Q,α ∈ [0,1].

Note that

0≤ 1

2hk

(∥∥x∗− x0
∥∥2

2
−
∥∥∥x∗− xk

∥∥∥
2

2

)
+

hM2

2
.

Hence, for all k = 0, ...,N,

∥∥∥x∗− xk
∥∥∥

2

2
≤
∥∥x∗− x0

∥∥2

2
+ h2M2k ≤ 2

∥∥x∗− x0
∥∥2

2
,

therefore ∥∥∥xk− x∗
∥∥∥

2
≤
√

2
∥∥x0− x∗

∥∥
2
, k = 0, ...,N. (20)

Inequality (20) justifies that we need assumption (15) holds only with x∈Bn
2

(
x∗,
√

2R
)

.

For the general (constrained) case (13) we introduce a norm ‖·‖ and some prox-

function d (x) ≥ 0, which is continuous and 1-strongly convex with respect to ‖·‖,
i.e. d(y)−d(x)−〈d(x),y−x〉 ≥ 1

2
‖x−y‖2, for all x,y ∈Q. We also introduce Breg-

man’s divergence [9]

V [x](y) = d (y)− d (x)−〈∇d (x) ,y− x〉 .

We set R2 =V [x0](x∗), where x∗ – is solution of (13) (if x∗ isn’t unique then we as-

sume that x∗ is minimized V [x0](x∗). The natural generalization of iteration process

(14) is Mirror Descent algorithm [48, 9] which iterates as

xk+1= Mirrxk

(
h∇ f

(
xk
))

, Mirrxk (v) = argmin
x∈Q

{〈
v,x− xk

〉
+V [xk] (x)

}
.

For this iteration process instead of (16) we have

2V [xk+1] (x)≤ 2V [xk] (x)+ 2h
〈

∇ f
(

xk
)
,x− xk

〉
+ h2M2,

where ‖∇ f (x)‖∗ ≤M for all x : V [x](x∗)≤ 2V [x0](x∗)= 2R2 , see also Section 4.

Analogues of formulas (17), (18), (20) are also valid

f
(
x̄N
)
− f∗ ≤

√
2MR√

N
,

where
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x̄N =
1

N

N−1

∑
k=0

xk, h =
ε

M2

and ∥∥∥xk− x∗
∥∥∥≤ 2R, k = 0, ...,N.

In [9] authors discus how to choose d(x) for different simple convex sets Q. One of

these examples (unit simplex) will considered below. Note, that in all these examples

one can guarantees that [9]:

R≤C
√

lnn ·
∥∥x∗− x0

∥∥ .

Note, that if Q = R
n, ‖·‖= ‖·‖2 then d(x) = 1

2
‖x‖2

2, V [x](y) = 1
2
‖y− x‖2

2,

xk+1 = Mirrxk

(
h∇ f

(
xk
))

= arg min
x∈Rn

{
h
〈

∇ f
(

xk
)
,x− xk

〉
+

1

2
‖x− xk‖2

2

}
=

= xk− h∇ f
(

xk
)
,

that corresponds to the standard gradient-type iteration process (14).

Example (unit simplex). We have

Q = Sn (1) =

{
x ∈ Rn

+ :
n

∑
i=1

xi = 1

}
, ‖∇ f (x)‖∞ ≤M∞, x ∈ Q,

‖·‖= ‖·‖1, d (x)= lnn+
n

∑
i=1

xi lnxi, h=M−1
∞

√
2lnn

/
N, x0

i = 1
/

n, i= 1, ...,n.

For k = 0, ...,N− 1, i = 1, ...,n

xk+1
i =

exp

(
−h

k

∑
r=1

∇i f (xr)

)

n

∑
l=1

exp

(
−h

k

∑
r=1

∇l f (xr)

) =
xk

i exp
(
−h∇i f

(
xk
))

n

∑
l=1

xk
l exp(−h∇l f (xk))

.

The main result here is

f
(
x̄N
)
− f∗ ≤M∞

√
2lnn

N
, x̄N =

1

N

N−1

∑
k=0

xk.

Note, that if we use ‖·‖2-norm and d (x) = 1
2

∥∥x− x0
∥∥2

2
here, we will have higher

iteration complexity (2-norm projections on unit simplex) and

f
(
x̄N
)
− f∗ ≤

M2√
N
, ‖∇ f (x)‖2 ≤M2, x ∈Q.

Since typically M2 = O(
√

nM∞), it is worth to use ‖·‖1-norm.
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Assume now that f (x) in (13) is additionally µ-strongly convex in ‖·‖2 norm:

f (y)≥ f (x)+ 〈∇ f (x),y− x〉+ µ

2
‖y− x‖2

2 for all x,y ∈Q.

Let

xk+1= Mirrxk

(
hk∇ f

(
xk
))

= argmin
x∈Q

{
hk

〈
∇ f
(

xk
)
,x− xk

〉
+

1

2

∥∥∥x− xk
∥∥∥

2

2

}
,

where

hk =
2

µ · (k+ 1)
, d (x) =

1

2

∥∥x− x0
∥∥2

2
, ‖∇ f (x)‖2 ≤M, x ∈Q.

Then [67]

f

(
N

∑
k=1

2k

k (k+ 1)
xk

)
− f∗ ≤

2M2

µ · (k+ 1)
.

Hence (see also Table 1),

N ≃ 2M2

µε
.

This bound is also un-improvable up to a constant factor [50, 60].

3 Looking into the Black-Box

In this section we consider how problem special structure can be used to solve non-

smooth optimization problems with the convergence rate O
(

1
k

)
, which is faster than

the lover bound O
(

1√
k

)
for general class of non-smooth convex problems [50].

Nevertheless, there is no contradiction as additional structure is used and we are

looking inside the black-box.

3.1 Nesterov’s smoothing

In this subsection, following [53], we consider the problem

min
x∈Q1⊂E1

{ f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉−φ(u)}}, (21)

where A : E1 → E∗2 is a linear operator, φ(u) is a continuous convex function on

Q2, Q1,Q2 are convex compacts, h is convex function with Lh-Lipschitz-continuous

gradient.

Let us consider an example of f (x) = ‖Ax−b‖∞ with A ∈ R
m×n. Then,
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f (x) = max
u∈Rm

{〈u,Ax−b〉 : ‖u‖1 ≤ 1} ,

h = 0, E2 = R
m, φ(u) = 〈u,b〉 and Q2 is the ball in 1-norm.

The main idea of Nesterov is to add regularization inside the definition of f in

(21). More precisely, a prox-function d2(u) (see definition in Section 2) is intro-

duced for the set Q2 and a smoothed counterpart fµ(x) for f is defined as

fµ(x) = h(x)+max
u∈Q2

{〈Ax,u〉−φ(u)− µd2(u)}

and uµ(x) is the optimal solution of this maximization problem.

x

fµ(x)

f (x)

Fig. 2 Function fµ(x) is a smooth approximation to non-smooth function f (x).

Theorem 2 ([53]). The function fµ(x) is well defined, convex and continuously dif-

ferentiable at any x ∈ E1 with ∇ fµ(x) = ∇h(x) + A∗uµ(x). Moreover, ∇ fµ(x) is

Lipschitz continuous with constant Lµ = Lh +
‖A‖2

1,2

µ .

Here the adjoint operator A∗ is defined by equality 〈Ax,u〉= 〈A∗u,x〉, x∈E1,u∈E2

and the norm of the operator ‖A‖1,2 is defined by ‖A‖1,2 =maxx,u{〈Ax,u〉 : ‖x‖E1
=

1,‖u‖E2
= 1}.

Since Q2 is bounded, fµ(x) is a uniform approximation for the function f ,

namely, for all x ∈ Q1,

fµ(x)≤ f (x)≤ fµ(x)+ µD2, (22)

where D2 = max{d2(u) : u ∈ Q2}.
Then, the idea is to choose µ sufficiently small and apply accelerated gradient

method to minimize fµ(x) on Q1. We use accelerated gradient method from [33, 32]

which is different from the original method of [53].
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Algorithm 1 Accelerated Gradient Method

Input: Objective f (x), feasible set Q, Lipschitz constant L of the ∇ f (x), starting point x0 ∈ Q,,

prox-setup: d(x) – 1-strongly convex w.r.t. ‖ · ‖E1
, V [z](x) := d(x)−d(z)−〈∇d(z),x− z〉.

1: Set k = 0, C0 = α0 = 0, y0 = z0 = x0.

2: for k = 0,1, ... do

3: Find αk+1 as the largest root of the equation

Ck+1 :=Ck +αk+1 = Lα2
k+1. (23)

4:

xk+1 =
αk+1zk +Ckyk

Ck+1

. (24)

5:

zk+1 = argmin
x∈Q
{V [zk](x)+αk+1( f (xk+1)+ 〈∇ f (xk+1),x−xk+1〉)}. (25)

6:

yk+1 =
αk+1zk+1 +Ckyk

Ck+1

. (26)

7: Set k = k+1.

8: end for

Output: The point yk+1.

Theorem 3 ([33, 32]). Let the sequences {xk,yk,zk,αk,Ck}, k ≥ 0 be generated by

Algorithm 1. Then, for all k ≥ 0, it holds that

f (yk)− f ∗ ≤ 4LV [z0](x
⋆)

(k+ 1)2
. (27)

Following the same steps as in the proof of Theorem 3 in [53], we obtain

Theorem 4. Let Algorithm 1 be applied to minimize fµ(x) on Q1 with µ =
2‖A‖1,2

N+1

√
D1
D2

,

where D1 = max{d1(x) : x ∈Q1}. Then, after N iterations, we have

0≤ f (yN)− f⋆ ≤
4‖A‖1,2

√
D1D2

N + 1
+

4LhD1

(N + 1)2
. (28)

Proof. Applying Theorem 3 to fµ , and using (22), we obtain

0≤ f (yN)− f⋆ ≤ fµ(y
N)+ µD2− fµ(x

⋆
µ)≤ µD2 +

4LµD1

(N + 1)2
+

4LhD1

(N + 1)2

= µD2 +
4‖A‖2

1,2D1

µ(N + 1)2
+

4LhD1

(N + 1)2
.

Substituting the value of µ from the theorem statement, we finish the proof.
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A generalization of the smoothing technique for the case of non-compact sets

Q1,Q2, which is especially interesting when dealing with problems dual to problems

with linear constraints, can be found in [72]. Ubiquitous entropic regularization of

optimal transport [20] can be seen as a particular case of the application of smooth-

ing technique, especially in the context of Wasserstein barycenters [21, 74, 29].

3.2 Nemirovski’s Mirror Prox

In his paper [47], Nemirovski considers problem (21) in the following form

min
x∈Q1⊂E1

{ f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉+ 〈b,u〉}}, (29)

pointing to the fact that this problem is as general as (21). Indeed, the change of

variables u← (u, t) and the feasible set Q2← {(u, t) : minu′∈Q2
φ(u′) ≤ t ≤ φ(u)}

allows to make φ linear. His idea is to consider problem (29) directly as a convex-

concave saddle point problem and associated weak variational inequality (VI).

Find z⋆ = (x⋆,u⋆) ∈ Q1×Q2 s.t. 〈Φ(z),z⋆− z〉 ≤ 0 ∀z ∈Q1×Q2, (30)

where the operator

Φ(z) =

(
∇h(x)+A∗u
−Ax−b

)
(31)

is monotone, i.e. 〈Φ(z1)−Φ(z2),z1−z2〉≥ 0, and Lipschitz-continuous, i.e. ‖Φ(z1)−
Φ(z2)‖∗ ≤ L‖z1− z2‖. With the appropriate choice of norm on E1×E2 and prox-

function for Q1×Q2, see Section 5 in [47], the Lipschitz constant for Φ can be

estimated as L = 2‖A‖1,2
√

D1D2 +LhD1.

Algorithm 2 Mirror Prox

Input: General VI on a set Q ⊂ E with operator Φ(z), Lipschitz constant L of Φ(z), prox-setup:

d(z), V [z](w).
1: Set k = 0, z0 = argminz∈Q d(z).
2: for k = 0,1, ... do

3: Calculate

wk = argmin
z∈Q

{
〈Φ(zk),z〉+LV [zk](z)

}
. (32)

4: Calculate

zk+1 = argmin
z∈Q

{
〈Φ(wk),z〉+LV [zk](z)

}
. (33)

5: Set k = k+1.

6: end for

Output: ŵ
k = 1

k ∑k−1
i=0 wi.
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Theorem 5 ([47]). Assume that Φ(z) is monotone and L-Lipschitz-continuous.

Then, for any k ≥ 1 and any u ∈ Q,

max
z∈Q
〈Φ(z), ŵk− z〉 ≤ L

k
max
z∈Q

V [z0](z). (34)

Moreover, if the VI is associated with a convex-concave saddle point problem, i.e.

• E = E1×E2,

• Q = Q1×Q2 with convex compact sets Q1 ⊂ E1, Q2 ⊂ E2

• Φ(z)=Φ(x,u) =

(
∇x f (x,u)
−∇u f (x,u)

)
for a continuously differentiable function f (x,u)

which is convex in x ∈Q1 and concave in u ∈ Q2,

then

[max
u∈Q2

f (x̂k,u)−min
x∈Q1

max
u∈Q2

f (x,u)]+[min
x∈Q1

max
u∈Q2

f (x,u)−min
x∈Q1

f (x, ûk)]≤ L

k
max
z∈Q

V [z0](z).

(35)

Choosing appropriately the norm in the space E1×E2 and applying Mirror Prox

algorithm to solve problem (29) as a saddle point problem, we obtain that the saddle

point error in the l.h.s. of (35) decays as
2‖A‖1,2

√
D1D2+LhD1

k
. This is slightly worse

than the rate in (27) since the accelerated gradient method allows the faster decay

for the smooth part h(x). An accelerated Mirror Prox method with the same rate as

in (27) can be found in [18].

4 Non-Smooth Optimization in Large Dimensions

The optimization of non-smooth functionals with constraints attracts widespread

interest in large-scale optimization and its applications [8, 61]. Subgradient meth-

ods for non-smooth optimization have a long history starting with the method for

deterministic unconstrained problems and Euclidean setting in [70] and the general-

ization for constrained problems in [63], where the idea of steps switching between

the direction of subgradient of the objective and the direction of subgradient of the

constraint was suggested. Non-Euclidean extension, usually referred to as Mirror

Descent, originated in [48, 50] and was later analyzed in [6]. An extension for con-

strained problems was proposed in [50], see also recent version in [5]. To prove

faster convergence rate of Mirror Descent for strongly convex objective in an un-

constrained case, the restart technique [49, 50, 51] was used in [37]. Usually, the

step-size and stopping rule for Mirror Descent requires to know the Lipschitz con-

stant of the objective function and constraint, if any. Adaptive step-sizes, which do

not require this information, are considered in [48] for problems without inequality

constraints, and in [5] for constrained problems.

Formally speaking, we consider the following convex constrained minimization

problem
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min{ f (x) : x ∈ X ⊂ E, g(x)≤ 0}, (36)

where X is a convex closed subset of a finite-dimensional real vector space E , f :

X →R, g : E →R are convex functions.

We assume g to be a non-smooth Lipschitz-continuous function and the problem

(3) to be regular. The last means that there exists a point x̄ in relative interior of the

set X , such that g(x̄)< 0.

Note that, despite problem (36) contains only one inequality constraint, consid-

ered algorithms allow to solve more general problems with a number of constraints

given as {gi(x) ≤ 0, i = 1, ...,m}. The reason is that these constraints can be ag-

gregated and represented as an equivalent constraint given by {g(x) ≤ 0}, where

g(x) = maxi=1,...,m gi(x).
We consider two adaptive Mirror Descent methods [4] for the problem (36). Both

considered methods have complexity O
(

1
ε2

)
and optimal.

We consider algorithms, which are based on Mirror Descent method. Thus, we

start with the description of proximal setup and basic properties of Mirror Descent

step. Let E be a finite-dimensional real vector space and E∗ be its dual. We denote

the value of a linear function g ∈ E∗ at x ∈ E by 〈g,x〉. Let ‖ · ‖E be some norm on

E , ‖ ·‖E,∗ be its dual, defined by ‖g‖E,∗ = max
x

{
〈g,x〉,‖x‖E ≤ 1

}
. We use ∇ f (x) to

denote any subgradient of a function f at a point x ∈ dom f .

Given a vector x∈ X0, and a vector p ∈ E∗, the Mirror Descent step is defined as

x+=Mirr[x](p) := argmin
z∈X

{
〈p,z〉+V [x](z)

}
= argmin

z∈X

{
〈p,z〉+d(z)−〈∇d(x),z〉

}
.

(37)

We make the simplicity assumption, which means that Mirr[x](p) is easily com-

putable.

The following lemma [9] describes the main property of the Mirror Descent step.

Lemma 1. Let f be some convex function over a set X, h > 0 be a step-size, x∈ X0.

Let the point x+ be defined by x+ = Mirr[x](h(∇ f (x))). Then, for any z ∈ X,

h
(

f (x)− f (z)
)
≤ h〈∇ f (x),x− z〉

≤ h2

2
‖∇ f (x)‖2 +V [x](z)−V [x+](z). (38)

The following analog of Lemma 1 for δ -subgradient ∇δ f holds.

Lemma 2. Let f be some convex function over a set X, h > 0 be a step-size, x∈ X0.

Let the point x+ be defined by x+ = Mirr[x](h · (∇δ f (x))). Then, for any z ∈ X,

h ·
(

f (x)− f (z)
)
≤ h · 〈∇ f (x),x− z〉+ h ·δ

≤ h2

2
‖∇δ f (x)‖+ h ·δ +V [x](z)−V [x+](z).

(39)
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We consider problem (36) in two different settings, namely, non-smooth Lipschitz-

continuous objective function f and general objective function f , which is not nec-

essarily Lipschitz-continuous, e.g. a quadratic function. In both cases, we assume

that g is non-smooth and is Lipschitz-continuous

|g(x)− g(y)| ≤Mg‖x− y‖E , x,y ∈ X . (40)

Let x∗ be a solution to (36). We say that a point x̃ ∈ X is an ε-solution to (36) if

f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε. (41)

All considered in this section methods (Algorithms 3 and 4) are applicable in the

case of using δ -subgradient instead of usual subgradient. For this case we can get

an ε-solution x̃ ∈ X :

f (x̃)− f (x∗)≤ ε +O(δ ), g(x̃)≤ ε +O(δ ). (42)

The methods we describe are based on the of Polyak’s switching subgradient method

[63] for constrained convex problems, also analyzed in [55], and Mirror Descent

method originated in [50]; see also [48].

4.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

| f (x)− f (y)| ≤M f ‖x− y‖E , x,y ∈ X . (43)

Let x∗ be a solution to (36) and assume that we know a constant Θ0 > 0 such that

d(x∗)≤Θ 2
0 . (44)

For example, if X is a compact set, one can choose Θ 2
0 = maxx∈X d(x).

Theorem 6. Assume that inequalities (40) and (43) hold and a known constant Θ0 >
0 is such that d(x∗)≤Θ 2

0 . Then, Algorithm 3 stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
(45)

iterations and x̄k is an ε-solution to (36) in the sense of (41).

Let us now show that Algorithm 3 allows to reconstruct an approximate solution

to the problem, which is dual to (36). We consider a special type of problem (36)

with g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (46)
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Algorithm 3 Adaptive Mirror Descent (Non-Smooth Objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε then

6: Mk = ‖∇ f (xk)‖E,∗,
7: hk =

ε
M2

k

8: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)

9: Add k to I.

10: else

11: Mk = ‖∇g(xk)‖E,∗
12: hk =

ε
M2

k

13: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)

14: end if

15: Set k = k+1.

16: until
k−1

∑
j=0

1

M2
j

≥ 2Θ 2
0

ε2

Output: x̄k :=
∑
i∈I

hix
i

∑
i∈I

hi

Then, the dual problem to (36) is

ϕ(λ ) = min
x∈X

{
f (x)+

m

∑
i=1

λigi(x)
}
→ max

λi≥0,i=1,...,m
ϕ(λ ), (47)

where λi ≥ 0, i = 1, ...,m are Lagrange multipliers.

We slightly modify the assumption (44) and assume that the set X is bounded

and that we know a constant Θ0 > 0 such that

max
x∈X

d(x)≤Θ 2
0 .

As before, denote [k] = { j ∈ {0, ...,k−1}}, J = [k]\ I. Let j ∈ J. Then a subgra-

dient of g(x) is used to make the j-th step of Algorithm 3. To find this subgradient,

it is natural to find an active constraint i ∈ 1, ...,m such that g(x j) = gi(x
j) and use

∇g(x j) = ∇gi(x
j) to make a step. Denote i( j) ∈ 1, ...,m the number of active con-

straint, whose subgradient is used to make a non-productive step at iteration j ∈ J. In

other words, g(x j) = gi( j)(x
j) and ∇g(x j) = ∇gi( j)(x

j). We define an approximate

dual solution on a step k ≥ 0 as

λ̄ k
i =

1

∑
j∈I

h j
∑

j∈J,i( j)=i

h j, i ∈ {1, ...,m}. (48)

and modify Algorithm 3 to return a pair (x̄k, λ̄ k).
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Theorem 7. Assume that the set X is bounded, the inequalities (40) and (43) hold

and a known constant Θ0 > 0 is such that d(x∗) ≤Θ 2
0 . Then, modified Algorithm 3

stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉

iterations and the pair (x̄k, λ̄ k) returned by this algorithm satisfies

f (x̄k)−ϕ(λ̄ k)≤ ε, g(x̄k)≤ ε. (49)

Now we consider an interesting example of huge-scale problem [57, 61] with a

sparse structure. We would like to illustrate two important ideas. Firstly, consider-

ation of the dual problem can simplify the solution, if it is possible to reconstruct

the solution of the primal problem by solving the dual problem. Secondly, for a

special sparse non-smooth piece-wise linear functions we suggest a very efficient

implementation of one subgradient iteration [57]. In such cases simple subgradient

methods (for example, Algorithm 3) can be useful due to the relatively inexpensive

cost of iterations.

Recall (see e.g. [61]) that Truss Topology Design problem consists in finding the

best mechanical structure resisting to an external force with an upper bound for the

total weight of construction. Its mathematical formulation looks as follows:

min
w∈Rm

+

{〈f,z〉 : A(w)z = f, 〈e,w〉= T}, (50)

where f is a vector of external forces, z ∈ R2n is a vector of virtual displacements of

n nodes in R2, w is a vector of m bars, and T is the total weight of construction. The

compliance matrix A(w) has the following form:

A(w) =
m

∑
i=1

wiaia
T
i ,

where ai ∈ R2n are the vectors describing the interactions of two nodes connected

by an arc. These vectors are very sparse: for 2D-model they have at most 4 nonzero

elements.

Let us rewrite the problem (50) as a Linear Programming problem.
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min
z,w
{〈f,z〉 : A(w)z = f, w≥ 0, 〈e,w〉= T}=

= min
w
{〈f,A−1(w)f〉 : w ∈△(T ) = {w≥ 0, 〈e,w〉= T}}=

= min
w∈△(T )

max
z
{2〈f,z〉− 〈A(w)z,z〉} ≥max

z
min

w∈△(T)
{2〈f,z〉− 〈A(w)z,z〉} =

= max
z
{2〈f,z〉−T max

1≤i≤m
〈ai,z〉2}= max

λ ,y
{2λ 〈f,y〉−λ 2T max

1≤i≤m
〈ai,y〉2}=

= max
y

〈f,y〉2
T max

1≤i≤m
〈ai,y〉2

=
1

T

(
max

y
{〈f,y〉 : max

1≤i≤m
|〈ai,y〉| ≤ 1}

)2

.

(51)

Note that for the inequality in the third line we do not need any assumption.

Denote by y∗ the optimal solution of the optimization problem in the brackets.

Then there exist multipliers x∗ ∈ Rm
+ such that

f = ∑
i∈J+

aix
∗
i − ∑

i∈J−
aix
∗
i , x∗i = 0, i 6∈ J+

⋂
J−, (52)

where J+ = {i : 〈ai,y
∗〉 = 1}, and J− = {i : 〈ai,y

∗〉 = −1}. Multiplying the first

equation in (52) by y∗, we get

〈f,y∗〉= 〈e,x∗〉. (53)

Note that the first equation in (52) can be written as

f = A(x∗)y∗. (54)

Let us reconstruct now the solution of the primal problem. Denote

w∗ =
T

〈e,x∗〉 ·x
∗, z∗ =

〈e,x∗〉
T
·y∗. (55)

Then, in view of (54) we have f = A(w∗)z∗, and w∗ ∈ △(T ). Thus, the pair (55) is

feasible for the primal problem. On the other hand,

〈f,z∗〉= 〈f, 〈e,x
∗〉

T
·y∗〉= 1

T
· 〈e,x∗〉 · 〈f,y∗〉= 1

T
· 〈f,y∗〉2.

Thus, the duality gap in the chain (51) is zero, and the pair (w∗,z∗), defined by (55)

is the optimal solution of the primal problem.

The above discussion allows us to concentrate on the following (dual) Linear

Programming problem:

max
y
{〈f̄,y〉 : max

1≤i≤m
〈±ai,y〉 ≤ 1}, (56)

which we can solve by the primal-dual Algorithm 3.



Advances Low-Memory Subgradient Optimization 23

Assume that we have local truss: each node is connected only with few neigh-

bors. It allows to apply the property of sparsity for vectors ai (1 ≤ i ≤ m). In this

case the computational cost of each iteration grows as O(log2 m) [57, 61].

In [57] a special class of huge-scale problems with sparse subgradient was con-

sidered. According to [57] for smooth functions this is a very rare feature. For ex-

ample, for quadratic function f (y) = 1
2
〈Ay,y〉 the gradient ∇ f (y) = Ay usually is

dense even for a sparse matrix A.

However, the subgradient of non-smooth function f (y) = max1≤i≤m〈ai,y〉 (see

(56) above) are sparse provided that all vectors ai share this property. This fact is

based on the following observation. For the function f (y) = max1≤i≤m〈ai,y〉 with

sparse matrix A = (a1,a2, ...,am) the vector ∇ f (y) = ai(y) is a subgradient at point

y. Then the standard subgradient step

y+ = y− h ·∇ f (y)

changes only a few entries of vector y and the vector z+ = AT y+ differs from

z = AT y also in a few positions only. Thus, the function value f (y+) can be easily

updated provided that we have an efficient procedure for recomputing the maximum

of m values.

Note the objective functional in (56) is linear and the costs of iteration of Algo-

rithm 3 and considered in [57] switching simple subgradient scheme is comparable.

At the same time, the step productivity condition is simpler for Algorithm 3 as con-

sidered in [57] switching subgradient scheme. Therefore main observations for [57]

are correct for Algorithm 3.

4.2 General Convex and Quasi-Convex Objective Functions

In this subsection, we assume that the objective function f in (36) might not sat-

isfy (43) and, hence, its subgradient could be unbounded. One of the examples is a

quadratic function. We also assume that inequality (44) holds.

We further consider ideas in [55, 59] and adapt them for problem (36), in a way

that our algorithm allows to use non-Euclidean proximal setup, as does Mirror De-

scent, and does not require to know the constant Mg. Following [55], given a func-

tion f for each subgradient ∇ f (x) at a point y ∈ X , we define

v f [y](x) =





〈
∇ f (x)

‖∇ f (x)‖E,∗
,x− y

〉
, ∇ f (x) 6= 0

0 ∇ f (x) = 0

, x ∈ X . (57)

The following result gives complexity estimate for Algorithm 4 in terms of

v f [x∗](x). Below we use this theorem to establish complexity result for smooth ob-

jective f .
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Algorithm 4 Adaptive Mirror Descent (General Convex Objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε then

6: hk =
ε

‖∇ f (xk)‖E,∗
7: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)

8: Add k to I.

9: else

10: hk =
ε

‖∇g(xk)‖2E,∗
11: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)

12: end if

13: Set k = k+1.

14: until |I|+ ∑
j∈J

1

‖∇g(x j)‖2E,∗
≥ 2Θ 2

0

ε2

Output: x̄k := argminx j , j∈I f (x j)

Theorem 8. Assume that inequality (40) holds and a known constant Θ0 > 0 is such

that d(x∗)≤Θ 2
0 . Then, Algorithm 4 stops after not more than

k =

⌈
2max{1,M2

g}Θ 2
0

ε2

⌉
(58)

iterations and it holds that mini∈I v f [x∗](xi)≤ ε and g(x̄k)≤ ε .

To obtain the complexity of our algorithm in terms of the values of the objective

function f , we define non-decreasing function

ω(τ) =

{
max
x∈X
{ f (x)− f (x∗) : ‖x− x∗‖E ≤ τ} τ ≥ 0,

0 τ < 0.
(59)

and use the following lemma from [55].

Lemma 3. Assume that f is a convex function. Then, for any x ∈ X,

f (x)− f (x∗)6 ω(v f [x∗](x)). (60)

Corollary 1. Assume that the objective function f in (36) is given as f (x) =
maxi∈{1,...,m} fi(x), where fi(x), i= 1, ...,m are differentiable with Lipschitz-continuous

gradient

‖∇ fi(x)−∇ fi(y)‖E,∗ ≤ Li‖x− y‖E ∀x,y ∈ X , i ∈ {1, ...,m}. (61)

Then x̄k is ε̃-solution to (36) in the sense of (41), where
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ε̃ = max{ε,ε max
i=1,...,m

‖∇ fi(x∗)‖E,∗+ ε2 max
i=1,...,m

Li/2}.

Remark 1. According to [52, 60] main lemma 3 holds for quasi-convex objective

functions [13] too:

f (αx+(1−α)y)≤max{ f (x) , f (y)} for all x,y,α ∈ [0,1].

This means that results of this subsection are valid for quasi-convex objectives.

Remark 2. In view of the Lipschitzness and, generally speaking, non-smoothness

of functional limitations, the obtained estimate for the number of iterations means

that the proposed method is optimal from the point of view of oracle evaluations:

O
(

1
ε2

)
iterations are sufficient for achieving the required accuracy ε of solving the

problem for the class of target functionals considered in this section of the arti-

cle. Note also that the considered algorithm 3 applies to the considered classes of

problems with constraints with convex objective functionals of different smoothness

levels. However, the non-fulfillment, generally speaking, of the Lipschitz condition

for the objective functional f does not allow one to substantiate the optimality of

the algorithms 3 in the general situation (for example, with a Lipschitz-continuous

gradient). More precisely, situations are possible when the productive steps of the

norm (sub)gradients of the objective functional ‖∇ f (xk)‖∗ are large enough and this

will interfere with the speedy achievement of the stopping criterion of the 3.

5 Universal Methods

In this section we consider problem

min
x∈Q⊆E

f (x), (62)

where Q is a convex set and f is a convex function with Hölder-continuous subgra-

dient

‖∇ f (x1)−∇ f (x2)‖∗ ≤ Lν‖x1− x2‖ν (63)

with ν ∈ [0,1]. The case ν = 0 corresponds to non-smooth optimization and the case

ν = 1 corresponds to smooth optimization. The goal of this section is to present

the Universal Accelerated Gradient method first proposed by Nesterov [58]. This

method is a black-box method which does not require the knowledge of constants

ν,Lν and works in accordance with the lower complexity bound O

((
Lν R1+ν

ε

) 2
1+3ν

)

obtained in [50].

The main idea is based on the observation that a non-smooth convex function

can be upper bounded by a quadratic objective function slightly shifted above. More

precisely, for any x,y ∈Q,
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f (y)≤ f (x)+ 〈∇ f (x),y− x〉+ Lν

1+ν
‖y− x‖1+ν

≤ f (x)+ 〈∇ f (x),y− x〉+ L(δ )

2
‖y− x‖2 + δ , (64)

where

L(δ ) =

(
1−ν

1+ν

1

δ

) 1−ν
1+ν

L
2

1+ν
ν .

y

x

f (x)+ 〈∇ f (x),y−x〉+ L(δ )
2
‖y−x‖2 +δ

f (y)

δ

Fig. 3 Quadratic majorant of a non-smooth function f (x).

The next idea is to apply an accelerated gradient method with backtracking pro-

cedure to adapt for the unknown L(δ ) with appropriately chosen δ . The method we

present is based on accelerated gradient method from [33, 32] and, thus is different

from the original method of [58].

Inequality (64) guarantees that the backtracking procedure in the inner cycle is

finite.

Theorem 9 ([58]). Let f satisfy (63). Then,

f (yk+1)− f⋆ ≤
(

22+4νL2
ν

ε1−νk1+3ν

) 1
1+ν

V [x0](x⋆)+
ε

2
. (70)

Moreover, the number of oracle calls is bounded by

4(k+ 1)+ 2log2


(2V [x0](x⋆))

1−ν
1+3ν

(
1

ε

) 3(1−ν)
1+3ν

L
4

1+3ν
ν


 .
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Algorithm 5 Universal Accelerated Gradient Method

Input: Accuracy ε , starting point x0 ∈ Q, initial guess L0 > 0, prox-setup: d(x) – 1-strongly con-

vex w.r.t. ‖ · ‖E , V [z](x) := d(x)−d(z)−〈∇d(z),x− z〉.
1: Set k = 0, C0 = α0 = 0, y0 = z0 = x0.

2: for k = 0,1, ... do

3: Set Mk = Lk/2.

4: repeat

5: Set Mk = 2Mk , find αk+1 as the largest root of the equation

Ck+1 :=Ck +αk+1 = Mkα2
k+1. (65)

6:

xk+1 =
αk+1zk +Ckyk

Ck+1

. (66)

7:

zk+1 = argmin
x∈Q
{V [zk](x)+αk+1( f (xk+1)+ 〈∇ f (xk+1),x−xk+1〉)}. (67)

8:

yk+1 =
αk+1zk+1 +Ckyk

Ck+1

. (68)

9: until

f (yk+1)≤ f (xk+1)+ 〈∇ f (xk+1),yk+1−xk+1〉+ Mk

2
‖yk+1−xk+1‖2 +

αk+1ε

2Ck+1

. (69)

10: Set Lk+1 = Mk/2, k = k+1.

11: end for

Output: The point yk+1.

Translating this rate of convergence to the language of complexity, we obtain that to

obtain a solution with an accuracy ε the number of iterations is no more than

O

(
inf

ν∈[0,1]

(
Lν

ε

) 2
1+3ν (

V [x0](x⋆)
) 1+ν

1+3ν

)
,

i.e. is optimal.

In his paper, Nesterov considers a more general composite optimization problem

min
x∈Q⊆E

f (x)+ h(x), (71)

where h is a simple convex function, and obtains the same complexity guarantees.

Universal methods were extended for the case of strongly convex problems by a

restart technique in [66], for non-convex optimization in [35] and for the case of non-

convex optimization with inexact oracle in [28]. As we can see from (64), universal

accelerated gradient method is connected to smooth problems with inexact oracle.

The study of accelerated gradient methods with inexact oracle was first proposed
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in [22] and was very well developed in [24, 30, 11, 28] including stochastic opti-

mization problems and strongly convex problems. A universal method with inexact

oracle can be found in [31]. Experiments show [58] that universal method accel-

erates to O
(

1
k

)
rate for non-smooth problems with a special ”smoothing friendly”

(see Section 3) structure. This is especially interesting for traffic flow modeling

problems, which possess such structure [3].

Now we consider universal analog of A.S. Nemirovski’s proximal mirror method

for variational inequalities with a Holder-continuous operator. More precisely, we

consider universal extension of Algorithm 2 which allows to solve smooth and

non-smooth variational inequalities without the prior knowledge of the smoothness.

Main idea of the this method is the adaptive choice of constants and level of smooth-

ness in minimized prox-mappings at each iteration. These constants are related to

the Hölder constant of the operator and this method allows to find a suitable constant

at each iteration.

Algorithm 6 Universal Mirror Prox

Input: General VI on a set Q ⊂ E with operator Φ(z), accuracy ε > 0, initial guess M−1 > 0,

prox-setup: d(z), V [z](w).
1: Set k = 0, z0 = argminz∈Q d(z).
2: for k = 0,1, ... do

3: Set ik = 0

4: repeat

5: Set Mk = 2ik−1Mk−1.

6: Calculate

wk = argmin
z∈Q

{
〈Φ(zk),z〉+MkV [zk](z)

}
. (72)

7: Calculate

zk+1 = argmin
z∈Q

{
〈Φ(wk),z〉+MkV [zk](z)

}
. (73)

8: ik = ik +1.

9: until

〈Φ(wk)−Φ(zk),wk− zk+1〉 ≤ Mk

2

(
‖wk− zk‖2 +‖wk− zk+1‖2

)
+

ε

2
. (74)

10: Set k = k+1.

11: end for

Output: ŵ
k = 1

k ∑k−1
i=0 wi.
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Theorem 10 ([34]). For any k ≥ 1 and any z ∈Q,

1

∑k−1
i=0 M−1

i

k−1

∑
i=0

M−1
i 〈Φ(wi),wi− z〉 ≤ 1

∑k−1
i=0 M−1

i

(V [z0](z)−V [zk](z))+
ε

2
. (75)

Note that if maxz∈QV [z0](z)≤ D, we can construct the following adaptive stop-

ping criterion for our algorithm

D

∑k−1
i=0 M−1

i

≤ ε

2
.

Next, we consider the case of Hölder-continuous operator Φ and show that Al-

gorithm 6 is universal. Assume for some ν ∈ [0,1] and Lν ≥ 0

‖Φ(x)−Φ(y)‖∗ ≤ Lν‖x− y‖ν , x,y ∈ Q.

holds. The following inequality is a generalization of (64) for VI. For any x,y,z∈Q

and δ > 0,

〈Φ(y)−Φ(x),y− z〉 ≤ ‖Φ(y)−Φ(x)‖∗‖y− z‖ ≤ Lν‖x− y‖ν‖y− z‖ ≤

≤ 1

2

(
1

δ

) 1−ν
1+ν

L
2

1+ν
ν

(
‖x− y‖2 + ‖y− z‖2

)
+

δ

2
,

where

L(δ ) =

(
1

δ

) 1−ν
1+ν

L
2

1+ν
ν . (76)

So, we have

〈Φ(y)−Φ(x),y− z〉 ≤ L(δ )

2

(
‖y− x‖2 + ‖y− z‖2

)
+ δ . (77)

Let us consider estimates of the necessary number of iterations are obtained to

achieve a given quality of the variational inequality solution.

Corollary 2 (Universal Method for VI). Assume that the operator Φ is Hölder

continuous with constant Lν for some ν ∈ [0,1] and M−1 ≤
(

2
ε

) 1−ν
1+ν L

2
1+ν
ν . Also as-

sume that the set Q is bounded. Then, for all k ≥ 0, we have

max
z∈Q
〈Φ(z), ŵk− z〉 ≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

max
z∈Q

V [z0](z)+
ε

2
(78)

As it follows from (77), if Mk ≥ L( ε
2
), (74) holds. Thus, for all i = 0, ...,k−1, we

have Mi ≤ 2 ·L( ε
2
) and
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1

∑k−1
i=0 M−1

i

≤ 2L( ε
2
)

k
≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

,

(78) holds. Here L(·) is defined in (76). ⊓⊔
Let us add some remarks.

Remark 3. Since the algorithm does not use the values of parameters ν and Lν , we

obtain the following iteration complexity bound

2 inf
ν∈[0,1]

(
2Lν

ε

) 2
1+ν

·max
z∈Q

V [z0](z)

to achieve

max
z∈Q
〈Φ(z), ŵk− z〉 ≤ ε.

Using the same reasoning as in [58], we estimate the number of oracle calls for

Algorithm 6. The number of oracle calls on each iteration k is equal to 2ik. At the

same time, Mk = 2ik−2Mk−1 and, hence, ik = 2+ log2
Mk

Mk−1
. Thus, the total number

of oracle calls is

k−1

∑
j=0

i j = 4k+ 2
k−1

∑
i=0

log2

M j

M j−1

< 4k+ 2log2

(
2L

(ε

2

))
− 2log2(M−1), (79)

where we used that Mk ≤ 2L( ε
2
).

Thus, the number of oracle calls of the Algorithm 6 does not exceed:

4 inf
ν∈[0,1]

(
2 ·Lν

ε

) 2
1+ν

·max
u∈Q

V [z0](u)+2 inf
ν∈[0,1]

log2 2

((
2

ε

) 1−ν
1+ν

L
2

1+ν
ν

)
−2log2(M−1).

Remark 4. We can apply this method to convex-concave saddle problems of the

form

f (x,y)→ min
x∈Q1

max
y∈Q2

, (80)

where Q1,2 are convex compacts in R
n, f is convex in x and concave in y, there is

ν ∈ [0,1] and constants L11,ν ,L12,ν ,L21,ν ,L22,ν<+∞:

‖∇x f (x+∆x,y+∆y)−∇x f (x,y)‖1,∗ ≤ L11,ν‖∆x‖ν
1 +L12,ν‖∆y‖ν

2 ,

‖∇y f (x+∆x,y+∆y)−∇y f (x,y)‖2,∗ ≤ L21,ν‖∆x‖ν
1 +L22,ν‖∆y‖ν

2

for all x,x+∆x ∈ Q1,y,y+∆y ∈ Q2.

It is possible to achieve an acceptable approximation (x̂, ŷ) ∈ Q1×Q2:

max
y∈Q2

f (x̂,y)− min
x∈Q1

f (x, ŷ)≤ ε (81)

for the saddle point (x∗,y∗) ∈ Q1×Q2 of the (80) problem in no more than
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O

((
1

ε

) 2
1+ν

)

iterations, which indicates the optimality of the proposed method, at least for ν = 0

and ν = 1. However, in practice experiments show that (81) can be achieved much

faster due to the adaptability of the method.

6 Concluding remarks

Modern numerical methods for non-smooth convex optimization problems are typ-

ically based on the structure of the problem. We start with one of the most powerful

example of such type. For geometric median search problem there exists efficient

method that significantly outperform described above lower complexity bounds

[19]. In Machine Learning we typically meet the problems with hidden affine struc-

ture and small effective dimension (SVM) that allow us to use different smoothing

techniques [1]. Description of one of these techniques (Nesterov’s smoothing tech-

nique) one can find in this survey. The other popular technique is based on averag-

ing of the function around the small ball with the center at the point in consideration

[27]. A huge amount of data since applications lead to composite optimization prob-

lems with non smooth composite (LASSO). For this class of problems accelerated

(fast) gradient methods are typically applied [7], [56], [41]. This approach (compos-

ite optimization) have been recently expanded for more general class of problems

[73]. In different Image Processing applications one can find a lot of non-smooth

problems formulations with saddle-point structure. That is the goal function has

Legendre representation. In this case one can apply special versions of accelerated

(primal-dual) methods [16], [17], [43]. Universal Mirror Prox method described

above demonstrates the alternative approach which can be applied in rather general

context. Unfortunately, the most of these tricks have proven to be beyond the scope

of this survey. But we include in the survey the description of the Universal Acceler-

ated Gradient Descent algorithm [73] which in the general case can also be applied

to a wide variety of problems.

Another important direction in Non-smooth Convex Optimization is huge-scale

optimization for sparse problems [57]. The basic idea that reduce huge dimension

to non-smoothness is as follows:

〈ak,x〉− bk ≤ 0, k = 1, . . .m, m≫ 1

is equivalent to the single non-smooth constraint:

max
k=1,...m

{〈ak,x〉− bk} ≤ 0.

We demonstrated this idea above on Truss Topology Design example.
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One should note that we concentrate in this survey only on deterministic con-

vex optimization problems, but the most beautiful things in non smooth optimiza-

tion is that stochasticity [50], [26], [38], [39] and online context [36] in general

doesn’t change (up to a logarithmic factor in the strongly convex case) anything

in complexity estimates. As an example, of stochastic (randomized) approach one

can mentioned the work [2] where one can find reformulation of Google problem

as non smooth convex optimization problem. Special randomized Mirror Descent

algorithm allows to solve this problem almost independently on the number of ver-

texes.

Finally, let’s note that in the decentralized distributed non smooth (stochastic)

convex optimization for the last few years there appear optimal methods [42], [75],

[14].
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ters. arXiv:1806.05140 (2018)

35. Ghadimi, S., Lan, G., Zhang, H.: Generalized uniformly optimal methods for nonlinear pro-

gramming. arXiv:1508.07384 (2015). URL https://arxiv.org/abs/1508.07384

36. Hazan, E., et al.: Introduction to online convex optimization. Foundations and Trends R© in

Optimization 2(3-4), 157–325 (2016)

37. Juditsky, A., Nemirovski, A.: First order methods for non-smooth convex large-scale optimiza-

tion, i: General purpose methods. In: S.W. Suvrit Sra Sebastian Nowozin (ed.) Optimization

for Machine Learning, pp. 121–184. Cambridge, MA: MIT Press (2012)

38. Juditsky, A., Nemirovski, A., et al.: First order methods for nonsmooth convex large-scale

optimization, i: general purpose methods. Optimization for Machine Learning pp. 121–148

(2011)

39. Juditsky, A., Nemirovski, A., et al.: First order methods for nonsmooth convex large-scale

optimization, ii: utilizing problems structure. Optimization for Machine Learning pp. 149–

183 (2011)

40. Khachiyan, L.G.: A polynomial algorithm in linear programming. In: Doklady Academii

Nauk SSSR, vol. 244, pp. 1093–1096 (1979)

41. Lan, G.: Gradient sliding for composite optimization. Mathematical Pro-

gramming 159(1), 201–235 (2016). DOI 10.1007/s10107-015-0955-5. URL

https://doi.org/10.1007/s10107-015-0955-5

42. Lan, G., Lee, S., Zhou, Y.: Communication-efficient algorithms for decentralized and stochas-

tic optimization. arXiv preprint arXiv:1701.03961 (2017)

43. Lan, G., Ouyang, Y.: Accelerated gradient sliding for structured convex optimization. arXiv

preprint arXiv:1609.04905 (2016)

44. Lee, Y.T., Sidford, A., Wong, S.C.w.: A faster cutting plane method and its implications for

combinatorial and convex optimization. In: Foundations of Computer Science (FOCS), 2015

IEEE 56th Annual Symposium on, pp. 1049–1065. IEEE (2015)

45. Levin, A.Y.: On an algorithm for the minimization of convex functions. Soviet Math. Doklady

(1965)

46. Nedi, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient

methods. SIAM Journal on Optimization 19(4), 1757–1780 (2009). DOI 10.1137/070708111.

URL https://doi.org/10.1137/070708111

47. Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational inequalities with

Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.

SIAM Journal on Optimization 15(1), 229–251 (2004)

48. Nemirovskii, A.: Efficient methods for large-scale convex optimization problems. Ekonomika

i Matematicheskie Metody 15 (1979). In Russian

http://dx.doi.org/10.1007/s10957-016-0999-6
https://arxiv.org/abs/1508.07384
https://doi.org/10.1007/s10107-015-0955-5
https://doi.org/10.1137/070708111


Advances Low-Memory Subgradient Optimization 35

49. Nemirovskii, A., Nesterov, Y.: Optimal methods of smooth convex minimiza-

tion. USSR Computational Mathematics and Mathematical Physics 25(2),

21 – 30 (1985). DOI https://doi.org/10.1016/0041-5553(85)90100-4. URL

http://www.sciencedirect.com/science/article/pii/0041555385901004

50. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. J.

Wiley & Sons, New York (1983)

51. Nesterov, Y.: A method of solving a convex programming problem with convergence rate

o(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

52. Nesterov, Y.: Effective methods in nonlinear programming. Moscow (1989)

53. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Programming

103(1), 127–152 (2005)

54. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathemati-

cal Programming 120(1), 221–259 (2009). DOI 10.1007/s10107-007-0149-x. URL

https://doi.org/10.1007/s10107-007-0149-x . First appeared in 2005 as

CORE discussion paper 2005/67

55. Nesterov, Y.: Introduction to Convex Optimization. Moscow, MCCME (2010)

56. Nesterov, Y.: Gradient methods for minimizing composite functions. Mathematical Program-

ming 140(1), 125–161 (2013). First appeared in 2007 as CORE discussion paper 2007/76

57. Nesterov, Y.: Subgradient methods for huge-scale optimization problems. Mathemat-

ical Programming 146(1), 275–297 (2014). DOI 10.1007/s10107-013-0686-4. URL

https://doi.org/10.1007/s10107-013-0686-4 . First appeared in 2012.

58. Nesterov, Y.: Universal gradient methods for convex optimization problems. Mathemat-

ical Programming 152(1), 381–404 (2015). DOI 10.1007/s10107-014-0790-0. URL

http://dx.doi.org/10.1007/s10107-014-0790-0

59. Nesterov, Y.: Subgradient methods for convex functions with nonstandard growth properties

(2016). Http://www.mathnet.ru:8080/PresentFiles/16179/growthbm nesterov.pdf

60. Nesterov, Y.: Lectures on Convex Optimization. Springer International Publishing (2018)

61. Nesterov, Y., Shpirko, S.: Primal-dual subgradient method for huge-scale linear conic prob-

lems. SIAM Journal on Optimization 24(3), 1444–1457 (2014). DOI 10.1137/130929345.

URL https://doi.org/10.1137/130929345

62. Newman, D.: Location of the maximum on unimodal surfaces. Journal of the Association for

Computing Machinery 12, 395–398 (1965)

63. Polyak, B.: A general method of solving extremum problems. Soviet Mathematics Doklady

8(3), 593–597 (1967)

64. Polyak, B.: Introduction to Optimization. New York, Optimization Software (1987)

65. Rockafellar, R.: Convex Analysis. Priceton University, Princeton (1970)

66. Roulet, V., d’Aspremont, A.: Sharpness, restart and acceleration. arXiv:1702.03828 (2017)

67. S. Lacost-Julien, M.S., Bach, F.: A simpler approach to obtaining o(1/t) convergence rate

for the projected stochastic subgradient method. arxiv preprint arxiv:1212.2002 (2012). URL

http://arxiv.org/pdf/1212.2002v2.pdf

68. Shor, N.: Minimization of Nondifferentiable Functions. Naukova Dumka (1979)

69. Shor, N.: Minimization Methods for Non-Differentiable Functions. Springer-Verlag Berlin

Heidelberg (1985)

70. Shor, N.Z.: Generalized gradient descent with application to block programming. Kibernetika

3(3), 53–55 (1967)

71. Shor, N.Z., Kiwiel, K.C., Ruszczynski, A.: Minimization Methods for Non-Differentiable

Functions, Springer Series in Computational Mathematics, vol. 3. Springer Berlin Heidel-

berg (2012)

72. Tran-Dinh, Q., Fercoq, O., Cevher, V.: A smooth primal-dual optimization

framework for nonsmooth composite convex minimization. SIAM Journal

on Optimization 28(1), 96–134 (2018). DOI 10.1137/16M1093094. URL

https://doi.org/10.1137/16M1093094 . ArXiv:1507.06243

http://www.sciencedirect.com/science/article/pii/0041555385901004
https://doi.org/10.1007/s10107-007-0149-x
https://doi.org/10.1007/s10107-013-0686-4
http://dx.doi.org/10.1007/s10107-014-0790-0
https://doi.org/10.1137/130929345
http://arxiv.org/pdf/1212.2002v2.pdf
https://doi.org/10.1137/16M1093094


36 P.E. Dvurechensky, A.V. Gasnikov, E.A. Nurminski and Fedor S. Stonyakin

73. Tyurin, A., Gasnikov, A.: Fast gradient descent method for convex optimization problems

with an oracle that generates a model of a function in a requested point. arXiv preprint

arXiv:1711.02747 (2017)

74. Uribe, C.A., Dvinskikh, D., Dvurechensky, P., Gasnikov, A., Nedić, A.: Distributed compu-
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