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Abstract
We consider smooth convex-concave saddle point problems in the decentralized
distributed setting, where a finite-sum objective is distributed among the nodes of a
computational network. At each node, the local objective depends on the groups of
local and global variables. For such problems, we propose a decentralized distributed
algorithm with O(ε−1) communication and oracle calls complexities to achieve
accuracy ε in terms of the duality gap and in terms of consensus between nodes.
Further, we prove lower bounds for the communication and oracle calls complexities
and show that our algorithm matches these bounds, i.e., it is optimal. In contrast
to existing decentralized algorithms, our algorithm admits non-euclidean proximal
setup, including, e.g., entropic. We illustrate the work of the proposed algorithm
on the prominent problem of computing Wasserstein barycenters (WB), where a
non-euclidean proximal setup arises naturally in a bilinear saddle point reformulation
of the WB problem.
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1. Introduction

In the last few years, we observe an increased interest in the research on algorithms
for saddle-point problems (SPP), in particular, motivated by modern applications in
GANs training [22], reinforcement learning [29, 48, 58], optimal transport [28] and
distributed control [43]. In addition to the above modern applications, and besides their
classical examples in economics, equilibrium theory, game theory [20], saddle-point
problems remain popular in supervised learning (with non-separable loss [30]; with
non-separable regularizer [3]), unsupervised learning (discriminative clustering [59];
matrix factorization [4]), image denoising [12, 19], robust optimization [5], optimization
with separable or semi-definite constraints [41], and non-smooth optimization via
smooth reformulations [45, 47]. Decentralized algorithms for SPPs are also an active
area of research [40, 42].
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For convex optimization, the theory of decentralized first-order methods is currently
well-developed: the lower bounds on the number of communication rounds and oracle
calls are well-known, and algorithms converging according to these lower bounds
are developed, see [1, 15, 24, 27, 32, 35, 44, 51, 52, 54, 57]. For convex-concave
decentralized SPPs a complete theory exists only in the strongly convex-concave case
for unconstrained problems in the euclidean proximal setup [31]. Moreover, the lower
bounds from [8, 9, 31] were obtained only for the case when strong convexity and
strong concavity parameters are the same.

For non-strongly convex-concave case, distributed SPP with local and global vari-
ables were studied in [41], where the authors proposed a subgradient-based algorithm
for non-smooth problems with O(1/

√
N) convergence guarantee (N is the number

of communication rounds). Paper [61] introduced an Extra-gradient algorithm for
distributed multi-block SPP with affine constraints. Their method covers the Euclidean
case and the algorithm has O(1/N) convergence rate. Our paper proposes an algorithm
based on adding Lagrangian multipliers to consensus constraints, which is analogical to
[61], but our method works in a general proximal smooth setup and achieves O(1/N)
convergence rate. Moreover, it has an enhanced dependence on the condition number
of the network.

An optimal method for convex-concave SPPs is Mirror-prox algorithm [45, 49] with
general proximal setup. The Mirror-prox algorithm can be performed in a decentralized
manner, however, it is not known whether its optimality is preserved. In this paper,
we prove that Mirror-prox remains optimal even in a decentralized case w.r.t. the
dependence on the desired accuracy ε and condition number χ of communication
network if we split communication and oracle complexities by Chebyshev acceleration
trick (see, e.g. [37]).

Finally, we show how the proposed method can be applied to prominent problem of
computing Wasserstein barycenters to tackle the problem of instability of regularization-
based approaches under a small value of regularizing parameter. The idea is based
on the saddle point reformulation of the Wasserstein barycenter problem (see [17]).
Wasserstein barycenters, which define the mean of objects that can be modeled as
probability measures on a metric space (images, texts, videos), are used in many fields
including Bayesian computations [55], texture mixing [50], clustering (k-means for
probability measures) [13], shape interpolation and color transferring [53], statistical
estimation of template models [10] and neuroimaging [25].

In the numerical experiments conducted on different network architectures, we
demonstrate a better approximation of the true barycenter by the proposed distributed
Mirror-prox algorithm in comparison with regularization based approaches.
Contribution. Our contribution can be summarized as follows.

• We provide a decentralized Mirror-prox based algorithm for convex-concave SPPs
and prove its optimality in the euclidean proximal setup;

• We provide the lower bounds on the number of communication steps and oracle calls
per node for convex-concave SPPs in the euclidean proximal setup.

Paper organization. This paper is organized as follows. Section 2 presents a saddle
point problem of interest along with its decentralized reformulation. In Section 3, we
provide the main algorithm of the paper to solve such kind of problems. In Section 4,
we present the lower complexity bounds for saddle point problems without individual
variables. Finally in Section 5, we show how the proposed algorithm can be applied to
the problem computing Wasserstein barycenters .
Notation. For a prox-function d(x), we define the corresponding Bregman divergence:
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B(x, y) = d(x)−d(y)−⟨∇d(y), x−y⟩. For some norm ∥·∥, we define its dual norm ∥·∥∗
in a usual way: ∥s∥∗ = maxx∈X {⟨x, s⟩ : ∥x∥ ≤ 1}. For two vectors x, y of the same size,
denotations x/y and x⊙y stand for the element-wise product and element-wise division
respectively. When functions, such as log or exp, are used on vectors, they are always
applied element-wise. We use bold symbol for column vector x = [x⊤1 , · · · , x⊤m]⊤ ∈ Rmn,
where x1, ..., xm ∈ Rn. Then we refer to the i-th component of vector x as xi ∈ Rn and
to the j-th component of vector xi as [xi]j . We denote by 1 the vector of ones. For
matrices A and B we denote their Kronecker product as A⊗B.

2. Problem statement

In this paper, we consider a saddle point problem of the sum-type with global and
local groups of variables

min
x∈X̄
p∈P

max
y∈Ȳ
q∈Q

f(x,p, y,q) ≜
1

m

m∑
i=1

fi(x, pi, y, qi), (1)

where p ≜ (p⊤1 ∈ P1 . . . p
⊤
m ∈ Pm)⊤ ∈ P ≜ P1 × . . . × Pm and q ≜ (q⊤1 ∈ Q1 . . . q

⊤
m ∈

Qm)⊤ ∈ Q ≜ Q1 × . . .×Qm. Variables x, pi, y, qi have dimensions dx, dp, dy, dq respec-
tively for all i = 1, . . . ,m. For problem (1), we make the following assumption.

Assumption 2.1.
(1) Sets Pi, Qi (i = 1, . . . ,m) and X̄ , Ȳ are convex and compact.
(2) Function fi(·, ·, y, qi) is convex on X̄ × Pi for every fixed y ∈ Ȳ, qi ∈ Qi for all

i = 1, . . . ,m.
(3) Function fi(x, pi, ·, ·) is concave on Ȳ × Qi for every fixed x ∈ X̄ , pi ∈ Pi for all

i = 1, . . . ,m.

2.1. Decentralized setup and communication matrix

We suppose that there is a communication network of agents (machines/computing
nodes) which we represent by a connected undirected graph G = (V,E). Each agent i
privately holds its function fi (i = 1, . . . ,m). Every pair of agents (i, j) can communicate
iff (i, j) ∈ E. We can represent these communication constraints imposed by the network
through a particular matrix W satisfying the following assumption

Assumption 2.2.
(1) W is symmetric positive semi-definite matrix
(2) (Network compatibility) For all i, j = 1, . . . ,m the entry of W : [W ]ij = 0 if

(i, j) /∈ E and i ̸= j.
(3) (Kernel property) For any v = [v1, . . . , vm]⊤ ∈ Rm, Wv = 0 if and only if v1 =

. . . = vm, i.e. KerW = span {1}.

An example of matrix satisfying this assumption is the graph Laplacian W∈ Rm×m:

[W ]ij ≜


−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise,

(2)
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where deg(i) is the degree of the node i, i.e., the number of neighbors of the node.
The main characteristic of the network is the graph condition number

χ ≜ χ(W ) ≜ λmax(W )/λ+min(W ),

where λmax(W ) and λ+min(W ) denote the maximal and the minimal positive eigenvalues
of W respectively.

2.2. Distributed problem reformulation

Let matrices Wx ∈ Rm×m and Wy ∈ Rm×m be associated with variables x and y,
respectively. Introduce communication matrices Wx =Wx ⊗ Idx

, Wy =Wy ⊗ Idy
. We

can equivalently rewrite the problem (1) in a distributed setup replacing the constraint
x1 = · · · = xm by Wxx = 0 and y1 = · · · = ym by Wyy = 0, respectively. Let us

introduce F (x,p,y,q) ≜
∑m

i=1 fi(xi, pi, yi, qi) and X = X̄ ×. . .×X̄ and Y = Ȳ×. . .×Ȳ .

Assumption 2.3. There exist positive scalars Mx,My such that for all i = 1, . . . ,m
and for any xi ∈ X̄ , yi ∈ Ȳ, pi ∈ Pi, qi ∈ Qi it holds ∥∇xfi(xi, pi, yi, qi)∥2 ≤ Mx,
∥∇yfi(xi, pi, yi, qi)∥2 ≤My.

Our method requires rewriting problem (1) by adding Lagrangian multipliers s, z.
Moreover, we bound the norms of the dual variables at the solution.

Theorem 2.4. Introduce

R̄2
Z =

ᾱmM2
x

(λ+min(Wx))2
, R̄2

S =
β̄mM2

y

(λ+min(Wy))2
,

where ᾱ, β̄ ∈ (1,+∞) ∪ {+∞}. Problem (1) is equivalent to

min
p∈P,x∈X
∥s∥2⩽R̄S

max
y∈Y,q∈Q
∥z∥⩽R̄Z

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩] . (3)

Bounding the norms of dual variables is a known result in minimization [23, 36].
We prove Theorem 2.4 by considering minimization over (x,p, s) and maximization
over (y,q, z) separately. We decompose a saddle-point problem into two optimization
problems and apply to each of them the following result.

Lemma 2.5. Let Θ ⊆ Rd be a closed convex set and h(θ) : Θ → R be a convex
differentiable function. Consider a problem with affine constraints

min
θ∈Θ

h(θ) s.t. Aθ = b (4)

(1) Dual problem has a solution ν∗ such that ∥ν∗∥22 ≤
∥∇h(θ∗)∥2

2

(σ+
min(A))2

=: R2
ν , where σ

+
min(A)

denotes the minimal non-zero singular value of A (initially presented in [36]).
(2) Let R > Rν and consider a constrained dual problem

max
∥ν∥

2
≤R

min
θ∈Θ

[h(θ) + ⟨ν,Aθ − b⟩] = max
∥ν∥

2
≤R

φ(ν) (5)
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If (θ̃, ν̃) is a saddle point of (5), then θ̃ is a solution of (4).

Proof. For part 1, see [36].
Introduce function

ψ(θ) = max
∥ν∥

2
≤R

[h(θ) + ⟨ν,Aθ − b⟩] .

Since Θ is a compact set, it holds

max
∥ν∥2≤R

φ(ν) = min
θ∈Θ

ψ(θ)

by Sion-Kakutani theorem (see i.e. Theorem D.4.2 in [6]). Moreover, since

ν∗ ∈ Argmax
ν∈Rm

φ(ν) and ν∗ ∈ BR(0),

we have

ν∗ ∈ Argmax
∥ν∥2≤R

φ(ν) and max
ν∈Rm

φ(ν) = max
∥ν∥2≤R

φ(ν).

Also note that h(θ̃) = min
θ∈Θ

ψ(θ) by Theorem D.4.1 in [6]. Combining the three facts

θ̃ ∈ Argmin
θ∈Θ

ψ(θ), ν∗ ∈ Argmax
∥ν∥

2
≤R

φ(ν), min
θ∈Θ

ψ(θ) = max
∥ν∥

2
≤R

φ(ν)

we obtain that (θ̃, ν∗) is a saddle point of (5) by Theorem D.4.1 of [6]. Note that (θ̃, ν̃)
is a saddle point of (5), as well, but we do not need ν̃ in the analysis. Therefore for
ν ∈ BR(0) we have

h(θ̃) +
〈
ν∗,Aθ̃ − b

〉
≥ h(θ̃) +

〈
ν∗,Aθ̃ − b

〉
〈
ν∗ − ν,Aθ̃ − b

〉
≥ 0.

Taking into account that ∥ν∗∥2 ≤ Rν < R, we imply ν∗ ∈ intBR(0) and therefore

Aθ̃ − b = 0. Therefore, we have

h(θ̂) ≤ h(θ) ∀θ ∈ Θ : Aθ = b

which concludes the proof.

Proof of Theorem 2.4. We are free to use Sion–Kakutani theorem since the sets
X ,P,Y,Q are compact.

min
Wxx=0
p∈P,x∈X

max
Wyy=0
y∈Y,q∈Q

F (x,p,y,q) = max
Wyy=0
y∈Y,q∈Q

min
Wxx=0
p∈P,x∈X

F (x,p,y,q)

= max
Wyy=0
y∈Y,q∈Q

min
p∈P

 min
Wxx=0
x∈X

F (x,p,y,q)

 (6)
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For any fixed pair (x,y,q) ∈ X ×Z ×Q function F (x,p,y,q) is convex in p. Consider
problem

min
x∈X

F (x,p,y,q) s.t. Wxx = 0 (7)

and denote

x∗(p,y,q) = argmin
Wxx=0
x∈X

[F (x,p,y,q)] .

By Lemma 2.5, part 1, there exists a solution of dual to (7) with norm bounded by

∥∇xF (x
∗(p,y,q),p,y,q)∥22
(λ+min(Wx))2

≤ R̄Z . (8)

By Lemma 2.5 (part 2), problem (7) is equivalent to

max
∥z∥2≤R̄Z

min
x∈X

[F (x,p,y,q) + ⟨z,Wxx⟩] (9)

in the sense that for any saddle point (x̂(p,y,q), ẑ(x,y,q)) of (9) we have that
x̂(p,y,q) is a solution of (7).

Returning to (6), we get

max
Wyy=0
y∈Y,q∈Q

min
p∈P

 min
Wxx=0
x∈X

F (x,p,y,q)


= max

Wyy=0
y∈Y,q∈Q

min
p∈P

[
max

∥z∥
2
≤R̄Z

min
x∈X

(F (x,p,y,q) + ⟨z,Wxx⟩)

]
= min

p∈P,x∈X
max

y∈Y,q∈Q
Wyy=0,∥z∥2≤R̄Z

[F (x,p,y,q) + ⟨z,Wxx⟩]

= min
p∈P,x∈X

max
q∈Q

∥z∥
2
≤R̄Z

 max
y∈Y

Wyy=0

[F (x,p,y,q) + ⟨z,Wxx⟩]

 . (10)

Now we introduce Lagrange multipliers for the constraints Wyy = 0, as well. Analo-
gously to the case with Wxx = 0 constraints, consider a problem

max
y∈Y

[F (x,p,y,q) + ⟨z,Wxx⟩] s.t. Wyy = 0 (11)

and introduce its solution

y∗(x,p,q, z) = argmax
Wyy=0
y∈Y

[F (x,p,y,q) + ⟨z,Wxx⟩] .

6



Analogously, the dual solution norm to problem (11) can be bounded as

∥∇yF (x,p,y
∗(x,p,q, z),q)∥22

(λ+min(Wy))2
≤ R̄2

S , β ∈ (1,+∞]. (12)

And we get a saddle-point reformulation of (11):

min
∥s∥

2
≤R̄S

max
q∈Q

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩] .

Substituting this reformulation into (10), we obtain

min
p∈P,x∈X

max
q∈Q

∥z∥
2
≤R̄Z

 max
y∈Y

Wyy=0

[F (x,p,y,q) + ⟨z,Wxx⟩]


= min

p∈P,x∈X
max
q∈Q

∥z∥
2
≤R̄Z

[
min

∥s∥2≤R̄S

max
y∈Y

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩]

]

= min
p∈P,x∈X

max
y∈Y,q∈Q
∥z∥

2
≤R̄Z

min
∥s∥2≤R̄S

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩]

= max
y∈Y,q∈Q
∥z∥

2
≤R̄Z

min
p∈P,x∈X
∥s∥

2
≤R̄S

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩] , (13)

which is an equivalent reformulation of (1). Note that cases R̄S = +∞, R̄Z = +∞
are also supported in this proof. A min-max reformulation is obtained analogously by
adding Lagrange multipliers in different order.

From Theorem 2.4 we immediately obtain the following corollary by setting ᾱ =
β̄ = +∞.

Corollary 2.6. Problem (1) can be equivalently rewritten as follows

min
x∈X , p∈P
s∈Rmdy

max
y∈Y, q∈Q
z∈Rmdx

[F (x,p,y,q) + ⟨z,Wxx⟩+ ⟨s,Wyy⟩] , (14)

in the sense that for any saddle point (x∗,p∗,y∗,q∗, s∗, z∗) of (14) we have x∗1 = . . . =
x∗m = x∗, y∗1 = . . . = y∗m = y∗, and the point (x∗,p∗, y∗,q∗) is a saddle point of (1).

3. Distributed algorithm for saddle-point problems

Now we provide a decentralized distributed algorithm to solve saddle-point problem
(1). The pseudo-code is listed in Algorithm 1 and the main result on convergence rate
is given in Theorem 3.5. The main idea is to use reformulation (14) and apply mirror
prox algorithm [45] for its solution. This requires careful analysis in two aspects. First,
the Lagrange multipliers z, s are not constrained, while the convergence rate result for
the classical Mirror-Prox algorithm [45] is proved for problems on compact sets. Second,
we need to show that the updates can be organized via only local communications
between the nodes in the network.
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3.1. Algorithm

For each variable ti ∈ {xi, pi, yi, qi, si, zi} and corresponding set Ti ∈{
X̄ ,Pi, Ȳ,Qi,Rdy ,Rdx

}
, we assume there is a norm ∥ti∥Ti

. Our analysis supports
arbitrary norms for xi, pi, yi, qi, but we use the Euclidean norm for dual variables
si, zi, i.e. ∥si∥Si

= ∥si∥2 , ∥zi∥Zi
= ∥zi∥2. With each norm ∥ti∥Ti

we associate a 1-
strongly convex w.r.t. this norm prox-function dTi

(ti) and the corresponding Bregman
divergence BTi

(ti, t̆i) = dTi
(ti) − dTi

(t̆i) −
〈
∇dTi

(t̆i), ti − t̆i
〉
. For dual variables we

have prox-functions dSi
(ui) = 1

2 ∥ui∥
2
2, dZi

(zi) = 1
2 ∥zi∥

2
2 and Bregman divergences

BSi
(si, s̆i) =

1
2 ∥si − s̆i∥22, BZi

(zi, z̆i) =
1
2 ∥zi − z̆i∥22.

Having introduced BTi
(ti, t̆i), we define the following Mirror step:

Mirr(gi; ti; Ti) = argmin
t∈Ti

[⟨gi, t⟩+BTi
(t, ti)] , (15)

where gi is an element of the corresponding dual space which defines the step direction.
Our decentralized algorithm for saddle-point problem (14) is listed as Algorithm 1.

In each iteration each agent i makes two Mirror step updates in each of its six local
variables. Besides using respective gradient of the local objective fi to define the step
direction, some updates include aggregating the variables of other agents. Consider for

example the update x
k+ 1

2

i , in which agent i needs to calculate the sum Σj [Wx]ijz
k
j . Due

to the Assumption 2.2, i.e. network compatibility of matrix W , this update requires
aggregating local only from neighbouring agents. Thus, each iteration of the algorithm
is performed in a distributed manner.

In Algorithm 1, we denote ∇tf
ℓ
i = ∇tfi(x

ℓ
i , p

ℓ
i , y

ℓ
i , q

ℓ
i ) for t ∈ {x, p, y, q} and ℓ ∈{

k, k + 1
2

}
In the next two subsections, we introduce two necessary components which allow

us to prove the convergence rate theorem for our algorithm. These are smoothness
assumptions and localization of the solution to the saddle-point problem (14).

3.2. Localizing the solution and smoothness assumptions

As it was noted above, the standard analysis of Mirror-Prox requires the feasible
sets to be compact. Although we run Mirror-Prox algorithm on problem (14) with
unconstrained variables s and z, we still can bound these variables according to
Theorem 2.4.

Lemma 3.1. Let Assumption 2.3 be satisfied and R2
Z = 2mM2

x(λ
+
min(Wx))

−2, R2
S =

2mM2
y (λ

+
min(Wy))

−2, where λ+min(·) is the minimal non-zero eigenvalue of matrix. Then
there exists a saddle point (x∗,p∗,y∗,q∗, s∗, z∗) of problem (14) such that ∥s∗∥2 ≤ RS ,
∥z∗∥2 ≤ RZ .

Proof. Putting ᾱ = β̄ = 2 in Theorem 2.4, we immediately obtain the proof.

Next, we introduce the second important component of the convergence rate analy-
sis, namely the smoothness assumption on the objective F . To set the stage we first
introduce a general definition of Lipschitz-smooth function of two variables. Having de-
fined norms and Bregman divergences, let ti ∈ {xi, pi, si, yi, qi, zi} and correspondingly
Ti ∈

{
X̄ ,Pi,Rdy , Ȳ,Qi,Rdx

}
. Introduce t = (t⊤1 , . . . , t

⊤
m)⊤ and T = T1 × . . .× Tm we

define ∥t∥2T =
∑m

i=1 ∥ti∥
2
Ti
.
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Algorithm 1 Decentralized Mirror-Prox

Require: Initial guess (x0,p0,y0,q0, z0, s0) such that t = [t⊤1 , . . . , t
⊤
m]⊤, ti =

argmin
t∈Ti

dTi
(t) for each ti ∈ {xi, pi, yi, qi, zi, si} and corresponding set Ti ∈{

X̄ ,Pi, Ȳ,Qi,Rdy ,Rdx
}
, i = 1, . . . ,m.

1: for k = 0, 1, . . . , N − 1 do
2: Compute x̃k = Wxx

k; s̃k = Wys
k; ỹk = Wyy

k; z̃k = Wxz
k.

3: Each node computes

x
k+ 1

2

i = Mirr
(
α(∇xf

k
i + z̃ki );x

k
i ; X̄

)
, s

k+ 1

2

i = Mirr
(
αỹki ; s

k
i ;Rdy

)
,

y
k+ 1

2

i = Mirr
(
−α(∇rf

k
i + s̃ki ); y

k
i ; Ȳ

)
, z

k+ 1

2

i = Mirr
(
−αx̃ki ; zki ;Rdx

)
.

4: Compute x̃k+ 1

2 = Wxx
k+ 1

2 ; s̃k+
1

2 = Wys
k+ 1

2 ; ỹk+ 1

2 = Wyy
k+ 1

2 ; z̃k+
1

2 =

Wxz
k+ 1

2 .
5: Each node computes

xk+1
i = Mirr

(
α(∇pf

k+ 1

2

i + z̃
k+ 1

2

i );xki ; X̄
)
, sk+1

i = Mirr
(
αỹ

k+ 1

2

i ; ski ;Rdy

)
,

yk+1
i = Mirr

(
−α(∇rf

k+ 1

2

i + s̃
k+ 1

2

i ); yki ; Ȳ
)
, zk+1

i = Mirr
(
−αx̃k+

1

2

i ; zki ;Rdx

)
.

6: end for

Ensure: For t ∈ {x,p,y,q, s, z} compute t̂N =
1

N

N−1∑
k=0

tk+
1

2 .

Definition 3.2. Consider norms ∥·∥ξ , ∥·∥η and their dual norms ∥·∥ξ,∗ , ∥·∥η,∗. A dif-

ferentiable function G(ξ, η) is called (Lξξ, Lξη, Lηξ, Lηη)-smooth w.r.t. norms ∥·∥ξ , ∥·∥η
if ∥∥∇ξG(ξ, η)−∇ξG(ξ

′, η)
∥∥
ξ,∗ ≤ Lξξ

∥∥ξ − ξ′
∥∥
ξ
,∥∥∇ξG(ξ, η)−∇ξG(ξ, η

′)
∥∥
ξ,∗ ≤ Lξη

∥∥η − η′
∥∥
η
,∥∥∇ηG(ξ, η)−∇ηG(ξ

′, η)
∥∥
η,∗ ≤ Lηξ

∥∥ξ − ξ′
∥∥
ξ
,∥∥∇ηG(ξ, η)−∇ηG(ξ, η

′)
∥∥
η,∗ ≤ Lηη

∥∥η − η′
∥∥
η
.

In order to formulate the smoothness assumptions on function F , we group the
minimization variables (x,p) and maximization variables (y,q).

Assumption 3.3. The function F is (L(x,p)(x,p), L(x,p)(y,q), L(y,q)(x,p), L(y,q)(y,q))-
smooth w.r.t. norms ∥·∥(X ,P) , ∥·∥(Y,Q) defined as

∥(x,p)∥2(X ,P) = ∥x∥2X + ∥p∥2P , ∥(y,q)∥2(Y,Q) = ∥y∥2Y + ∥q∥2Q .

9



3.3. Main result

To present a convergence bound for Algorithm 1, we introduce additional notation. For
each Ti ∈

{
X̄ ,Pi, Ȳ,Qi,Rdy ,Rdx

}
, we introduce

R2
Ti

= max
t,t′∈Ti

dTi
(t)− dTi

(t′). (16)

For simplicity of further derivations, we aggregate all the variables in two blocks:
minimization variables and maximization variables. Introducing u = (x⊤,p⊤, s⊤)⊤

and v = (y⊤,q⊤, z⊤)⊤ makes it possible to rewrite the problem (14) in the following
simplified form.

min
u∈AU

max
v∈AV

S(u,v) ≜ F (x,p,y,q) + ⟨s,Wyy⟩+ ⟨z,Wxx⟩ , (17)

where AU = X × P × Rndq and AV = Y ×Q× Rndp . The sets AU and AV are closed
and convex but unbounded. We also define U = X × P × {s : ∥s∥2 ≤ RS} and
V = Y ×Q× {z : ∥z∥2 ≤ RZ}. Convexity properties of F imply that S(·,v) is convex
for any fixed v and S(u, ·) is concave for any fixed u.

Introduce norms

∥u∥2U =
∥x∥2X
R2

X
+

∥p∥2P
R2

P
+

∥s∥22
R2

S
, ∥v∥2V =

∥y∥2Y
R2

Y
+

∥q∥2Q
R2

Q
+

∥z∥22
R2

Z
. (18)

Also introduce prox-functions dU (u), dV(v) and Bregman divergences

BU (u, ŭ) =
BX (x, x̆)

R2
X

+
BP(p, p̆)

R2
P

+
BS(s, s̆)

R2
S

,

BV(v, v̆) =
BY(y, y̆)

R2
Y

+
BQ(q, q̆)

R2
Q

+
BZ(z, z̆)

R2
Z

.

Lemma 3.4. Function S(u,v) defined in (17) is (Luu, Luv, Lvu, Lvv)-smooth, where

Luu = L(x,p)(x,p)(R
2
X +R2

P), Lvv = L(y,q)(y,q)(R
2
Y +R2

Q),

Luv =
√
2
(
L(x,p)(y,q)

√
(R2

X +R2
P)(R

2
Y +R2

Q) +RXRZ ∥Wx∥2→(x,∗) +RYRS ∥Wy∥y→2

)
,

Lvu =
√
2
(
L(y,q)(x,p)

√
(R2

X +R2
P)(R

2
Y +R2

Q) +RXRZ ∥Wx∥x→2 +RYRS ∥Wy∥2→(y,∗)

)
.

The proof is mostly technical and therefore omitted to the Appendix 8.
Let us now discuss the second main aspect of the analysis, i.e. unboundedness of the

feasible sets AU , AV , which does not allow to directly apply the standard analysis of
[45]. Due to the special structure of the problem (14) and the Assumption 2.3, we have
at the disposal bounds RZ , RS defined in Lemma 3.1 such that the optimal values z∗

and s∗ satisfy ∥z∗∥2 ≤ RZ , ∥s∗∥2 ≤ RS . We have that the saddle-point (u∗,v∗) belongs
to U × V. Let us define

Lζ = 2max{Luu, Luv, Lvu, Lvv}. (19)

10



Finally, applying the analysis of Mirror-Prox, we obtain the main result.

Theorem 3.5. Let Assumptions 2.2, 2.3 and 3.3 hold. Let Algorithm 1 be run for N

iterations with stepsize α = 1/Lζ , where Lζ is defined in (19). Introduce t̂
N

= 1
m11⊤t̂N

for t ∈ {x,y,p,q}. We have

max
y∈Y,q∈Q
Wyy=0

F
(
x̂
N
, p̂N ,y,q

)
− min

x∈X ,p∈P
Wxx=0

F (x,p, ŷ
N
, q̂N ) ≤

(4 + 17
√
2)Lζ

N

and ∥∥Wxx̂
N
∥∥
2
≤

17Lζ

NRZ
,

∥∥Wyŷ
N
∥∥
2
≤

17Lζ

NRS
.

Constant Lζ is dependent on problem parameters as defined in (19). Let us provide
an explicit dependence for completeness.

Corollary 3.6. Under conditions of Theorem 3.5 we have

max
y∈Y,q∈Q
Wyy=0

F
(
x̂
N
, p̂N ,y,q

)
− min

x∈X ,p∈P
Wxx=0

F (x,p, ŷ
N
, q̂N )

≤ (72 + 8
√
2)m

N

(
L(x,p)(x,p)(R

2
X +R2

P) + L(y,q)(y,q)(R
2
Y +R2

P)

+ (L(x,p)(y,q) + L(y,q)(x,p))
√

(R2
X +R2

P)(R
2
Y +R2

Q)

+
MxRX (∥Wx∥2→(x,∗) + ∥Wx∥x→2)

λ+min(Wx)
+
MyRY(∥Wy∥2→(y,∗) + ∥Wy∥y→2)

λ+min(Wy)

)
.

To prove Theorem 3.5 we first show that the iterates of Algorithm 1 naturally
correspond to the iterates of a general Mirror-Prox algorithm applied to problem (14).
Then we extend the standard analysis of the general Mirror-Prox algorithm to account
for unbounded feasible sets.

The feasible set AU ×AV is separable w.r.t. each local feasible set X̄ ×Pi×Rdq ×Ȳ ×
Q̄i × Rdp for an agent i. Thus, if we define a variable ζ = (u⊤,v⊤)⊤ ∈ A := AU ×AV ,
and the operator g(ζ)

g(ζ) =

[
∇uS(u,v)
−∇vS(u,v)

]
=


∇xF (x,p,y,q) +Wxz
∇pF (x,p,y,q)
Wyy

−∇yF (x,p,y,q)−Wys
−∇qF (x,p,y,q)
−Wxx

 ,

then the updates of Algorithm 1 are equivalent to the updates of a general Mirror-Prox
algorithm listed as Algorithm 2.
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Algorithm 2 Mirror-Prox

Require: Starting point ζ0 = argmin
ζ∈Q

dζ(ζ), stepsize α > 0.

1: for k = 0, 1, . . . do
2:

ζk+
1

2 = argmin
ζ∈Q

α
〈
g(ζk), ζ

〉
+B(ζ, ζk) (20)

ζk+1 = argmin
ζ∈Q

α
〈
g(ζk+

1

2 ), ζ
〉
+B(ζ, ζk) (21)

3: end for
Ensure: ζ̂k = 1

k

∑k−1
ℓ=0 ζ

ℓ+ 1

2 .

Next, we analyze the general Mirror-Prox Algorithm 2. Let us define the norm
∥ζ∥2ζ = ∥u∥2U + ∥v∥2V , the corresponding prox-function dζ(ζ) and Bregman divergence

Bζ(ζ, ζ̆) = Bu(u, ŭ) + Bv(v, v̆). Note that the corresponding dual norm is ∥ζ∥2ζ,∗ =

∥u∥2U ,∗ + ∥v∥2V,∗. Under these definitions, following the standard analysis in [11], we

obtain that the operator g(ζ) is Lζ-Lipschitz-continuous with respect to the norm ∥ζ∥ζ
with

Lζ = 2max{Luu, Lvv, Luv, Lvu}. (22)

Next, we analyze the iterations of Algorithm 2 under the assumption that the
operator g(ζ) is Lζ-Lipschitz-continuous. Let us fix some iteration k ≥ 0. By the
optimality conditions in (20), we have, for any ζ ∈ Q,

α⟨g(ζk) +∇dζ(ζk+
1

2 )−∇dζ(ζk), ζ − ζk+
1

2 ⟩ ≥ 0, (23)

α⟨g(ζk+
1

2 ) +∇dζ(ζk+1)−∇dζ(ζk), ζ − ζk+1⟩ ≥ 0. (24)

Whence, for all ζ ∈ Q,

⟨g(ζk+
1

2 ), ζk+
1

2 − ζ⟩ = ⟨g(ζk+
1

2 ), ζk+1 − ζ⟩+ ⟨g(ζk+
1

2 ), ζk+
1

2 − ζk+1⟩
(24)

≤ 1

α
⟨∇dζ(ζk)−∇dζ(ζk+1), ζk+1 − ζ⟩+ ⟨g(ζk+

1

2 ), ζk+
1

2 − ζk+1⟩

=
1

α
Bζ(ζ, ζ

k)− 1

α
Bζ(ζ, ζ

k+1)− 1

α
Bζ(ζ

k+1, ζk) + ⟨g(ζk+
1

2 ), ζk+
1

2 − ζk+1⟩,

where the last equality uses the definition of Bregman divergence Bζ(ζ, ζ̆) = dζ(ζ)−
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(dζ(ζ̆) + ⟨∇dζ(ζ̆), ζ − ζ̆⟩). Further, for all ζ ∈ Q,

⟨g(ζk+
1

2 ), ζk+
1

2 − ζk+1⟩ − 1

α
Bζ(ζ

k+1, ζk)

= ⟨g(ζk+
1

2 )− g(ζk), ζk+
1

2 − ζk+1⟩ − 1

α
Bζ(ζ

k+1, ζk) + ⟨g(ζk), ζk+
1

2 − ζk+1⟩

(23) with ζ=ζk+1

≤ ⟨g(ζk+
1

2 )− g(ζk), ζk+
1

2 − ζk+1⟩

+
1

α
⟨∇dζ(ζk)−∇dζ(ζk+

1

2 ), ζk+
1

2 − ζk+1⟩ − 1

α
Bζ(ζ

k+1, ζk)

= ⟨g(ζk+
1

2 )− g(ζk), ζk+
1

2 − ζk+1⟩ − 1

α
B(ζk+

1

2 , ζk)− 1

α
B(ζk+1, ζk+

1

2 )

①
≤ ∥g(ζk+

1

2 )− g(ζk)∥ζ,∗∥ζk+
1

2 − ζk+1∥ζ −
1

2α

(
∥ζk+

1

2 − ζk∥2ζ + ∥ζk+
1

2 − ζk+1∥2ζ
)

②
≤ Lζ∥ζk+

1

2 − ζk)∥ζ∥ζk+
1

2 − ζk+1∥ζ −
Lζ

2

(
∥ζk+

1

2 − ζk∥2ζ + ∥ζk+
1

2 − ζk+1∥2ζ
)
≤ 0,

where in ① we used that Bζ(ζ, ζ̆) ≥ 1
2∥ζ − ζ̆∥2ζ and in ② we substituted α = 1/Lζ and

used that g(ζ) is Lζ-Lipschitz-continuous.
Combining the above two inequalities and the choice α = 1/Lζ , we obtain, for all

ζ ∈ Q and i ≥ 0,

⟨g(ζi+
1

2 ), ζi+
1

2 − ζ⟩ ≤ LζBζ(ζ, ζ
i)− LζBζ(ζ, ζ

i+1).

Summing up these inequalities for i from 0 to k − 1, we have:

k−1∑
i=0

⟨g(ζi+
1

2 ), ζi+
1

2 − ζ⟩ ≤ Lζ(Bζ(ζ, ζ
0)−Bζ(ζ, ζ

k)) ≤ LζBζ(ζ, ζ
0).

Now we use the connection between S(u,v) and the operator g(ζ). By convexity of
S(u,v) in u and concavity of S(u,v) w.r.t v, we have, for all u ∈ AU ,

1

k

k−1∑
i=0

〈
∇uS(u

i,vi),ui − u
〉
≥ 1

k

k−1∑
i=0

(S(ui,vi)− S(u,vi)) ≥ 1

k

k−1∑
i=0

S(ui,vi)− S(u, v̂k).

In the same way, we obtain, for all v ∈ AV ,

1

k

k−1∑
i=0

〈
−∇vS(u

i,vi),vi − v
〉
≥ −1

k

k−1∑
i=0

S(ui,vi) + S(ûk,v).

Summing these inequalities, by the definition of g(ζ) we obtain that, for all u ∈ AU ,
v ∈ AV ,

S(ûk,v)− S(u, v̂k) ≤ 1

k

k−1∑
i=0

⟨g(ζi+
1

2 ), ζi+
1

2 − u⟩ ≤
Lζ

k
Bζ(ζ, ζ

0).

It remains to deduce the target accuracy in the value of function F and to
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the solution accuracy of problem (14). Let ûN = ((x̂N )⊤, (p̂N )⊤, (ŝN )⊤)⊤, v̂N =
((ŷN )⊤, (q̂N )⊤, (ẑN )⊤)⊤. For all x ∈ X , p ∈ P, y ∈ Y, q ∈ Q, s ∈ BRS (0), z ∈
BRZ (0), we have

F (x̂N , p̂N ,y,q) +
〈
z,Wxx̂

N
〉
+
〈
ŝN ,Wyy

〉
− F (x,p, ŷN , q̂N )−

〈
ẑN ,Wxx

〉
−
〈
s,Wyŷ

N
〉

≤
LζBζ(ζ, ζ

0)

N
.

To get an upper bound on consensus residual, we substitute x = x̂N , y = ŷN , p =
p̂N , q = q̂N , z = ẑN + Wxx̂NRZ

∥Wxx̂N∥
2

, s = 0 and get

RZ

〈
Wxx̂

N

∥Wxx̂N∥
,Wxx̂

N

〉
≤
Lζ

N

(
Bx(x

N ,x0)

R2
X

+
By(y

N ,y0)

R2
Y

+
Bp(p

N ,p0)

R2
P

+
Bq(q

N ,q0)

R2
Q

)

+
Lζ

2NR2
Z

∥∥∥∥ẑN +
Wxx

NRZ
∥Wxx̂N∥

∥∥∥∥2
2

≤
4Lζ

N
+
Lζ

N

(∥∥ẑN∥∥2
2

R2
Z

+ 1

)
①
≤

17Lζ

N
.

Here in ① we bounded
∥∥ẑN∥∥

2
the following way:

∥∥ẑN∥∥2
2
≤ 2R2

ZBζ(ζ̂
N , ζ0) ≤ 2R2

ZBζ(ζ
∗, ζ0)

≤ 2R2
Z

(
BX (x

∗,x0)

R2
X

+
BY(y

∗,y0)

R2
Y

+
BP(p

∗,p0)

R2
P

+
BQ(q

∗,q0)

R2
Q

+
BS(s

∗, s0)

R2
S

+
BZ(z

∗, z0)

R2
Z

)
≤ 12R2

Z .

As a result, we get

∥∥Wxx̂
N
∥∥
2
≤

17Lζ

NRZ
=

17Lζ

N

λ+min(Wx)

Mx

√
2

=
17

√
2Lζ

2NMx
λ+min(Wx).

Analogously we have

∥∥Wyŷ
N
∥∥
2
≤

17Lζ

NRS
=

17Lζ

N

λ+min(Wy)

My

√
2

=
17
√
2Lζ

2NMy
λ+min(Wy).

Let us now estimate the duality gap in objective function. Recall that

F (x̂N , p̂N ,y,q) + ⟨z,Wxx̂
N ⟩+ ⟨ŝN ,Wyy⟩ − F (x,p, ŷN , q̂N )− ⟨ẑN ,Wxx⟩ − ⟨s,Wyŷ

N ⟩

≤
Lζ

N

(
BX (x,x

0)

R2
X

+
BP(p,p

0)

R2
P

+
BY(y,y

0)

R2
Y

+
BQ(q,q

0)

R2
Q

+
BZ(z, z

0)

R2
Z

+
BS(s, s

0)

R2
S

)
.

Also recall that BT (t, t
0) ≤ R2

T for t ∈ {x,p,y,q} and T ∈ {X ,P,Y,Q}, respectively.
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Setting z = z0 = 0, s = s0 = 0 we obtain

F (x̂N , p̂N ,y,q) + ⟨ŝ,Wyy⟩ − F (x,p, ŷN , q̂N )− ⟨ẑ,Wxx⟩ ≤
4Lζ

N
.

Note that

max
Wyy=0

[
F (x̂N , p̂N ,y,q) + ⟨ŝN ,Wyy⟩

]
= max

Wyy=0
F (x̂N , p̂N ,y,q),

min
Wxx=0

[
F (x,p, ŷN , q̂N ) + ⟨ẑN ,Wxx⟩

]
= min

Wxx=0
F (x,p, ŷN , q̂N ).

Then

max
Wyy=0

F (x̂N , p̂N ,y,q)− min
Wxx=0

F (x,p, ŷN , q̂N ) ≤
4Lζ

N
. (25)

In the criterion above, the max and min operations are taken over consensus sets
Wxx = 0 and Wyy = 0, but the variables x̂, ŷ may not satisfy consensus constraints.
The criterion can be updated as follows.

Introduce ¯̂x
N

= 1
m11⊤x̂N , ¯̂y

N
= 1

m11⊤ŷN . Let us recall that gradients of F are
uniformly bounded (see Assumption 3.1 of the paper). Using convexity of F w.r.t x we
obtain

F (¯̂x
N
, p̂N ,y,q) ≤ F (x̂N , p̂N ,y,q)− ⟨∇Fx(¯̂x

N
, p̂N ,y,q), x̂N − ¯̂x

N
)⟩

≤ F (x̂N , p̂N ,y,q) + ∥∇Fx(¯̂x
N
, p̂N ,y,q)∥ · ∥x̂N − ¯̂x

N∥2

≤ F (x̂N , p̂N ,y,q) +
√
mMx ·

∥Wx(x̂
N − ¯̂x

N
)∥2

λ+min(Wx)

①
≤ F (x̂N , p̂N ,y,q) +

17Lζ
√
m

N

Mx

RZλ
+
min(Wx)

②
= F (x̂N , p̂N ,y,q) +

17Lζ√
2N

.

Here in ① we used the bound on consensus violation from Theorem 3.6 of the paper
and in ② we recalled the definition of RZ from Lemma 3.2. Carrying out an analogical

estimate of F (x,p, ¯̂y
N
, q̂N ), we obtain

max
Wyy=0

F (¯̂x
N
, p̂N ,y,q)− min

Wxx=0
F (x,p, ¯̂y

N
, q̂N ) ≤

(4 + 17
√
2)Lζ

N
.

3.4. Discussion for the Euclidean case

Theorem 3.5 ensures a O(1/ε) convergence guarantee but still does not provide explicit
dependencies on the network characteristics. We derive these dependencies in the
simplified Euclidean case.

Corollary 3.7. Let L ≜ max{L(x,p)(x,p), L(x,p)(y,q), L(y,q)(x,p), L(y,q)(y,q)}, M ≜
max{Mx,My} and χ = max{χ(Wx), χ(Wy)}. Let us also upper bound the sizes of the
sets: for Ti ∈

{
X̄ ,Pi, Ȳ,Qi

}
, let R2

Ti
≤ R2. For t ∈ {x,p,y,q} let t = (t⊤1 , . . . , t

⊤
m)⊤
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and introduce the average values t̂Nav = 1
m

∑m
i=1 t̂

N
i . Then after N iterations of Algorithm

1 it holds

max
y∈Ȳ,
q∈Q

1

m

m∑
i=1

fi(x̂
N
av, p̂

N
i , y, qi)− min

x∈X̄ ,
p∈P

1

m

m∑
i=1

fi(x, pi, ŷ
N
av, q̂

N
i ) = O

(
max

{
LR2

N
,
MRχ

N

})
,

(
1

m

m∑
i=1

∥∥x̂Ni − x̂Nav
∥∥2
2

)1/2

= O

(
max

{
LR2

MN
,
Rχ

N

})
,

(
1

m

m∑
i=1

∥∥ŷNi − ŷNav
∥∥2
2

)1/2

= O

(
max

{
LR2

MN
,
Rχ

N

})
.

Corollary 3.7 states the convergence rate in terms of number of iterations of Algorithm
1. Every iteration corresponds to one communication round and one oracle call per
node, resulting in equivalent oracle and communication complexities.

Remark 1. Let assumptions of Corollary 3.7 be satisfied. Additionally, let the critical
point of each fi(xi, pi, yi, qi) lie in the set X̄ ×Pi×Ȳ ×Qi (i = 1, . . . ,m). Then we have
M ≤ LR. The Chebyshev acceleration technique (see i.e. [37]) makes it possible to
reduce χ to O(1) at the cost of performing

√
χ communication rounds at each iteration.

As a result, Algorithm 1 requires O(LR2/ε) oracle calls per node and O(LR2√χ/ε)
communication rounds yield a point (x̂, p̂, ŷ, q̂) such that

max
y∈Ȳ,
q∈Q

1

m

m∑
i=1

fi(x̂
N
av, p̂

N
i , y, qi)− min

x∈X̄ ,
p∈P

1

m

m∑
i=1

fi(x, pi, ŷ
N
av, q̂

N
i ) ≤ ε.

As will be shown in Section 4, these oracle and communication complexities are optimal.

4. Lower bounds for distributed saddle point problems

In this section we present results on lower bounds. In obtaining them, we focus on the
Euclidean case. Before proceeding directly to the lower bounds, we need to identify
the class of algorithms for which they are valid. To describe this class of first-order
methods, we use a similar definition of Black-Box procedure as in [51]. We assume
that one local iteration costs t time units, and the communication round costs τ time
units. Additionally, information can be transmitted only along the undirected edge
of the network. Communications and local updates can take place in parallel and
asynchronously. More formally, it can be described as follows.

Assumption 4.1. Each machine i can collect past values for x, p and y, q in internal
memories Hx

i,T ⊆ Rdx , Hp
i,T ⊆ Rdpi , Hy

i,T ⊆ Rdy , Hq
i,T ⊆ Rdqi at time T ≥ 0.

Initialization. We assume that all nodes start with x0 = 0, p0i = 0, y0 = 0, q0i = 0,
then Hx

i,0 = {0}, Hp
i,0 = {0}, Hy

i,0 = {0}, Hq
i,0 = {0} for all i.

Connection. The internal memories are updated either by communications H̄x
i,T , H̄

y
i,T

or local steps Ĥx
i,T , Ĥ

p
i,T , Ĥ

y
i,T , Ĥ

q
i,T :

Hx
i,T ⊆ H̄x

i,T ∪ Ĥx
i,T , Hp

i,T ⊆ Ĥp
i,T , Hy

m,T ⊆ H̄y
m,T ∪ Ĥy

m,T , Hq
i,T ⊆ Ĥq

i,T .
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Communication. Each machine i can start to communicate with neighbors at time
T − τ , then, after τ units of time, the update of memories using communications can
be rewritten as follows:

H̄x
i,T ⊆ span

 ⋃
(j,i)∈E

Hx
j,T−τ

 , H̄y
i,T ⊆ span

 ⋃
(j,i)∈E

Hy
j,T−τ

 .

Local computation. Locally, each device i can find ∇xfi(x, p, y, q), ∇pi
fi(x, p, y, q),

∇yfi(x, p, y, q), ∇qifi(x, p, y, q) for all x ∈ Hx
i,T−t, p ∈ Hp

i,T−t, y ∈ Hy
i,T−t, q ∈ Hq

i,T−t.
Then, the local update is

Ĥx
i,T ⊆ span

{
x,∇xfi(x

′, p′, y′, q′),Mirr(γ∇xfi(x
′, p′, y′, q′);x;X )

}
,

Ĥp
i,T ⊆ span

{
p,∇pi

fi(x
′, p′, y′, q′),Mirr(γ∇pi

fi(x
′, p′, y′, q′); p;Pi)

}
,

Ĥy
i,T ⊆ span

{
y,∇yfi(x

′, p′, y′, q′),Mirr(γ∇yfi(x
′, p′, y′, q′); y;Y)

}
,

Ĥq
i,T ⊆ span

{
q,∇qfi(x

′, p′, y′, q′),Mirr(γ∇qifi(x
′, p′, y′, q′); q;Qi)

}
,

for all x, x′ ∈ Hx
i,T−t, p, p

′ ∈ Hp
i,T−t, y, y

′ ∈ Hy
i,T−t, q, q

′ ∈ Hq
i,T−t and all γ ∈ R. Mirr is

defined above in (15).
Output. When the algorithm ends (after T0 units of time), we have m local outputs

xfi ∈ Hx
i,T0

, pfi ∈ Hp
i,T0

, yfi ∈ Hy
i,T0

, qfi ∈ Hq
i,T0

. Suppose the final global output is
calculated as follows:

xf ∈ span

{
m⋃
i=1

Hx
i,T0

}
, pfi ∈ Hp

i,T0
, yf ∈ span

{
m⋃
i=1

Hy
i,T0

}
, qfi ∈ Hq

i,T0
.

Note that the above procedure do not communicate on variables pi and qi, because
they are local and unique for each node, in contrast with variables x and y. It is easy
to check that Algorithm 1 also satisfies the definition of the procedure above.

The idea of proving any lower bounds for optimization problems comes from the
first results on lower bounds for convex minimization [46]. The essence is to give an
example of a ”bad” function. In the case of distributed problems, it is also necessary
to ”badly” divide this function between m devices [51]. We consider a special case of
problem (1) (the variables p and q are dummies, and the sets P and Q are empty):

min
x∈X̄

max
y∈Ȳ

f(x, y) =
1

m

m∑
i=1

fi(x, y), (26)

where X̄ , Ȳ ⊂ Rd are balls with the centers at point 0 and some size R (see (16)).
We will define the size R and n more precisely in the proof (see Appendix 9). Since
we concentrate entirely on the Euclidean case, therefore the operator Mirr in the
procedure definition above can be replaced by the Euclidean projection operator:
Mirr(g, x,X) = projX(x− g) with projX(y) = argminz∈X ∥z − y∥2.

The global function f(x, y) in (26) is exactly an example of a bilinear function from
the work on non-distributed lower bounds for the strongly convex-strongly concave
case [60], but with strong convexity and strong concavity constants µ ∼ ε

R2 (see (34) in
Appendix 9). In fact, if we write the dual function for this f(x, y) from (34), we have
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exactly the problem from [46], but with a smoothness constant ∼ L2

µ (see Lemma 9.2

in Appendix 9). The problem (26) is decomposed into summands fi in such a way that
if we want to get closer to the solution, we need to communicate (see also [51]). This
idea is explained in more detail in Appendix 9. Here we only give a simplified version
of the main theorem.

Theorem 4.2. For any given L > 0, and χ ≥ 1, there exist
• functions fi defined on X̄ × Pi × Ȳ × Qi (i = 1, . . . ,m), such that they satisfy
Assumption 2.1, the averaged function f = 1

m

∑m
i=1 fi is L-smooth and all the sets

X̄ × Pi × Ȳ ×Qi have size R,
• a connected graph G and a gossip matrix W associated with it. The condition number
of the gossip matrix equals χ(W ) = χ.
Then for any decentralized algorithm satisfying Assumption 4.1 the minimal time T for
yielding a ε-solution (x̂, p̂, ŷ, q̂) (i.e. max

y∈Ȳ,q∈Q
f(x̂, p̂, y,q) − min

x∈X̄ ,p∈P
f(x,p, ŷ, q̂) ≤ ε)

is given by

T = Ω

(
LR2

ε
(t+

√
χτ)

)
.

Theorem 4.2 shows that the minimal number of oracle calls per node is Ω(LR2/ε)

and the minimal number of comunication rounds is Ω(LR2
√
χ(W )/ε). In Remark 1

we showed that in the euclidean case Algorithm 1 with Chebyshev acceleration reaches
these lower bounds when the critical point of each fi(xi, pi, yi, qi) lies in X̄ ×Pi×Ȳ×Qi

(i = 1, . . . ,m).

5. Application to the Wasserstein barycenters

Now we show the benefits of representing some convex problems as convex-concave
problems on the example of the Wasserstein barycenter (WB) problem and solve
it by the DMP algorithm. Similarly to Section (3), we consider a SPP in proximal
setup and introduce Lagrangian multipliers for the common variables. However, in
the Section 3 we obtained results in a general setup without additional knowledge
about cost functions and sets. On the contrary, in this section we utilize the special
structure of the WB problem and introduce slightly different norms. After that, we get
a convergence guarantee by applying Theorem 3.5.

The (fixed-support) WB of probability measures y1, y2 ..., ym from the probability
simplex ∆n is a solution of the following finite-dimensional optimization problem

min
x∈∆n

1

m

m∑
i=1

W(x, yi), (27)

where W(x, y) = minπ∈U(x,y)⟨C, π⟩ is optimal transport between two histograms x, y ∈
∆n, C ∈ Rn×n

+ is a given ground cost matrix, and π is a transport plan which belongs

to the transportation polytope U = {π ∈ Rn×n
+ , π1 = x, π⊤1 = y}. As we consider a

general cost matrix C, the optimal transport problem is more general than the problem
defining a Wasserstein distance.
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5.1. Saddle point problem formulation

Next we reformulate the WB problem (27) as a saddle point problem [17]. To do so,
we introduce stacked column vector bi = [x⊤, y⊤i ]

⊤, vectorized cost matrix d of C,

vectorized transport plan p ∈ ∆n2 of π, the incidence matrix A = {0, 1}2n×n2

, vectors
qi ∈ [−1, 1]2n for all i = 1, ...,m. Then the problem (27) can be equivalently rewritten
as

min
x∈∆n,

p1,...,pm∈∆n2

max
q1,...,qm∈[−1,1]2n

1

m

m∑
i=1

fi(x, pi, qi) ≜ d⊤pi + 2∥d∥∞
(
q⊤i Api − b⊤i qi

)
. (28)

Clearly, this problem fits the template (1). Then we can rewrite it for stacked column
vectors up to a mulplicative term 1/m to fit the template (14)

min
p∈P,x∈X

max
q∈Q

F (p,x,q) ≜ d⊤p+ 2∥d∥∞
(
q⊤Ap− b⊤q

)
s.t.: x1 = x2 = . . . = xm.

(29)

where x = [x⊤1 ∈ ∆n, . . . , x
⊤
m ∈ ∆n]

⊤ ∈ X ≜
∏m∆n (here

∏m∆n is the Cartesian

product of m simplices), p = [p⊤1 ∈ ∆n2 , . . . , p⊤m ∈ ∆n2 ]⊤ ∈ P ≜
∏m∆n2 , and

q = [q⊤1 , . . . , q
⊤
m]⊤ ∈ Q ≜ [−1, 1]2nm, b = [x⊤1 , y

⊤
1 , ..., x

⊤
m, y

⊤
m]⊤, d = [d⊤, . . . , d⊤]⊤ and

A = diag{A, ..., A} ∈ {0, 1}2mn×mn2

is the block-diagonal matrix.
Finally, to enable distributed computation of problem (29), we replace the constraint

x1 = · · · = xm by Wx = 0 (matrix W ≜W ⊗ In, where W is defined in (2)). Then we
introduce the Lagrangian dual variable z = [z⊤1 , . . . , z

⊤
m]⊤ ∈ Z ≜ Rnm corresponding

to the constraint Wx = 0 and rewrite the problem (29) as follows

min
u∈U

max
v∈AV

S(u,v) ≜ d⊤p+ 2∥d∥∞
(
q⊤Ap− b⊤q

)
+ ⟨z,Wx⟩, (30)

where u = (x,p),v = (q, z) and U ≜ X × P, AV ≜ Q× Rnm. Problem (30) fits the
form (17), hence it can be solved by the DMP.

5.2. Convergence guarantee

Before presenting the complexity bound for the DMP algorithm to solve the SPP (30),
we firstly bound the norm of dual variable z similarly to the general setup in Section 3.

Lemma 5.1. Let R2
Z = 8mnmaxi,j C

2
ij/(λ

+
min(W ))2. Then there exists a saddle point

(x∗,p∗,q∗, z∗) of problem (30) such that ∥z∗∥2 ≤ RZ .

This lemma is essentially a particular case of Lemma 3.1 for the WB problem.

Lemma 5.2. Objective S(u,v) in (30) is (Luu, Luv, Lvu, Lvv)-smooth with Luu =
Lvv = 0 and Luv = Lvu = 8m

√
2n lnnmaxi,j Cijχ w.r.t. norms

∥u∥2U =
1

m lnn

m∑
i=1

(
∥xi∥21 +

1

2
∥pi∥21

)
and ∥v∥2V =

1

mn

(
∥q∥22 +

(λ+min(W ))2∥z∥22
8maxi,j C2

ij

)
.
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Then similarly to (19) Lζ can be defined as follows

Lζ = 2max{Luu, Luv, Lvu, Lvv} = 16m
√
2n lnnmax

i,j
Cijχ. (31)

These two Lemmas proved in Appendix 10 together with (31) make it possible to
obtain the convergence guarantee for the DMP algorithm (see Algorithm 3 in Appendix
11).

Theorem 5.3. After N = (4 + 17
√
2)Lζ/(mε) iterations, Algorithm 3 with stepsize

α = 1/Lζ , where Lζ is defined in (31), yields output x̂N = [(x̂N1 )⊤, . . . , (x̂Nm)⊤]⊤ such
that

1

m

m∑
i=1

W(x̂Nav, yi)− min
x∈∆n

1

m

m∑
i=1

W(x, yi) ≤ ε and
∥∥Wx̂N

∥∥
2
= O

(√
mλ+min(W )ε√
nmaxi,j Cij

)
,

where x̂Nav = 1
m

∑m
i=1 x̂

N
i . The per node complexity of Algorithm 3 is

O

(
n2

ε

√
n lnnmax

i,j
C2
ijχ

)
.

The proof of follows from Theorem 3.5 and is given in the Appendix 10.

5.2.1. Discussion of the convergence results.

We comment on the complexity of the DMP algorithm compared to the existing state-
of-the-art methods: the iterative Bregman projections (IBP) algorithm, its accelerated
versions and primal dual algorithm (ADCWB), see Table 1. All of these methods use
entropic regularization of Wasserstein metric with parameter γ which must be taken
proportionally to accuracy ε.

Table 1.: Distributed algorithms for the WB problem

Algorithm Per node complexity(1)

IBP [7, 33] n2/(γε)
Accelerated IBP [26] n2

√
n/

√
γε

FastIBP [38] n2 3
√
n/(γε)2/3

ADCWB [16, 18] n2
√
n/

√
γε

DMP (this work) n2
√
n/ε

(1) The bounds are obtained by using the
Chebyshev acceleration.

5.3. Numerical experiments

In this section, we tested the DMP algorithm for computing WB (see Algorithm 3 in
the Appendix 11) on Gaussians measures and the notMNIST dataset.
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5.3.1. Evaluation on different network architectures.

We demonstrate the performance of the DMP algorithm on different network archi-
tectures with different conditional number χ: complete graph, star graph, cycle graph
and the Erdős-Rényi random graphs with the probability of edge creation p = 0.5 and
p = 0.4 under the random seed = 10. As the true barycenter of Gaussian measures
can be calculated theoretically [14], we use them to study the convergence of the
DMP to the non-optimality gap. We randomly generated 10 Gaussian measures with
equally spaced support of 30 points in [−10,−10], mean from [−5, 5] and variance from
[0.8, 1.8]. Figure 1 supports Theorem 5.3 and presents the convergence of the DMP to
the function non-optimality gap and the distance to the consensus. The smaller the
condition number, the faster the convergence.

Figure 1.: Convergence of the DMP algorithm on different network architectures.

5.3.2. Comparison with existing methods.

Next we compare the DMP with the most popular modern algorithms: the IBP [7] and
the ADCWB [18, Algorithm 4]. We illustrate a well-known issue: numerical instability
of regularized algorithms with a small value of parameter γ to solve the WB problem.
We ran the IBP and the ADCWB algorithms with different values of the regularization
parameter γ starting from γ = 0.1 and gradually decreasing its value to γ = 10−4. The
number of iterations was taken proportionally to 1/γ in the IBP and proportionally to
1/

√
γ in the ADCWB according to the theoretical bounds. Figure 2 shows that for a

certain value of γ (depending on the the experiment set and the number of method
iterations) the regularized algorithms diverge. Our unregularized DMP algorithm is
capable to achieve any accuracy, the more iteration the better accuracy. We ran it to
achieve about 10−8 accuracy, probably the machine accuracy.

We also illustrate the non-stability of the IBP and the ADCWB algorithms run
with γ = 10−4 on the notMNIST dataset, in particular for the letter ‘B’ presented in
various fonts. Figure 3 shows the best barycenters before the regularized algorithms
will diverge.

21



Figure 2.: Numerical instability of entropy-regularized based methods

Figure 3.: Barycenters of letter ‘B’ found by the DMP (left), the IBP (middle) and the
ADCWB (right).

6. Conclusion

We proposed a decentralized method for saddle point problems based on non-Euclidean
Mirror-Prox algorithm. Our reformulation is built upon moving the consensus con-
straints into the problem by adding Lagrangian multipliers. As a result, we get a
common saddle point problem that includes both primal and dual variables. After
that, we employ the Mirror-Prox algorithm and bound the norms of dual variables at
solution to assist the theoretical analysis. Finally, we demonstrate the effectiveness of
our approach on the problem of computing Wasserstein barycenters (both theoretically
and numerically).
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[50] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its application
to texture mixing. In International Conference on Scale Space and Variational Methods
in Computer Vision, pages 435–446. Springer, 2011.

[51] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for
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7. Supplementary for Section 2

Define a sequence of Chebyshev polynomials as T0(β) = 1, T1(β) = β and Tk+1(β) =

2βTk(β)−Tk−1(β) for k ≥ 1. After that, let c1 =
√
χ−1√
χ+1 , c2 = χ+1

χ−1 , c3 = 2
λmax(W̃ )+λ+

min(W̃ )

and introduce

PK(β) = 1− TK(c2(1− β))

TK(c2)
.

Now let us consider a new communication matrix PK(W̃) with K = ⌊√χ⌋. As

shown in [2], the spectrum of PK(W̃) lies in
[
1− 2cK1

1+c2K1
; 1 + 2cK1

1+c2K1

]
and therefore

λmax(PK(W̃)) = O(1), λ+min(PK(W̃)) = O(1) and χ(PK(W̃)) = O(1).
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8. Smoothness constants for Mirror-Prox

8.1. Estimating Lipschitz constants for S(u, v)

We start by deriving the Lipschitz constants Luu, Lvv, Luv, Lvu of the function S(u,v)
in (17). Recall that for an operator A which acts from a space V with a norm ∥v∥v
to a space W with a norm ∥w∥w, then these two norms naturally induce a norm of
the operator A as ∥A∥v→w = maxv,w{∥Av∥w : ∥v∥v ≤ 1}, which gives an inequality
∥Av∥w ≤ ∥A∥v→w∥v∥v. Recall also that (17) is a reformulation of (14) in a simpler
form using the definitions u = (x⊤,p⊤, s⊤)⊤, v = (y⊤,q⊤, z⊤)⊤ and

S(u,v) = F (x,p,y,q) + ⟨s,Wyy⟩+ ⟨z,Wxx⟩ .

Then for the corresponding partial derivatives we have

∇uS(u,v) =

 ∇xF (x,p,y,q) +Wxz
∇pF (x,p,y,q)
Wyy

 , ∇vS(u,v) =

∇yF (x,p,y,q) +Wys
∇qF (x,p,y,q)
Wxx

 .
Let AU = X × P × Rndq , AV = Y × Q × Rndp and U = X × P × {s : ∥s∥2 ≤ RS},
V = Y ×Q× {z : ∥z∥2 ≤ RZ}. Recall that we introduced norms ∥u∥2U = ∥x∥2X /R2

X +

∥p∥2P /R2
P+∥s∥22 /R2

S , ∥v∥
2
V = ∥y∥2Y /R2

Y+∥q∥2Q /R2
Q+∥z∥22 /R2

Z , which induce the dual

norms ∥u∥2U ,∗ = R2
X ∥x∥2X ,∗ +R2

P ∥p∥2P,∗ +R2
S ∥s∥22, ∥v∥

2
V,∗ = R2

Y ∥y∥2Y,∗ +R2
Q ∥q∥2Q,∗ +

R2
Z ∥z∥22. The constant Luu has to satisfy ∥∇uS(u,v)−∇uS(u

′,v)∥U ,∗ ≤ Luu∥u−u′∥U
for all u,u′ ∈ AU . We have

∥∇uS(u,v)−∇uS(u
′,v)∥2U ,∗ =

∥∥∥∥∥∥
 ∇xF (x,p,y,q)−∇xF (x

′,p′,y,q)
∇pF (x,p,y,q)−∇pF (x

′,p′,y,q)
0

∥∥∥∥∥∥
2

U ,∗

= R2
X
∥∥∇xF (x,p,y,q)−∇xF (x

′,p′,y,q)
∥∥2
X ,∗

+R2
P
∥∥∇pF (x,p,y,q)−∇pF (x

′,p′,y,q)
∥∥2
P,∗

≤ (R2
X +R2

P)

∥∥∥∥[ ∇xF (x,p,y,q)−∇xF (x
′,p′,y,q)

∇pF (x,p,y,q)−∇pF (x
′,p′,y,q)

]∥∥∥∥2
(X ,P),∗

≤ L2
(x,p)(x,p)(R

2
X +R2

P)

∥∥∥∥[ x− x′

p− p′

]∥∥∥∥2
(X ,P)

= L2
(x,p)(x,p)(R

2
X +R2

P)

(
R2

X
∥x− x′∥2X

R2
X

+R2
P
∥p− p′∥2P

R2
P

)
≤ L2

(x,p)(x,p)(R
2
X +R2

P)
2∥u− u′∥2U ,

where we used that ∥(x,p)∥2(X ,P),∗ = ∥x∥2X ,∗+∥p∥2P,∗ since ∥(x,p)∥
2
(X ,P) = ∥x∥2X+∥p∥2P ,

Assumption 3.3. Thus, Luu = L(x,p)(x,p)(R
2
X+R2

P). The equality Lvv = L(y,q)(y,q)(R
2
Y+

R2
Q) is proved in the same way.
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Let us estimate Luv, which has to satisfy ∥∇uS(u,v)−∇uS(u,v
′)∥U ,∗ ≤ Luv∥v −

v′∥V for all v,v′ ∈ AV . We have

∥∇uS(u,v)−∇uS(u,v
′)∥2U ,∗

=

∥∥∥∥∥∥
 ∇xF (x,p,y,q) +Wxz−∇xF (x,p,y

′,q′)−Wxz
′

∇pF (x,p,y,q)−∇pF (x,p,y
′,q′)

Wyy −Wyy
′

∥∥∥∥∥∥
2

U ,∗
①
= R2

X ∥∇xF (x,p,y,q)−∇xF (x,p,y
′,q′) +Wx(z− z′)∥2X ,∗

+R2
P∥∇pF (x,p,y,q)−∇pF (x,p,y

′,q′)∥2P,∗ +R2
S∥Wy(y − y′)∥22

②
≤ 2R2

X ∥∇xF (x,p,y,q)−∇xF (x,p,y
′,q′)∥2X ,∗ + 2R2

X ∥Wx(z− z′)∥2X ,∗

+R2
P∥∇pF (x,p,y,q)−∇pF (x,p,y

′,q′)∥2P,∗ +R2
S∥Wy(y − y′)∥22

③
≤ 2(R2

X +R2
P)

∥∥∥∥[ ∇xF (x,p,y,q)−∇xF (x,p,y
′,q′)

∇pF (x,p,y,q)−∇pF (x,p,y
′,q′)

]∥∥∥∥2
(X ,P),∗

+ 2R2
X ∥Wx∥22→(x,∗)∥z− z′∥22 +R2

S∥Wy∥2y→2∥y − y′∥2Y
④
≤ 2L2

(x,p)(y,q)(R
2
X +R2

P)

∥∥∥∥[ y − y′

q− q′

]∥∥∥∥2
(Y,Q)

+ 2R2
X ∥Wx∥22→(x,∗)∥z− z′∥22

+R2
S∥Wy∥2y→2∥y − y′∥2Y

≤
(
2L2

(x,p)(y,q)(R
2
X +R2

P)(R
2
Y +R2

Q) + 2R2
XR

2
Z ∥Wx∥22→(x,∗)

+ 2R2
YR

2
S ∥Wy∥2y→2

)∥∥v − v′∥∥2
V ,

where we used in ① the definition of ∥u∥2U ,∗; in ② the inequality (a+ b)2 ≤ 2a2 + 2b2;

in ③ that ∥(x,p)∥2(x,p),∗ = ∥x∥2X ,∗+ ∥p∥2P,∗ since ∥(x,p)∥2(X ,P) = ∥x∥2X + ∥p∥2P and the

definition of the operator norm; in ④ Assumption 3.3; and, finally, in ⑤ the definition
of ∥v∥2V . Taking the square root of the derived inequality, we obtain

Luv ≤
√
2max

{
L(x,p)(y,q)

√
(R2

X +R2
P)(R

2
Y +R2

Q),

RXRZ ∥Wx∥2→(x,∗) , RYRS ∥Wy∥y→2

}
.

The bound for Lvu is derived in the same way:

Lvu ≤
√
2max

{
L(y,q)(x,p)

√
(R2

X +R2
P)(R

2
Y +R2

Q),

RXRZ ∥Wx∥x→2 , RYRS ∥Wy∥2→(y,∗)

}
.

9. Proof of lower bounds from Theorem 4.2

Let B ⊆ V be a subset of nodes of G. For ρ > 0 we define Bρ = {v ∈ V : ρ(B, v) ≥ ρ},
where ρ(B, v) is a distance between set B and node v. Then, we construct the following
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arrangement of bilinearly functions on nodes:

fi(x, y) =


m
|Bρ| ·

L
4 x

TA1y +
16ε
R2 ∥x∥22 − 16ε

R2 ∥y∥22 − m
|Bρ| ·

L2R2

ε eT1 y, i ∈ Bρ,
m
|B| ·

L
4 x

TA2y +
16ε
R2 ∥x∥22 − 16ε

R2 ∥y∥22, i ∈ B,
16ε
R2 ∥x∥22 − 16ε

R2 ∥y∥22, otherwise,

(32)

where L, ε > 0, e1 = (1, 0 . . . , 0) and

A1 =



1 0
1 −2

1 0
1 −2

. . . . . .
1 −2

1 0
1


, A2 =



1 −2
1 0

1 −2
1 0

. . . . . .
1 0

1 −2
1


.

We will give the value of ρ later.

Lemma 9.1. If Bρ ̸= ∅, in the global output of any procedure that satisfies Assumption

4.1, after T units of time, only the first k =
⌊
T−2t
t+ρτ

⌋
+ 2 coordinates can be non-zero,

the rest of the d− k coordinates are strictly equal to zero.

Proof. Consider an arbitrary moment T0. Following Assumption 4.1 one can write
down how Hx, Hy changes in one local step:

Hx
i,T0+t ⊆


span {x,A1y} , i ∈ Bρ

span {x,A2y} , i ∈ B

span {x} , otherwise

,

Hy
i,T0+t ⊆


span

{
e1, y, A

T
1 x
}
, i ∈ Bρ

span
{
y,AT

2 x
}
, i ∈ B

span {y} , otherwise

,

for x ∈ Hx
i,T0

,∀y ∈ Hy
i,T . Here we take into account that the projection operator on the

ball centered at 0 has no effect on the expressions written above in terms of span.
The block-diagonal structure of matrices A1 and A2 plays an important role. In

particular, let for some i we have Hx
i,T0

⊆ span {e1, . . . , ekx
} , Hy

i,T0
⊆ span

{
e1, . . . , eky

}
,

then for any number H ∈ N of local iterations (without communications) and k =
max{kx, ky}, we get

Hx
i,T0+tH , H

y
i,T0+tH ⊆


span

{
e1, . . . , e2⌈ k+1

2 ⌉−1

}
, i ∈ Bρ,

span
{
e1, . . . , e2⌈ k

2⌉
}
, i ∈ B,

span {e1, . . . , ek} , otherwise.

(33)

This fact leads to the main idea of the proof. At the initial moment of time T = 0,
we have all zero coordinates in the global output, since the starting points x0, y0 are
equal to 0. Using only local iterations (at least 2), we can achieve that for the nodes
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Bρ only the first coordinates of x and y can be non-zero, the rest coordinates are
strictly zero. For the rest of the nodes, all coordinates remains strictly zero. Without
communications, the situation does not change. Therefore, we need to make at least
ρ communications in order to have non-zero first coordinates in some node from B
(transfer of information from Bρ to B). Using (33), by local iterations (at least 1) at
the node of the set B, one can achieve the first and second non-zero coordinates. Next
the process continues with respect of (33).

Hence, to get at least one node i ∈ V with the internal memory Hx
i ,H

y
i ⊆

span {e1, . . . , ek0
}, we need a minimum of k0 + 1 local steps (at least 2 steps in the

beginning, when we start from 0, and then at least 1 local step in other cases – see
previous paragraph), as well as (k0 − 1)ρ communication rounds. In other words,

max
i

[
max{k ∈ N : ∃x ∈ Hx

i,T , ∃y ∈ Hy
i,T s.t. xk ̸= 0, yk ̸= 0}

]
≤
⌊
T − 2t

t+ ρτ

⌋
+ 2.

According to Assumption 4.1, we have that the final global output is the union of all
the outputs. Whence the statement of Lemma holds.

The previous lemma gives us an understanding of how quickly we can approximate
the solution. In particular, in coordinates that can be non-zero we are able to have
a value that absolutely coincides with the solution, but in zero coordinates this is
impossible. It remains to understand what the solution even looks like. Considering
the global objective function, we have:

f(x, y) =
1

M

M∑
m=1

fm(x, y)

=
1

M
(|Bρ| · f1(x, y) + |B| · f2(x, y) + (M − |Bρ| − |B|) · f3(x, y))

=
L

2
xTAy +

16ε

R2
∥x∥22 −

16ε

R2
∥y∥22 −

L2R2

ε
eT1 y, with A =

1

2
(A1 +A2). (34)

With ∥A∥ ≤ 2, it is easy to check that fi is convex-concave and f is also max{L, 32εR2 }-
smooth.

Lemma 9.2 (Lemma 3.3 from [60]). Let α = 32ε2

L2R4 and q = 1
2

(
2 + α−

√
α2 + 4α

)
∈

(0; 1) – the smallest root of q2 − (2 + α)q + 1 = 0, and let introduce the approximation
of the solution ȳ∗:

ȳ∗i =
qi

1− q
.

Then error between the approximation and the real solution of (34) can be bounded:

∥ȳ∗ − y∗∥2 ≤
qd+1

α(1− q)
.

Proof. Let us write the dual function for (34):

g(y) = −1

2
yT
(
L2R2

ε
ATA+

32ε

R2
I

)
y +

L2R2

ε
eT1 y,
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where one can easy found

AAT =



1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 2


.

The optimality of the dual problem (∇g(y∗) = 0) gives(
L2R2

ε
ATA+

32ε

R2
I

)
y∗ =

L2R2

ε
e1,

or, with α = 32ε2

L2R4 , we get (
ATA+ αI

)
y∗ = e1.

One can note that for the approximation of the solution ȳ it holds
(1 + α)ȳ∗1 − ȳ∗2 = 1
−ȳ∗1 + (2 + α)ȳ∗2 − ȳ∗3 = 0
. . .
−ȳ∗d−2 + (2 + α)ȳ∗d−1 − ȳ∗d = 0

−ȳ∗d−1 + (2 + α)ȳ∗d = qd+1

1−q

or in the form of a system of equations

(
ATA+ αI

)
ȳ∗ = e1 +

qd+1

1− q
ed.

Hence, we have

ȳ∗ − y∗ =
(
ATA+ αI

)−1 qd+1

1− q
ed,

With the fact α−1I ⪰
(
ATA+ αI

)−1 ≻ 0, we prove the statement of Lemma.

Now we formulate a key lemma (similar to Lemma 3.4 from [60]).

Lemma 9.3. If Bρ ̸= ∅, let consider a distributed saddle point problem in the form

(32). For any time T one can found size of problem d ≥ max
{
2 logq

(
α

4
√
2

)
, 2k
}
, where

k =
⌊
T−2t
t+ρτ

⌋
+ 2, take α = 32ε2

L2R4 and q = 1
2

(
2 + α−

√
α2 + 4α

)
∈ (0; 1). Then, for any

procedure satisfying Assumption 4.1 we get the following lower bound for the solution
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after T units of time:

∥xT − x∗∥22 + ∥yT − y∗∥22 ≥ q
2
(

T

t+ρτ
+2

) ∥y0 − y∗∥22
16

.

Proof. By Lemma 9.2 with q < 1 and k ≤ d
2 , we have

∥yT − ȳ∗∥22 ≥

√√√√ d∑
j=k+1

(ȳ∗j )
2 =

qk

1− q

√
q2 + q4 + . . .+ q2(d−k)

≥ qk√
2(1− q)

√
q2 + q4 + . . .+ q2d =

qk√
2
∥ȳ∗∥22 =

qk√
2
∥y0 − ȳ∗∥22.

For d ≥ 2 logq

(
α

4
√
2

)
we can guarantee that ȳ∗ ≈ y∗ and also (for more details see [60])

∥xT − x∗∥22 + ∥yT − y∗∥22 ≥ ∥yT − y∗∥22 ≥
q2k

16
∥y0 − y∗∥22 = q

2
(⌊

T−2t

t+ρτ

⌋
+2

) ∥y0 − y∗∥22
16

≥ q
2
(

T

t+ρτ
+2

) ∥y0 − y∗∥22
16

.

In the conditions of Lemma 9.3 there is a choice of d. With given y∗ we can also
determine the size of the ball R. More precisely we want y∗ ∈ Ȳ, then we can choose
R = 1√

2
∥y∗−y0∥ = 1√

2
∥y∗∥ (see (16)). Now we are ready to combine the facts obtained

above and prove Theorem 4.2.

Theorem 9.4 (Theorem 4.2). Let L > 0, χ ≥ 1, ε > 0. Additionally, we assume that
L ≥ 32ε

R2 . There exists a distributed saddle point problem of m (defined in the proof)
functions with decentralized architecture and a gossip matrix W , for which the following
statements are valid:

• each function fi : Rd × Rd → R is convex-concave,
• f = 1

m

∑m
i=1 fi : Rd × Rd → R is L-smooth and has y∗ ̸= 0,

• d ≥ max
{
2 logq

(
α

4
√
2

)
, 2k
}
, where k =

⌊
T−2t
t+τ

⌋
+ 2, α = 32ε2

L2R4 and q =

1
2

(
2 + α−

√
α2 + 4α

)
∈ (0; 1),

• X̄ × Ȳ is bounded and has a size R = 1√
2
∥y∗∥,

• the gossip matrix W have χ(W ) = χ.

Then for any procedure, which satisfies Assumption 4.1, one can bounded the time to
achieve a ε-solution (i.e. maxy∈Ȳ f(xT , y) −minx∈X̄ f(x, yT ) ≤ ε) in the final global
output:

T = Ω

(
LR2

ε
(t+

√
χτ)

)
.
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Proof. We start the proof from Lemma 9.3 and get:

∥xT − x∗∥2 + ∥yT − y∗∥2 ≥ q
2
(

T

t+ρτ
+2

) ∥y0 − y∗∥2

16
.

Using 32ε
R2 - strong convexity – strong concavity of (34), we can obtain

max
y∈Ȳ

f(xT , y)−min
x∈X̄

f(x, yT ) ≥ f(xT , y
∗)− f(x∗, y∗) + f(x∗, y∗)− f(x∗, yT )

≥ 16ε

R2
∥xT − x∗∥2 + 16ε

R2
∥yT − y∗∥2,

and

max
y∈Ȳ

f(xT , y)−min
x∈X̄

f(x, yT ) ≥ q
2
(

T

t+ρτ
+2

)
· ε

R2
∥y0 − y∗∥2 ≥ q

2
(

T

t+ρτ
+2

)
· 2ε.

If maxy∈Ȳ f(x
T , y)−minx∈X̄ f(x, y

T ) ≤ ε, we get

2T

t+ ρτ
= Ω

(
logq−1(2)

)
. (35)

The next steps of the proof follows similar way with the proof of [51, Theorem 2]. Let

χm =
1+cos

π
m

1−cos
π
m

be an increasing sequence of positive numbers (this sequence is also the

condition numbers for the Laplacian of a linear graph of m vertexes). Since γ2 = 1 and
limm χm = +∞, there exists m ≥ 2 such that χm ≤ χ < χm+1.

• Ifm ≥ 3, let us consider a linear graph withm vertexes v1, . . . vm and with weighted
edges w1,2 = 1 − a and wi,i+1 = 1 for i ≥ 2. If Wa is the Laplacian of this weighted
graph, one can note that with a = 0, χ(Wa) = γm, with a = 1, we have χ(Wa) = +∞.

Hence, there exists a ∈ [0; 1) such that χ(Wa) = χ. Then χ < χm+1 ≤ (m+1)2

2 . Finally,
if B = {v1}, B̄ = {vm}, ρ = m− 1 and then, ρ ≥

√
2χ− 2. Using (35), we have

T = Ω

(
(t+

√
χτ)

1

ln q−1

)
.

• If M = 2, we construct a fully connected network with 3 nodes and a weight
w1,3 = a ∈ [0; 1]. Let Wa is the Laplacian. If a = 0, then the network is a linear graph
and χ(Wa) = χ3 = 3. Hence, there exists a ∈ [0; 1) such that χ(Wa) = χ. We take
B = {v1}, B̄ = {v3} and get ρ ≥ 1 ≥ χ

3 . Finally, we have the same estimate as in the
previous point

T = Ω

(
(t+

√
χτ)

1

ln q−1

)
.
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Next, we work with

1

ln(q−1)
=

1

ln(1 + (1− q)/q))
≥ q

1− q

=
1 + α

2 −
√

α2

4 + α√
α2

4 + α− α
2

=

√
α2

4 + α− α
2

α

=

√
1

4
+

1

α
− 1

2
=

√
1

4
+

1

32

(
LR2

ε

)2

− 1

2
.

Hence, we get

T = Ω

(
LR2

ε
(t+

√
χτ)

)
.

10. Missing proofs from Section 5

Proof of Lemma (5.1). From Lemma 3.1 it holds

R2
Z =

2mM2
x

(λ+min(W ))2
(36)

where positive scalarMx is such that: ∥∇xfi(x, pi, qi)∥2 ≤Mx and fi(x, pi, qi) is defined
in (28). Next we calculate its gradient

∇xfi(x, pi, qi) = −2∥d∥∞[qi]1...n,

where [qi]1...n is the first n component of vector qi ∈ [−1, 1]2n. As qi ∈ [−1, 1]2n we have

∥∇fi(x, pi, qi)∥2 = 2∥d∥∞∥[qi]1...n∥2 ≤ 2∥d∥∞
√
n =Mx. (37)

Thus, using this and the definition of d which provides ∥d∥∞ = maxi,j Cij for (36) we
get

R2
Z =

8mnmaxi,j C
2
ij

(λ+min(W ))2
.

Proof of Lemma (5.2). As S(u,v) from (17) is bilinear, Luu = Lvv = 0. Then from
Lemma 3.4 it follows that S(u,v) is (0, Luv, Lvu, 0)-smooth, where

Luv =
√
2
(
L(x,p)q

√
(R2

X +R2
P)R

2
Q +RXRZ ∥W∥2→(x,∗)

)
,

Lvu =
√
2
(
Lq(x,p)

√
(R2

X +R2
P)R

2
Q +RXRZ ∥W∥x→2

)
. (38)
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As xi ∈ ∆n and pi ∈ ∆n2 , we use the simplex setup: ℓ1-norm and the following
prox-functions on ∆n and ∆n2

d∆n
(xi) = ⟨xi, log xi⟩ and d∆n2 (pi) = ⟨pi, log pi⟩. (39)

For X ≜
∏m∆n and P ≜

∏m∆n2 , we choose the following ℓ1/ℓ2-norms

∥x∥2X =

m∑
i=1

∥xi∥21 and ∥p∥2P =

m∑
i=1

∥pi∥21. (40)

Then from (16) we have

R2
∆n

= max
xi∈∆n

d∆n
(xi)− min

xi∈∆n

d∆n
(xi) = lnn,

R2
∆n2

= max
pi∈∆n2

d∆n2 (pi)− min
pi∈∆n2

d∆n2 (pi) = 2 lnn.

Then from this and definitions of X ≜
∏m∆n and P ≜

∏m∆n2 , it follows

R2
X =

m∑
i=1

R2
∆n

= m lnn, and R2
P =

m∑
i=1

R2
∆n2

= 2m lnn. (41)

Using this and (39), we get

du(u) =

m∑
i=1

(
d∆n

(xi)

R2
X

+
d∆n2 (pi)

R2
P

)
=

1

m lnn

m∑
i=1

(
⟨xi, lnxi⟩+

1

2
⟨pi, ln pi⟩

)
(42)

From (18) and (40), it holds

∥u∥2U =
∥x∥2X
R2

X
+

∥p∥2P
R2

P
=

1

m lnn

m∑
i=1

(
∥xi∥21 +

1

2
∥pi∥21

)

Now as AV is unbounded, we define V = Q× {z : ∥z∥2 ≤ RZ}. On V we define the
Euclidean prox-setup. Let Qi ≜ [−1, 1]2n. Then for qi ∈ Qi we define

dQi
(qi) =

1

2
∥qi∥22. (43)

Then

R2
Q =

m∑
i=1

R2
Qi

=
1

2

m∑
i=1

max
qi∈Qi

∥qi∥2 − min
q∈Qi

∥qi∥2 = mn (44)

Then using this, (43) and Lemma (5.1), we have

dv(v) =

m∑
i=1

dQi
(qi)

R2
Q

+
dZi

(zi)

R2
Z

=
1

2mn

(
∥q∥22 +

(λ+min(W ))2∥z∥22
8maxi,j C2

ij

)
. (45)
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From (18) we have

∥v∥2V =
∥q∥2Q
R2

Q
+

∥z∥22
R2

Z
=

1

2mn

(
∥q∥22 +

(λ+min(W ))2∥z∥22
8maxi,j C2

ij

)
.

Thus, we use (41), (44) and rewrite Eq. (38)

Luv = m
√
n lnn

(√
6L(x,p)q +

4∥d∥∞
λmin(W )

∥W∥2→(x,∗)

)
,

Lvu = m
√
n lnn

(√
6Lq(x,p) +

4∥d∥∞
λmin(W )

∥W∥x→2

)
. (46)

Now we consider

∥W∥2x→2 = max
∥x∥2

X≤1
∥Wx∥22 = max∑m

i=1 ∥xi∥2
1≤1

∥Wx∥22 . (47)

The set
∑m

i=1 ∥xi∥21 ≤ 1 is contained in the set
∑n

j=1

∑m
i=1[xi]

2
j ≤ 1 as cros-product

terms of ∥xi∥21 are non-negative. Thus, we can change the constraint in the minimum
in Eq. (47) as follows

max∑m
i=1 ∥xi∥2

1≤1
∥Wx∥22 ≤ max∑n

j=1

∑m
i=1[xi]2j≤1

∥Wx∥22 = max
∥x∥2

2≤1
∥Wx∥22

= max
∥x∥2≤1

∥Wx∥22 ≜ λ2max(W) = λ2max(W ). (48)

The last inequality holds due to W ≜ W ⊗ In and the properties of the Kronecker
product for eigenvalues. Thus, ∥W∥x→2 = λ2max(W ).
Next, we consider

∥W∥2x→2 = max
∥x∥2

2≤1
∥Wx∥2X ,∗ = max

∥x∥2
2≤1

m∑
i=1

∥Wx∥2∞ ≤ max
∥x∥2

2≤1

m∑
i=1

∥Wx∥22

= max
∥x∥2

2≤1
∥Wx∥22 = λ2max(W ), (49)

where the last equality holds due to (48). Next, we estimate L(x,p)q and Lq(x,p) by the
definition ∥∥∥∥[ ∇xF (x,p,q)−∇xF (x,p,q

′)
∇pF (x,p,q)−∇pF (x,p,q

′)

]∥∥∥∥
(X ,P),∗

≤ L(x,p)q∥q− q′∥2 (50)

From the definition of dual norm and ∥(x,p)∥2(X ,P) = ∥x∥2X + ∥p∥2P , it follows∥∥∥∥[ ∇xF (x,p,q)−∇xF (x,p,q
′)

∇pF (x,p,q)−∇pF (x,p,q
′)

]∥∥∥∥
(X ,P),∗

= max
∥x∥2

X+∥p∥2
P≤1

〈[
x
p

]
,

[
∇xF (x,p,q)−∇xF (x,p,q

′)
∇pF (x,p,q)−∇pF (x,p,q

′)

]〉
.
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From this and (50) we get

max
∥x∥2

1+∥1∥2
P≤1

〈[
x
p

]
,

[
∇xF (x,p,q)−∇xF (x,p,q

′)
∇pF (x,p,q)−∇pF (x,p,q

′)

]〉
≤ L(x,p)q∥q− q′∥2. (51)

By the definition of F (x,p,q) we have

 ∇xF (x,p,q)
∇pF (x,p,q)
−∇qF (x,p,q)

 =

−2∥d∥∞{[qi]1...n}mi=1

d+ 2∥d∥∞A⊤q
−2∥d∥∞(Ap− b)


Here {[qi]1...n}mi=1 is a short form of vector ([q1]1...n, [q2]1...n, ..., [qm]1...n).

From this it follows that

[
∇xF (x,p,q)
∇pF (x,p,q)

]
is linear function in q− q′, then (51) can be

rewritten as

L(x,p)q = max
∥q−q′∥2≤1

max
∥x∥2

X+∥p∥2
P≤1

〈[
x
p

]
,

[
∇xF (x,p,q)−∇xF (x,p,q

′)
∇pF (x,p,q)−∇pF (x,p,q

′)

]〉
. (52)

Then [
∇xF (x,p,q)−∇xF (x,p,q

′)
∇pF (x,p,q)−∇pF (x,p,q

′)

]
=

[
−2∥d∥∞({[qi − q′i]1...n}mi=1)

2∥d∥∞A⊤(q− q′)

]
= 2∥d∥∞

(
−E
A⊤

)(
q− q′) ,

where E ∈ {1, 0}mn×2mn is a block-diagonal matrix

E =


[
In 0n×n

]
· · · 02n×n

...
. . .

...
02n×n · · ·

[
In 0n×n

]
 .

Thus, we use this for (52) and get

L(x,p)q = max
∥x∥2

X+∥p∥2
P≤1

max
∥x∥2

1+∥1∥2
P≤1

〈[
x
p

]
, 2∥d∥∞

[
−E
A⊤

] [
q− q′]〉 . (53)

By the same arguments we can get the same expression for Lq(x,p) up to rearrangement
of maximums. Next, we use the fact that the ℓ2-norm is the conjugate norm for the
ℓ2-norm. From this and (52) it follows

L(x,p)q = max
∥x∥2

X+∥p∥2
P≤1

2∥d∥∞
∥∥∥∥[−E⊤ A

] [x
p

]∥∥∥∥
2

= max
∥x∥2

X+∥p∥2
P≤1

2∥d∥∞
∥∥∥−E⊤x+Ap

∥∥∥
2

(54)
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Then

∥ − E⊤x+Ap∥22 =
m∑
i=1

∥∥∥∥−(xi0n
)
+Api

∥∥∥∥2
2

≤
m∑
i=1

∥xi∥22 +
m∑
i=1

∥Api∥22. (55)

The last bound holds due to ⟨Api, (x⊤i , 0⊤n )⟩ ≥ 0 as the entries of A,p,x are non-
negative.
Next we use this for (54)

L2
(x,p)q = 4∥d∥2∞ max

∥x∥2
X+∥p∥2

P≤1
∥Ap− Ex∥22 = max

∥x∥2
X+∥p∥2

P≤1
∥Ap− Ex∥22

(55)

≤ 4∥d∥2∞ max
α∈∆2m

(
m∑
i=1

max
∥pi∥2

1≤αi

∥Api∥22 +
m∑
i=1

max
∥xi∥2

1≤αi+m

∥xi∥22

)

= 4∥d∥2∞ max
α∈∆2m

(
m∑
i=1

αi max
∥pi∥1≤1

∥Api∥22 +
m∑
i=1

αi+m max
∥xi∥1≤1

∥xi∥22

)
. (56)

By the definition of incidence matrix A we get Api = (h⊤1 , h
⊤
2 ), where h1 and h2 such

that 1⊤h1 = 1⊤h2 =
∑n2

j=1[pi]j = 1 as pi ∈ ∆n2 ∀i = 1, ...,m. Thus,

∥Api∥22 = ∥h1∥22 + ∥h2∥22 ≤ ∥h1∥21 + ∥h2∥21 = 2. (57)

As xi ∈ ∆n, ∀i = 1, ...,m we have

max
∥xi∥1≤1

∥xi∥22 ≤ max
∥xi∥1≤1

∥xi∥21 = 1. (58)

Using (57) and (58) in (56) we get

L2
(x,p)q = 4∥d∥2∞ max

∥p∥2
1+∥x∥2

1≤1
∥Ap− Ex∥22

≤ 4∥d∥2∞ max
α∈∆2m

m lnn

(
2

m∑
i=1

αi +

2m∑
i=m+1

αi

)
≤ max

α∈∆2m

2

2m∑
i=1

αi = 8∥d∥2∞. (59)

Hence,

L(x,p)q = Lq(x,p) = 2
√
2∥d∥∞. (60)

Using this, (48) and (49) for (46) and we get

Luv = Lvu = Lvu = 4m
√
n lnn∥d∥∞

(√
3 + χ

)
. (61)

Then we use that for any a, b,
√
a2 + b2 ≤

√
2max{a, b} and rewrite this as follows

Lvu = 4m
√
n lnn∥d∥∞

(√
3 + χ

)
≤ 4m

√
2n lnn∥d∥∞max{

√
3, χ} ≤ 8m

√
2n lnn∥d∥∞χ.

The last holds due to χ ≥ 1 for any graph. Finally, we use ∥d∥∞ = maxi,j Cij and
finish the proof.
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10.1. Proof of Theorem 5.3

Proof of Theorem 5.3. From the Theorem 3.5, it holds

max
q∈Q

m∑
i=1

fi(x̂
N
av, p̂

N
i , qi)− min

x∈X̄ ,
p∈P

m∑
i=1

fi(x, pi, q̂
N
i ) ≤

(4 + 17
√
2)Lζ

N
(62)

where from (28)

fi(xi, pi, qi) ≜ d⊤pi + 2∥d∥∞
(
q⊤i Api − b⊤i qi

)
(63)

and ∥∥Wx̂N
∥∥
2
≤

17Lζ

NRZ
. (64)

By the definition of optimal transport

W(xi, yi) = min
π∈U(xi,yi)

⟨C, π⟩ = min
Api=bi,pi∈∆n

d⊤pi = min
pi∈∆n

d⊤pi + 2∥d∥∞∥Api − bi∥1,

= min
pi∈∆n

max
qi∈[−1,1]2n

d⊤pi + 2∥d∥∞
(
q⊤i Api − b⊤i qi

)
, (65)

where we used the representation of optimal transport from paper [28] based on the
definition of the ℓ1-norm.
Together with (65) and (63), we rewrite (62) as follows

m∑
i=1

W(x̂Nav, yi)− min
x∈∆n

m∑
i=1

W(x, yi) ≤
(4 + 17

√
2)Lζ

N

Equating this to mε we get the number of iteration for the Algorithm 11

N =
(4 + 17

√
2)Lζ

mε
. (66)

Thus, the initial SPP scaled by 1/m will be solved with ε-precision.
Next, we use Lemma 5.1 for (64) and get

∥∥Wx̂N
∥∥
2
≤

17Lζ

N
·

λ+min(W )

2
√
2mnmaxi,j Cij

. (67)

Then we use (66) and get

∥∥Wx̂N
∥∥
2
≤

17
√
mλ+min(W )ε

2(4 + 17
√
2)
√
2nmaxi,j Cij

. (68)
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The complexity of one iteration of Algorithm 3 per node is O
(
n2
)
as the number of

non-zero elements in matrix A is 2n2. Multiplying this by the number of iterations
N = (4 + 17

√
2)Lζ/(mε) we get

O(n2N) = O

(
n2
Lζ

mε

)
= O

(
n2

ε

√
n log nmax

i,j
Cijχ

)
,

where we used the definition of Lζ from (31).

11. Algorithm and experimental data

11.1. Decentralized Mirror-Prox for Wasserstein Barycenters

To present the algorithm we introduce soft-max function for an x ∈ Rn

Softmax(x) =
exp(x)∑n

i=1(exp(x))

11.2. Letter ’B’ in a variety of fonts from the notMNIST dataset

11.3. Network architectures

The complete graph The cycle graph The star graph

Erdős-Rényi random
graph with probability
of edge creation p =
0.5

12. Future work

First of all, the approach of this paper can be generalized to non-symmetric matrix
W , but with Network compatibility and Kernel properties. This observation allows to
improve the bounds by using proper weighting, see [21].

By using the standard restarts or regularization arguments, all the results of this paper
have convex-concave or strongly convex-concave analogues. Unfortunately, optimalilty
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Algorithm 3 Decentralized Mirror-Prox for Wasserstein Barycenters

Require: measures y1, ..., ym, linearized cost matrix d, incidence matrix A, communica-

tion matrixW , number of iterations N , stepsize α = 1/
(
16m

√
2n lnnmaxi,j Cijχ

)
1: Initialize starting points x1 = 1

n1n, p
1
1 = ... = p1m = 1

n21n2 , q11 = ... = q1m = 02n
2: Initialize η = αmnmaxi,j C

3
ij/λ

2
min(W ), β = 6αm log n, θ =

2αmnmaxi,j C
2
ij/λ

2
min(W )

3: for k = 1, 2, · · · , N − 1 do
4: Each node i = 1, ..,m computes

uk+1
i = Softmax

(
log(pki )− β

(
d+ 2max

i,j
CijA

⊤qki

))
sk+1
i = Softmax

(
log(xki ) + β

(
[qki ]1...n −

∑m
j=1Wijz

k
j

))
vk+1
i = qki + η

(
Apki −

(
xki
yi

))
, project vk+1

i onto [−1, 1]2n.

λk+1
i = zki + θ

∑m
j=1Wijx

k
j

5: Each node i = 1, ..,m computes

pk+1
i = Softmax

(
log(pki )− β

(
d+ 2max

i,j
CijA

⊤vk+1
i

))
xk+1
i = Softmax

(
log(xki ) + β

(
[vk+1

i ]1...n −
∑m

j=1Wijλ
k+1
j

))
qk+1
i = qki + η

(
Auk+1

i −
(
sk+1
i
yi

))
, project qk+1

i onto [−1, 1]2n.

zk+1
i = zki + θ

∑m
j=1Wijs

k+1
j

6: end for

Ensure: x̂N = (x̂N1 , . . . , x̂
N
m)⊤, where x̂Ni = 1

N

N∑
k=1

ski

w.r.t. ε take places only for the convex-concave case not for the strongly convex-concave
one.2 Our paper technique can be generalized to non-smooth problems by using another
variant of sliding procedure [15, 23, 34]. By using batching technique, the results can
be generalized to stochastic saddle-point problems [15, 23]. Instead of the smooth
convex-concave saddle-point problem we can consider general sum-type saddle-point
problems with common variables in more general form. For each group of common
variable, we introduce corresponding communication network which includes the nodes
correspond to the terms contain this variable. The bounds change according to the
worth condition number of Laplacian matrices of these networks. Based on the lower
bound, we expect that optimal algorithms for all the parameters for smooth (strongly)
convex-concave saddle-point problems one can search as a combination Mirror-Prox
with accelerated consensus algorithm, see [24] and references therein.

2The analysis developed in this paper also does not well fitted to the strongly convex-concave saddle-point

problems with different constants of strong convexity and concavity, see the lower bound. In the non-distributed

setup, this a popular direction of research [39]. For distributed setup, this is an open problem.
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An interesting and open problem is generalizing the results of this paper to β-similar
terms in the smooth convex-concave saddle-point problem [1, 56].

The results will probably change with the replacement of L by β.
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