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Abstract. In decentralized optimization, several nodes connected by a
network collaboratively minimize some objective function. For minimiza-
tion of Lipschitz functions lower bounds are known along with optimal
algorithms. We study a specific class of problems: linear models with non-
smooth loss functions. Our algorithm combines regularization and dual
reformulation to get an effective optimization method with complexity
better than the lower bounds.
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1 Introduction

The focus of this work is a particular class of problems in decentralized non-
smooth optimization. We assume that each of computational agents, or nodes,
holds a part of a common optimization problem and the agents are connected
by a network. Each node may communicate with its immediate neighbors, and
the agents aim to collaboratively solve an optimization problem.

On the class of smooth (strongly) convex functions endowed with a first-order
oracle, decentralized optimization can be called a theoretically well-developed
area of research. For this setting, [13] proposed lower bounds and optimal dual
algorithms. After that, optimal gradient methods with primal oracle were devel-
oped in [8]. Even if the network is allowed to change, lower bounds and optimal
algorithms are known and established in a series of works [9,7,11].

However, the case when local functions are non-smooth is not that well
studied. Algorithm proposed in [14] uses a gradient approximation via Gaus-
sian smoothing. Such a technique results in additional factor of dimension. Dis-
tributed subgradient methods [12] are not optimal and only converge to a neigh-
borhood of the solution if used with a constant step-size. In other words, devel-
opment of an optimal decentralized algorithm for networks is an open research
question.

⋆ The research is supported by the Ministry of Science and Higher Education of the
Russian Federation (Goszadaniye) 075-00337-20-03, project No. 0714-2020-0005.
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As noted below, we restrict our attention to a particular class of decentralized
non-smooth optimization problems. Namely, we study linear models with non-
smooth loss functions and an entropic regularizer. Problems of such type arise in
traffic demands matrix calculation [1,15], optimal transport [10] and distributed
training with decomposition over features [2].

Traffic problems. Following the arguments in [1], for example, one seeks to
minimize g(x) subject to constraints Ax = b. Here function g(x) may be inter-
preted as some similarity measure between x and a supposed solution. Moving
the constraint Ax = b as a penalty into the objective, we obtain a problem of
type

min
x∈Rd

g(x) + λ ‖Ax− b‖ ,

where ‖Ax− b‖ denotes some norm. If the g represents a similarity measure
given by KL divergence, we obtain an optimization problem for linear model
with entropic regularizer.

Optimal transport. Another example is entropy-regularized optimal transport
[10]. In paper [10] the authors show that an optimal transportation problem can
be rewritten as

min
x∈∆n

n

min
y∈∆n

2

〈x, a〉 − 〈y,b〉+ 〈Ax,y〉 + λx 〈x, logx〉 − λy 〈y, log y〉 ,

where ∆n denotes denotes a unit simplex of dimension n. This illustrated that
entropy-regularized linear models can arise in saddle-point optimization, as well.

Distributed ML. In distributed statistical inference and machine learning one
may want to train a model in a distributed way [2]. Consider a dataset with a
moderate number of training examples and a large number of features. Let the
dataset be split between the nodes not by samples but by features. Let ℓ be the
common loss function, and for each agent i introduce its local dataset (Ai, bi)
and the corresponding regularizer ri(x). That leads to a fitting problem

min
x1,...,xm

ℓ

(

m
∑

i=1

Aixi − bi

)

+

m
∑

i=1

ri(xi).

Our contribution. In our work we propose a dual algorithm for non-smooth
decentralized optimization. The dual problem is smooth although the initial one
is non-smooth, but also subject to constraints. The constraints can be equiva-
lently rewritten as a regularizer. We show that a resulting regularized problem
can be solved by an accelerated proximal primal-dual gradient method.

We study a specific class of problems, and our approach allows to break the
lower bounds in [14]. Omitting problem parameters, the iteration and communi-
cation complexities of our algorithm are O(

√

1/ε), while lower bounds suggest
that at least Ω(1/ε) communication rounds and at least Ω(1/ε2) local computa-
tions at each node are required.
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1.1 Notation

Let ⊗ denote the Kronecker product. Let ∆d = {x ∈ R
d :

∑m
i=1 xi = 1, xi ≥

0, i = 1, . . . ,m} be a unit simplex in R
d. By ∆m

d we understand a product of

m simplices that is a set in R
md. For p ≥ 0, let ‖x‖p =

(

∑d
i=1 |xi|p

)1/p

de-

note the p-norm in R
d. By 〈a, b〉 we denote a scalar product of vectors. Also let

x = col[x1, . . . , xm] = (x⊤
1 . . . x⊤

m)⊤ ∈ R
md denote a column vector stacked of

x1, . . . , xm ∈ R
d. Similarly for matricesC1, . . . , Cm ∈ R

n×d, introduce col[C1, . . . , Cm] =
(C⊤

1 . . . C⊤
m)⊤ ∈ R

mn×d. Moreover, let diag[C1, . . . , Cm] denote a block matrix
with blocks C1, . . . , Cm at the diagonal. For x ∈ R

d, let log x denote a natural
logarithm function applied component-wise. We define 1n to be a vector of all
ones of length n and In to be an identity matrix of size n×n. Also denote the i-th

coordinate vector of Rn as e
(n)
i . Let λmax(C) and λ+

min(C) denote the maximal
and minimal nonzero eigenvalue of matrix C. Let σmax(C) and σ+

min(C) denote
the maximal and minimal nonzero singular values of C.

Given a convex closed set Q, let ΠQ denote a projection operator on it and
denote its interior int Q. For a closed proper function h(x) : Q → R and a scalar
γ > 0, define proximal operator as

proxγh(x) = argmin
y∈Q

(

h(x) +
1

2γ
‖y − x‖22

)

.

2 Problem and assumptions

Consider m independent computational entities, or agents. Agent i locally holds
a dataset consisting of matrix Ai and labels bi. Let A = col[A1, . . . , Am] ∈ R

n×d

be the training samples and b = col[b1, . . . , bm] be the labels. The whole training
dataset (A,b) is distributed between m different machines. We consider p-norm
minimization over unit simplex with entropy regularizer.

min
x∈∆d

1

m
‖Ax− b‖p + θ 〈x, log x〉 , (1)

where θ > 0 is a regularization parameter.
The agents can communicate information through a communication network.

We assume that each machine is a node in the network that is represented by a
connected undirected graph G = (V , E). The nodes can communicate if and only
if they are connected by an edge.

With graph G we associate a communication matrix W that has the following
properties.

Assumption 1

1. (Network compatibility) [W ]ij = 0 if i 6= j and (i, j) /∈ E.
2. (Positive semi-definiteness and symmetry) W � 0, W⊤ = W .
3. (Kernel property) Wx = 0 if and only if x1 = . . . = xm.
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We also introduce the condition number of the communication matrix.

χ =
λmax(W )

λ+
min(W )

. (2)

In order to get a distributed formulation, assign each agent i in the net-
work a local copy of the solution vector xi. Define x = col[x1, . . . , xm], A =
diag[A1, . . . , Am] and introduce y = Ax.

min
x∈∆d

m

‖y − b‖p + θ 〈x, logx〉 (3)

s.t. Wx = 0

y = Ax

The complexity of distributed methods typically depends on the condition num-
ber of the communication matrix (it is χ defined in (2)) and on condition numbers
of objective functions. For brevity we introduce

σmax(A) = max
i=1,...,m

(σmax(Ai)) , σ+
min(A) = min

i=1,...,m
σ+
min(Ai). (4)

3 Dual problem

Let us derive a dual problem to (3). It is convenient to introduce F (y) =
‖y − b‖p , G(x) = θ 〈x, log x〉.

3.1 Conjugate functions

Let us derive the conjugate functions F ∗ and G∗. Let q ≥ 1 be such that 1
p +

1
q =

1.

F ∗(t) = sup
y∈Rmn

(〈t,y〉 − F (y)) = sup
y∈Rmn

(〈t,y − b〉 − ‖y− b‖p) + 〈t,b〉

= sup
r∈Rmn

(〈t, r〉 − ‖r‖p) + 〈t,b〉

=

{

〈t,b〉 , ‖t‖q ≤ 1

+∞, otherwise

Last equation is a result of conjugate function for ‖x‖p, which is taken from a
classical book by Boyd [3], Chapter 5.

In order to compute G∗, introduce g(x) = θ 〈x, log x〉 : R
d → R and note

that G(x) =
∑m

i=1 gi(xi).

g∗(t) = sup
x∈∆d

(〈t, x〉 − θ〈x, log(x)〉)
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Writing a Lagrange function:

L(t, x) = 〈t, x〉 − θ 〈x, log(x)〉+ λ
(

1⊤
d x− 1

)

∇xL(t, x) = t− θ log x− θ1d + λ1d = 0 ⇒ x = exp

(

t

θ
+ 1d

(

λ

θ
− 1

))

1⊤
d x = 1 ⇒ exp

(

λ

θ
− 1

)

1⊤
d exp

(

t

θ

)

= 1 ⇒ exp

(

λ

θ
− 1

)

=
1

1⊤
d exp

(

t
θ

)

As a consequence

x =
exp

(

t
θ

)

1⊤
d exp

(

t
θ

)

Using equation to x,

g∗(t) = θ log

(

1⊤
d exp

(

t

θ

))

As noted above, G(x) is separable, i.e. G(x) =
∑m

i=1 g(xi). Therefore,

G∗(t) = sup
x∈∆m

d

(

〈t,x〉 −
m
∑

i=1

g(xi)

)

=

m
∑

i=1

sup
x∈∆d

(〈ti, x〉 − g(x)) =

m
∑

i=1

g∗(ti).

It is convenient to express ti through t. Introduce matrix

Ei =
(

e
(m)
i

)⊤

⊗ I = [0 . . . 0 I 0 . . . 0]. (5)

Then ti = Eit. It holds

G∗(t) =

m
∑

i=1

g∗(Eit).

3.2 Dual problem formulation

Let us derive a dual problem to (3). It is convenient to denote F (y) = ‖y − b‖p , G(x) =
θ 〈x, log x〉. Introduce dual function

Φ(z, s) = inf
x∈∆m

d
,y∈Rn

[F (y) +G(x) + 〈z,Wx〉+ 〈s,Ax− y〉]

= inf
y∈Rmn

[F (y) − 〈s,y〉] + inf
x∈∆m

d

[

G(x) +
〈

Wz+A⊤s,x
〉]

= − sup
y∈Rmn

[〈s,y〉 − F (y)] − sup
x∈∆m

d

[〈

−Wz−A⊤s,x
〉

−G(x)
]

= −F ∗(s)−G∗(−Wz−A⊤s)

As a consequence, dual problem can be formulated as

min
z∈Rmd,s∈Rmn

F ∗(s) +G∗(−Wz−A⊤s).
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Results from 3.2 and 3.1 leads us to final dual problem formulation

min
z,s:‖s‖q≤1

〈s,b〉+
m
∑

i=1

θ log

(

1⊤
d exp

(

−1

θ
Ei

(

Wz+A⊤s
)

))

(6)

The constrained problem above is equivalent to a regularized problem

min
z,s

〈s,b〉+
m
∑

i=1

θ log

(

1⊤
d exp

(

−1

θ
Ei(Wz+A⊤s)

))

+ ν‖s‖qq, (7)

where ν > 0 is a scalar.
As a result, the dual problem writes as

min
q

H(z, s) +R(z, s) (8)

H(z, s) = 〈s,b〉+
m
∑

i=1

θ log

(

1⊤
d exp

(

−1

θ
Ei(Wz+A⊤s)

))

R(z, s) = ν ‖s‖qq .

Recall problem (8) and denote B = (−W − A⊤), q = col[z, s], p = col[0,b].
With slight abuse of notation we write H(q) = H(z, s) and R(q) = R(z, s).
Problem (8) takes the form

min
q

H(q) +R(q).

Here H is a differentiable function and R is a regularizer, or composite term.
Problems of such type are typically solved by proximal optimization methods.

4 Algorithms and Complexities

4.1 Similar Triangles Method

We apply an accelerated primal-dual algorithm called Similar Triangles Method
(STM) [4].
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Algorithm 1 Similar triangles method(STM)

Require: A0 = α0 = 0, q
0 = u

0 = y
0.

1: for k = 0, . . . , N − 1 do

2: Find αk+1 from equality (Ak+αk)(1+Akµ) = Lαk+1 and put Ak+1 = Ak+αk+1.

3: Introduce

φk+1(x) = αk+1

(〈

∇H(yk+1),x
〉

+R(x)
)

+
1 + Akµ

2

∥

∥

∥
x− u

k
∥

∥

∥

2

2
+
µαk+1

2

∥

∥

∥
x− y

k+1
∥

∥

∥

2

2

4: y
k+1 =

αk+1u
k+Akq

k

Ak+1

5: u
k+1 = argmin

q

[φk+1(x)]

6: q
k+1 = αk+1

u
k+1+Akq

k

Ak+1

7: end for

First, note that line 5 of Algorithm 1 can be decomposed into a gradient step
and computation of proximal operator of R.

uk+1 = argmin
q

[φk+1(x)] = proxγkR

[

µγky
k+1 + (1− µγk)u

k − γk∇F (yk+1)
]

,

where γk =
αk+1

1+µAk+1
. Let us show that this operator can be easily computed. Let

t = col[tz, ts]. By definition of proximal operator we have

proxγkR(t) = argmin
s

(

1

2γk
‖t− s‖22 +R(q)

)

= argmin
z,s

(

1

2γk
(‖ts − s‖22 + ‖tz − z‖22) + ν ‖s‖qq

)

.

Let q̃ = col[z̃, s̃] = proxγkR(t). We have z̃ = tz. Let s̃i denote the i-th component
of s̃ and ti denote the i-th component of ts; then s̃i can be found from equation

ti − s̃i + γkqν|s̃i|q−1 = 0.

We assume that the equation above can be efficiently numerically solved w.r.t.
s̃i. For example, it can be done by solution localization methods such as binary
search. As a result, we see that the proximal operator of R can be computed
cheaply.
Let us formulate the theorem on convergence of Algorithm 1 for the problem (8).

Theorem 2. Algorithm 1 requires

O





(

θm
(

σ2
max(A) + σ2

max(W )
)

‖ logx∗ + 1d‖22
min((σ+

min(A))2, (λ+
min(W ))2)ε

)1/2




iterations to reach ε-accuracy for the problem (8)
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Before we prove the above result, we need to formulate some lemmas.
We need to find Lipschitz constant for dual problem. Namely, let us find the
Lipschitz constant for function G∗(−Wz−A⊤s) as a function of q = col[z, s].

Lemma 1. Function H(q) has a Lipschitz gradient with constant

LH =
m
(

σ2
max(A) + σ2

max(W )
)

θ

Proof. According to [6], if a function is µ-strongly convex in norm ‖·‖2, then its
conjugate function h∗(y) has a 1

µ -Lipschitz gradient in ‖·‖2.
Using the fact from [3], Chapter 3, we obtain that the conjugate function of

h(x) = log

(

d
∑

i=1

exp(xi)

)

is

h∗(y) =

{

〈y, log y〉 , y ∈ ∆d

∞, otherwise

To have a constant of strongly convexity, we can find a minimal eigenvalue of
Hessian of h∗(y)

∇2h∗(y) = diag

(

1

y1
, . . . ,

1

yd

)

.

For any y ∈ int∆d, we have that 1/yi ≥ 1, i = 1, . . . , d. Therefore, we have
λmin(∇2h∗(y)) ≥ 1, i.e. µh∗ ≥ 1.
As a consequence, for function

h(x) = log

(

d
∑

i=1

exp(xi)

)

Lipschitz constant is equal to Lh = 1.
Therefore, for a function

g∗(x) = θh
(x

θ

)

Lipschitz constant is equal to Lg = 1/θ.

Introduce B =
(

−W,−A⊤
)

. We have

H(q) = G∗(Bq) + 〈s,b〉 =
m
∑

i=1

g∗(EiBq) + 〈s,b〉 .
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It holds

‖∇H(q2)−∇H(q2)‖2 = ‖B⊤∇G∗(Bq2)−B⊤∇G∗(Bq2)‖2

≤ σmax(B) ‖∇G∗(Bq2)−∇G∗(Bq1)‖ ≤ σmax(B)

m
∑

i=1

‖∇g∗(EiBq2)−∇g∗(EiBq1)‖2

≤ σmax(B)

m
∑

i=1

σmax(EiB)

θ
‖q2 − q1‖2 ≤ mσ2

max(B)

θ
‖q2 − q1‖2

=
m(σ2

max(A) + σ2
max(W))

θ
‖q2 − q1‖2

≤
m

(

max
i=1,...,m

(σ2
max(A1), . . . , σ

2
max(Am)) + σ2

max(W )

)

θ
‖q2 − q1‖2

= LH ‖q2 − q1‖2 ,

which finishes the proof of lemma.

For writing a complexity of solver for our problem, we also need to bound the
dual distance.

Lemma 2. Let q∗ = col[z∗, s∗] be the solution of dual problem (8) and let x∗ be
a solution of (1). It holds

‖q∗‖22 ≤ R2
dual =

θ2m‖ log x∗ + 1d‖22
min((σ+

min(A))2, (λ+
min(W ))2)

.

Proof. Let (x∗,y∗) be a solution to primal problem (3). In particular, we have
x∗ = 1m ⊗ x∗. Then (x∗,y∗, z∗, s∗) is a saddle point of Lagrange function. For
any x ∈ ∆d

m, y ∈ R
md, z ∈ R

md, s ∈ R
mn it holds

F (y∗)+G(x∗) + 〈z,Wx∗〉+ 〈s,Ax∗ − y∗〉
≤ F (y∗) +G(x∗) + 〈z∗,Wx∗〉+ 〈s∗,Ax∗ − y∗〉
≤ F (y) +G(x) + 〈z∗,Wx〉+ 〈s∗,Ax− y〉

Substituting y = y∗ we obtain

G(x) ≥ G(x∗) + 〈−Wz∗ −A⊤s∗,x− x∗〉
−Wz∗ −A⊤s∗ = ∇G(x∗)

Recalling that B = (−W,−A⊤) we derive

Bq∗ = ∇G(x∗)

〈B⊤Bq∗,q∗〉 = ‖∇G(x∗)‖22
λ+
min(B

⊤B)‖q∗‖22 ≤ ‖∇G(x∗)‖22

‖q∗‖22 ≤ ‖∇G(x∗)‖22
λ+
min(B

⊤B)
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We have

λ+
min(B

⊤B) = λ+
min(BB⊤) = λ+

min(W
2 +A⊤A) = λ+

min(W
2 ⊗ Id + Im ⊗A⊤A)

= min((λ+
min(W))2, (σ+

min(A))2) = min
(

(λ+
min(W ))2, (σ+

min(A))2
)

and

‖∇G(x∗)‖22 = θ2 ‖logx∗ + 1md‖22 = θ2m ‖log x∗ + 1d‖22 .

As a result, we obtain

R2
dual =

θ2m‖ log x∗ + 1d‖22
min((σ+

min(A))2, (λ+
min(W ))2)

.

Now we prove the theorem about complexity of Similar Triangles Method.

Proof of Theorem 2

Proof. First, note that solution accuracy ε for problem (1) is equivalent to ac-
curacy mε for problem (8). STM requires O((LHR2

dual/(mε))1/2) iterations to
reach ε-accuracy. Combining the results from lemmas 1 and 2 we obtain the final
complexity.

4.2 Accelerated block-coordinate method

In previous section, our approach was based on a way where we apply a first-
order method without separating the variables. But we can treat variable blocks
z and s separately and get a better convergence bound. We apply an accelerated
method ACRCD (Accelerated by Coupling Randomized Coordinate Descent)
from [5]. We describe the result only for the case p = 1. In this case, we apply
ACRCD not to regularized dual problem (8), but to constrained version of dual
problem (6). We also note that ACRCD is primal-dual, so solving the dual
problem with accuracy ε is sufficient to restore the solution of the primal with
accuracy ε.



Decentralized Non-smooth Optimization 11

Algorithm 2 ACRCD

Require: Define coefficients αk+1 = k+2
8

, τk = 2
k+2

. Choose stepsizes Lz, Ls. Put

z
0 = z

0 = z
0, s

0 = s
0 = s

0.
1: for k = 0, 1, . . . , N − 1 do

2: z
k+1 = τkz

k + (1− τk)z
k

3: s
k+1 = τks

k + (1− τk)s
k

4: Put ξi = 1 with probability η and ξ = 0 with probability (1 − η), where η =
λmax(W )

λmax(W )+σmax(A)

5: if ξi = 1 then

6: z
k+1 = z

k+1
−

1
Lz

∇Hz(z
k+1, sk+1)

7: z
k+1 = z

k
−

2αk+1

Lz

∇Hz(z
k+1, sk+1)

8: else

9: s
k+1 = Π[−1,1]mn

[

s
k+1

−
1
Ls

∇Hs(z
k+1, sk+1)

]

10: s
k+1 = Π[−1,1]mn

[

s
k
−

2αk+1

Ls

∇Hs(z
k+1, sk+1)

]

11: end if

12: end for

Theorem 3. To reach accuracy ε with probability at least (1 − δ), Algorithm 2
requires Ncomm communication rounds and Ncomp local computations, where

Ncomm =
m1/4

√
θε

λmax(W )

λ+
min(W )

(

2θ2 ‖logx∗ + 1d‖22 + 2nσ2
max(A) + n(λ+

min(W ))2
)1/2

log

(

1

δ

)

,

Ncomp =
m1/4

√
θε

σmax(A)

λ+
min(W )

(

2θ2 ‖logx∗ + 1d‖22 + 2nσ2
max(A) + n(λ+

min(W ))2
)1/2

log

(

1

δ

)

.

First, we need to estimate Lipschitz constants for gradients of each block of
variables. If we consider the function H as a function of two blocks of variables,
the next result follows.

Lemma 3. Function H(z, s) has a Lz-Lipschitz gradient w.r.t. z and Ls-Lipschitz
gradient w.r.t. s, where

Lz =

√
mσ2

max(W )

θ
, Ls =

√
mσ2

max(A)

θ
.
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Proof. Recall that we denoted x = col[x1, . . . , xm] and consider s1, s2 ∈ R
nm.

Also denote [x]i = Eix = xi.

‖∇sH(z, s2)−∇sH(z, s1)‖2
= ‖A∇G∗(−Wz−A⊤s2)−A∇G∗(−Wz−A⊤s1)‖2

≤
m
∑

i=1

∥

∥Ai∇g∗
(

−[Wz]i − [A⊤s2]i
)

−Ai∇g∗
(

−[Wz]i − [A⊤s1]i
)∥

∥

2

①
=

m
∑

i=1

∥

∥Ai∇g∗
(

−[Wz]i −A⊤
i [s2]i

)

−Ai∇g∗
(

−[Wz]i −A⊤
i [s1]i

)∥

∥

2

≤ σmax(A)

θ

m
∑

i=1

∥

∥A⊤
i [s2]i −A⊤

i [s1]i
∥

∥

2
≤ σ2

max(A)

θ

m
∑

i=1

‖[s2]i − [s1]i‖2

②

≤
√
mσ2

max(A)

θ
‖s2 − s1‖2 ,

where ① holds due to the structure of A = diag[A1, . . . , Am] and ② holds by
convexity of the 2-norm.

Now consider the gradient w.r.t. z. Let [x](i) = [x
(i)
1 . . . x

(i)
m ]⊤ denote a vector

consisting of i-th components of x1, . . . , xm. We have [Wx]i = W [x](i) due to
the structure of W = W ⊗ Id.

‖∇H∗
z
(z2, s)−∇H∗

z
(z1, s)‖2

= ‖W∇G∗(−Wz2 −A⊤s)−W∇G∗(−Wz1 −A⊤s)‖2

≤
m
∑

i=1

∥

∥

∥
W∇g∗

(

−W [z2]
(i) − [A⊤s]i

)

−W∇g∗
(

−W [z1]
(i) − [A⊤s]i

)∥

∥

∥

2

≤ λmax(W )

θ

m
∑

i=1

∥

∥

∥W ([z2]
(i) − [z1]

(i))
∥

∥

∥

2
≤ λ2

max(W )

θ

m
∑

i=1

∥

∥

∥[z2]
(i) − [z1]

(i)
∥

∥

∥

2

①

≤
√
mλ2

max(W )

θ
‖z2 − z1‖2 ,

where ① holds by convexity of the 2-norm.

We need to bound dual distance for each block of variables, but first we need to
claim an useful proposition from functional analysis.

Proposition 1. Let p > r ≥ 1, x ∈ R
d. It holds

‖x‖p ≤ ‖x‖r ≤ d(
1
r
− 1

p )‖x‖p
Proof. This is a fairly well-known fact with a simple idea of proof. In fact, it
is a direct consequence of Hólder’s inequality, what means that constant in an
inequality are unimprovable.

Now we derive the bound on the norm of the dual solution. The convergence
result only relies on the case p = 1 (q = ∞), but we derive a bound for any
q ≥ 1.
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Lemma 4. Let z∗, s∗ be the solutions of dual problem (8) and let x∗ be a solution
of (1). It holds

‖z∗‖22 ≤ R2
z
=

2θ2m‖ logx∗ + 1d‖22 + 2σ2
max(A) ·max

(

1, (mn)(
1− 2

q )
)

(λ+
min(W ))2

‖s∗‖22 ≤ R2
s
= max

(

1, (mn)(
1− 2

q )
)

Proof. Using that the problems 6 and 7 are equal, that means

‖s∗‖q ≤ 1 (9)

Using Proposition 1 we have

‖s∗‖22 ≤
{

‖s∗‖2q, q < 2

(mn)(1−
2
q ) ‖s∗‖2q, q ≥ 2

(10)

Combininq 9 and 10, we have

‖s∗‖22 ≤
{

1, q < 2

(mn)(
1− 2

q ) , q ≥ 2
(11)

With the fact that (mn)(1−
2
q ) < 1 where q < 2 we state the claimed result.

Using the fact from proof of Lemma 2 such that

−Wz∗ −A⊤s∗ = ∇G(x∗)

we have

‖Wz∗‖22 ≤ 2‖∇G(x∗)‖22 + 2‖A⊤s∗‖22 ≤ 2θ2m‖ logx∗ + 1d‖22 + 2σ2
max(A) · ‖s∗‖22

As a result

‖z∗‖22 ≤
2θ2m‖ logx∗ + 1d‖22 + 2σ2

max(A) · ‖s∗‖22
(λ+

min(W ))2
(12)

Using 11 into 12, we claim the final result.

Proof (Proof of Theorem 3). The proof is based on results in [5]. We have two
blocks of variables: z and s. Firstly, Remark 3 of [5] shows that a block coordinate
method is applicable to constrained problems, provided that the constraint set
is separable over variable blocks. Secondly, we apply Remark 6 of the same
paper with coefficient β = 1/2. At each step, we randomly choose one of two
variable blocks, and factor β rules the probability distribution. In Algorithm 2,
the probability of choosing block z is η =

√
Lz/(

√
Lz +

√
Ls), and block s is

chosen with probability (1 − η). Recall that for accuracy ε in primal problem
(1) we need accuracy mε in dual problem (6). Combining the two remarks, we
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obtain that a resulting method makes N iterations to reach ε accuracy with
probability at least 1− δ, where

N = O

(

(√
Lz +

√
Ls

)

√

R2
z
+R2

s

mε
log

(

1

δ

)

)

.

Consequently, the expected number of computations of ∇Hz (that equals the
number of communications) is ηN , and the expected number of computations
of ∇Hs (that corresponds to the number of local computations) is (1 − η)N .
Substituting the expressions for N and η, we obtain the desired result.

5 Conclusion

In this paper, we considered a particular class of non-smooth decentralized prob-
lems. Due to specific problem structure we obtained methods that have a better
dependency on problem complexity than general lower bounds. Our approach is
based on passing to the dual problem. Moreover, we proposed two accelerated
algorithms. The first algorithm is an accelerated primal-dual gradient method
that is directly applied to the problem. The second method is a block-coordinate
algorithm that allows to split communication and computation complexities.
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