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Abstract. We consider the problem of supply and demand balancing
that is stated as a minimization problem for the total expected rev-
enue function describing the behavior of both consumers and suppliers.
In the considered market model we assume that consumers follow the
discrete choice demand model, while suppliers are equipped with some
quantity adjustment costs. The resulting optimization problem is smooth
and convex making it amenable for application of efficient optimization
algorithms with the aim of automatically setting prices for online mar-
ketplaces. We propose to use stochastic gradient methods to solve the
above problem. We interpret the stochastic oracle as a response to the
behavior of a random market participant, consumer or supplier. This
allows us to interpret the considered algorithms and describe a suitable
behavior of consumers and suppliers that leads to fast convergence to
the equilibrium in a close to the real marketplace environment.

Keywords: Automatic pricing · Expected revenue function · Stochastic
convex optimization · Supply and demand balancing.

1 Introduction

With the development of platforms for online trading and services provision, the
problem of dynamic pricing becomes more and more urgent. The environment
of online marketplaces and financial services raises the question of establishing
the most relevant prices for the items presented, and in such cases, relevance
is understood as the possibility of market clearing, i.e. balancing supply and
demand.

There are various approaches to finding equilibrium prices. In this paper,
we consider an approach based on the characterization of the market state by
a potential function of total expected revenue, similar to the function of total
excessive revenue from [13]. In [9], the authors, using this approach, analyze the
case in which consumers follow a discrete choice model with imperfect behavior
introduced by random noise in the assessment of utility, and suppliers seek to
maximize their profit, taking into account the quantity adjustment costs. This
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paper substantiates the convexity of the used potential as a function of prices.
Hence, it follows that there are prices that minimize the potential, and it turns
out that this minimum satisfies the condition of market clearing.

Thus, if there is an intermediary responsible for the formation of prices,
it only needs to build a sequence of price values leading to a minimum. At
the same time, it seeks to use the smallest possible amount of observations of
market participants. Note that the introduced formulation is very convenient for
applying the results of optimization theory to find the optimal prices. Indeed, the
function under consideration is to be minimized and it simultaneously includes
the characteristics of both consumers and suppliers, although in the classical
game-theoretic approach the opposition of the interests of these parties leads
through the Nash equilibrium scheme to minimax problems. Nevertheless, it
turns out to be possible to propose exactly the potential function that describes
the whole system and reduces its dynamic to only tendency to an extreme point,
similar to physical systems. On the other hand, the considered function has the
form of a sum including together the terms that characterize the behavior of both
parties and each agent. This means that we can consider both consumers and
suppliers as the same market participants and uniformly take into account their
interests, without distinguishing between their types. Together, the described
advantages lead to the ability to use the developments of convex optimization to
find methods for constructing a sequence of prices, and analyze them in terms
of the oracle complexity, which in this setting means the number of observations
of the agents’ behavior.

In this paper, continuing the ideas of [9], the problem of finding equilibrium
prices is posed in a stochastic setting, and the number of observations of the
intermediary for single market participants is determined as a measure of the
effectiveness of the method for solving this problem. Section 2 describes the
problem statement and introduces the stochastic oracle for considered function
to optimize. Section 3 discusses various algorithms for stochastic convex opti-
mization, proposes theoretical estimates of the efficiency of the algorithms, and
describes the practical advantages of each of them. Section 4 generalizes the
stochastic setting for the case of an infinite number of consumers, which makes
it possible to take into account the previously unobserved consumers, and de-
scribes the algorithms for this setting. Section 5 considers a special case of the
problem with zero quantity of the adjustment costs, in which the potential loses
its smoothness property, and proposes several approaches to get around this dif-
ficulty. Section 6 shows the results of modeling of the behavior of the proposed
algorithms for a synthetic problem and demonstrates the improvement in the
efficiency of the methods, which can be achieved by considering the stochastic
formulation of the problem, in comparison with the dynamics from [9].

2 Problem statement

Let us imagine the marketplace environment. There are a number of suppliers
(for example, shops) and a number of consumers (buyers). And every supplier
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offers some products (goods) in the assortment. Products are grouped by their
type, every group contains some alternatives. In turn, every consumer can choose
to buy one of the alternatives, guided by its subjective utility and price (with
some element of randomness). For reasons of increasing profit, suppliers can
change the assortment, taking into account the costs of these changes them-
selves. We use the corresponding mathematical models for the consumer and
the supplier, and characterize them by the values of expected surplus and max-
imal revenue, respectively. Summing these terms up we obtain the function of
total expected revenue. It describes the current imbalance in the market sys-
tem. Its minimum corresponds to the prices at which the market is cleared. This
means that we can formulate an optimization problem for finding equilibrium
prices.

Let us consider such an optimization problem (in a simplified form) for the
case of n product alternatives divided into m disjoint groups Gi ⊂ {1, ..., n}, S
suppliers with convex costs functions cs : Rn+ → R+, closed and convex sets of
capacity constraints Ys ⊂ Rn+, typical supplies ŷs ∈ Ys and quantity adjustment
costs equal to −Γs · ‖y − ŷs‖22 for some parameter Γs > 0, D consumers with

matrix A = {aid > 0}n,D1,1 of alternatives subjective utility for each of them, and
prices vector p:

min
p∈Rn

+

{
f(p) :=

S∑
s=1

πs(p) +

D∑
d=1

Ed(p)

}
, (1)

where

πs(p) = max
y∈Ys

{
〈y, p〉 − cs(y)− Γs · ‖y − ŷs‖22

}
(2)

is the maximal revenue of supplier with taking into account costs cs(·) and
quantity adjustment costs parametrized by Γs for given prices, and

Ed(p) = ln

 m∑
j=1

∑
i∈Gj

e(aid−pi)/µj

µj


is the expected surplus Ed(p) = Eε
[
max
i
{aid − pi + εi}

]
for the discrete choice

demand model with noise and for corresponding nested logit distribution [7],
with some correlation parameters 0 < µj ≤ 1. We can also provide an explicit
expression for the gradient of the introduced objective function:

∇f(p) =

S∑
s=1

ys(p)−
D∑
d=1

xd(p), (3)
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where ys(p) is the optimal solution of the optimization problem (2) (by De-
myanov–Danskin theorem [2]), and

[xd(p)]i =

e(aid−pi)/µj

∑
k∈Gj

e(akd−pk)/µj

µj−1

m∑
h=1

(∑
k∈Gh

e(akd−pk)/µh

)µh
, i ∈ {1, ..., n}

are the probabilities to choose certain alternative by the consumer3.
To use optimization methods for dynamic pricing we can utilize that f is of

the form of sum. If the number of suppliers S and consumers D is big, evaluation
of all the term in both sums is too expensive in term of working time and
algorithmic complexity. But if we randomly pick up only one of (S + D) terms
at iteration, computing resources are used much more sparingly, which leads to
faster operation of the algorithm. So, considering only one term of sum from (3),
we introduce the stochastic gradient oracle:

∇fi(p) =

{
ys(p) i = s ≤ S
−xd(p) i = S + d

, i ∈ {1, ..., S +D} (4)

Note, that the use of stochastic oracle is very natural. Indeed, using the gradient
dynamics of prices from [9], we evaluate all of the terms in (4) at iteration, i.e.
it is necessary to consider the behaviour of all the consumers and suppliers to
make one step of dynamic. But in practice we cannot guarantee that we collect all
this information in short time (consumers may be impermanent, so the waiting
time may be arbitrarily long). At the same time, the decisions of consumers and
suppliers are not rigidly connected: we can observe some number of consumer’s
sales daily (represented by xd(·)), and much less often and independently the
periodic store assortment changes (represented by yd(·)). Therefore, using the
dynamics with stochastic oracle in the form of (4) we can immediately take into
account newly observed behaviour and make iteration, that is now cheap both
in computation and in the required downtime. However, in real-life environment
we alsp cannot estimate the probability of customer’s choice, represented by the
vector xd(p) included in second case of (4). We can obtain only some single sales,
those are in fact the random samples of the form Xd(p) = (0 · · · 0 1 0 · · · 0), where
[Xd(p)]i = 1 w.p. [xd(p)]i, and [Xd(p)]j = 0 for i 6= j. Therefore, E[Xd(p)] =
xd(p), and we can introduce another, more practical, stochastic gradient oracle
for constructing our dynamics:

∇̃fi(p) =

{
ys(p) i = s ≤ S
−Xd(p) i = S + d

, i ∈ {1, ..., S +D}. (5)

3 Since Ed(p) = Eε
[
max
i
{aid − pi + εi}

]
=
∑
i

P
[
aid − pi + εi = max

i
{aid − pi + εi}

]
·

Eε [aid − pi + εi], and therefore
∂Ed(p)

∂pi
= −P

[
aid − pi + εi = max

i
{aid − pi + εi}

]
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Now, let us clarify properties of the objective function and introduced oracles.
In our simplified setting the following result holds:

Lemma 1. (Theorem 3.7 [9]) f has L-Lipschitz continuous gradient w.r.t. ‖·‖2
with

L =

S∑
s=1

1

Γs
+

D∑
d=1

1

minj µj
,

and each ∇fi(p) for all i ∈ {1, ..., S +D} is Li-Lipschitz continuous w.r.t. ‖ · ‖2
with

Li =


1

Γi
i ≤ S

1

minj µj
i > S

, i ∈ {1, ..., S +D}

3 Algorithms and theoretical guarantees

3.1 Stochastic gradient descent

Let us consider the simplest dynamic of prices, based on the classical stochas-
tic gradient descent method. A very natural interpretation for this dynamics
is that in every iteration we can observe only one of the market participants,
supplier or consumer. As soon as participant makes an economical decision (con-
sumer chooses the product or supplier modifies the supply plan), we evaluate the

stochastic oracle ∇̃fi(pt), and make a step to the equilibrium prices. This dy-
namic is listed as Algorithm 1. We use the [·]+ notation for the positive part func-
tion, i.e. for a = [b]+ we have ai = max{0, bi}, and denote by i ∼ U{1, ..., S+D}
the i.i.d. random variables from discrete uniform distribution.

We analyse this dynamic as the projected stochastic gradient method with
Polyak–Ruppert averaging with tunable parameter C > 0 to control the step
size of the method. One practical advantage of this method is the robustness to
the choice of C: it may be chosen regardless of theoretical value of L. However,
the analysis additionally requires the condition of stochastic gradient’s bound-
edness, but due to the smoothness of f we can bound the norm of (4), while the
additional randomization in the second case of (5) acts on the standard simplex
and therefore is also bounded. Unfortunately, I didn’t understand the previous
sentence.
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Algorithm 1 SGD dynamic

Require: p0 — starting prices values, N — number of iterations, C — parameter to
control the step size

1: for t = 0, 1, . . . , N − 1 do
2: i ∼ U{1, ..., S +D}

3: pt+1 =

[
pt −

C√
t+ 1

∇̃fi(pt)
]
+

4: end for

5: p̃N =
1

N

N∑
t=1

pt

6: return p̃N

Theorem 1. (Theorem 7 [8]) Let us assume that used stochastic oracle is uni-

formly bounded: ‖∇̃fi(pt)‖2 ≤ B for all i ∈ {1, ..., S+D} and t ∈ {1, ..., N}. The
suboptimality of prices p̃N given by SGD dynamic (Algorithm 1) is decreasing
as follows

E[f(p̃N )]− f(p∗) ≤
‖p0 − p∗‖22 + CB2(1 + C lnN)

2C
√
N

.

Moreover, to obtain the prices satisfying the suboptimality bound

E[f(p̃N )]− f(p∗) ≤ ε,

it is sufficient to call ∇̃fi oracle O
(

1

ε2

)
times.

Therefore, considered SGD dynamic with Polyak–Ruppert averaging obtains

convergence rate of O
(
N−1/2

)
, up to a logarithmic term. This also matches the

result from [13].

3.2 Adaptive stochastic gradient method

In this section we describe a slightly different AdaGrad [3] dynamics that has
a different step size policy. More precisely, the stepsize is chosen based on the
stochastic subgradients on the trajectory of the method. This allow the algorithm
to adapt to the local information and possibly make longer steps.
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Algorithm 2 AdaGrad dynamic

Require: p0 — starting prices values, N — number of iterations, η — step size pa-
rameter, ε — small term to prevent zero division

1: H0 = 0
2: for t = 0, 1, . . . , N − 1 do
3: i ∼ U{1, ..., S +D}
4: gt = ∇̃fi(pt)
5: Ht+1 = Ht + 〈gt, gt〉

6: pt+1 =

[
pt −

η√
Ht+1 + ε

gt

]
+

7: end for

8: p̃N =
1

N

N∑
t=1

pt

9: return p̃N

Theorem 2. (Corollary 4.3.8 [4]) Let ‖pt − p0‖∞ ≤ R for all t ∈ {1, ..., N},
η is proportional to R. The suboptimality of the prices p̃N given by AdaGrad
dynamic (Algorithm 2) is decreasing as follows

E[f(p̃N )]− f(p∗) ≤
3R

2N
·
n∑
i=1

E

( N∑
t=1

[gt]
2
i

)1/2
 .

To obtain the prices satisfying the suboptimality bound

E[f(p̃N )]− f(p∗) ≤ ε,

it is sufficient to call ∇̃fi oracle O
(

1

ε2

)
times.

Hence the proposed AdaGrad dynamic demonstrates convergence rate of the

order O
(
N−1/2

)
. This asymptotic is similar to that for SGD dynamic, but in

practice such a simple modification of the step size allows to discernibly improve
the convergence rate. At the same time, the step size hyperparameter η is still
free and it allows to manually tune the algorithm for the best practical efficiency.

4 The case of infinite number of consumers

In general, the total expected revenue framework considered in [9] allows one to
describe not only the individual consumers, but also the groups of consumers
with close behavior. At the same time, their model covers only the setting of
finite number of agents, which may be not completely practical. Indeed, if the
number of agents is huge or new agents can enter the marketplace as time goes,
it makes sense to consider the limit when the number of agents tends to infinity.
This leads to a general, non-finite-sum objective given as an expectation.

To be more specific, we consider that consumers are represented by a random
variable with some unknown distribution, i.e. d ∼ D. Then the characteristic
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vector (aid)
n
i=1 is also random. To maintain the property of market clearing at

optimal prices we also assume that the number of suppliers is infinite and that
they are represented by another random variable, i.e. s ∼ S. The next step is
to take the limit in (1) and make transition to expectation w.r.t. distributions
D,S instead of sums. For the sake of normalization we introduce the parameter
0 < β < 1 that is equal to the fraction of suppliers among all market participants.
Informally, β = lim(S+D)→∞ S/(S +D).

In this way, considering function 1
S+Df(p) instead of f(p) and taking the

limit as (S + D) → ∞, we have the new optimization problem in the form of
expectation:

min
p∈Rn

+

{
f̃(p) := β · Es∼S [πs(p)] + (1− β) · Ed∼D[Ed(p)]

}
. (6)

Note, that to preserve the convergence properties of the SGD dynamic con-
sidered in Section 3.1 it is sufficient just to generalize the used stochastic oracle
(5) to the proposed setting by defining

∇̃f̃(p) :=

{
ys(p) for s ∼ S w.p. β

−Xd(p) for d ∼ D w.p. 1− β
.

Thus, to generate the stochastic gradient, we first with probability β choose to
choose among suppliers or with probability 1 − β we choose to choose among
consumers. Then, in the former case we sample supplier from the distribution S
and in the latter case we sample consumer from the distribution D. Finally, for
the chosen agent the stochastic gradient is defined as in (5).

Since problem (6) is a general stochastic optimization problem, we can apply
Algorithm 1 and obtain the dynamic listed as Algorithm 3. Its interpretation
is quite similar to that of Algorithm 1: at the every iteration we observe the
behaviour of one market participant, consumer or supplier, and change the prices
in a proper way. As in the SGD dynamic, samplings d ∼ D, s ∼ S and switching
w.p. β are provided by natural flow of participants, we assume that information
about participants decisions arrives uniformly. Since Lemma 1 and the conditions
of Theorem 1 still hold, the convergence rate of dynamic below is similar to the
one given in Theorem 1.

Algorithm 3 SGD dynamic (online setting)

Require: β — fraction of suppliers, p0 — starting prices values, N — number of
iterations, C — parameter to control learning rate

1: for t = 0, 1, . . . , N − 1 do

2: pt+1 =

[
pt −

C√
t+ 1

∇̃f̃(pt)

]
+

3: end for

4: p̃N =
1

N

N∑
t=1

pt

5: return p̃N
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5 The case of zero quantity adjustment costs

In this section we return to the setting of Section 2 and consider the limiting case
when in (2) Γs = 0. In this case there is no typical supply ŷs and all the necessary
information about the costs incurred by the supplier is set by the function cs(·).
In this case there is no guarantee that the function f in (1) is smooth (cf. Lemma
1) and the algorithms have to be properly modified to guarantee the convergence.
This section is devoted to such modifications.

5.1 Mirror descent dynamic

Stochastic mirror descent (SMD) [5,10,11] is widely used and theoretically op-
timal algorithm for stochastic convex non-smooth optimization problems. We
consider here a particular case of the SMD dynamic with Euclidean proximal
setup, in which it looks quite similar to SGD dynamic, but uses a different step
size policy. SMD dynamic is listed below as Algorithm 4.

Algorithm 4 SMD dynamic

Require: p0 — starting prices values, N — number of iterations, C — parameter to
control step size

1: for t = 0, 1, . . . , N − 1 do
2: i ∼ U{1, ..., S +D}

3: pt+1 =

[
pt −

CR

M
√
t+ 1

∇̃fi(pt)
]
+

4: end for

5: p̃N =
1

N

N∑
t=1

pt

6: return p̃N

Theoretical guarantee below utilizes the Lipschitz continuity of function f ,
more precisely the boundedness of the stochastic gradient norm. Considering
the expression (3), we can bound the first term by applying some economic
reasoning, namely that the supply is always limited or scarcity principle [1]. The
second term is also bounded since all xd are probability vectors and belong to
the standard simplex. Stochastic gradient given by (5) is bounded by the same
reason.

Theorem 3. (Proposition 1 [6]) Let ‖pt − p0‖2 ≤ R and E[‖∇̃f(pt)‖2] ≤ M2

for all t ∈ {1, ..., N}. The suboptimality of prices p̃N given by SMD dynamic
(Algorithm 4) is decreasing as follows

E[f(p̃N )]− f(p∗) ≤
max{C,C−1}RM√

N
.
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Moreover, to obtain the prices satisfying the suboptimality bound

E[f(p̃N )]− f(p∗) ≤ ε,

it is sufficient to call ∇̃fi oracle O
(

1

ε2

)
times.

So, the described SMD dynamic has convergence rate of O
(
N−1/2

)
in non-

smooth case that takes place if Γs = 0 for some s. This bound matches that of
the SGD dynamic from Theorem 1.

5.2 Dual smoothing

The special structure of the function πs(p) in (2) allows us to use the Nesterov’s
smoothing technique [12]. The idea is, in the case when Γs = 0, to replace the
−Γs · ‖y − ŷs‖22 term in (2) with the synthetic penalty −η · ‖y − y0‖22, where
η = ε/(2R2) for some fixed target suboptimality ε and R such that ‖y∗−y0‖2 ≤
R. With this substitution for all s, following the argumentation of Lemma 1,
we have that the modified function fη has Lipschitz-continuous gradient with
constant

L =
2SR2

ε
+

D∑
d=1

1

minj µj
.

At the same time, if we minimize fη up to accuracy ε
2 , i.e. we have for some p̃

that

fη(p̃)− min
p∈Rn

+

fη(p) ≤ ε

2
,

then it holds that

f(p̃)− f(p∗) ≤ ε.

It means that we can obtain the solution of the problem (1) satisfying the target
suboptimality bound by optimizing the modified function fη that is smooth and
therefore allows us to apply some of the methods described in previous sections.

Note that the transition from non-smooth setting to the smooth one with the
described approach is not free in terms of convergence rate due to the dependence
of the constant L on the target suboptimality ε.

6 Numerical experiments

In this section, we focus on the problem (1), which is motivated by important
applications to offering smart pricing options by online marketplaces and man-
agement of demand and supply by such financial intermediaries like brokers [9].

We provide the results of our numerical experiments, which are performed
on a PC with processor Intel Core i7-8650U 1.9 GHz using pure Python 3.7.3
(without C code) under managing OS Windows 10 (64-bits). Numpy.float128
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data type with precision 1e− 18 and with max element ≈ 1.19e+ 4932 is used.
Random seed is set to 17.

We compare Algorithm 1 and Algorithm 2 with pricing dynamics 4.2 and
4.4 from [9] on the problem (1) with the following settings: number of suppliers
S = 5, number of consumers D = 10, number of products n = 20, number of
groups m = 5. Γs is chosen like 10−4 (some small value that affects to conver-
gence of pricing schemes from [9]). We generated also S vectors ŷs from uniform
distribution U [0.01, 2] of size n. Initialization point p is chosen from uniform dis-
tribution U [0.01, 5] of size n, but it is scaled by the maximum element. Matrix
A consists of columns with each one is drawn from uniform distribution And µ
values are drawn i.i.d. from uniform distribution U [0.1, 1] of size m.

We consider cs(y) equal to ||y||22. Hence, the closed form solution of (2) is

ys(p) =
p+ 2Γsŷs
2(1 + Γs)

.

To estimate the suboptimality we perform pricing dynamic 4.2 [9] (Gradient
descent method) with stopping criterion ||pt+1 − pt||2 ≤ 10−10 and obtain lower
bound for f∗ = f(p∗) from Theorem 4.3 [9].

During the experiments we store objective suboptimality and number of or-
acle calls for each algorithm at every iteration. The results are presented on the
Figure 1.

Fig. 1. Dependence of f − f∗ from the number of oracle calls.

As we can see from the Figure 1, there is almost no difference between ac-
celerated and non-accelerated pricing schemes from [9] and that the stochastic
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algorithms converge to the optimal value much faster than accelerated gradient
method with respect to chosen parameters.

Conclusion

We propose a stochastic version of the formulation of the problem of finding
equilibrium prices by minimizing the potential function of total expected rev-
enue, proposed in a deterministic form in [9]. Thanks to the introduction of the
stochastic oracle, we analyze and interpret in terms of observing the real-life
marketplace environment several dynamics based on the efficient stochastic gra-
dient optimization methods. We also analyze the case of a non-smooth potential
function in the case of zero quantity adjustment costs. In addition, we propose
a generalized setting allowing an infinite number of market participants and
equally suitable application of optimization methods. Numerical experiments
show that stochastic methods turn out to be discernibly more efficient in com-
parison with full-gradient dynamics.
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