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Abstract. Modern applied optimization problems become more and
more complex every day. Due to this fact, distributed algorithms that can
speed up the process of solving an optimization problem through par-
allelization are of great importance. The main bottleneck of distributed
algorithms is communications, which can slow down the method dramat-
ically. One way to solve this issue is to use compression of transmitted
information. In the current literature on theoretical distributed optimiza-
tion, it is generally accepted that as much as we compress information,
so much we reduce communication time. But in reality, the communica-
tion time depends not only on the size of the transmitted information,
but also, for example, on the message startup time. In this paper, we
study distributed optimization algorithms under the assumption of a
more complex and closer-to-reality dependence of transmission time on
compression. In particular, we describe the real speedup achieved by com-
pression, analyze how much it makes sense to compress information, and
present an adaptive way to select the power of compression depending
on unknown or changing parameters of the communication process.
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1 Introduction

Modern realities pose more and more complex optimization problems that need
to be solved. For example, to improve the generalization of deployed models, ma-
chine learning engineers need to rely on training datasets of ever increasing sizes
and on elaborate large-scale over-parametrized models [3]. Therefore, it is in-
creasingly necessary to resort to the use of distributed approaches to solving the
optimization problem. The essence of distributed optimization is to the process
of streamlining the target function by using multiple computing resources that
are scattered across different machines or servers. It enables optimization algo-
rithms to run in parallel, which can greatly increase the speed and efficiency of
finding the optimal solution. Therefore, distributed optimization is widely used
in various domains, including machine learning, data science, and operations
research [20].

∗The research was supported by Russian Science Foundation (project No. 23-11-
00229).
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However, when utilizing parallel computation in a distributed optimization
environment, a common challenge is the communication between the compu-
tational devices. Since the agents function independently, they must exchange
information to harmonise their local solutions and revise the global solution.
Meanwhile, communication time is a waste that prevents full parallelization.
Therefore, to struggle for effective communication and to address the communi-
cation bottleneck issue is a key point in distributed optimization [13,19,9].

Employing compression of forwarded information is one of the viable solu-
tions to decrease communication expenses [18,1]. It assists in reducing file size
while preserving important information. With the use of effective compression
algorithms, transmission time can be considerably reduced both in theory and
in practice [10].

Several models describing the dependence of transmission time on message
size can be found in literature. The most frequently utilized model in the the-
oretical optimization is T = βs, where T is the transmission time, β is the
delay-size relationship, and s is the message size. Meanwhile, there is a more
practical and widespread model that has stayed away from theoretical optimiza-
tion. This model is T = βs+α, where α is the server initialization time [8]. The
simpler model indicate that transmission time can be reduced by a factor of n
by transmitting n times less information. Nevertheless, the practical results con-
trast with the theoretical ones. In actuality, messaging involves initializing the
channel, which refers to establishing a connection between the sender and the
recipient. The second model accounts for this. This implies that there is minimal
distinction when transmitting 1 or 2 bits, but once we send 100 Mb and 200 Mb,
the variance is substantial. Therefore, we necessitate an accurate representation
to characterise the communications.

Considering the issue of communication expenses and the proposed solution,
the main questions of this study can be posed:

1. Which model better describes the real world of messaging?

2. How does this change the theory of distributed optimization?

3. How can we determine the parameters of this model?

4. What is the most efficient method of calculating the parameters of this
model in the event of frequent data updates?

1.1 Contributions

More practical communication model: Instead of the classical delay
versus size model of T = βs (where β represents the relationship between delay
and size), we have adopted a more realistic approach of T = βs+α (taking into
account α – the server initialization time). When a worker sends a message to
the server, the channel initialization time contributes significantly to the small
size of message transmission. It is, therefore, essential to consider this factor.

Impact of model on communication complexities: We analyze how the
more practical model from the previous paragraph affects the communication
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costs of modern distributed algorithms with compression. We consider state-
of-the-art methods that have the best theoretical guarantees for convex and
non-convex problems.

Estimate of α, β: In order to calculate the two coefficients α and β based
on the real data on the dependence of delay on message volume, we assume that
α = αconst+ δα and β = βconst+ δα where δα and δβ follow independent normal
distributions. αconst and βconst are the true values of these coefficients, δα and
δβ are errors of measurement or calculation.

Using this information, it is possible to calculate the coefficients αconst and
βconst through statistical techniques, such as least squares. Rather than storing
the complete dataset of message size and delay time, we can update the summa-
tion of variables. This approach enables us to update just four variables without
needing to recalculate the coefficients using the least squares method.

The estimation process aims to find the values of α and β that best fit the
observed data, thus providing insight into the server initialization time and the
delay-volume relationship.

2 Problem statement

We consider the optimization problems of the form:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
,

where x is the optimization variable. For example, in the context of ML, x ∈ Rd

contains the parameters of the statistical model to be trained, n – number of
employees/devices and functions fi(x) : Rd → R – model data loss x, stored on
the device i.

2.1 Distributed optimization with compression

We give an illustration of the traditional use of distributed optimization, utilizing
the gradient descent algorithm as an instance – see Algorithm 1.

As noted above to handle large data sets, compression is necessary. In Algo-
rithm 1 this can be represented by the compression operator C : Rd → Rd. In
particular, ∇fi(x

k) in line 4 should be replaced by C(∇fi(x
k)) and, accordingly,

in line 6 we aggregate the compressed gradients C(∇fi(x
k)):

xk+1 = xk − γk · 1
n

n∑
i=1

C(∇fi(x
k)).

This approach is basic, but does not give the best convergence results [11,6].
Once can note that more advanced methods with compression use more tricky
schemes, in particular, they are based on various variance reduction techniques,
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Algorithm 1

1: Initialization: choose x0 ∈ Rd and stepsizes {γk}Kk=0

2: for k = 0, 1, . . . ,K do
3: Server sends xk to all n nodes
4: Each i-th node, in parallel with the others, calculates the gradient of its corre-

sponding function fi:
∇fi(x

k)

5: All nodes send ∇fi(x
k) to the server

6: Server performs aggregation:

xk+1 = xk − γk · 1
n

n∑
i=1

∇fi(x
k)

7: end for

which prescribe to compress not the gradient itself, but the difference between
the gradient and some reference value [15,14,10,17,7,4,5].

The theory of convergence of methods with compression is based on a formal
definition of the properties of C operators. In particular, two classes of operators:
unbiased and biased, are often distinguished in the literature.

Definition 1. C is an unbiased compression with ζ ≥ 1 if C is unbiased
(E[C(x)] = x) and E

[
∥C(x)∥22

]
≤ ζ∥x∥22 for all x ∈ Rd.

Definition 2. C is a biased compression with δ ≥ 1 if
E
[
∥C(x)− x∥22

]
≤ (1− 1/δ) ∥x∥22 for all x ∈ Rd.

Meanwhile, these definitions do not give a complete picture about compres-
sion operators. The definitions are interesting for proving convergence and ob-
taining iterative complexity of algorithms. But to obtain the communication
cost in the amount of transmitted information, it is necessary to understand
how much the operator reduces the transmitted information.

2.2 Degree of compression

In this subsection, we estimate the degree of compression ωinf = len(x)
len(C(x)) , where

len(x) is the number of bits of information to send x ∈ Rd. We consider different
classical compression operators.

Definition 3. For k ∈ [d] := {1, . . . , d}, the unbiased random (aka Rand-k)
sparsification operator is defined via

C(x) := d

k

∑
i∈S

xiei,

where S ⊆ [d] is the k-nice sampling; i.e., a subset of [d] of cardinality k chosen
uniformly at random, and e1, . . . , ed are the standard unit basis vectors in Rd.
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Lemma 1. For the unbiased random sparsification ωinf = d
k .

Proof. Initial vector x contains d non-zero coordinates, and the compressed one
contains k. Then ωinf = d

k . Here it is important to clarify that in the general
case it is necessary to forward numbers of non-zero coordinates as well. But if
the same random generator with the same seed is installed on the sending and
receiving devices, it is possible to synchronize the randomness for free, and then
there is no need to send additional information.

Definition 4 (see [2]). Top-k sparsification operator is defined via

C(x) :=
d∑

i=d−k+1

x(i)e(i),

where coordinates are ordered by their magnitudes so that |x(1)| ≤ |x(2)| ≤ · · · ≤
|x(d)|.

Top-k is a greedy version of unbiased random sparsification.

Lemma 2. For Top-k sparsification ωinf = d·len(x)
k·len(x)+k·⌈log2 d⌉ .

Proof. Similar to Unbiased random sparsification initial vector x contains d non-
zero coordinates, and the compressed one contains k. But here, unlike random
sparsification, we have to pass the numbers of selected non-zero coordinates. To
encode the numbers from 1 to d, ⌈log2 d⌉ bits are needed. The total number of

transmitted bits is k · len(x) + k · ⌈log2 d⌉. Then ωinf = d·len(x)
k·len(x)+k·⌈log2 d⌉ .

Definition 5 (see [12]). Natural compression operator Cnat is defined as fol-
lows:

C(x) =

{
sign(x) · 2⌊log2 |x|⌋, with p(x),

sign(x) · 2⌈log2 |x|⌉, with 1− p(x),

where probability p(x) := 2⌈log2 |x|⌉−|x|
2⌊log2 |x|⌉ .

The essence of this compression is random rounding to the nearest power of
two. In terms of computing on a computer with 32bit float type, this is simply
equivalent to using only the sign bit and 8 bits from the exponent.

Lemma 3. For Natural compression ωinf = 32
9 .

Proof. The statement follows directly from the use of such compression with
32bit float. Instead of 32 bits we send 9.

Definition 6 (see [21]). Rank-r Power compression introduced by [21] is a
compressed-decompressed approach approach based on the low-rank approximate
decomposition of the matrix X ∈ Rn×m (transformed version of the original
parcel vector x).

Lemma 4. For Rank-r PowerSGD compression ωinf = nm
r(n+m) .
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Proof. The product of matrices PQT , P ∈ Rn×r, Q ∈ Rm×r approximates the
matrix X ∈ Rn×m, Thus, instead of storing n ·m numbers must be r · n+ r ·m.
Then ωinf = nm

r(n+m) .

The results obtained above are summarized in Table 1.

Compression operator ωinf

Unbiased random sparsification
d

k

Top-k sparsification [2] d·len(x)
k·len(x)+k·⌈log2 d⌉

Natural compression [12]
32

9

Rank-r Power compression [21]
nm

r(n+m)

Table 1: ωinf for different compression operators.

As previously stated, the estimation of communication time necessitates ωinf .
This coefficient serves as a reliable indicator of the effectiveness of the compres-
sion operator in each instance, particularly if one knows the optimal frequency
of message compression (which is the objective of this research paper).

3 Main part

3.1 Transmission time model and convergence complexities

Fig. 1: Dependence of communication time on the
size of the transmitted messages for MSU supercom-
puter ”Lomonosov”: blue dots – real values, orange
line – approximation.

We consider the follow-
ing model of transmission
time:

T (s) = α+ β · s,

where s is the size of
the packages, β repre-
sents the time to trans-
mit one unit of the in-
formation, α represents
the time to initialize the
channel, which is the de-
lay that occurs before
any message transmis-
sion occurs. This delay
may involve activities such as creating a connection, verifying the user’s iden-
tity, or loading essential resources. As mentioned earlier, in papers on theoretical
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optimization and convergence estimates, it is assumed that α = 0. But let us
examine the plot presented in Figure 1, which portrays the relationship between
the transmission delay and message size in a live network. Using this plot we
can see the effect of α on communication time.

Note that the theoretical results on the communication cost of distributed
algorithms with compression depend on the parameter

η =
T (len(∇fi(x)))

T (len(∇fi(x))/winf )
. (1)

In particular, the best results for method with unbiased compression for convex

[14] and non-convex [10] problems linear depends on
(

1
η + ζ

η
√
n

)
. The state-of-

the-art results for biased compression [16,17] linear depends on
(

1
η + δ

η

)
. It is

easy to see that if α = 0, the expression (1) gives η = winf . But if α ̸= 0,
it is possible that η = 1, thus the impact of even a large winf can be almost
completely canceled.

3.2 Division into areas

Fig. 2: Division into fields according to the impor-
tance of the summands α and βs

Let us examine the orig-
inal plot (Figure 1) and
divide it into three condi-
tional ranges (Figure 2).
In the first range, the co-
efficient α is the most sig-
nificant. This means that
if the size of the mes-
sage s falls within this
range, then α greatly ex-
ceeds βs. In the second
range, both coefficients α
and β hold value, with
α and βs being close in
value. In the third range, β carries the most significance, with βs greatly ex-
ceeding α.

Let us examine how the transmission delay varies with changes in message
size (see Figure 3, Figure 4, and Figure 5). We determine the number of times
the message size alters during compression, and subsequently how many times
the transmission time changes:

• When transitioning between areas 3 to 3 and 3 to 2, the message is com-
pressed by a factor of n, while communication time is reduced by 0, 95 · n.

• When transitioning between areas 2 to 2 and 2 to 1, compression is ap-
proximately 40 times greater than the reduction in communication cost.

• When transitioning between areas 3 to 1, the time saved is insignificant
compared to the compression size (with a compression of 5000 times, the trans-
mission time is only reduced by approximately 100 times).
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Fig. 3: Transitions from
area 2 to areas 1, 2

Fig. 4: Transitions from
area 3 to areas 2, 3

Fig. 5: Transitions from
area 3 to area 1

Conclusion: It is most feasible to travel from area 3 to 3 or 2, and it is not
financially viable to travel from area 3 to 1.

Fig. 6: Transmission delay reduction on message size
reduction

Let us consider an
example how compres-
sion of a message af-
fects transmission time.
We use the distributed
system from Figure 1.
The size of an uncom-
pressed message is 1022.
Figure 6 demonstrates
that the variation in time
is almost linear at first,
but then the compression
loses its effectiveness. Hence, it can be concluded that the compression of a mes-
sage has an impact on the transmission time.

Conclusion: High compression does not result in a significant time savings,
thus extensively compressing a message is not an efficient approach.

3.3 A way to find α and β for an unknown network parameters

Here is a method for determining α and β when the network parameters are
unknown, when we can specify areas as in Figure 2. We formalize the problem
of finding or estimating α and β as follows.

Condition: It is possible to transmit messages of varying sizes ranging from
0 to Pmax, which represents the maximum message size that we can send. It is
imperative to consider technological constraints when evaluating the feasibility
of message transmission. For instance, for each message, the values α and β are
stochastic and have the laws: α(t) = αconst+ δα and β(t) = βconst+ δβ. That is,
α(t) and β(t) vary among samples and consist of a constant value plus stochastic
noise δ (which follows a normal distribution with mean 0 and variance σ2, where
σ = αm · αconst or σ = βm · βconst depending on the nature of δ).

Suggested solution: Let us apply the formulas of the method of least
squares to recalculate α and β. During the operation of the main optimization al-
gorithm we vary message sizes. Firstly, we calculate the delay at 2 points. Then,
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for each subsequent step, we select (determistically or randomly) the next point
from within the interval (0, Pmax) and calculate the delay. Here is an example
of code that executes this algorithm:

Algorithm 2

1: Parameters: largest message size Pmax;
2: Initialization: compute times y1, y2 for message sizes x1, x2 respectively (y =

β ·x+α). Set s2x = x1+x2, s
2
y = y1+y2, s

2
xy = y1 ·x1+y2 ·x2, s

2
xx = x1 ·x1+x2 ·x2;

3: for k = 3, 4, . . . do
4: for new xk ∈ [0, Pmax], compute yk
5: skx = sk−1

x + xk

6: sky = sk−1
y + yk

7: skxy = sk−1
xy + xk · yk

8: skxx = sk−1
xx + xk · xk

9: βk =
k·skxy−skx·sky
k·skxx−(skx)2

10: αk =
sky−β·skx

k

11: end for

The algorithm recalculates the α and β coefficients using the least squares
formulas. It is worth pointing out that it is very expensive to recalculate the
parametrs α and β using the least squares method and to store all data of
message sizes and times of transmission {xi, yi}. But Algorithm 2 can works
online. We need only 4 variables: the sum of message sizes sx, the sum of delays
sy, and the sums needed for the least squares calculation sxy and sxx.

Proposition 1. βk, αk from Algorithm 2 are unbiased estimations of β and α,
namely E[βk] = βconst and E[αk] = αconst.

Proof. We start from βk:

E[βk] = E

[
k · skxy − skx · sky
k · skxx − (skx)

2

]
=

k · E[skxy]− skx · E[sky ]
k · skxx − (skx)

2
. (2)

Next, we estimate E[skxy] and skx · E[sky ]

E[skxy] =E

[
k∑

i=1

(xiyi)

]
=

(
k∑

i=1

(xiE[yi])

)
=

k∑
i=1

xi(βconstxi + αconst)

=βconst

k∑
i=1

x2
i + αconst

k∑
i=1

xi, (3)

skx · E[sky ] =

(
k∑

i=1

xi

)
· E

[
k∑

i=1

yi

]
=

(
k∑

i=1

xi

)
·

k∑
i=1

(βconstxi + αconst) =

=βconst

(
k∑

i=1

xi

)2

+ k · αconst

k∑
i=1

xi. (4)
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Substituting (4) and (3) to (2), we get

E[βk] =
k ·
(
βconst · skxx + αconst · skx

)
− βconst · (skx)2 − k · αconst · skx

k · skxx − (skx)
2

= βconst.

Finally, for E[αk] we obtain

E[αk] =
E[sky − βk · skx]

k
=

E[sky ]− E[βk] · skx
k

=

k∑
i=1

(βconstxi + αconst)− βconst · skx

k
=

k · αconst

k
= αconst.

4 Conclusions

In this paper, we considered a realistic communication cost model T (s) = βs+α,
which takes into account α – the server initialization time. We tried to discuss
how it affects to communication time complexities of algorithms. We also pro-
vided the algorithm for determining the coefficients α and β utilizing statistical
techniques such as the least squares method, alongside estimated uncertainties
related to this approach. Rather than storing the complete message size and
delay time sets, it is viable to update some combinations of the variables.

One can note that the model considered in this paper can also be improved.
For example, we can also include the time required for the communication oper-
ator counting. In some cases, this can be quite expensive, which slows down the
computational process. Taking this time into account is an important detail for
future research.
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