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Abstract—The article deals with some approaches to solving convex problems of the min-min
type with smoothness and strong convexity in only one of the two groups of variables. It is
shown that the proposed approaches based on Vaidya’s method, the fast gradient method, and
the accelerated gradient method with variance reduction have linear convergence. It is proposed
to use Vaidya’s method to solve the exterior problem and the fast gradient method to solve the
interior (smooth and strongly convex) one. Due to its importance for applications in machine
learning, the case where the objective function is the sum of a large number of functions is
considered separately. In this case, the accelerated gradient method with variance reduction is
used instead of the fast gradient method. The results of numerical experiments are presented
that illustrate the advantages of the proposed procedures for a logistic regression problem in
which the a priori distribution for one of the two groups of variables is available.
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1. INTRODUCTION

The widespread extension of the acceleration construction of the conventional gradient method
proposed in 1983 by Nesterov [1] to various other numerical optimization methods has become one
of the main trends in research on numerical convex optimization methods in the last decade. Over
the past 15 years, the accelerated method has been successfully transferred to smooth conditional
convex optimization problems, to problems with structure (in particular, the so-called composite
problems), and to gradient-free and randomized methods (for example, the accelerated gradient
method with variance reduction for problems of minimizing the sum of functions [2]). Acceleration
has also been successfully transferred to methods using higher derivatives. Details and a more
elaborate overview of publications can be found in [3].

Optimization problems of the min-max type and saddle point problems have been widely studied
in the literature due to their broad range of applications in statistics, machine learning, computer
graphics, game theory, and other fields. Recently, many researchers have been actively working on
the topic of accelerated methods for solving these problems, taking into account their structure;
see [4–8], and these are just some of the latest publications. In some applications, there is a prob-
lem, similar to the min-max problem, which remains largely unexplored; this is a problem of the
min-min type,

min
x∈Qx

min
y∈Qy

F (x, y), (1)
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where Qx ⊂ Rd and Qy ⊂ Rn are nonempty compact convex sets of relatively low dimension d
(d ≪ n) and the function F (x, y) is jointly convex in all variables and L-smooth and µ-strongly
convex with respect to y. By L-smoothness with respect to y we mean the property∥∥∇yF (x, y)−∇yF (x, y′)

∥∥
2
⩽ L∥y − y′∥2

∀x ∈ Qx, y, y′ ∈ Qy.

This statement arises, for example, when searching for equilibria in transport networks [9]. In
machine learning, problems of this type correspond to the case where regularization is applied
to one of the two groups of model parameters (hence the strong convexity in only one group of
variables out of the two). For example, if a large group of features in a dataset are sparse, then
regularization can only be used for model weights corresponding to these features. Another example
is a logistic regression in which an a priori distribution for some of the parameters is available.
Several publications are devoted to the min-min problem, including [10–12]. For example, in [10],
the authors proposed new algorithms with automatically adjusted steps for min-max problems, but
the proposed methods also apply to min-min problems.

The present paper discusses two approaches to solving problem (1), which have a linear conver-
gence rate. It is proposed to reduce the problem under consideration to a set of auxiliary (interior
and exterior) problems. The exterior problem (minimization with respect to x) is solved by Vaidya’s
cutting plane method [13, 14].

In the case where the objective function F is simple, i.e., it is not the sum of a large number
of functions, the interior problem (minimization over y) is solved by the fast gradient method for
strongly convex optimization problems. As a result of this approach, an approximate solution of
problem (1) can be produced in Õ (d) calculations of ∂xF and Õ

(
d
√

L
µ

)
computations of ∇yF ;

see Theorem 5. Here and in what follows, Õ(·) = O(·) up to a small power of a logarithmic factor;
usually this exponent is one or two.

Optimizing the sum of a large number of functions has been the subject of intense research
over the past few years due to its wide range of applications in machine learning, statistics, image
processing, and other mathematical and engineering fields. Therefore, a separate case is consid-
ered where the objective function F is the sum (or the arithmetic mean) of a large number m
of functions. In this case, the use of the fast gradient method for strongly convex optimization
problems would require calculating the gradients of m terms at each step; this may take a long
time. Instead, we propose to use the accelerated gradient method with variance reduction [2, 15],
which also has linear convergence. As a result of this approach, the solution of the problem can
be achieved in Õ (md) calculations of ∂xF and in Õ

(
md+ d

√
mL
µ

)
computations of ∇yF ; see

Theorem 6.
Using the two proposed approaches, we obtain the linear convergence rate for the min-min

problem (1). Note that smoothness and strong convexity are required only in one of the two groups
of variables.

The paper consists of five sections and the Appendix. Section 2 lists the algorithms used and their
complexity, namely the fast gradient method, Vaidya’s cutting plane method, and the accelerated
gradient descent method with variance reduction. Section 3 formulates the problem statement and
provides approaches to the problem under consideration for various cases of the objective function,
in one of which the objective function is the sum or the arithmetic mean of a large number of
functions. Section 4 contains the results of computational experiments and a comparison of the
rates of the approaches proposed. Note that the complete proofs of Theorems 4, 5, and 6 as well as
the auxiliary Assertion 1 are given in the Appendix.
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2. THE METHODS USED

Let us present the algorithms used in the approaches to solving problem (1) proposed in the
present paper. First, the fast gradient method is presented, then Vaidya’s cutting plane method,
and finally, the fast gradient method with variance reduction.

2.1. Fast Gradient Method

The paper [16] proposes an adaptive algorithm for solving the optimization problem

min
y∈Qy

f(y), (2)

where Qy ⊂ Rn is a nonempty compact convex set and f is an L-smooth convex function. This
algorithm, dubbed the fast gradient method, permits one to accelerate the convergence of the
conventional gradient descent from O

(
1
N

)
to O

(
1

N2

)
, where N is the number of algorithm iterations.

The fast gradient method (its nonadaptive variant) is given below as Algorithm 1.

Algorithm 1 . The fast gradient method [16].

Input: number of steps N , initial point y0 ∈ Qy, and parameter L > 0.

1: 0-step: z0 := y0, u0 := y0, α0 := 0, A0 := 0.

2: for k = 0, 1, . . . , N − 1 do

3: find the greatest root αk+1 such that Ak + αk+1 = Lα2
k+1,

4: Ak+1 := Ak + αk+1,

5: zk+1 :=
αk+1u

k +Aky
k

Ak+1

,

6: uk+1 := arg min
y∈Qy

{
αk+1

〈
∇f(zk+1), y − zk+1

〉
+

1

2
∥y − uk∥22

}
,

7: yk+1 :=
αk+1u

k+1 +Aky
k

Ak+1

,

8: end for

Output: yN .

The following theorem gives an estimate for the complexity (rate of convergence) of Algorithm 1.

Theorem 1 [16]. Let a function f : Qy → R be L-smooth and convex; then algorithm 1 returns
a point yN such that

f
(
yN
)
− f(y∗) ⩽

8LR2

(N + 1)2
,

where y∗ is a solution of problem (2) and R2 = 1
2
∥y0 − y∗∥22.

Next, we describe the technique of restarts of the fast gradient method (Algorithm 1) for the
case of a µ-strongly convex function.

In view of the µ-strong convexity of f , we have

µ

2
∥z − y∥22 ⩽ f(z)−

(
f(y) +

〈
∇f(y), z − y

〉)
⩽

L

2
∥z − y∥22 ∀y, z ∈ Qy.

Then, after N1 iterations of Algorithm 1, in view of Theorem 1 we obtain

µ

2
∥yN1 − y∗∥22 ⩽ f

(
yN1
)
− f (y∗) ⩽

4L∥y0 − y∗∥22
N2

1

, (3)
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and hence
∥yN1 − y∗∥22 ⩽

8L

µN2
1

∥y0 − y∗∥22.

Therefore, choosing N1 =
⌈
4
√

L
µ

⌉
, where ⌈·⌉ is the ceiling, we obtain

∥yN1 − y∗∥22 ⩽
1

2
∥y0 − y∗∥22.

After this, for Algorithm 1 we choose yN1 for the start point and again perform N1 iterations,
and so on. To achieve an acceptable quality of solution, we can choose the number of restarts of
Algorithm 1 (the parameter p in Algorithm 2) as follows:

p =

⌈
1

2
ln

(
µR2

ε

)⌉
.

In this case, the total number of iterations in Algorithm 2 will be

N =

⌈
1

2
ln

(
µR2

ε

)⌉
·

⌈
4

√
L

µ

⌉
;

i.e.,

N = O

(√
L

µ
ln

(
µR2

ε

))
= Õ

(√
L

µ

)
. (4)

Algorithm 2 . The fast gradient method for strongly convex optimization problems, restarts of
Algorithm 1.

Input: initial point y0 ∈ Qy, L > 0, number of restarts p =

⌈
1

2
ln
(

µR2

ε

)⌉
.

1: for j = 1, . . . , p do

2: run Nj =

⌈
4

√
L

µ

⌉
iterations of Algorithm 1,

3: y0 := yNj .

4: end for

Output: ŷ := yNp .

2.2. Vaidya’s Method

Vaidya’s cutting plane method was proposed in [13, 14] to solve the constrained optimization
problem

min
x∈Qx

f(x), (5)

where Qx ⊂ Rd is a convex compact set with a nonempty interior and the objective function f
defined on Qx is continuous and convex.

Let P = {x ∈ Rd : Ax ⩾ b} be a bounded d-dimensional polyhedron, where A ∈ Rm×d

and b ∈ Rm. The logarithmic barrier of the set P is defined as

Barr(x) = −
m∑
i=1

log
(
a⊤
i x− bi

)
,
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where a⊤
i is the ith row of the matrix A. The Hessian H(x) of the function Barr(x) is

H(x) =

m∑
i=1

aia
⊤
i

(a⊤
i x− bi)

2 .

The matrix H(x) is positive definite for all x in the interior of P . The volumetric barrier V is
defined as

V(x) = 1

2
log
(
det
(
H(x)

))
,

where det (H(x)) designates the determinant of H(x). The point of minimum of the function V
on P will be referred to as the volumetric center of the set P .

Denote

σi(x) =
a⊤
i

(
H(x)

)−1
ai

(a⊤
i x− bi)

2 , 1 ⩽ i ⩽ m; (6)

then the gradient of the volumetric barrier V can be written as

∇V(x) = −
m∑
i=1

σi(x)
ai

ai
⊤x− bi

.

Let Q(x) be defined as

Q(x) =

m∑
i=1

σi(x)
aia

⊤
i

(a⊤
i x− bi)

2 .

Note that Q(x) is positive definite on the interior of P and also that Q(x) is a good approximation
to the Hessian of the function V(x); i.e., ∇2V(x).

Vaidya’s method generates a sequence of pairs (Ak, bk) ∈ Rm×d×Rm such that the corresponding
polyhedra contain the solution. For the initial polyhedron, defined by the pair (A0, b0), one usually
takes a simplex (the algorithm can start from any convex bounded n-dimensional polyhedron that
easily yields to the calculation of its volumetric center, for example, from the n-rectangle).

One of the algorithm parameters is a small number γ ⩽ 0.006, the meaning of which is revealed
in more detail in the book [17]. Let xk (k ⩾ 0) denote the volumetric center of the polyhedron
defined by the pair (Ak, bk), and suppose that the quantities {σi(xk)}1⩽i⩽m have been calculated
for this polyhedron (see (6)). The next polyhedron (Ak+1, bk+1) is obtained from the current one as
a result of either joining or removing a constraint:

1. If for some i ∈ {1, . . . ,m} one has σi(xk) = min
1⩽j⩽m

σj(xk) < γ, then (Ak+1, bk+1) is obtained

by eliminating the ith row from (Ak, bk).
2. Otherwise,

(
if min

1⩽j⩽m
σj(xk) ⩾ γ

)
, the oracle called up at the current point xk returns a vec-

tor ck such that f(x) ⩽ f(xk) ∀x ∈
{
z ∈ Qx : c⊤k z ⩾ c⊤k xk

}
; i.e., ck ∈ −∂f(xk). Select βk ∈ R

such that
c⊤k
(
H(xk)

)−1
ck

(x⊤
k ck − βk)

2 =
1

5

√
γ.

Determine (Ak+1, bk+1) by adding the row (ck, βk) to (Ak, bk).

The volumetric barrier Vk is a self-concordant function; therefore, it can be efficiently minimized
by the Newton method—one step of the Newton method for Vk made from xk−1 is sufficient. The
details and analysis of Vaidya’s method can be found in [13, 14, 17].

The following theorem gives an estimate for the complexity of Vaidya’s algorithm.
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Theorem 2. Let Bρ and BR be some Euclidean balls of radii ρ and R, respectively, such that
Bρ ⊆ Qx ⊆ BR , and let B > 0 be a number such that |f(x)− f(x′)| ⩽ B ∀x, x′ ∈ Qx. Then Vaidya’s
method finds an ε-solution of problem (5) in O

(
d log dBR

ρε

)
steps.

Remark 1. As shown in [18], Vaidya’s method can be used with an imprecise subgradient
without accumulating errors.

Remark 2. In addition to calculating the subgradient, the cost of iterating Vaidya’s method
includes the cost of inverting a d× d matrix and solving a system of linear equations.

2.3. Accelerated Gradient Method with Variance Reduction

Consider the problem
min
y∈Qy

f(y), (7)

where Qy ⊆ Rn is a closed convex set and the objective function f is the sum (or the arithmetic
mean) of a large number m of smooth convex functions fi; i.e., f(y) = 1

m

∑m

i=1 fi(y). When
solving (7) using the fast gradient method for strongly convex optimization problems (Algorithm 2),
it will be required to calculate the gradient of m functions on each iteration; this is very expensive.
Therefore, it is preferable to use a randomized gradient method instead of Algorithm 2, namely,
the accelerated gradient method with variance reduction, also called Varag [2, 15]. The following
Algorithm 3 is an accelerated gradient method with variance reduction (Varag) for a smooth strongly
convex finite sum optimization problem (7). This algorithm was proposed by Lan et al. in [15].

Assume that for each i ∈ {1, . . . ,m} there exists an Li > 0 such that∥∥∇fi(y)−∇fi(z)
∥∥
2
⩽ Li∥y − z∥2 ∀y, z ∈ Qy.

It is clear that f has a Lipschitz gradient with constant at most L := 1
m

∑m

i=1 Li. Let us also assume
that the objective function f is strongly convex with constant µ > 0; i.e.,

f(z) ⩾ f(y) +
〈
∇f(y), z − y

〉
+

µ

2
∥y − z∥2 ∀y, z ∈ Qy.

Definition 1. A random vector ȳ ranging in Qy is called a stochastic ε-solution of problem (7)
if E[f(ȳ)− f(y∗)] ⩽ ε, where y∗ is an exact solution of problem (7).

The Varag algorithm contains nested—exterior and interior—cycles (indexed by the variables s
and t, respectively). On each iteration in the exterior cycle, the full gradient ∇f(ỹ) is calculated at
the point ỹ; it is then used in the inner loop for determining estimates for the gradient Gt. Each
iteration in the inner loop requires information about the gradient of only one randomly selected
term fit and contains three main sequences {y

t
}, {yt}, and {ȳt}.

Denote s0 := ⌊log2 m⌋+1, where ⌊·⌋ is the floor. The parameters {q1, . . . , qm}, {θt}, {αs}, {γs},
{ps}, and {Ts} of Algorithm 3 are described as follows:

– The probabilities qi =
1∑m

i=1 Li
Li ∀i ∈ {1, . . . ,m}.

– The weights {θt} for 1 ⩽ s ⩽ s0 or s0 < s ⩽ s0 +
√

12L
mµ

− 4, m < 3L
4µ

are equal to

θt =


γs
αs

(αs + ps) , 1 ⩽ t ⩽ Ts − 1

γs
αs

, t = Ts.
(8)
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In the remaining cases, they are equal to

θt =

{
Γt−1 − (1− αs − ps) Γt, 1 ⩽ t ⩽ Ts − 1

Γt−1, t = Ts,
(9)

where Γt = (1 + µγs)
t.

– The parameters {Ts}, {γs}, and {ps} are defined as

Ts =

{
2s−1, s ⩽ s0

Ts0 , s > s0,
γs =

1

3Lαs

, ps =
1

2
. (10)

– Finally,

αs =


1

2
, s ⩽ s0

max

{
2

s− s0 + 4
,min

{√
mµ

3L
,
1

2

}}
, s > s0.

(11)

Algorithm 3 . The accelerated gradient method with variance reduction (Varag) [15].

Input: y0∈Qy, {Ts}, {γs}, {αs}, {ps}, {θt}, and a probability distribution {q1, . . . , qm} on {1, . . . ,m}.
1: ỹ0 := y0.

2: for s = 1, 2, . . . do

3: ỹ := ỹs−1, g̃ := ∇f(ỹ).

4: y0 := ys−1, ȳ0 = ỹ, T := Ts.

5: for t = 1, 2, . . . , T do

6: choose it ∈ {1, . . . ,m} in a random way according to {q1, . . . , qm}.

7: y
t
:=

1

(1 + µγs(1− αs))
[(1 + µγs)(1− αs − ps)ȳt−1 + αsyt−1 + (1 + µγs)psỹ].

8: Gt :=
1

(qitm)

(
∇fit

(
y
t

)
−∇fit(ỹ)

)
+ g̃.

9: yt := arg min
y∈Qy

{
γs

(
⟨Gt, y⟩+

µ

2
∥y

t
− y∥22

)
+

1

2
∥yt−1 − y∥22

}
.

10: ȳt := (1− αs − ps) ȳt−1 + αsyt + psỹ.

11: end for

12: ys := yT , ỹ
s :=

1∑T

t=1 θt

T∑
t=1

(θtȳt).

13: end for

The following result gives an estimate for the complexity of Algorithm 3.

Theorem 3 [15]. If the parameters {θt}, {αs}, {γs}, {ps}, and {Ts} of Algorithm 3 are given
according to formulas (8), (9), (10), and (11), then the total number of calculations of the gradients
of the functions fi performed by Algorithm 3 for finding the stochastic ε-solution of problem (7) is
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bounded,

N :=



O
{
m log

D0

ε

}
, m ⩾

D0

ε
or m ⩾

3L

4µ

O

{
m logm+

√
mD0

ε

}
, m <

D0

ε
⩽

3L

4µ

O
{
m logm+

√
mL

µ
log

D0/ε

3L/4µ

}
, m <

3L

4µ
⩽

D0

ε
,

(12)

where D0 = 2 (f(y0)− f(y∗)) +
3L
2
∥y0 − y∗∥22 , with y∗ being a solution of problem (7).

Note that the estimate (12) can be written as N = Õ
(
m+

√
mL
µ

)
, where Õ(·) = O(·) up to

a logarithmic factor in m, L, µ, ε, and D0.

3. STATEMENT OF THE PROBLEM AND THE RESULTS OBTAINED

Consider the problem
min
x∈Qx

min
y∈Qy

F (x, y), (13)

where Qx ⊂ Rd and Qy ⊂ Rn are nonempty compact convex sets; the dimension d is relatively small
(d ≪ n) and the function F (x, y) is jointly convex in all variables and L-smooth and µ-strongly
convex with respect to y. By L-smoothness with respect to y we mean the property∥∥∇yF (x, y)−∇yF (x, y′)

∥∥
2
⩽ L∥y − y′∥2 ∀x ∈ Qx, y, y′ ∈ Qy.

We introduce the function
f(x) = min

y∈Qy

F (x, y). (14)

Problem (13) can be rewritten in the form

min
x∈Qx

f(x). (15)

Solving (15) by some iterative method involves solving the auxiliary problem (14) on each step so
as to approximately find the subgradient ∂f(x). Let us proceed to the following definition.

Definition 2 [19, p. 123]. Let δ ⩾ 0, let Qx ⊆ Rd be a convex set, and let f : Qx → R be
a convex function. A vector g ∈ Rd is called a δ-subgradient of f at a point x′ ∈ Qx if

f(x) ⩾ f(x′) + ⟨g, x− x′⟩ − δ ∀x ∈ Qx.

The set of δ-subgradients of f at x′ is denoted by ∂δf(x
′).

Denote D := maxy,z∈Qy
∥y − z∥2 and y(x) := argminy∈Qy

F (x, y). The next theorem tells us
how to calculate the δ-subgradient of the function f(x) by approximately solving the auxiliary
problem (15).

Theorem 4. Suppose that a ỹ ∈ Qx such that F (x, ỹ)− f(x) ⩽ ε has been found. Then

∂xF (x, ỹ) ∈ ∂δf(x), δ =

(
LD +

∥∥∥∇yF
(
x, y(x)

)∥∥∥
2

)√
2ε

µ
.

This theorem is implied directly by the following two assertions.
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Assertion 1. Let g : Qy → R be an L-smooth µ-strongly convex function, and let a point ỹ ∈ Qy

be such that g(ỹ)− g(y∗) ⩽ ε. Then

max
y∈Qy

〈
∇g(ỹ), ỹ − y

〉
⩽ δ, δ =

(
LD +

∥∥∇g(y∗)
∥∥
2

)√2ε

µ
,

where y∗ = argminy∈Qy
g(y).

Assertion 2 [20, p. 12]. Assume that a ỹ ∈ Qy has been found such that

max
y∈Qy

〈
∇yF (x, ỹ), ỹ − y

〉
⩽ δ.

Then ∂xF (x, ỹ) ∈ ∂δf(x).

Intuitively, Theorem 4 says that, having solved the auxiliary problem (14) sufficiently accurately,
we obtain a good approximation to the subgradient ∂f(x), which can be used to solve the exterior
problem (15). The proposed approach to solving (13) is based on this idea.

Approach 1 (the main case). The exterior problem (15) is solved by Vaidya’s method. The aux-
iliary problem (14) is solved by the fast gradient method for strongly convex optimization problems
(Algorithm 2).

Theorem 5. Approach 1 allows one to obtain an ε-solution of problem (13) after Õ (d) calcula-
tions of ∂xF and inversions of matrices of size d× d and Õ

(
d
√

L
µ

)
calculations of ∇yF .

Remark 3. The inversion of matrices occurs in the complexity of the proposed approach owing
to the fact that it is performed at each step of Vaidya’s method.

3.1. Minimizing the Sum of a Large Number of Functions

Suppose that in problem (13) we have

F (x, y) =
1

m

m∑
i=1

Fi(x, y), (16)

where the functions Fi are jointly convex in all variables and Li-smooth with respect to y, while F
is µ-strongly convex in y. It follows that F is jointly convex in all variables and smooth with respect
to y with smoothness constant at most L := 1

m

∑m

i=1 Li.

Approach 2 (the sum of functions). The exterior problem (15) is solved by Vaidya’s method.
The auxiliary problem (14) is solved by the accelerated gradient method with variance reduction
(Algorithm 3).

Theorem 6. Approach 2 allows one to obtain an ε-solution of problem (13) in Õ(md) calcula-
tions of ∂xFi , Õ (d) inversions of matrices of size d×d, and Õ

(
dm+d

√
mL
µ

)
calculations of ∇yFi.

4. EXPERIMENTS

Consider the model of logistic regression for the binary classification problem. The error of the
model with parameters w on a training object with a feature vector z belonging to the
class t ∈ {−1, 1} is written as

ℓz(w) = log
(
1 + e−t⟨w,z⟩) .
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Fig. 1. Panels (a) and (b) correspond to dimensions d = 20 and d = 30, respectively. Graphs 1 and 2 demonstrate
the convergence of the proposed approach and the Varag method, respectively.

Let the model parameters consist of two groups, w = (x, y), x ∈ Rd, y ∈ Rn, with the Gaussian
a priori distribution

y ∼ N
(
0, σ2In

)
being given for the group y, where In is the identity matrix of size n. The maximization of the
a posteriori probability will lead (see [21, Sec. 4.5.1]) to the problem

min
x∈Qx

min
y∈Qy

{
F (x, y) :=

1

m

m∑
i=1

ℓzi(x, y) +
1

σ2
∥y∥22

}
, (17)

where for Qx and Qy we can take Euclidean balls of sufficiently large radii.
We will solve problem (17) using Approach 2 and compare its operation with that of the Varag

method (Algorithm 3). Note that this problem is not jointly strongly convex in all variables. For
such a statement, one can use the Varag, setting the parameters θt by the formula (8) and all the
remaining parameters by the formulas for the strongly convex case with µ = 0; see [15]. In this

case, the stochastic ε-solution will be found in O
(√

mD0

ε
+m logm

)
calculations of the gradients

of the functions Fi, where D0 = 2 (F (x0, y0)− F (x∗, y∗)) +
3L
2
∥(x0, y0) − (x∗, y∗)∥22, (x∗, y∗) being

a solution of problem (17). This sublinear estimate is inferior to the approach proposed in the
paper; see Theorem 2.

In experiments we used the dataset madelon, containing 2000 objects with 500 features. The small
regularization coefficient 1

σ2 = 0.005 was chosen, and the experiments were run for two dimensions d
equal to 20 and 30.

Figure 1 shows the results of the experiment. The x-axis represents the number of calculations
of the gradient ∇yFi, which for the Varag is the same as the number of calculations of ∇xFi. Note
that the proposed approach requires less computations of ∇xFi, since they are performed only in
the outer loop. For example, graph 1 in Fig. 1a corresponds to four iterations of the outer loop
(i.e., 8 000 calculations of ∇xFi), and graph 1 in Fig. 1b, to five iterations (i.e., 10 000 calculations
of ∇xFi). In this experiment, Approach 2 made it possible to achieve lower values of the objective
function.

The source code and experimental results can be found in the repository
https://github.com/egorgladin/min_min.
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5. CONCLUSIONS

In the present paper, we have considered the min-min type problem

min
x∈Qx

min
y∈Qy

F (x, y), (18)

where Qx ⊂ Rd and Qy ⊂ Rn are nonempty compact convex sets, the dimension d is relatively small
(d ≪ n), and the function F (x, y) is jointly convex in all variables and also L-smooth and µ-strongly
convex with respect to y.

Two approaches to solving problem (18) are proposed. In these approaches, the problem is
reduced to a set of auxiliary (interior and exterior) problems. The exterior problem (minimiza-
tion over x) is solved by Vaidya’s method, and the interior one (minimization over y) is solved
by the fast gradient method for strongly convex optimization problems or, if the sum of a large
number of functions is being minimized, by the accelerated gradient method with variance reduc-
tion. This allows achieving an approximate solution of problem (18) in Õ (d) calculations of ∂xF

and Õ
(
d
√

L
µ

)
calculations of ∇yF ; see Theorem 5. For comparison, were problem (18) jointly

smooth in all variables, its solution using only the fast gradient method would have had the com-
plexity O

(√
LR2

ε

)
, where R is the distance from the initial approximation to the solution. In the

case of a sum with m terms, the solution of the problem can be achieved in Õ (md) calculations
of ∂xF and in Õ

(
md+ d

√
mL
µ

)
calculations of ∇yF ; see Theorem 6.

A numerical experiment has been carried out in which one of the proposed approaches is used
for the problem of logistic regression with regularization applied to one of the two groups of model
parameters. Compared to the Varag algorithm, the proposed approach achieves lower function
values with fewer oracle calls.

Note also that if the function F (x, y) is jointly µ-strongly convex in all variables, then the
function g(y) = minx∈Qx

F (x, y) will be µ-strongly convex as well. Moreover, all this can be stated
in terms of the (δ, µ, L)-oracle (see [3] and the literature cited therein). This is done in [20] for µ = 0,
and for µ > 0 the proof almost word for word reproduces Assertions 1 and 3 in [20] (see also [9]).
The above observation permits reasonably (with theoretical elaboration) using Vaidya’s method to
solve the interior problem, and employ, for example, the fast gradient method to solve the exterior
problem. However, this approach will be preferable to the one discussed in this paper only under
very special (usually difficult to implement) conditions [5].

APPENDIX

Proof of Assertion 1. Consider an arbitrary y ∈Qy,〈
∇g(ỹ), ỹ − y

〉
=
〈
∇g(ỹ)−∇g(y∗), ỹ − y

〉
+
〈
∇g(y∗), ỹ − y

〉
. (A.1)

Let us produce an upper bound for the first term using the Cauchy–Schwarz inequality and the
definition of the Lipschitz property of gradient,〈

∇g(ỹ)−∇g(y∗), ỹ − y
〉
⩽
∥∥∇g(ỹ)−∇g(y∗)

∥∥
2
∥ỹ − y∥2

⩽ L ∥ỹ − y∗∥2 ∥ỹ − y∥2 .
(A.2)

It follows from the strong convexity that

g(ỹ) ⩾ g(y∗) +
〈
∇g(y∗), ỹ − y∗

〉
+

µ

2
∥ỹ − y∗∥22.
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Using the inequalities g(ỹ)− g(y∗) ⩽ ε and ⟨∇g(y∗), y − y∗⟩ ⩾ 0 ∀y ∈ Qy, we obtain

∥ỹ − y∗∥2 ⩽
√

2ε

µ

(A.2)
=⇒

〈
∇g(ỹ)−∇g(y∗), ỹ − y

〉
⩽ L ∥ỹ − y∥2

√
2ε

µ
. (A.3)

Now let us estimate the second term in (A.1) from above,〈
∇g(y∗), ỹ − y

〉
=
〈
∇g(y∗), ỹ − y∗

〉
+
〈
∇g(y∗), y∗ − y

〉
.

Let us use the criterion of optimality of the point y∗ and the Cauchy–Schwarz inequality one more
time to obtain 〈

∇g(y∗), ỹ − y
〉
⩽
∥∥∇g(y∗)

∥∥
2
∥ỹ − y∗∥2

(A.3)

⩽
∥∥∇g(y∗)

∥∥
2

√
2ε

µ
.

Combining the upper bounds for both terms, we obtain〈
∇g(ỹ), ỹ − y

〉
⩽
(
L ∥ỹ − y∥2 +

∥∥∇g(y∗)
∥∥
2

)√2ε

µ
,

which implies the desired Assertion 1. ■

Proof of Theorem 4. Fixing x∈Qx, we apply Assertion 1 to the function g(y) := F (x, y) and
Assertion 2. The proof of Theorem 4 is complete. ■

Proof of Theorem 5. According to (4), Algorithm 2 converges linearly; therefore, we can
assume that the auxiliary problem min

y∈Qy

F (x, y) can be solved arbitrarily precisely in time Õ
(√

L
µ

)
.

According to Theorem 4, this allows using the δ-subgradient, where δ decreases exponentially.
For the exterior problem we use Vaidya’s method, which also converges linearly and has complex-
ity Õ (d). Thus, to solve problem (13) it suffices to perform Õ (d) calculations of ∂xF and inversions
of matrices of size d × d as well as Õ

(
d
√

L
µ

)
calculations of ∇yF . The proof of Theorem 5 is

complete. ■

Proof of Theorem 6. According to Theorem 3, Varag converges linearly; therefore, we can
assume that the auxiliary problem min

y∈Qy

F (x, y) is solved arbitrarily precisely in time Õ
(
m+

√
mL
µ

)
.

According to Theorem 4, this allows using the δ-subgradient, where δ decreases exponentially. For
the exterior problem we use Vaidya’s method, which also converges linearly and has the complexity of
Õ (d) iterations. On each of its iterations, we need to calculate the subgradients of all m terms ∂xFi.
Thus, to solve the problem, it suffices to perform Õ (md) calculations of ∂xFi, Õ (d) inversions of
matrices of size d × d, and Õ

(
dm+ d

√
mL
µ

)
calculations of ∇yFi. The proof of Theorem 6 is

complete. ■
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