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Abstract Motivated by recent increased interest in optimization algorithms for non-

convex optimization in application to training deep neural networks and other op-

timization problems in data analysis, we give an overview of recent theoretical re-

sults on global performance guarantees of optimization algorithms for non-convex

optimization. We start with classical arguments showing that general non-convex

problems could not be solved efficiently in a reasonable time. Then we give a list

of problems that can be solved efficiently to find the global minimizer by exploiting

the structure of the problem as much as it is possible. Another way to deal with

non-convexity is to relax the goal from finding the global minimum to finding a

stationary point or a local minimum. For this setting, we first present known re-

sults for the convergence rates of deterministic first-order methods, which are then

followed by a general theoretical analysis of optimal stochastic and randomized gra-

dient schemes, and an overview of the stochastic first-order methods. After that, we

discuss quite general classes of non-convex problems, such as minimization of α-

weakly-quasi-convex functions and functions that satisfy Polyak–Łojasiewicz con-

dition, which still allow obtaining theoretical convergence guarantees of first-order

methods. Then we consider higher-order and zeroth-order/derivative-free methods

and their convergence rates for non-convex optimization problems.
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1 Introduction

In this survey, we consider non-convex optimization problems in different set-

tings, including stochastic optimization. We are mainly motivated by an increased

interest in such problems in connection to applications in machine learning and data

analysis, and our main focus is on the methods which possess theoretical guarantees

for their global convergence rate or complexity. As we explain first by providing

classical examples [180, 186], there is no hope to have any theoretical guarantees

for finding a global minimizer in a general non-convex optimization problem in a

reasonable time. Despite the quite good practical performance of classical general-

purpose methods such as L-BFGS [195, 96], and proven local superlinear conver-

gence, their global complexity is not well understood.

In the last 20 years, theoretical analysis of the global convergence rate or global

complexity guarantees has become de facto a standard in the area of numerical op-

timization. Since the convexity of the problem allows for such an analysis, many

global complexity and convergence results have been obtained in convex optimiza-

tion [22, 41, 186, 155, 87, 84]. Recent advances in machine learning, which were
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made possible by the application of neural networks, had lead to the optimization

community changing focus to non-convex optimization and, especially to stochas-

tic non-convex optimization. In this non-exhaustive survey, we attempt to highlight

existing results on global performance guarantees of large-scale non-convex opti-

mization methods. The large dimension of the decision variable in such problems

motivates the use of first-order methods, which possess a cheap iteration. Moreover,

the large amount of data motivates to use randomized methods such as stochastic

gradient descent, which does not require to look through the whole dataset to make

one step of the optimization procedure, thus making the iteration even cheaper.

Since, in general, non-convex optimization problems cannot be made efficiently

solved, we consider several ways to relax this challenging goal. The first relaxation

consists of finding problems with hidden convexity or in a convex reformulation of

the problem. This requires exploitation of the problem structure as much as it is pos-

sible, which limits the generality of the approach, yet leading to a possibility to find

a global solution. Another way is to change the goal from finding the global solution

to finding a stationary point or a local extremum. In this case, it is possible to obtain

polynomial dependence of the complexity of first-order methods on the dimension

of the problem and desired accuracy. We consider this approach in the setting of

deterministic and stochastic optimization. The third way is to define a class of non-

convex problems, which is, on the one hand, quite general, and on the other hand, al-

lows to obtain a global performance guarantees of an algorithm. We consider a class

of problems with objective satisfying Polyak–Łojasiewicz condition, which leads

to global linear convergence rate, and the class of problems with α-weakly-quasi-

convex objective, which leads to global sublinear convergence rate. In the above

two approaches, we first focus on first-order methods. Then, motivated by several

settings in machine learning such as reinforcement learning, black-box adversarial

attacks on neural networks, as well as simulation optimization, in which the gradient

of the objective is not available, we consider zeroth-order or derivative-free methods

and their convergence rates for non-convex optimization problems. By no means we

claim that our survey contains all the important results in this area since the litera-

ture is huge and we could miss some recent results. We would like to list here some

other books [202, 65, 155, 97] and surveys [132, 66, 258, 58, 62, 236, 279] related

to our paper1.

2 Preliminaries

The main challenges in non-convex optimization are caused either by non-

convexity of the feasible set or by non-convexity of the objective function. The

first case is tightly connected with discrete optimization when the decision variable

can take only a discrete set of values. In the second case, yet the variable can take

a continuum number of values, the non-convexity of the problem does not allow to

1 See also this webpage with the list of references being updated

https://sunju.org/research/nonconvex/ .

https://sunju.org/research/nonconvex/
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hope for finding a global solution in a reasonable amount of time. We start with two

particular examples that illustrate the intractability of non-convex optimization in

general. This intractability motivates different kinds of relaxations, such as chang-

ing the goal to the one consisting of finding an approximate stationary point instead

of a global minimum, or introducing additional assumptions on the problem, or

heavily using the structure of the problem, which lead to provable convergence to

the global minimizer. Next, we present general non-convex optimization problems

and some ways to classify them.

2.1 Global Optimization is NP-hard

Following [180], we consider an example which illustrates that the problem of

finding the exact global solution of a non-convex problem is NP-hard. To that end,

we consider the minimization problem

min
x∈Rn



 f (x) :=

n

∑
i=1

x4
i −

1

n

(
n

∑
i=1

x2
i

)2

+

(
n

∑
i=1

aixi

)4

+(1− x1)
4



 ,

where xi is the i-th component of the vector x. Let A = I− 1
n
11⊤, where I is the

identity matrix of size n and 1 is a vector of n ones, and let [x]2 denote a vector with

components [x]2i = x2
i . In this notation, the objective takes the form

f (x) = 〈A[x]2, [x]2〉+
(

n

∑
i=1

aixi

)4

+(1− x1)
4 .

Since A is a positive semidefinite matrix, f (x) > 0. One may also note that 0 is an

eigenvalue of A with multiplicity 1 and that 1 is the corresponding eigenvector. With

this in mind, it is not difficult to see that f (x) = 0 if and only if x satisfies

a1 +
n

∑
i=2

aixi = 0, xi =±1, i = 2, . . . ,n.

The problem of checking whether this equation has a solution is a form of the subset

sum problem, which is known to be NP-complete. Since this problem has a solution

if and only if the global minimum in the original optimization problem is exactly

zero, this implies that the problem of finding even the value of a global minimum

for a non-convex objective is NP-hard.
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2.2 Lower Complexity Bound for Global Optimization

Following [186], we now derive a lower bound for the complexity of finding

an approximate global minimum of a possibly non-convex objective. Consider the

problem

min
x∈[0,1]n

f (x) ,

where f is possibly non-convex and Lipschitz-continuous function, i.e., for some

M > 0 and for all x,y ∈ [0,1]n

| f (y)− f (x) |6 M ‖y− x‖∞ .

Such constant exists for all continuous functions f (x) on [0,1]n, so this assumption

is not restrictive. Let us set the desired accuracy in terms of the objective as ε ,

i.e., our goal is to find a point x̂ such that f (x̂)− f ∗ 6 ε , where f ∗ is the global

minimum of f on [0,1]n. For simplicity, we assume ε to be equal to 1/N for some

N ∈N. Consider a family of continuous non-convex objectives fk(x), k = 1, . . . ,Nn,

constructed as follows: we divide the hypercube [0,1]n into (MN/2)n non-intersecting

hypercubes Ck with side length 2/(NM) and set

fk(x) =

{
−Mdist∞(x,∂Ck), x ∈Ck,

0, x /∈Ck,

where ∂Ck is the boundary of Ck and dist∞(x,∂Ck) is the distance between x and

∂Ck in the ‖ · ‖∞-norm. Each fk has a minimum value of exactly −ε attained at the

center of Ck, and the Lipschitz constant of fk is equal to M.

Any minimization method generating its trajectory based on the values of f (x)
and its derivatives at the points of the trajectory would need to sample a point from

each Ck to find an approximate minimum of each fk(x). This gives us a lower bound

on the number of iterations required: Ω((MN)n) = Ω(Mnε−n). And this bound is

attained by the algorithm which simply samples the objective values at the vertices

of a uniform grid and returns the point with the smallest value. This demonstrates

that it is practically impossible to solve a high-dimensional non-convex minimiza-

tion problem with any reasonable accuracy unless some additional assumptions are

introduced.

A similar complexity bound is proved in [185] for finding a point x̂ such that

‖∇ f (x̂)‖∞ 6 ε and ‖x̂‖∞ 6 R. More precisely, for non-convex functions with Lips-

chitz continuous Hessian, such that there exists at least one point x∗ with ∇ f (x∗) = 0

and ‖x∗‖∞ 6 R, the lower complexity bound is Ω
((

MR2/ε
)n/2
)

.
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2.3 Examples of Non-Convex Problems

In this subsection, we make a non-extensive overview of non-convex problem

formulations and applications where they arise, with a focus on tractable problems.

One possible way to classify such non-convex problems is to divide them into two

groups:

• problems with hidden convexity or analytic solutions;

• problems with provable global solution.

Let us consider formulations of a few concrete problems in each of these classes.

2.3.1 Problems with Hidden Convexity or Analytic Solutions

Firstly, it is worth noting a broad class of classical non-convex problems that in-

clude linear-fractional programs, geometric programs, problems with two quadratic

functions, handling convex equality constraints, convexifying constraint sets. Many

such problems are equivalent to convex problems via a simple transformation such

as convex relaxation and duality [38].

Next, a wide range of tasks in machine learning and statistics is reduced to eigen-

problems. Among these problems are the following principal component analysis,

classical multidimensional scaling, and other generalized eigenvalue problems [56].

In the context of non-convex optimization problems, one cannot but mention the

class of combinatorial optimization problems as graph problems. Basically, most of

these problems are NP-complete, but despite this, there are effective approaches and

ways to solve them. Let us consider a closer look at the MAX-CUT problem. This

is a bright example of convex reformulations. In some problems, the goal is to find

a point with a value as small as possible (or as large as possible in the context of

maximization problems), but whether this point is close to the global minimum is

not that important. In this case, we can try to approximate the problem with a simpler

one and show that the exact solution to the approximate problem corresponds to a

good solution of the original problem. We will first illustrate this idea on the MAX-

CUT problem

max
x∈{−1,1}n

{
f (x) :=

1

2

n,n

∑
i, j=1,1

Ai j (xi− x j)
2

}
,

where A =
∥∥Ai j

∥∥n,n

i, j=1,1
(A = AT ). This is a discrete optimization problem. If we

are interested only in the value of the functional and not in the cut itself, we can

approximate this problem with a computationally tractable one. Let us introduce

matrix

L = diag

{
n

∑
j=1

Ai j

}n

i=1

−A,

which allows us to write

f (x) = 〈x,Lx〉 .



Recent theoretical advances in non-convex optimization 7

A simple observation: if ς is a random vector uniformly distributed on the Hamming

cube {−1,1}n
, then

E〈ς ,Lς 〉 ≥ 0.5 max
x∈{−1,1}n

〈x,Lx〉 .

In fact, we can do better due to the construction of Goemans and Williamson [105]

max
x∈{−1,1}n

〈x,Lx〉= max
x∈{−1,1}n

〈
L,xxT

〉
6 max

X ∈ Sn
+

Xii = 1, i = 1, ...,n

〈L,X〉 .

This is an SDP problem. Let Σ be the solution of this SDP problem and let

ξ ∈ N (0,Σ) , ς = sign(ξ ) .

Then

E 〈ς ,Lς〉 ≥ αGW max
x∈{−1,1}n

〈x,Lx〉 ,

where αGW ≈ 0.878567, and this constant is unimprovable provided that P 6= NP

and the Unique games conjecture is true [142].

Further, we would like to highlight the following subclasses of non-convex prob-

lems: non-convex proximal operators (Hard-thresholding [32], Potts minimization

[145]), discrete problems (Binary graph segmentation, Discrete Potts minimization,

Nearly optimal K-means), infinite-dimensional problems (Smoothing splines, Lo-

cally adaptive regression splines, Reproducing kernel Hilbert spaces) and statistical

problems.

Another important practical example we would like to mention in this part is

Blind Deconvolution. Convolutional models arise in a wide range of problems in

image processing and computer vision. The most basic convolutional data model –

blind deconvolution aims to recover a convolution kernel a0 ∈Rk and signal x0 ∈Rm

from their convolution

y = a0 ⊛ x0,

where y ∈ Rm and ⊛ is some kind of convolution. This problem is ill-posed in gen-

eral — there are infinitely many (a0,x0) that convolve to produce y. To overcome

this issue, some low dimensional priors about a0 and x0 are necessary. As a result,

it is essential to use additional constraints and regularization terms. Different priors

produce different non-convex optimization problems: Sparse Blind Deconvolution

[204], Multi-channel Sparse Blind Deconvolution [224], Subspace blind deconvo-

lution [162], Convolutional dictionary learning [198].

The seen data in many settings in science and engineering are admixtures of

several latent sources. Given the observations, we would normally wish to infer

the latent sources as well as the admixture distribution. The non-negative matrix

factorization (NMF) [100] mathematical framework offers a natural mathematical

framework for modeling numerous mixing problems. In NMF, each row of obser-

vation matrix M ∈ Rn×m corresponds to a data-point in Rm. Next, the following as-

sumptions are used: 1) there are r latent sources, encoded by the unobserved matrix

W ∈ Rr×m, and 2) each observed data-point can be rewritten as a linear combina-
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tion of the r sources, the weights of combination are defined via matrix A ∈ Rn×r.

The goal is to find such representation of matrix M that M = AW with the entries of

M, A and W being non-negative. The number r is called the inner-dimension of the

factorization, and the smallest possible r is the nonnegative rank of M.

Finally, in the part devoted to problems with Hidden Convexity or Analytical So-

lution we would like deal with Compressed Sensing and L1-optimization. A vector

is said to be s-sparse if it has at most s non-zero elements. Consider solving Ax = b

for x where A is an n× d matrix with n < d. The set of solutions to Ax = b is a

subspace. However, if we restrict ourselves to s-sparse solutions, under certain con-

ditions on A there is a unique sparse solution [30]. For instance, suppose that there

were two s-sparse solutions x1 and x2. Then x1− x2 would be a 2s-sparse solution

to the homogeneous system Ax = 0, which would imply that some 2s columns of A

are linearly dependent. Unless A has 2s linearly dependent columns, there can only

be one s-sparse solution.

There are many areas in which the problem is to find the unique sparse solution

to a linear system. One is in plant breeding [30]. Assume we are given a number

of apple trees and the strength of some desirable feature of each tree. If we wish to

determine which genes are responsible for the feature, we may formulate a system

of linear equations Ax = b in which each row of the matrix A corresponds to a tree

and each column corresponds to a position on the genome. The vector b corresponds

to the strength of the desired feature in each tree. The solution x tells us the positions

on the genome corresponding to the genes that account for the feature.

The problem of finding a sparse solution can be stated as the optimization prob-

lem

min
Ax=b
‖x‖0 ,

where ‖x‖0 is the number of non-zero coordinates of x. This is an NP-hard problem,

but it may sometimes be replaced by the convex problem

min
Ax=b
‖x‖1 .

What are the sufficient conditions for

min
Ax=b
‖x‖0 ⇔ min

Ax=b
‖x‖1?

A matrix A is said to satisfy the s-restricted isometry property if for any s-sparse x

there exists δs such that

(1− δs)‖x‖2
2 6 ‖Ax‖2

2 6 (1+ δs)‖x‖2
2 .

The following theorems give sufficient conditions for the equivalence mentioned

above to hold [30, 44].

Theorem 1. Suppose A satisfies the s-restricted isometry property with δs+1 6
1

10
√

s
.

Suppose x0 is s-sparse and satisfies Ax0 = b. Then, x0 is the unique minimum 1-norm

solution to Ax = b.



Recent theoretical advances in non-convex optimization 9

Theorem 2. Suppose A satisfies the k-restricted isometry property for k ∈ {s,2s,3s}
with δs +δ2s+δ3s 6 1. Suppose x0 is s-sparse and satisfies Ax0 = b. Then, x0 is the

unique minimum 1-norm solution to Ax = b.

Such results demonstrate the importance of matrices satisfying the restricted

isometry property for practice. Fortunately, there is an easy way to obtain such ma-

trices [20].

Theorem 3. Suppose A is an d×n matrix with elements sampled from the Gaussian

distribution N (0,1/d). Then, A satisfies the s-restricted isometry property for s< d

with 0 < δs < 1 with probability ps satisfying

ps > 1− 2(12/δs)
s exp

(
−3δ 2

s − δ 3
s

48
d

)
.

2.3.2 Problems with Convergence Results

In this section, we would like to give examples of non-convex optimization prob-

lems for which there are methods with proven convergence results. We start with

the Phase retrieval problem. The phase retrieval problem has been a topic of study

from at least the early 1980s. It is the recovery of a function given the magnitude of

its Fourier transform. This problem could be found in various engineering and scien-

tific applications such as optical imaging, electron microscopy, and crystallography,

etc. [221]. We recover a d-dimensional signal vector x∗ ∈ C
d from its phaseless

measurements

yk = |〈ak,x〉|2, k = 1, . . . ,M,

with ak denoting the measurement vectors. As a result, the phase-retrieval problem

can be formulated as the following least squares problem or empirical risk mini-

mization

min
x

M

∑
k=1

(
yk−|〈ak,x〉|2

)2
.

This problem is well-motivated by practical concerns, but unfortunately, this is a

non-convex problem, and it is not clear how to find a global minimum even if one

exists. In recent literature, there are various approaches to handle this problem [259,

240, 59], also, algorithms with the provable convergence results were presented in

the following papers [42, 267].

In the context of non-convex optimization problems with proven convergence

result, one cannot but mention Low-Rank Matrix Completion. There are related

problems: matrix completion and matrix sensing [28], which are present in big data

problems with incompleteness and other machine learning problems. We would like

to draw attention to the exact low-rank matrix completion. Given a matrix Y ∈Rn×n,

partially observed, over a set of indices Ω ⊆ {1, . . . ,n}2. Consider the problem of

finding the lowest-rank matrix matching X on the observed set



10 Danilova, Dvurechensky, Gasnikov, Gorbunov, Guminov, Kamzolov, Shibaev

min
X

rank(X)

s.t. Xi j = Yi j, (i, j) ∈Ω .

This is a non-convex problem having a natural convex relaxation

min
X
‖X‖tr

s.t. Xi j = Yi j, (i, j) ∈Ω

In the paper [133] the first results of global optimality of alternating minimization

were obtained for matrix completion and the related problem of matrix sensing.

Proofs of (nearly) linear convergence of gradient descent for Phase retrieval, Ma-

trix completion, Blind deconvolution can be found in the article [172]. Under some

assumptions, it can be shown that the solution to the convex problem is exactly

equal to the solution to the non-convex problem, with high probability over the sam-

pling model [45, 43]. So, this problem can also be attributed to statistical problems

with hidden convexity. Moreover, we we emphasise another relevant problem called

Low-Rank Matrix Recovery. This problem is also known to be non-convex but un-

der some assumptions has no spurious local minima (see [278, 273] and references

therein).

Deep Learning. In the era of AI, training of the deep neural networks [106] is one

of the most popular optimization problems with enormous amount of applications,

e.g., [147, 209, 143, 153, 237, 131, 75, 114, 229, 148]. The simplest example of such

problem [236] is training fully connected neural network for supervised learning

problem

min
W=(W1,...,WL)

Wi∈Rni×ni−1 ,i=1,...,L

{
f (W ) :=

1

m

m

∑
i=1

ℓ(yi, fxi
(W ))

}
,

where {(xi,yi)}m
i=1, xi ∈Rn0 , yi ∈Rny are training data points, W = (W1, . . . ,WL) are

weights of the model, L is number of fully connected layers, ℓ(·, ·) is a loss function,

e.g., quadratic loss or logistic loss, and

fxi
(W ) =WLφ (WL−1φ . . .φ (W2φ (W1xi))) ,

where φ is a scalar2 function called an activation function.

In general, training neural networks is NP-complete problem [31]. Deep neu-

ral networks have bad local minima both for non-smooth activation functions

[239, 213] and smooth ones [165, 268] as well as flat saddles [251]. Nevertheless,

there exist positive results about training neural networks. First of all, under dif-

ferent assumptions it was shown that all local minima are global for 1-layer neural

networks [232, 123, 94]. Next, one can show that GD/SGD converge under some

assumptions to global minimum for linear networks [18, 135, 227] and sufficiently

2 By φ (a) where a = (a1, . . .,an)
⊤ ∈ R

n is multidimensional vector we mean vector

(φ (a1), . . . ,φ (an))
⊤.
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wide over-parameterized networks [13]. The detailed summary of recent advances

in optimization for deep learning can be found in [236].

2.3.3 Geometry of non-convex optimization problems

In one of the latest survey [280], the authors to distinguish a class of tractable

non-convex problems, which have certain properties of symmetry. They highlight

non-convex optimization problems with rotational symmetry and discrete symme-

try. Problems with rotational symmetry include the previously described phase re-

trieval and related problems in low-rank matrix factorization and recovery. It turns

out that the blind deconvolution and tensor decomposition problems have discrete

symmetry.

3 Deterministic First-Order Methods

In this section we focus on the following optimization problem

min
x∈Q⊆Rn

f (x) , (1)

where Q is a simple, closed, convex, set, and f is continuously differentiable func-

tion. The simplest method for this kind of problems is projected gradient descent,

which can be motivated by a simple continuous-time dynamics. For simplicity we

start with the unconstrained case with Q = Rn.

3.1 Unconstrained Minimization

In the case Q = Rn, the trajectory of the continuous-time gradient method is the

solution to the differential equation ẋ = −∇ f (x(t)). It is easy to see that W (x) =
f (x(t)) is a Lyapunov function for this dynamical system. Indeed,

dW (x(t))
dt

=
〈

∇ f (x(t)) , dx(t)
dt

〉
= 〈∇ f (x(t)) ,−∇ f (x(t))〉 =−‖∇ f (x(t))‖2

2 6 0.

This implies the convergence of the continuous-time gradient descent method to a

stationary point.

The classic gradient descent method is then the Euler discretization of the above

dynamics and has the form [202]

xk+1 = xk− hk∇ f

(
xk
)
,
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where hk ≥ 0 is the stepsize of the method. One of the main assumptions in this

setting is that the function f is L-smooth, or, which is the same, its gradient is

Lipschitz-continuous, i.e., for some starting point x0,

∀x,y ∈
{

x ∈ R
n : f (x)6 f

(
x0
)}

‖∇ f (y)−∇ f (x)‖2 6 L‖y− x‖2 .

Then the stepsize h = 1/L guarantees

f (xk+1)6 f (xk)− 1

2L

∥∥∥∇ f (xk)
∥∥∥

2

2
.

Summing up these inequalities, we obtain

f (xN)− f (x0)6− 1

2L

N−1

∑
k=0

‖∇ f (xk)‖2
2 6−

N

2L
min

k=0,...,N−1
‖∇ f (xk)‖2

2.

Define f∗ = inf
x∈Rn

f (x) and assume that this value is finite. Then

min
k=0,...,N−1

‖∇ f (xk)‖2
2 6

2L( f (x0)− f∗)
N

. (2)

This proves that the complexity of finding an approximate stationary point, i.e. a

point x̂ such that ‖∇ f (x̂)‖2 6 ε is O
(

L( f (x0)− f∗)
ε2

)
. This iteration complexity of find-

ing an ε-stationary point N ∼ ε−2 is unimprovable in terms of its dependence on ε
and L for an arbitrary first-order method applied to minimization of an L-smooth

objective.

On the one hand this bound is much better than the exponential in the dimension

bound for finding the global minimum, which was derived in Subsection 2.2. On

the other hand we can guarantee only an approximate stationary point, which could

be a saddle-point or even a maximum. This can be illustrated by the example of

minimization of the following objective [186]

f (x1,x2) =
1

2
(x1)

2 +
1

2
(x2)

4− 1

2
(x2)

2 .

If we set x0 = (1,0)T
, then xk converges to (0,0)T

as k→∞, which is a saddle-point.

The good news here is that gradient descent can be perturbed by adding some noise

in the iterates in such a way that it converged to a local minimum for almost all

initial points and escapes saddle-points [136].

It is important to note that, under additional smoothness assumptions that higher-

order derivatives of the objective are Lipschitz continuous, i.e.

∀x,y ∈
{

x ∈ R
n : f (x)6 f

(
x0
)}

‖∇p f (y)−∇p f (x)‖2 6 Lp‖y− x‖2 ,

[51, 50] obtain several lower complexity bounds for finding an approximate station-

ary point. If this inequality holds for p ∈ {1,2}, the lower bound becomes ε−
12
7 ,
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and the additional assumption that the same holds for p = 3 gives the lower bound

to ε−
8
5 . Surprisingly, Lipschitz continuity of derivatives of order 4 and higher gives

the same lower complexity bound.

3.2 Incorporating Simple Constraints

It is possible to generalize gradient method for the setting of composite optimiza-

tion with simple convex constraints, i.e. for the problem

min
x∈Q
{F(x) := f (x)+ψ(x)}, (3)

where Q is a closed convex set, ψ(x) is a simple convex function, e.g. ‖x‖1, and f

is L-smooth function. The standard approach for such problems uses prox-function

d(x) which is continuously differentiable and strongly convex on Q, i.e. d(y)−
d(x)−〈∇d(x),y−x〉 ≥ 1

2
‖y−x‖2 for any x,y∈Q. We define also the corresponding

Bregman divergence V [z](x) = d(x)−d(z)−〈d′(z),x− z〉, x,z ∈Q. Then the step of

the gradient method from a point x with stepsize h is generalized [186, 103] to

x+ = argmin
u∈Q

{
〈∇ f (x),u〉+ 1

h
V [x](u)+ψ(u)

}
,

which in the simplest case ψ(x) ≡ 0, d(x) = 1
2
‖x‖2

2, V [z](x) = 1
2
‖x− z‖2

2, Q = Rn

coincides with the step of the gradient method. This generalized gradient step leads

to a generalized gradient, which is usually referred to as gradient mapping [186,

103] gQ(x) =
1
h
(x− x+). In this setting, the authors of [103] prove that

min
k=0,...,N−1

‖gQ(x
k)‖2

6
2L(F(x0)−F∗)

N

if h = 1/L. Here F∗ is a lower bound for F(x). In the described above simple sit-

uation this bound coincides with the bound (2). The authors of [68] prove that if

‖gQ(x)‖ 6 ε , then x+ is an approximately stationary point of the problem. More

precisely, there exist p ∈ ∂ψ(x+) such that

∇ f (x+)+ p ∈ −NQ(x
+)+B((1+L(d)ε),

where NQ(x
+) is the normal cone of Q at the point x+, B(r) = {v ∈ Rn : ‖v‖∗ 6 r}

– ball in the dual space defined by the conjugate norm, and it is assumed that d is

L(d)-smooth. Note that there is no contradiction with the exponential lower bound

given in the end of Subsection 2.2 since non-necessarily the obtained point x+ has

small norm of the gradient.

This approach was further generalized in [33, 82, 98] for the case of optimization

with inexact oracle for the function f .
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Definition 1 We say that a function f (x) is equipped with an inexact first-order

oracle on a set X if there exists δu > 0 and at any point x ∈ X for any number δc > 0

there exists a constant L(δc) ∈ (0,+∞) and one can calculate f̃ (x,δc,δu) ∈ R and

g̃(x,δc,δu) ∈ Rn satisfying

| f (x)− f̃ (x,δc,δu)|6 δc + δu,

f (y)− ( f̃ (x,δc,δu)−〈g̃(x,δc,δu),y− x〉)6 L(δc)

2
‖x− y‖2+ δc + δu, ∀y ∈ Q.

In this definition, δc represents the error of the oracle, which we can control and

make as small as we would like to. On the opposite, δu represents the error, which

we can not control. The proposed for this setting method in [82] is adaptive to the

constant L, works under inexact calculation of the point x+, and covers several dif-

ferent settings. In particular, smooth functions with Hölder-continuous, i.e. satisfy-

ing, for some ν ∈ [0,1], ‖∇ f (x)−∇ f (y)‖∗ 6 Lν‖x− y‖ν ,∀x,y ∈Q gradient satisfy

this definition with δu = 0 and

L(δc) =

(
1−ν

1+ν
· 2

δc

) 1−ν
1+ν

L
2

1+ν
ν .

As a corollary of the general method, [82] propose a universal method for such

problems, which does not require the knowledge of the constants ν,Lν and gives

the following convergence rate

min
k=0,...,N−1

‖gQ(xk)‖2
6 2

1+3ν
2ν

(
1−ν

1+ν
· 40

ε

) 1−ν
2ν

L
1
ν
ν

(
F(x0)−F∗

N

)
+

ε

2
,

or the following complexity estimate
L

1
ν
ν (F(x0)−F∗)

ε
1+3ν

2ν
to find

∥∥gQ(x
k)
∥∥ 6 ε . Inexact

oracle models for convex optimization can be useful in non-convex optimization

since in some settings a non-convex problem can be considered as a convex problem

with inexact oracle [235, 234].

3.3 Incorporating Momentum for Acceleration

The considered above dynamical system ẋ = −∇ f (x(t)) does not have any me-

chanical intuition behind it. In [203] the author proposed to consider the following

dynamics

µ ẍ(t) =−∇ f (x(t))− pẋ(t).

One of the ways to discretize it gives the so called heavy-ball method

xk+1 = xk− h∇ f (xk)+β (xk− xk−1),
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where h > 0 is the stepsize and β > 0 is the momentum parameter. Due to the mo-

mentum term β
(
xk− xk−1

)
the method avoids zigzagging for ill-conditioned prob-

lems, which leads to significant efficiency in practice, especially in training neural

networks. Despite practical efficiency, the theoretical guarantee for this method is

no better than for the gradient method. In particular, [119] considers the dynamical

system

µ(t)ẍ(t) =−∇ f (x(t))− p(t)ẋ(t),

where µ (t) ∼ ( f (x(t))− c), c is an upper bound on the global minimum of f (x),
and p(t) = F (∇ f (x(t))). With a special choice of F (·), they show that x(t) con-

verges to a local minimizer xloc such that f
(
xloc
)
6 c as t→+∞. In [77] it is shown

that for a discretization of a further generalization of the heavy-ball method one may

guarantee

min
k=1,...,N

‖∇ f (xk)‖2
2 6

2L( f (x0)− f∗)
N

,

which coincides with the bound (2) for the gradient method.

A different type of momentum was proposed in [183] for convex optimization,

which led to the Nesterov’s accelerated gradient method

x1 = x0− h∇ f
(
x0
)
,

xk+1 = xk− h∇ f (xk +βk(x
k− xk−1))+βk(x

k− xk−1).

The difference with the heavy-ball method is that the gradient is calculated in the

extrapolated point. This idea has been very fruitful and allowed to obtain many ac-

celerated algorithms for convex optimization. A variant of this method with a spe-

cial choice of the stepsize h and momentum term βk was shown in [102] to have

the same convergence rate (2) as the gradient method. This was further extended in

[104] for the case of objective with Hölder-continuous gradients to obtain a bound

L
1
ν
ν (F(x0)−F∗)

ε
1+3ν

2ν
to find

∥∥gQ(x
k)
∥∥ 6 ε in the general setting of composite optimiza-

tion problem (3) with simple constraints. Importantly, this method is universal and

uniform, which means that it has best possible convergence rates for convex and

non-convex problems without knowing whether the problem is convex or not and

without knowing its smoothness parameters such as Hölder exponent and Hölder

constant.

It is possible to combine this idea with the idea of line-search, i.e. minimization in

the direction of the step. The papers [122, 187] propose a modification of the accel-

erated gradient method which is listed as Algorithm 1. Instead of explicitly defining

the stepsize h and the momentum term β , this method uses full one-dimensional re-

laxation and local information. This makes this method parameter-free and uniform

for convex and non-convex smooth optimization by providing optimal complexity

bound for the convex and non-convex case. At the same time, inexact line-search is

possible and its sufficient accuracy for achieving the desired accuracy is estimated.

This method shares some similarities with nonlinear conjugate gradient methods

which were analyzed in [182].
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Algorithm 1 Accelerated Gradient Method with Small-Dimensional Relaxation

(AGMsDR)

Ensure: xk

1: Set k = 0, A0 = 0, x0 = v0, ψ0(x) =V [x0](x)
2: for k > 0 do

3:

βk = arg min
β∈[0,1]

f
(

vk +β (xk− vk)
)
, yk = vk +βk(x

k− vk).

4: Let (∇ f (yk))# be such that 〈∇ f (yk), (∇ f (yk))#〉= ‖∇ f (yk)‖2
∗ and ‖(∇ f (yk))#‖2 = 1.

hk+1 = argmin
h>0

f
(

yk−h(∇ f (yk))#
)
, xk+1 = yk−hk+1(∇ f (yk))#.

Find ak+1 from equation f (yk)− a2
k+1

2(Ak+ak+1)
‖∇ f (yk)‖2

∗ = f (xk+1).

5: Set Ak+1 = Ak +ak+1.

6: Set ψk+1(x) = ψk(x)+ak+1{ f (yk)+ 〈∇ f (yk),x− yk〉}.
7: vk+1 = argminx∈Rn ψk+1(x), k = k+1

8: end for

The above idea was further extended in [120] where an accelerated alternating

minimization method was proposed and analyzed for convex and non-convex prob-

lems. The main assumption is that the set of coordinates is divided into n̄ disjoint

subsets (blocks) Ip, p ∈ {1, . . . , n̄} and minimization in each block when the other

variables are freezed can be made explicitly. The resulting accelerated alternating

minimization algorithm is listed as Algorithm 2. This method is also parameter-free

and uniform for convex and non-convex smooth optimization with optimal com-

plexity bound for the convex and non-convex case.

Algorithm 2 Accelerated Alternating Minimization (AAM)

Require: Starting point x0.

Ensure: xk

1: Set A0 = 0, x0 = v0.

2: for k > 0 do

3: Set βk = arg min
β∈[0,1]

f
(
xk +β (vk− xk)

)

4: Set yk = xk +βk(v
k− xk)

5: Choose ik = arg max
i∈{1,...,n̄}

‖∇i f (yk)‖2
2

6: Set xk+1 = arg min
x∈Sik

(yk)
f (x), i.e. minimize f in the corresponding block.

7: Find ak+1, Ak+1 = Ak +ak+1 from

f (yk)−
a2

k+1

2Ak+1

‖∇ f (yk)‖2
2 = f (xk+1)

8: Set vk+1 = vk−ak+1∇ f (yk)
9: end for
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The sequence yk of this algorithm satisfies

min
k=1,...,N

‖∇ f (yk)‖2
2 6

2n̄L( f (x0)− f∗)
N

,

i.e. there is an additional multiplier M – number of blocks. If the function turns out

to be convex, then the same method generates the sequence xk which gives the decay

of the objective similar to accelerated gradient method:

f (xk)− f (x∗)6
2n̄L‖x0− x∗‖2

2

N2
,

where x∗ is the closest to x0 global minimizer.

By exploiting the idea of Nesterov’s acceleration and combining it with the no-

tion of negative curvature, the authors of [48] manage to accelerate first-order meth-

ods for non-convex optimization under additional assumptions that second and third

derivatives are Lipschitz continuous. More precisely, if L-smooth function has also

Lipschitz continuous Hessian, they obtain complexity O
(
ε−7/4 log(1/ε)

)
to find a

point x̂ such that ‖∇ f (x̂)‖2 6 ε . Assuming additionally that the third derivative is

Lipschitz, this bound is improved to O
(
ε−5/3 log(1/ε)

)
.

4 Stochastic First-Order Methods

In this section, we consider the same problem as in Section 3:

min
x∈Rn

f (x), (4)

where function f is a general non-convex L-smooth function with the uniform lower

bound f∗, i.e., it is differentiable and

f (x) ≥ f∗ ∀x ∈R
n,

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x− y‖2 ∀x,y ∈ R
n.

We are interested in two particular cases: expectation minimization

f (x) = Eξ [ f (x,ξ )], (7)

and finite-sum minimization

f (x) =
1

m

m

∑
i=1

fi(x). (8)

Such problems usually arise in applications of (deep) machine learning [106, 236]

and mathematical statistics [233], and typically they are solved via stochastic first-

order methods.
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In general, the best one can expect to achieve is an approximate stationary point

[250, 17]. To be specific, for this class of problems stochastic first-order methods in

the worst case can only find such point x̂ that

E
[
‖∇ f (x̂)‖2

2

]
≤ ε2 (9)

For simplicity, we will call the point x̂ as ε-stationary point, but mean by this that

inequality (9) holds.

Below we summarize recent results about finding ε-stationary point using stochas-

tic first-order methods. We start with presenting the general and unified approach to

analyze optimal deterministic and stochastic first-order methods for objectives of

types (7) and (8) in the general settings. After that, we consider 3 big classes of

stochastic first-order methods with convergence guarantees: SGD and its variants,

variance reduced methods, and adaptive stochastic methods.

4.1 General View on Optimal Deterministic and Stochastic

First-Order Methods for Non-Convex Optimization

Assume that at each point x, we have access to the estimator g(x) of the gradient

∇ f (x). For now, it is not important to specify what properties g(x) satisfies. In these

settings one can use Algorithm 3 in order to find ε-stationary point.

Algorithm 3 General scheme of the optimal first-order method for non-convex op-

timization

Require: learning rates {hk}k≥0 satisfying hk ≤ 1
2L

, starting point x0 ∈ R
n, stopping criterion C

1: for k = 0,1,2, . . . do

2: Get gk = g(xk)
3: if C holds then

4: xN = xk

5: break

6: else

7: xk+1 = xk−hkgk

8: end if

9: end for

10: return xN

Below we derive preliminary inequalities playing the central role in the analysis

of optimal (stochastic) first-order algorithms. From L-smoothness of f we have
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f (xk+1) ≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L

2
‖xk+1− xk‖2

2

= f (xk)+ 〈gk,xk+1− xk〉+ 〈∇ f (xk)− gk,xk+1− xk〉+ L

2
‖xk+1− xk‖2

2

≤ f (xk)− hk‖gk‖2
2 + hk‖∇ f (xk)− gk‖2

2 +

(
1

4hk

+
L

2

)
‖xk+1− xk‖2

2,

where in the last inequality we use Fenchel–Young inequality: 〈a,b〉 ≤ 1
2α ‖a‖2

2 +
α
2
‖b‖2

2 with a = ∇ f (xk)−gk, b = xk+1− xk and α = 1
2hk

. Since hk ≤ 1
2L

and xk+1 =

xk− hkgk we can continue our derivations:

f (xk+1) ≤ f (xk)− hk

2
‖gk‖2

2 + hk‖∇ f (xk)− gk‖2
2.

Now it is crucial to specify what we need to assume about g(x). We emphasize that

all 3 cases considered below are based on the tight bounds for ‖∇ f (xk)−gk‖2
2 or its

expectation.

4.1.1 Deterministic Case

In this case we assume that for all x ∈ Rn we have an access to such g(x) that

‖g(x)−∇ f (x)‖2
2 ≤

ε2

10
. (11)

In other words, g(x) is good enough approximation of ∇ f (x). Consider the stopping

criterion C =
{
‖gk‖2

2 ≤ 2ε2

5

}
and let hk =

1
2L

for all k≥ 0. First of all, if Algorithm 3

stops, then ‖gN‖2 ≤ 4ε2

10
and xN satisfies

‖∇ f (xN)‖2
2 = ‖∇ f (xN)− gN + gN‖2

2 ≤ 2‖∇ f (xN)− gN‖2
2 + 2‖gN‖2

2

(11)

≤ ε2.

Next, we derive an upper bound for such N that Algorithm 3 stops after N iter-

ations. Assume that, after N iterations the method has not stopped. Then for all

k = 0,1, . . . ,T we have

f (xk+1)
(10),(11)

≤ f (xk)− 4hkε2

10
+

hkε2

10
= f (xk)− 3ε2

20L
.

Unrolling the recurrence we obtain:
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f (xN+1) ≤ f (x0)− 3ε2

20L
(N + 1)

ww�

N ≤ 20L( f (x0)− f (xN+1))

3ε2
− 1≤ 20L( f (x0)− f∗)

3ε2
− 1.

Therefore, the methods stops after

N ≤ 20L( f (x0)− f∗)
3ε2

iterations. This bound is optimal up to constant factors [51].

4.1.2 Stochastic Case: Uniformly Bounded Variance

In this case, we assume that for all x ∈Rn we have

E [g(x) | x] = ∇ f (x), E

[
‖g(x)−∇ f (x)‖2

2 | x
]
≤ ε2

2
. (12)

For example, this situation appears when

f (x) = Eξ [ f (x,ξ )]

where ξ is a random variable with distribution D and g(x) is formed as

g(x) =
1

r

r

∑
i=1

∇ fi(x,ξi) (13)

where ξ1, . . . ,ξr are i.i.d. samples from D and

Eξ [∇ f (x,ξ )] = ∇ f (x), Eξ

[
‖∇ f (x,ξ )−∇ f (x)‖2

2

]
≤ σ2. (14)

Indeed, if we choose r = max
{

1, 2σ 2

ε2

}
, then due to independence of ξ1, . . . ,ξr we

have:

E
[
‖g(x)−∇ f (x)‖2

2 | x
]
=

1

r2

r

∑
i=1

Eξi

[
‖∇ f (x,ξi)−∇ f (x)‖2

2

]
≤ σ2

r
≤ ε2

2
.

Then, taking conditional expectation E
[
· | xk

]
from the both sides of (10) we derive
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E

[
f (xk+1) | xk

]
≤ f (xk)− hk

2
E

[
‖gk‖2

2 | xk
]
+ hkE

[
‖gk−∇ f (xk)‖2

2 | xk
]

= f (xk)− hk

2
‖∇ f (xk)‖2

2−
hk

2
E

[
‖gk−∇ f (xk)‖2

2 | xk
]

+hkE

[
‖gk−∇ f (xk)‖2

2 | xk
]

= f (xk)− hk

2
‖∇ f (xk)‖2

2 +
hk

2
E

[
‖gk−∇ f (xk)‖2

2 | xk
]

(12)

≤ f (xk)− hk

2
‖∇ f (xk)‖2

2 +
hkε2

4
.

After that, we take the full expectation from the both sides of the previous inequality,

choose hk ≡ 1
2L

and sum up the result for k = 0,1, . . . ,N− 1:

1

N

N−1

∑
k=0

E

[
‖∇ f (xk)‖2

2

]
≤ 4L

N

N−1

∑
k=0

(
E[ f (xk)]−E[ f (xk+1)]

)
+

ε2

2

=
4L
(

f (x0)−E[ f (xN)]
)

N
+

ε2

2

≤ 4L
(

f (x0)− f∗
)

N
+

ε2

2
.

Finally, we choose the output of the method x̂N uniformly at random from x0,x1, . . . ,xN−1

which implies

E
[
‖∇ f (x̂N)‖2

2

]
≤ 4L

(
f (x0)− f∗

)

N
+

ε2

2
.

Taking N =
8L( f (x0)− f∗)

ε2 we obtain E
[
‖∇ f (x̂N)‖2

2

]
≤ ε2. Moreover, the total number

of stochastic oracle calls (number of ∇ f (x,ξ )-calculations) is

N−1

∑
k=0

rk = max

{
8L
(

f (x0)− f∗
)

ε2
,

16L
(

f (x0)− f∗
)

σ2

ε4

}
.

This bound is optimal up to constant factors for the case when the variance is uni-

formly upper bounded [17].

4.1.3 Stochastic Case: Finite Sum Minimization

In this case we assume that the objective function has a finite sum structure (8)

with L-smooth summands. In fact, this smoothness constant L can be significantly

larger than the smoothness constant of f . It is essential for providing a fair compar-

ison of different complexity results. It is possible to improve the dependence on L

in the final complexity bounds [163] using average smoothness assumption, but for

simplicity we consider the case when all summands are L-smooth. Moreover, we as-
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sume that there exists constant σ2 (possibly infinite) such that for ξ taken uniformly

at random from {1, . . . ,m} and for all x ∈ Rn

Eξ

[
‖∇ fξ (x)−∇ f (x)‖2

2

]
≤ σ2. (15)

We define rk and gk in the following way:

rk = r = max

{
1,

20σ2

ε2

}
,

q = min{r,m} ,

gk =





1
r

r

∑
j=1

∇ fξk, j
(xk), if r < m and r divides k,

∇ f (xk), if m≤ r and m divides k,

∇ fξk
(xk)−∇ fξk

(xk−1)+ gk−1, otherwise

hk = h =
1

10L
√

q
.

Here, at iteration k random index ξk is sampled uniformly at random from {1, . . . ,m}
if k is not divisible by q and random indices ξk,1, . . . ,ξk,r are i.i.d. samples from uni-

form distribution on {1, . . . ,m} if q = r and r divides k. As the result, we obtain the

variant of SPIDER [90]. We notice that for k = aq+ p, p∈ {0,1, . . . ,q−1} iteration

k requires 2 calculations of ∇ fξ (x) when p 6= 0 and q calculations of ∇ fξ (x) when

p = 0. This implies that q iterations of the method requires only 3q calculations of

∇ fξ (x), so, if k ≥ q, then the number of stochastic first-order oracle coincides with

the number of iterations up to a constant factor 3.

Below we present a simplified approach to analyze SPIDER. As before, our goal

is to show that E
[
‖gk−∇ f (xk)‖2

2

]
can be upper-bounded by either something small

or something that can be controlled by other terms in (10). First of all, if k = aq, then

E

[
‖gk−∇ f (xk)‖2

2

]
=






0, if q = m,

E



∥∥∥∥∥

1
r

r

∑
j=1

∇ fξk, j
(xk)−∇ f (xk)

∥∥∥∥∥

2

2


 , if q = r

=






0, if q = m,

1
r2

r

∑
j=1

E

[∥∥∥∇ fξk, j
(xk)−∇ f (xk)

∥∥∥
2

2

]
, if q = r

(15)

≤
{

0, if q = m,
σ 2

r
, if q = r,

(16)

≤
{

0, if q = m,
ε2

20
, if q = r,

where E



∥∥∥∥∥

1
r

r

∑
j=1

∇ fξk, j
(xk)−∇ f (xk)

∥∥∥∥∥

2

2


 = 1

r2

r

∑
j=1

E

[∥∥∥∇ fξk, j
(xk)−∇ f (xk)

∥∥∥
2

2

]
due

to independence of ξk,1, . . . ,ξk,r and in the third inequality we applied the tower
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property: E[·] = E
[
E
[
· | xk

]]
. Secondly, if k = aq+ p with p ∈ {1, . . . ,q− 1} we

have

E

[∥∥∥gk−∇ f (xk)
∥∥∥

2

2

]
(18)
= E

[∥∥∥∇ fξk
(xk)−∇ fξk

(xk−1)+ gk−1−∇ f (xk)
∥∥∥

2

2

]

= E

[∥∥∥∇ fξk
(xk)−∇ fξk

(xk−1)−∇ f (xk)+∇ f (xk−1)
∥∥∥

2

2

]

+E

[∥∥∥gk−1−∇ f (xk−1)
∥∥∥

2

2

]

where we use the variance decomposition3 Eξk

[
‖η‖2

2

]
= Eξk

[
‖η−Eξk

[η ]‖2
2

]
+∥∥Eξk

[η ]
∥∥ for random vector η = ∇ fξk

(xk)−∇ fξk
(xk−1)+ gk−1−∇ f (xk) together

with the tower property E[·] = E
[
Eξk

[·]
]
. Using the inequality above together with

‖a+ b‖2
2≤ 2‖a‖2

2+ 2‖b‖2
2, a,b ∈Rn and L-smoothness of f1, . . . , fm, f we get

E

[∥∥∥gk−∇ f (xk)
∥∥∥

2

2

]
≤ 2E

[∥∥∥∇ fξk
(xk)−∇ fξk

(xk−1)
∥∥∥

2

2

]
+ 2E

[∥∥∥∇ f (xk)−∇ f (xk−1)
∥∥∥

2

2

]

+E

[∥∥∥gk−1−∇ f (xk−1)
∥∥∥

2

2

]

≤ 4L2
E

[
‖xk− xk−1‖2

2

]
+E

[∥∥∥gk−1−∇ f (xk−1)
∥∥∥

2

2

]

= 4L2h2
E

[
‖gk−1‖2

2

]
+E

[∥∥∥gk−1−∇ f (xk−1)
∥∥∥

2

2

]

≤ 8L2h2
E

[
‖∇ f (xk−1)‖2

2

]
+
(
1+ 8L2h2

)
E

[∥∥∥gk−1−∇ f (xk−1)
∥∥∥

2

2

]
.

Unrolling the recurrence we derive

3 Here Eξk
[·] is a mathematical expectation conditioned on everything despite ξk, i.e. expectation

is taken w.r.t. the randomness coming only from ξk.
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E

[∥∥∥gk−∇ f (xk)
∥∥∥

2

2

]
≤ 8L2h2

p

∑
l=1

(
1+ 8L2h2

)l−1
E

[
‖∇ f (xk−l)‖2

2

]

+
(
1+ 8L2h2

)p
E

[
‖gaq−∇ f (xaq)‖2

2

]

(20),p≤q

≤
(
1+ 8L2h2

)q
p

∑
l=1

8L2h2
E

[
‖∇ f (xaq+l)‖2

2

]

+
(
1+ 8L2h2

)q

{
0, if q = m,
ε2

20
, if q = r

(1+x)q≤eqx

≤ exp
(
8L2h2q

) p

∑
l=1

8L2h2
E

[
‖∇ f (xaq+l)‖2

2

]

+exp
(
8L2h2q

)
{

0, if q = m,
ε2

20
, if q = r.

Next, using the choice of the stepsize h = 1/(10L
√

q) we obtain

E

[∥∥∥gk−∇ f (xk)
∥∥∥

2

2

]
≤

p

∑
l=1

9L2h2
E

[
‖∇ f (xaq+l)‖2

2

]
+

11ε2

200
.

Finally, we put all the inequalities together. We start with modifying (10):

f (xk+1) ≤ f (xk)− hk

2
‖gk‖2

2 + hk‖∇ f (xk)− gk‖2
2

≤ f (xk)− h

4
‖∇ f (xk)‖2

2 +
3h

2
‖∇ f (xk)− gk‖2

2,

where we used that inequality ‖a+ b‖2
2 ≥ 1

2
‖a‖2

2−‖b‖2
2 holds for all a,b ∈ Rn (in

particular, we use a = ∇ f (xk) and b = gk−∇ f (xk)). Next, we take the full mathe-

matical expectation from the both sides of previous inequality (taking into account

that k = aq+ p):

E[ f (xaq+p+1)] ≤ E[ f (xaq+p)]− h

4
E
[
‖∇ f (xaq+p)‖2

2

]
+

3h

2
E
[
‖gaq+p−∇ f (xaq+p)‖2

2

]

≤ E[ f (xaq+p)]− h

4
E
[
‖∇ f (xaq+p)‖2

2

]
+

3h

2

p

∑
l=1

9L2h2
E

[
‖∇ f (xaq+l)‖2

2

]

+
33hε2

400
.

We notice that this inequality holds for all integers a ≥ 0 and p ∈ {0, . . . ,q− 1}.
Summing up these inequalities for p = 0, . . . ,P and taking a = A where N = Aq+P,

P ∈ {0, . . . ,q− 1} we get
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0 ≤
P

∑
p=0

(
E[ f (xAq+p)]−E[ f (xAq+p+1)]

)
− h

4

P

∑
p=0

E
[
‖∇ f (xAq+p)‖2

2

]

+
27L2h3

2

P

∑
p=0

p

∑
l=1

E

[
‖∇ f (xAq+l)‖2

2

]
+

33hε2(P+ 1)

400

P≤q−1

≤ E
[

f (xAq)
]
−E

[
f (xAq+P+1)

]
− h

(
1

4
− 27L2h2q

2

)
P

∑
p=0

E
[
‖∇ f (xAq+p)‖2

2

]

+
33hε2(P+ 1)

400

(19)
= E

[
f (xAq)

]
−E

[
f (xAq+P+1)

]
− 23h

200

P

∑
p=0

E
[
‖∇ f (xAq+p)‖2

2

]
+

33hε2(P+ 1)

400
,

hence

23h

200

P

∑
p=0

E
[
‖∇ f (xAq+p)‖2

2

]
≤ E

[
f (xAq)

]
−E

[
f (xAq+P+1)

]
+

33hε2(P+ 1)

400
.

These inequalities hold for all A and P. Then we can sum up these inequalities for

(A,P) = (0,q− 1),(1,q− 1), . . . ,(Â, P̂) and get that for N̂ = Âq+ P̂ and divide the

result by
23h(N̂+1)

200
and get

1

N̂ + 1

N̂

∑
k=0

E

[
‖∇ f (xk)‖2

2

]
≤

200
(

f (x0)−E

[
f (xN̂+1)

])

23h(N̂+ 1)
+

33ε2

46

(19)

≤ 2000L
√

q
(

f (x0)− f∗
)

23(N̂ + 1)
+

33ε2

46
.

Finally, taking x̂N̂ uniformly at random from x0, . . . ,xN̂ we get

E

[
‖∇ f (x̂N̂)‖2

2

]
≤ 2000L

√
q
(

f (x0)− f∗
)

23(N̂ + 1)
+

33ε2

46
.

This implies that after

N̂ =
4000L

√
q( f (x0)− f (x∗))

13ε2

(16),(17)
=

4000L( f (x0)− f (x∗))
13ε2

min

{
√

m,max

{
1,

√
20σ

ε

}}

iterations we reach E

[
‖∇ f (x̂N̂)‖2

2

]
≤ ε2. Moreover, it requires
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O

(
L( f (x0)− f (x∗))

ε2
min

{√
m,max

{
1,

σ

ε

}}
+min

{
m,max

{
1,

σ2

ε2

}})

calculations of ∇ fξ (x) which is optimal up to constant factors [90].

4.2 SGD and Its Variants

As it was shown in the previous section, SGD

xk+1 = xk− hkg(xk), E[g(x)] = ∇ f (x)

in the settings of Section 4.1.2 requires O
(

L( f (x0)− f∗
ε2

)
iterations with batch size

r =Θ
(

max
{

1, σ 2

ε2

})
to find an ε-stationary point in expectation. The total number

of stochastic first-order oracle calls equals

O

(
L( f (x0)− f∗)

ε2
max

{
1,

σ2

ε2

})
. (22)

We emphasize that we use large batch size for the sake of simplicity and unification

of the results in 3 different cases. In fact, it is possible to obtain the bound (22) using

smaller stepsizes and constant batch sizes of the order O(1) [101].

4.2.1 Assumptions on the Stochastic Gradient

In addition to assumption (14), which is quite restrictive, there exist several other

assumptions on the stochastic gradient studied in the literature. Recently in [141] it

was proposed a simple and unified way to cover the most popular ones.

Assumption 4.1 (Expected Smoothness; Assumption 2 from [141]) The second mo-

ment of stochastic gradients satisfies

E
[
‖g(x)‖2

2

]
≤ 2A( f (x)− f∗)+B‖∇ f (x)‖2

2 +C (23)

for some A,B,C ≥ 0 and for all x ∈Rn.

This assumption generalizes the notion of expected smoothness introduced and

adjusted for convex problems in [117]. Moreover, the following assumptions are

stronger than Assumption 4.1 or can be seen as special cases of Assumption 4.1

(see more details and formal proofs in [141]).

Uniformly upper-bounded variance (UV) assumption. Indeed, if A = 0, B = 1

and C = σ2, then using variance decomposition inequality (23) implies (14):

E
[
‖g(x)−∇ f (x)‖2

2

]
= E

[
‖g(x)‖2

2

]
−‖∇ f (x)‖2

2

(23)

≤ σ2.
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Expected strong growth condition (E-SG). When A = C = 0 and B = α ≥ 1 in-

equality (23) transforms into so-called expected strong growth condition [231, 248]:

E
[
‖g(x)‖2

2

]
≤ α‖∇ f (x)‖2

2. (24)

Maximal strong growth condition (M-SG) [245, 216] states that there exists such

α > 0 that

‖g(x)‖2
2 ≤ α‖∇ f (x)‖2

2 almost surely for all x ∈ R
n.

This condition implies E-SG (24) while known convergence results in expectation

under M-SG assumption have no advantage in comparison with their counterparts

under E-SG.

Relaxed growth condition (RG) [37] can be seen as another special case of As-

sumption 4.1 with A = 0, B = α ≥ 1 and C = β ≥ 0 or as an extension of E-SG:

E
[
‖g(x)‖2

2

]
≤ α‖∇ f (x)‖2

2 +β . (25)

However, there exist simple problems of type (4)+(7) that fit the settings we are

interested in but do not satisfy (25) (see Proposition 1 from [141]).

Gradient confusion condition (GC) [214] was developed for the finite-sum case

(8). In particular, it states that there exists such η > 0 that for all i, j = 1, . . . ,m and

for all x ∈ Rn

〈∇ fi(x),∇ f j(x)〉 ≥ −η . (26)

One can show (see Theorem 1, [141]) that inequality (26) implies (25) with α = m

and β = η(m− 1), and, as a consequence, it is a special case of Assumption 4.1

with A = 0, B = m, and C = η(m− 1).
Sure-smoothness condition (SS) [159] is defined for the case when the objective is

represented as an expectation (7) and g(x) = ∇ f (x,ξ ) where ξ is sampled indepen-

dently at each iteration of SGD. That is, sure-smoothness condition means that4 for

all x,y ∈ Rn

‖∇ f (x,ξ )−∇ f (y,ξ )‖2 ≤ L‖x− y‖2 and f (x,ξ )≥ 0 almost surely in ξ . (27)

Applying classical corollaries of L-smoothness one can derive inequality (23) with

A = 2L, B = 0, and C = 2L f∗ from (27).

Next, Assumption 4.1 covers arbitrary sampling setup and distributed setup

with quantization5. For simplicity, we mention only sampling with replacement

as a special case of arbitrary sampling (see more examples in [141]). In particu-

lar, consider the finite-sum optimization problem (4)+(8) and assume that fi is Li-

smooth and bounded from below by fi,∗ for all i = 1, . . . ,m. Moreover, assume that

g(x) = ∇ f j(x) where j = i with probability pi ≥ 0, i = 1, . . . ,m, ∑m
i=1 pi = 1. Then,

4 In the original paper [159], authors considered more general situation when stochastic realizations

f (x,ξ ) have Hölder-continuous gradients.
5 This technique is applied in distributed optimization to reduce the overall communication cost

(e.g., see [5, 27, 108]). However, methods for distributed optimization are out of scope of our

survey.
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one can prove [141] that Assumption 4.1 is satisfied in this case with A = maxi
Li

mpi
,

B = 0, and C = 2A∆∗ = 2A
m ∑m

i=1 ( f∗− fi,∗). That is, if we apply uniform sampling,

i.e., pi =
1
m

for all i = 1, . . . ,m, then we get A = maxi Li, B = 0, C = 2maxi Li∆∗,
and if importance sampling with pi =

Li

∑m
l=1 Ll

is applied, then Assumption 4.1 holds

with A = L = 1
m ∑m

i=1 Li, B = 0, and C = 2L∆∗.
Finally, under Assumption 4.1 Khaled and Richtárik [141] derived the following

complexity bound: if h = min
{

1√
LAN

, 1
LB
, ε

2LC

}
, then inequality

min
0≤k≤N−1

E

[
‖∇ f (xk)‖2

]
≤ ε (28)

is satisfied after

N = O

(
L( f (x0)− f∗)

ε2
max

{
B,

A( f (x0)− f (x∗))
ε2

,
C

ε2

})
(29)

iterations of SGD. It is worth to mention that this bound gives the sharpest rates for

all known special cases. We summarize some of them in Table 1. We notice that

(28) is weaker than (9), but it is easy to obtain the same bound (29) guaranteeing (9)

instead of (28) based on the analysis given in [141].

Problem Settings Citation Complexity

(4)+(7) UV (14) [101]
L∆0

ε2 max
{

1, σ 2

ε2

}

(4)+(7)/(8) RG (25) [37, 248]
L∆0

ε2 max
{

α, β
ε2

}

(4)+(8) GC (26) [214]
L∆0

ε2 max
{

m, η(m−1)
ε2

}

(4)+(8) Uniform Sampling [141]
Lmaxi Li∆0

ε4 max{∆0,∆∗}
(4)+(8) Importance Sampling [141]

LL∆0

ε4 max{∆0,∆∗}

Table 1: Summary of the complexity results for SGD under different assumptions

on the stochastic gradient. The column “Complexity” contains an overall number of

stochastic first-order oracle calls needed to find ε-stationary point neglecting con-

stant factors. Notation: ∆0 = f (x0)− f∗, σ2 = a uniform bound for the variance of

the stochastic gradient (14), α,β = relaxed growth condition parameters, η = gra-

dient confusion parameter, ∆∗ = 1
m ∑m

i=1( f∗− fi,∗), maxi Li = maximal smoothness

constant of fi in (8), L = averaged smoothness constant of fi in (8).

4.2.2 The Choice of the Stepsize

In practice, instead of using the constant stepsize for SGD it is popular to peri-

odically decrease the stepsize by some factor [35, 152, 127] even for non-convex
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problems. For strongly convex problems such a choice is natural: it is well-known

[112] that if the stepsize equals h and strong convexity parameter equals µ , then

SGD converges with linear rate Õ((hµ)−1) to the neighborhood of the solution with

size proportional to h. Surprisingly, SGD enjoys similar behaviour even for non-

convex problems which was recently shown in [223].

In the neural networks training, “warmup” [118, 115] and cyclical stepsize

[230, 170] schedules are also very popular and useful. The first one refers to the

strategy when, during several epochs of training, tiny stepsizes are used, and then

they are increased. This technique was successfully applied for several deep learn-

ing problems like ResNet [127], large-batch training of Imagenet [118] and natural

language problems [247, 76].

Cyclical stepsize schedule means that the stepsize is changing between some

lower and upper bounds. There are different modification of this technique includ-

ing gradual decrease and increase during one epoch [230] and gradual decrease of

the stepsize followed by the sudden increase [170]. However, the theoretical under-

standing of the success of “warmup” and cyclical schedules is very limited.

We also discuss different stepsize policies including adaptive ones (Section 4.4),

Armijo line-search under expected strong growth assumption and stochastic Polyak

stepsizes under relaxed growth assumption (Section 4.2.3) in the following subsec-

tions.

4.2.3 Over-Parameterized Models

In Section 2.3.2, we mentioned that over-parameterization [167, 190, 272, 194,

161, 13, 14], meaning that the last layer has more neurons than the number of sam-

ples in the training set, is a good property for neural networks from the optimiza-

tion and generalization [173, 12, 11] point perspectives, but not a panacea: over-

parameterized neural networks have no spurious valleys, but still can have bad local

minima [78].

In the papers, focusing mostly on the optimization aspects of over-parameterized

models, it was shown that SGD converges with the same (up to the difference in

the smoothness constants) rate as GD in terms of the iteration complexity in convex

and strongly convex cases [248, 249, 168] under interpolation condition: for the

finite-sum optimization problem (4)+(8) there exists such point x∗ ∈ R
n that

min
x∈Rn

fi(x) = fi(x
∗) ∀i = 1, . . . ,m. (30)

Furthermore, in this setting SGD converges with Armijo line-search [249], with

stochastic Polyak stepsizes [168], and, if additionally expected strong growth condi-

tion (24) holds, SGD can be accelerated [248] and the accelerated version converges

as good as Nesterov’s method [183] in terms of iteration complexity up to expected

strong growth multiplicative factor α from (24).

In the general non-convex case, the following results exist.

Constant stepsizes. In [248], it was shown that SGD with constant stepsize h= 1/αL
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finds ε-stationary point under expected strong growth condition (24) with the rate

O
(

αL( f (x0)− f∗)/ε2
)

matching the iteration complexity of GD up to the factor α .

Armijo line-search. The idea that under interpolation condition/expected strong

growth condition SGD and GD have similar properties was then strengthen in [249],

where authors showed that SGD with Armijo line-search converges in these settings.

In particular, the authors of [249] considered such stepsizes hk that

fik (x
k− hk∇ fik (x

k))≤ fik (x
k)− chk‖∇ fik(x

k)‖2
2, (31)

where the index ik is sampled uniformly at random from the set {1, . . . ,m}, the

stochastic gradient gk is defined as gk = ∇ fik (x
k), and c > 0 is a hyper-parameter.

Moreover, it is assumed that hk ∈ (0,hmax] for all k ≥ 0. Then SGD with Armijo

line-search (31) with c> 1−Lmax/(αL) and hmax≤ 2/αL finds ε-stationary point under

expected strong growth condition (24) with the rate O
(
( f (x0)− f∗)/(δε2)

)
, where δ =

(hmax + 2(1−c)/Lmax)−α
(

hmax− 2(1−c)
Lmax

+Lh2
max

)
, Lmax is the maximal smoothness

constant of summands fi, and f is the smoothness constant of f . Authors of [249]

also considered the version with samples used for backtracking (31) independent

from those used for determining the stochastic gradient, and the version with non-

increasing stepsizes under additional assumption that the iterates lie in some ball

with radius D. The rates are O
(

max{Lmax,αL}( f (x0)− f∗)/ε2
)

and O
(

max{Lmax,αL}LD2/ε2
)

respectively, and both complexity bounds hold with c = 1/2 and hmax = 1/(αL).

Finally, in the numerical experiments from [249] the authors observed that the

method’s performance is robust to the choic of c and hmax.

Stochastic Polyak stepsizes. Next, SGD under expected strong growth condition

converges with stochastic Polyak stepsizes introduced and analyzed in [168]:

hk = min

{
fik (x

k)− fik,∗
c‖∇ fik(x

k)‖2

,hb

}
, (32)

where the index ik is sampled uniformly at random from the set {1, . . . ,m}, the

stochastic gradient gk is defined as gk = ∇ fik (x
k), fi,∗ is uniform lower bound for

fi(x), and c > 0 is a hyper-parameter. In particular, one can show [168] that SGD in

these settings with c > αL/4Lmax and hb ≤ max
{

2/(αL),hb

}
finds ε-stationary point

under expected strong growth condition (24) with the rate O
(
( f (x0)− f∗)/(δε2)

)
, where

δ = (hb +β )−α
(
hb−β +Lh2

b

)
, β = min{1/(2cLmax),hb}, and

hb =
−(α− 1)+

√
(α− 1)2 + 4Lα(α+1)

2cLmax

2Lα
.

4.2.4 Proximal Variants

In the previous subsections, all complexity results rely on the smoothness of the

objective function. The natural question arises: is it possible to generalize these

results to the non-smooth case? In the recent work [150], the authors give a negative
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answer to this question for generally non-smooth non-convex functions, i.e., one

cannot find efficiently via first-order methods near ε-stationary points. However,

many complexity results that we mentioned before and will mention in the following

subsections have generalizations to the composite optimization problems:

min
x∈Rn
{F(x) = f (x)+R(x)} ,

where the function f is L-smooth, but, possibly, non-convex, while R(x), i.e., com-

posite term/regularizer, is a proper closed convex function which can be non-

smooth. Moreover, function R(x) is often chosen in such a way that the proximal

operator

proxR(x) = argmin
y∈Rn

{
R(y)+

1

2
‖y− x‖2

2

}

can be easily computed, and to make the solution of the problem satisfy certain

properties, e.g., sparsity; see [46, 63, 19] for the detailed discussion and examples

of regularizers.

In these settings, instead of SGD one can apply prox-SGD defined by the follow-

ing recurrence:

xk+1 = proxhkR(x
k− hkgk).

Moreover, to measure the progress of the method the generalized projected stochas-

tic gradient is used: g̃k = (xk−xk+1)/hk. When the regularizer R(x) is a constant g̃k = gk.

For proximal stochastic methods we say that the iterate xk is ε-stationary point if

E

[
‖g̃k‖2

2

]
≤ ε2.

In [103], it was shown that prox-SGD under uniformly upper-bounded variance

assumption (14) converges with the rate given in (22). However, the analysis from

[103] works only in the large-batch setting, i.e., when batch sizes are of the order

O(ε−2). For a long time, there was no analysis establishing the same bound without

using O(ε−2) batches, and the problem was recently resolved in [69].

4.2.5 Momentum-SGD

As we already mentioned, SGD is optimal among stochastic first-order methods

for finding ε-stationary points under uniformly bounded variance assumption [17].

However, it does not imply that there is no sense in using different methods for

such problems. In practice, different additional tricks are applied to improve the

convergence of SGD, and, perhaps, the most popular one is momentum [203].

Momentum-SGD/Heavy Ball SGD can be written in different forms. Usually it

is written as

mk+1 = βkmk + g(xk),

xk+1 = xk− hkg(xk),
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where parameter βk ∈ [0,1) is called momentum parameter. In the convex and

strongly convex cases this method has some advantages in comparison to SGD

like better last-iterate convergence guarantees [241, 242, 218], but does not have

an accelerated rate [144]. In the non-convex case, Momentum-SGD has the same

complexity guarantee (22) as SGD under uniformly bounded variance assumption

[266, 70]. However, in practice, Momentum-SGD often works much better than

SGD especially on computer vision problems [238], and also navigates ravines and

escapes saddle points better than SGD.

Among other works on Momentum-SGD we emphasize the recent paper [70]

establishing the tight convergence rates for Momentum-SGD in Stochastic Primal

Averaging [241] form via Lyapunov functions analysis. In particular, [70] justifies

(theoretically and/or empirically) the following important insights about the behav-

ior of Momentum-SGD: (i) Momentum-SGD is provably better than SGD during

the early stage of the convergence, (ii) it is better to gradually reduce momentum

parameter βk rather than the stepsize hk, and (iii) gradual changes of the parameters

of Momentum-SGD are preferable than sudden changes.

4.2.6 Random Reshuffling

Before this subsection, we always assumed that stochastic gradients are sam-

pled independently from previous iterations. However, in the context of finite sum

optimization (4)+(8), the different sampling strategy called Random Reshuffling

(or SGD with Without Replacement sampling) is often used: at each epoch (pass

through the dataset) random permutation {i1, i2, . . . , im} of the set {1,2, . . . ,m} is

generated defining the order of gradients computations (see Algorithm 4). This strat-

egy implies that stochastic gradient in RR is biased.

Algorithm 4 Random Reshuffling (RR)

Require: learning rates {hs,k}s,k≥0, starting point x0 ∈Rn, batch size r ≥ 1, number of epochs S

Set x0
0 = x0

for s = 0,1,2, . . .K−1 do

Generate random permutation {is,1, . . ., is,m} of the set {1, . . . ,m}
Set l = ⌈m/r⌉
for k = 0,1, . . . , l−1 do

Set r̂k
s = min{r,m− kr}

Compute gk
s =

1
rk
s

rk
s

∑
j=1

∇ fis,kr+ j
(xk

s )

xk+1
s = xk

s −hs,kgk
s

end for

x0
s+1 = xl

s

end for

return xl
K−1
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While the superiority of RR to SGD was empirically discovered a long time

ago [34, 36], the theoretical justification of this phenomenon was developed only

recently [125, 205, 193, 179]. In particular, authors of [193] proved that RR under

uniformly bounded gradients assumption,

‖ fi(x)‖2 ≤ G ∀i = 1, . . . ,m, ∀x ∈ R
n,

finds ε-stationary point with the rate O
(
Lmaxm( f (x0)− f∗)

(
ε−2 +Gε−3

))
, where

Lmax is the maximal smoothness constant of summands f1, . . . , fm. Then, in [179]

this result was generalized and tightened: under the assumption

1

m

m

∑
i=1

‖∇ fi(x)−∇ f (x)‖2
2 ≤ 2A( f (x)− f∗)+C, (33)

which is a special case of (23) with B = 1, authors of [179] derived the following

bound:

O

(
Lmax

√
m( f (x0)− f∗)

(√
m

ε2
+

√
A( f (x0)− f∗)+

√
C

ε3

))
. (34)

That is, under uniformly bounded variance assumption (14) this bound transforms

(A = 0, C = σ2) into O
(
Lmax

√
m( f (x0)− f∗)

(√
mε−2 +σε−3

))
which outper-

forms the corresponding complexity bound for SGD (22) whenever Lmax

√
mε ≤ Lσ .

Next, one can show that for Lmax-smooth fi uniformly lower bounded by fi,∗,
i = 1, . . . ,m, (33) holds with A = Lmax and C = 2Lmax∆∗ =

2Lmax
m ∑m

i=1( f∗ − fi,∗),
and, as a consequence of (34), RR converges with the rate

O

(
Lmax

√
m( f (x0)− f∗)

(√
m

ε2
+

√
Lmax( f (x0)− f (x∗))+

√
Lmax∆∗

ε3

))

which is better than corresponding bound for SGD (see Table 1) when L
√

f (x0)− f∗≥
ε
√

Lmaxm and L
√

∆∗ ≥ ε
√

Lmaxm.

4.3 Variance-reduced Methods

In this section, we discuss variance reduction for non-convex optimization – a

special technique aimed at improving the convergence speed of SGD for finite-sum

optimization problems (4)+(8). The typical behaviour of SGD with constant stepsize

h and batch size r < m is as following: during the first iterations the method con-

verges rapidly to some neighbourhood of the solution or local minimum and then

it starts to oscillate in this neighbourhood. Such oscillations of SGD are common

even for strongly convex problems meaning that it is not a drawback of the prob-

lem. The size of the oscillation region is proportional to hσ 2/r and this fact hints two
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simple and famous remedies: decreasing (gradually or suddenly) or small stepsizes

and large enough batch sizes. However, the first option can make the convergence

too slow and the second option dramatically increases the iteration cost.

To remove these drawbacks one can apply variance-reduced methods like SAG

[215], SAGA [71], SVRG [139], Finito [73], MISO [174]. In particular, all of the

mentioned methods have O
(
(m+ L/µ) ln 1

ε

)
convergence rate in the µ-strongly con-

vex case. What is more, they use constant stepsize and at each iteration (besides each

m-th iteration or besides the first one) they require one computation of the stochastic

gradient with batch size r = 1 in the strongly convex case.

Among variance-reduced methods SAGA and SVRG are the most popular ones

(see Algorithm 5 and 6). In previous subsections, we already mentioned that to find

Algorithm 5 SAGA [71, 208]

Require: learning rate h > 0, starting point x0 ∈Rn, batch size r ≥ 1

Set φ 0
j = x0 for each j ∈ [m]

v0 = 1
m

m

∑
i=1

∇ fi(φ
0
j )

for k = 0,1,2, . . . do

Uniformly randomly pick sets Ik,Jk from {1,2, . . . ,m} (with replacement) such that |Ik| =
|Jk|= r

gk = 1
r ∑

i∈Ik

(
∇ fi(x

k)−∇ fi(φ
k
i )
)
+ vk

xk+1 = xk−hgk

φ k+1
j = xk for j ∈ Jk and φ k+1

j = φ k
j for j 6∈ Jk

vk+1 = vk− 1
r ∑

j∈Jk

(
∇ f j(φ

k
j )−∇ f j(φ

k+1
j )

)

end for

Algorithm 6 SVRG [139, 208]

Require: learning rate h > 0, epoch length T , starting point x0 ∈ R
n, batch size r ≥ 1

φ0 = x0
0 = x0

for s = 0,1,2, . . . do

for k = 0,1,2, . . .,T −1 do

Uniformly randomly pick set Ik from {1, . . . ,m} (with replacement) such that |Ik|= r

gk = 1
r ∑

i∈Ik

(
∇ fi(x

k
s )−∇ fi(φs)

)
+∇ f (φs)

xk+1
s = xk

s −hgk

end for

φs+1 = x0
s+1 = xk

s

end for

ε-stationary GD and SGD require6 O
(
mε−2

)
and O(ε−4) calculations of the gradi-

ents of the summands respectively. Despite the fact that SAGA and SVRG were ini-

tially analysed only in strongly convex cases, now their convergence in non-convex

6 For simplicity we neglect all parameters except m and ε , see the details in Table 2
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case is also well-known due to [208, 206]. Unfortunately, when r = 1 both SAGA

and SVRG guarantee only O(mε−2) convergence rate as simple GD. However, if

r = m
2/3, then SAGA and SVRG converges with the rate O(m2/3ε−2) which has m

1/3

times better dependence on m than the complexity bound for GD.

However, the lower bound is Ω
(√

mε−2
)

[90, 163] and there exist optimal al-

gorithms. Essentially, these methods are variations of SARAH [192]. However, in

the original paper on SARAH for non-convex problems authors did not prove com-

plexity bounds for the finite-sum optimization problems. After that, in [90] authors

proposed the first lower bounds in the small data regime m = O(L2( f (x0)− f ∗)ε−4)
together with the first optimal method called SPIDER. Despite the theoretical opti-

mality of the method, it requires very small stepsize (proportional to ε−1) that leads

to the poor behaviour in practice. Moreover, the original proof of the convergence

rate for SPIDER is technically tough and, because of it, it is hard to generalize the

method for the composite optimization problems. In recent works [252, 253], much

simpler optimal method called SpiderBoost was proposed (see Algorithm 7). More-

over, this method works with big constant stepsizes (of order L−1), can be easily

generalized for the composite optimization problems, and works well with heavy-

ball momentum.

Algorithm 7 SpiderBoost [252, 253]

Require: learning rate h > 0, epoch length T , starting point x0 ∈ R
n, batch size r ≥ 1, number of

iterations K

for k = 0,1,2, . . . do

if k mod T = 0 then

Compute gk = ∇ f (xk)
else

Uniformly randomly pick set Ik from {1, . . . ,m} (with replacement) such that |Ik|= r

Compute gk = 1
r ∑

i∈Ik

(
∇ fi(x

k)−∇ fi(x
k−1)

)
+gk−1

end if

xk+1 = xk−hgk

end for

Pick ξ uniformly at random from {0, . . . ,K−1}
return xξ

Next, in [163], the same lower bound Ω
(√

mε−2
)

was derived without any as-

sumptions on m. Furthermore, authors of [163] proposed a new optimal method

called PAGE (see Algorithm 8) which is a variant of SPIDER with random length

of the inner loop making the method easier to analyze.

However, in deep neural networks training, variance-reduced methods work typ-

ically worse than SGD or SGD with momentum [72]. This happens often due to the

bad behaviour of variance-reduced methods with several widespread in deep learn-

ing tricks like batch normalization, data augmentation and dropout (see the details in

[72]). Moreover, if the model is over-parameterized or, in particular, expected strong

growth condition (24) or its relaxed version (25) with small noise level hold, SGD

is as fast as GD in terms of iteration complexity, meaning that variance reduction is
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Algorithm 8 ProbAbilistic Gradient Estimator (PAGE) Algorithm [163]

Require: initial point x0, stepsize h, minibatch size r, r′ < r, probabilities {pk}k≥0 ∈ (0,1] of

large-batch stochastic gradient computation, number of iterations K

g0 = 1
r ∑

i∈I0

∇ fi(x
0), where I0 denotes indices in the minibatch, |I0|= r

for k = 0,1,2, . . .,K−1 do

xk+1 = xk−hgk

gk+1 =





1
r ∑

i∈Ik

∇ fi(x
k+1) with probability pk,

gk + 1
r′ ∑

i∈I′
k

(
∇ fi(x

k+1)−∇ fi(x
k)
)

with probability 1− pk,
where |Ik|= r, |I′k|= r′

end for

return x̂K chosen uniformly from {xk}K
k=0

superfluous. That is, variance reduction trick is often not needed or gives worse rates

than the rate of SGD for over-parameterized models from theoretical and practical

perspectives. Nevertheless, when the problem is not over-parameterized, it makes

sense to use variance-reduced methods.

We summarize the discussed above complexity bounds in Table 2. We also want

Method Citation Complexity

Lower bound [90, 163] L∆0 min{σε−3,
√

mε−2}
GD mL∆0ε−2

SGD,

bounded var.
[101] L∆0 max{ε−2,σ2ε−4}

SGD,

unbounded var.
[141]

L2∆0

ε4 max{∆0,∆∗}
SVRG, r = 1 [208] mL∆0ε−2

SVRG, r = ⌈m2/3⌉ [208] m
2/3L∆0ε−2

SAGA, r = 1 [208] mL∆0ε−2

SAGA, r = ⌈m2/3⌉ [208] m
2/3L∆0ε−2

SpiderBoost [252, 253] m
1/2L∆0ε−2

SpiderBoost-M [253] m
1/2L∆0ε−2

SPIDER [90] L∆0 min{σε−3,
√

mε−2}
PAGE [163] L∆0 min{σε−3,

√
mε−2}

Table 2: Overview of the complexity results for different variance-reduced methods

applied to solve problem (4)+(8) with L-smooth summands. The column “Com-

plexity” contains an overall number of stochastic first-order oracle calls needed

to find ε-stationary point neglecting constant factors. Notation: ∆0 = f (x0)− f∗,
∆∗ = 1

m ∑m
i=1( f∗ − fi,∗), σ2 = a uniform bound for the variance of the stochastic

gradient (14) (can be ∞ for variance-reduced methods), r = batch size.

to mention some papers not presented in Table 2 but being highly relevant. In [164],
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there was developed the generalization of the approach from [141] providing a uni-

fied analysis of different variants of SGD, non-optimal variance-reduced methods

like SAGA or L-SVRG [129, 151], and some distributed methods with quantiza-

tion [5] including DIANA-type variance reduction [178, 130] for non-convex opti-

mization. Next, for the online case (4)+(7) with smooth stochastic trajectories the

optimal rate O(ε−3) was shown for STOchastic Recursive Momentum (STORM)

method [67], which does not require periodical large-batch stochastic gradient com-

putations and is more robust to the parameters selection, and for its proximal variant

[264]. These results shade a light on the role of momentum in the stochastic first-

order methods. Finally, it is optimal to generalize SPIDER and get similar rates for

composition optimization problems [276, 61].

4.3.1 Convex and Weakly Convex Sums of Non-Convex Functions

There are also several results devoted to the case when the objective function f

from (8) is (strongly) convex or almost convex, while the summands fi are smooth,

but can be non-convex. In particular, [283] establishes the lower bounds for the cases

when (i) f is µ-strongly convex with µ ≥ 0, (ii) f is α-weakly convex

f (x)− f (y)−〈∇ f (y),x− y〉 ≥ −α

2
‖x− y‖2

2,

and (iii) fi are α-weakly convex. Due to the additional assumptions on the structure

of non-convexity in the problem the proposed lower bounds are tighter in these

situations than the lower bound from [90, 163]. The lower bounds for the case (i)

were further tightened in [260]. Moreover, there exist optimal and almost optimal

methods for each case, see Table 3 for the details.

4.4 Adaptive Methods

One of the most significant issues of the methods described above is that they

require tuning of the stepsize and other parameters (e.g., batch size) when used in

practice. It is often challenging and takes a lot of time, especially for training deep

neural networks. That is why, in the recent few years, adaptive methods gained a

lot of attention. Below we discuss the most popular ones – AdaGrad and Adam –

as well as their variants. In fact, all of these methods depend on some parameters,

but these algorithms are much more robust than other variants of SGD or variance-

reduced methods. Therefore, they are often called adaptive. One can find PyTorch

implementation of many popular adaptive first-order methods together with with

visualization of their convergence on Rosenbrock and Rastrigin functions in [1].
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Settings Lower Bound
Upper Bound,

Methods

f is µ-str. cvx.

and L-smooth,

{ fi} are average L-smooth

(m+m3/4

√
L
µ ) log

∆0
ε ,

[260]

(m+m3/4

√
L
µ ) log

∆0
ε ,

Dual-Free SDCA [220],

KatyushaX [8]

f is cvx.

and L-smooth,

{ fi} are average L-smooth

m+m
3/4

√
LR2

0
ε ,

[283]

m+m
3/4

√
LR2

0
ε ,

Dual-Free SDCA [220],

KatyushaX [8]

f is α-weakly cvx.

and L-smooth,

{ fi}m
i=1 are average L-smooth

∆0

ε2 min
{

m
3/4
√

αL,
√

mL
}

,

[283]

∆0

ε2 min
{

m
3/4
√

αL,
√

mL
}

,

RepeatSVRG [49, 2],

SPIDER [90],

SNVRG [286]

{ fi}m
i=1 are α-weakly cvx.

and L-smooth

∆0

ε2 min
{√

mαL,L
}

,

[283]

∆0

ε2 min
{√

mαL,
√

mL
}

,

Natasha [6],

RapGrad [156],

StagewiseKatyusha [60]

Table 3: Overview of the optimal convergence results for convex and weakly convex

sums of non-convex functions. Averaged L-smoothness of { fi}m
i=1 means that for all

x,y ∈ R
n the following inequality holds: 1

m ∑m
i=1‖∇ fi(x)−∇ fi(y)‖2

2 ≤ L2‖x− y‖2
2.

The column “Lower Bound” states for the number of stochastic first-order oracle

calls needed to find such x̂ that E[ f (x̂)− f (x∗)] ≤ ε for the second and the third

rows and ε-stationary point for the fourth and the fifth rows. Notation: R0 = distance

from x0 to the solutions set (for the third row), ∆0 = f (x0)− f∗.

4.4.1 AdaGrad and Adam

AdaGrad. As we mentioned above, SGD requires the tuning of the stepsize. The

first algorithm aiming to remove this drawback of SGD was AdaGrad [79]:

xk+1
i = xk

i −
h√

Gk
i + δ

gk
i ,

where the subscript i denotes the i-th component of the vector, Gk
i = ∑k

t=0(g
t
i)

2, and

δ is some small positive number preventing from the division by zero and typically

taken of the order 10−8. AdaGrad can be considered as a special case of SGD with

different per-coordinate stepsizes.

The main advantage of AdaGrad is in its robustness to the choice of h: in practice,

it often works well with the default value h = 10−2. Moreover, AdaGrad was shown

to work well with sparse data [80]. However, in the dense settings AdaGrad stepsizes

rapidly decrease which leads to the slow convergence of the method [257].
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Adam. To resolve this issue of AdaGrad one can use exponential moving averages

instead of sums Gk
i leading to the method called RMSprop [243]. Then, based on

RMSprop authors of [146] proposed one the most popular methods in deep learning

– Adam7:

mk
i = β1mk−1

i +(1−β1)g
k
i , m̂k

i =
mk

i

1− (β1)k
,

vk
i = β2vk−1

i +(1−β2)(g
k
i )

2, v̂k
i =

vk
i

1− (β2)2
,

xk+1
i = xk

i −
h√

v̂k
i + δ

m̂k
i , i = 1, . . . ,n,

δ is some small positive number preventing from the division by zero and typically

taken of the order 10−8. Default values β1 = 0.9 and β2 = 0.999 from the original

paper [146] often make Adam work well in practice. Adam was initially analyzed

in the online convex case, but then authors of [207] found out the flaw in the proof

for Adam and proposed a convergent variant of Adam called AMSGrad.

Convergence Guarantees. While the superiority of AdaGrad and Adam in compar-

ison to SGD was noticed in many application [80, 154, 106], the best-known com-

plexity bounds for AdaGrad, Adam, and their modifications are the same or even

worse than ones for SGD [57, 285, 270, 256, 74]. Furthermore, these complexity re-

sults in non-convex case under more restrictive assumption, e.g., uniformly bounded

second moment of the stochastic gradient, than their counterparts for SGD. Among

other works providing complexity results for Adam and AdaGrad in the non-convex

case we emphasize [74] because of the generality and the simplicity of the proofs.

Moreover, the unified analysis of proximal variants of AdaGrad and Adam was pro-

posed in [269]. Furthermore, we emphasize the recent work [225] where authors

analyse RMSprop without assuming uniform boundedness of the gradients.

Next, in [275] the theoretical and empirical study why Adam sometimes be-

haves significantly better than SGD was conducted. The authors of [275] empir-

ically discovered that Adam performs better than SGD when stochastic gradients

are heavy-tailed and the reason is that Adam does an “adaptive gradient clipping”

[107, 109, 177, 200, 246, 110]. In the same work [275] authors showed that in

such situations SGD can fail to converge while clipped-SGD (with general and

coordinate-wise clipping operators) provably converges to ε-stationary point. More-

over, in [274] it was shown that Gradient Descent with clipping converges even

under weaker assumption than L-smoothness in the non-convex case with the rate

∼ ε−2 while Gradient Descent in the same settings can converge arbitrary slower.

Then, the bound from [274] was improved in [271]. Finally, it is known [107] that

clipped-SGD works better than SGD in the vicinity of extremely steep cliffs. A very

similar approach based on the normalization of Gradient Descent was also studied

in [126, 160].

7 To distinguish exponents from superindexes we use braces (·) for exponents.
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4.4.2 Adaptive SGD

The approach described in Section 4.1.2 for general stochastic optimization prob-

lem (4) with the objective given as (7) was recently extended in [81] to obtain adap-

tive methods with Armijo-type line-search for stochastic non-convex optimization.

To do that they consider Algorithm 3 with the mini-batch stochastic gradient (13)

and mini-batch size r = max{1,8σ 2
0/ε2}, where σ0 > σ . In each iteration k of Algo-

rithm 3 the stepsize is taken as hk = 1/Lk := 1/(2ik−1Lk−1) by increasing ik > 0 until

the inequality

f (xk+1)≤ f (xk)+

〈
1

r

r

∑
l=1

∇ f (x,ξl),x
k+1− xk

〉
+Lk‖xk+1− xk‖2

2 +
ε2

32Lk

is satisfied. This inequality is an inexact upper quadratic bound which follows for

sufficiently large Lk from the L-smoothness and bounded variance. Thus, Lk plays

the role of a guess of the Lipschitz constant L locally between the points xk and xk+1.

The authors of [81] propose also methods for convex problems based on the same

idea with the difference that in the convex case the mini-batch size r depends on

the iteration counter k. Careful choice of this dependence allows to simultaneously

adaptively choose both the stepsize hk and the mini-batch size rk. These methods

have the same, up to logarithmic factors, iteration complexity and total number of

stochastic oracle calls as their non-adaptive counterparts. In particular, for the non-

convex case the iteration complexity to obtain ε-stationary point is Õ
(

L( f (x0)− f∗)/ε2
)

and the oracle complexity is Õ
(
L
(

f (x0)− f∗
)

max
{

1/ε2,σ 2/ε4
})

. Moreover, empir-

ically, the methods designed for convex problems turned out to be more efficient on

non-convex problems than the method designed for non-convex problems.

5 First-Order Methods under Additional Assumptions

In the previous parts of the paper, we focused on general non-convex problems.

In this section, we consider two subclasses of non-convex objective functions which

satisfy assumptions weaker than convexity and, at the same time, strong enough to

obtain good global convergence rates of optimization algorithms. For simplicity, we

consider an unconstrained optimization problem (1) with Q = Rn.

5.1 Polyak–Łojasiewicz Condition

A function f (x) is said to satisfy the Polyak–Łojasiewicz (PŁ) condition [201,

169] (or to be gradient dominated) if for all x ∈ Rn
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f (x)− f (x∗)6
1

2µ
‖∇ f (x)‖2

2 . (36)

This condition implies that any stationary point of f (x) is a global minimum, al-

though it is not necessarily unique. In particular, this property holds for strongly

convex functions. It was first shown in [201] that if the objective is also L-smooth,

then gradient descent linearly converges to a global minimum, i.e.,

f (xk) − f (x∗) 6 exp
(
−µ

L
k

) (
f
(
x0
)
− f (x∗)

)
.

The Polyak–Łojasiewicz condition is naturally satisfied for the problems of solving

nonlinear systems of equalities g(x) = 0, where g(x) is a vector-valued function.

This problem can be equivalently reformulated as

min
x∈Rn

{
f (x) =

1

2
‖g(x)‖2

2

}
.

Assuming that, for all x ∈ Rn

λmin

(
Jg(x)J

T
g (x)

)
≥ µ > 0,

where Jg(x) is the Jacobian matrix of g(x), one can show that

‖∇ f (x)‖2 = ‖JT
g (x)g(x)‖2

> µ‖g(x)‖2 = 2µ f (x),

which is exactly the Polyak–Łojasiewicz condition since g(x∗) = 0. An extensive

survey of first-order optimization methods under this condition, as well as its re-

lationship with other classes of functions, can be found in [140]. An interesting

example of the emergence of PŁ condition in Linear Feedback Control theory was

recently described in [92] and in over-parameterized deep learning in [?].

Next, consider the convergence of gradient descent under the PŁ condition in

terms of relative accuracy ∇̃ f (x)

‖∇̃ f (x)−∇ f (x)‖2 ≤ α‖∇ f (x)‖2,

where α ∈ [0,1). Let the stepsize h in gradient descent

xk+1 = xk− h∇̃ f (xk)

be computed using the following formula:

h =
1

L

1−α

(1+α)2
.

Combining this with the Lipschitz condition, we obtain
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f (xk+1)≤ f (xk)− 1

2L

(1−α)2

(1+α)2
‖∇ f (xk)‖2

2,

leading to

f (xN)− f (x∗)≤
(

1− µ

L

(1−α)2

(1+α)2

)N (
f (x0)− f (x∗)

)
.

As a result, we achieve a linear convergence rate for the gradient descent under the

PŁ condition.

In general case the main ingredient that guaranties global linear convergence

under PŁ condition is an estimate like

‖∇ f (xN)‖2
2 ≤ θ (N) ·

(
f (x0)− f (x∗)

)
,

where θ (N) – some decreasing function, i.e. (2). We assume that there exists such

N(µ), that θ (N(µ))≤ µ , i.e. for (2) N(µ) = 2L/µ . In this case from PŁ condition

‖∇ f (xN(µ))‖2
2 ≤

1

2
‖∇ f (x0)‖2

2.

By applying restarts we obtain oracle complexity Õ(N(µ)).

5.1.1 Stochastic First-Order Methods under Polyak–Łojasiewicz Condition

The majority of the methods described in Section 4 are analyzed under PŁ con-

dition as well. That is, one can find the state-of-the-art results for different variants

of SGD and non-accelerated variance reduced methods like SVRG and SAGA in

[164], accelerated variance reduced methods like PAGE in [163], the tightest known

analysis of Random Reshuffling under PŁ condition in [3], and the convergence

results for SGD in the over-parameterized case with constant, Armijo-type, and

stochastic Polyak’s stepsizes in [248], [249], and [168] respectively. The summary

of known complexity results for the stochastic methods under PŁ condition is given

in Table 4. We emphasize that the analysis from [116] is derived under so-called ex-

pected residual (ER) assumption on the stochastic gradient g(x): there exists such

constant ρ > 0 that

E

[
‖g(x)− g(x∗)− (∇ f (x)− f (x∗))‖2

2

]
≤ 2ρ ( f (x)− f (x∗)) . (37)

Moreover, in the analysis of Random Reshuffling from [3] it is used that the norms

of the gradients of individual functions from the sum (8) are uniformly upper by

some constant G on the sublevel set:

‖∇ fi(x)‖2 ≤ G, ∀i = 1, . . . ,m, ∀x ∈ R
n : f (x) ≤ f (x0). (38)
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Rather simple introduction (close to the state of the art results) for SGD with bias

under PŁ condition can be find in [4].

5.2 Star-convexity and α-weak-quasi-convexity

A function f (x) is called star-convex if for some global minimizer x∗ and for all

λ ∈ [0,1] and x ∈ Rn

f (λ x+(1−λ )x∗)6 λ f (x)+ (1−λ ) f (x∗).

While any interval connecting two points on the graph of a convex function lies not

lower than the graph, for a star-convex functions this is assumed only for intervals

connecting some fixed global minimizer and any other point on the graph. This con-

dition is considerably weaker than convexity, even for functions of one variable. For

example, the function |x|(1− e−|x|) is a non-convex star-convex function. The au-

thors of [158] analyze a cutting plane method for minimization of this class of func-

tions and obtain a polylogarithmic in ε and polynomial in n complexity bound using

only function evaluations. The authors of [122, 187] prove that the same Algorithm

1 possesses the following convergence rate for star-convex L-smooth functions

min
k=[N/2],...,N

‖∇ f (yk)‖2
∗ 6

64L2V [x0](x∗)
N3

,

f (xN)− f (x∗)6
4LV [x0](x∗)

N2
.

A more general class of functions is the class of α-weakly-quasi-convex func-

tions satisfying

f (x)− f (x∗)6
1

α
〈∇ f (x) ,x− x∗〉

for some α ∈ (0,1] and some global minimizer x∗. Continuously differentiable

1-weakly-quasi-convex functions are exactly the star-convex functions. The au-

thors of [121] propose an algorithm with iteration complexity O(α−1L1/2Rε−1/2),
where R is an upper bound on the initial distance to the point x∗. A slightly worse

bound O(α−3/2L1/2Rε−1/2) is obtained in [187] by restarting Algorithm 1. Both

approaches require a line search for which the complexity also needs to be esti-

mated. The authors of [128] analyze this complexity and propose an algorithm with

O(α−1L1/2Rε−1/2) iteration complexity and the same up to a logarithmic factor

in α−1ε−1 number of function and gradient evaluations. Moreover, they provide a

similar lower complexity bound, thus proving that their method is optimal. Further,

they also consider a class of (α,µ)-strongly quasi-convex functions satisfying

f (x)− f (x∗)6
1

α
〈∇ f (x) ,x− x∗〉− µ

2
‖x− x∗‖2



44 Danilova, Dvurechensky, Gasnikov, Gorbunov, Guminov, Kamzolov, Shibaev

Problem Method Citation Complexity Assumptions

(4) GD [201] L
µ log

∆0

ε

(4)+(7)
SGD

[141, 140] L
µ log

(
∆0

ε

)
+ Lσ2

µ2ε
UV (14)

[248, 141] αL
µ log

(
∆0

ε

)
+ Lβ

µ2ε
RG (25)

PAGE [163]
(

σ2

µε +
√

σ2

µε
Lavg

µ

)
log
(

∆0
ε

)
UV (14),

Avg. Lavg-smth.

(4)+(8)

GD [201] m L
µ log

∆0
ε

SGD

[141] L
µ

((
A
µ +B

)
log
(

∆0
ε

)
+ C

µε

)
ES (23)

[248, 141] αL
µ log

(
∆0
ε

)
+ Lβ

µ2ε
RG (25)

[141] L
µ

(
maxi Li

µ log
(

∆0
ε

)
+ maxi Li∆∗

µε

)
Unif. sampl.

[141] L
µ

(
L
µ log

(
∆0
ε

)
+ L∆∗

µε

)
Imp. sampl.

[116] L
µ

((
ρ
µ +1

)
log
(

∆0
ε

)
+ σ2

∗
µε

)
ER (37)

+ Armijo

line-search
[249]

(
αL
µ + maxi Li

µ

)
log
(

∆0

ε

)
E-SG (24)

+ Polyak

stepsizes
[168]

maxi L2
i

µ2 log
(

∆0
ε

)
Interpolation (30)

RR [3]
(

m∆0
ε + mL2G2 log3(ε−1)

µ3ε

)1/2

Bounded gradients (38)

SVRG [206, 208]
(

m+ m
2/3 maxi Li

µ

)
log
(

∆0
ε

)

L-SVRG

SAGA
[164, 208]

(
m+ m

2/3L
µ

)
log
(

∆0
ε

)
Avg. Lavg-smth.

PAGE [163]

(
b+
√

b
Lavg

µ

)
log
(

∆0

ε

)
,

where b = min{ σ2

µε ,m}

UV (14)

with σ 2 ≤+∞,

Avg. Lavg-smth.

Table 4: Summary of the state-of-the-art complexity results for different stochastic

first-order methods under assumption that f is L-smooth and satisfies PŁ condition

(36). Columns: “Complexity” – an overall number of stochastic first-order oracle

calls needed to find such x̂ that E[ f (x̂)− f (x∗)] ≤ neglecting constant factors; “As-

sumptions” – the assumptions used to derive the corresponding complexity bound

in addition to L-smoothness of f and PŁ condition (36) for f . For finite-sum case

(8) it is additionally assumed that each fi is Li-smooth, i = 1, . . . ,m. Abbreviations:

UV – uniform variance bound assumption (14); RG – relaxed growth condition

(25); Avg. Lavg-smth. – averaged L-smoothness assumption meaning that there ex-

ist such L that E
[
‖∇ f (x,ξ )−∇ f (y,ξ )‖2

2

]
≤ L2‖x− y‖2

2 in the online case (7), and

E
[
‖∇ f j(x)−∇ f j(y)‖2

2

]
≤ L2‖x− y‖2

2 in the finite-sum case, where j is sampled

uniformly at random from {1, . . . ,m}; Unif. Sampl. and Imp. Sampl. denote the

sampling strategies described in Section 4.2.1. Notation: ∆0 = f (x0)− f∗; σ2 = a

uniform bound for the variance of the stochastic gradient (14); α,β = relaxed growth

condition parameters; ∆∗ = 1
m ∑m

i=1( f∗− fi,∗); maxi Li = maximal smoothness con-

stant of fi in (8); L = averaged smoothness constant of fi in (8); σ2
∗ = E[‖g(x∗)‖2

2] –

the variance of the stochastic gradient at the solution.
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and provide an algorithm which has iteration complexity

O(α−1L1/2µ−1/2 log(α−1ε−1))

and requires up to a logarithmic factor the same number function and gradient eval-

uations. Similar optimal complexity bounds for accelerated gradient method for

α-weakly-quasi-convex functions and (α,µ)-strongly quasi-convex functions were

obtained in [39] by extending the estimating sequence technique.

5.2.1 Stochastic Methods and α-weak-quasi-convexity

The most general analysis of SGD under α-weak-quasi-convexity is provided in

[116]. As it was mentioned earlier, authors of [116] consider finite-sum optimization

problems8 (4)+(8) and derive complexity bounds for SGD under expected residual

(37) assumption on the stochastic gradient for the α-weak-quasi-convex function

and functions satisfying PŁ condition. In particular, for SGD in these settings the

following bound was established:

O

(
(ρ +L)R2

0

α2ε
+

σ2
∗R2

0

α2ε2

)
,

where σ2
∗ = E[‖g(x∗)‖2

2] is the variance of the stochastic gradient at the solu-

tion. Note, that when interpolation condition (30) holds this bounds reduces to

O
(
(ρ+L)R2

0/(α2ε)
)
. Moreover, under interpolation condition the authors of [116] also

derived that the generalized version of stochastic Polyak stepsize (32) for stochasti-

cally reformulated problem (4)+(8) converges with the rate

O

(
L R2

0

α2ε

)
,

where L is the expected smoothness constant of stochastic reformulation (see the

details in [117, 116]). In the full-batch case, i.e., when g(x) = ∇ f (x), we have L =
L, and in the importance sampling case, i.e., when g(x) = ∇ f j(x) where j = i with

probability Li/∑m
t=1 Lt , we have L = L = 1

m ∑m
i=1 Li.

5.2.2 Further Generalizations

A more wide class of functions that covers the class of α-weakly-quasi-convex

functions referred to as approximately homogeneous functions satisfying the condi-

tion

N( f (x)− f (x∗))6 〈∂ f (x) ,x− x∗〉6 M( f (x)− f (x∗)),

8 In fact, most of the results from [116] do not rely on the finite-sum structure of f .
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where ∂ f (x) is a subgradient of f (x) and N,M are some constants. This class of

functions was first defined in [228] and discussed in [202].

In general, if there exist good lower and upper convex models for non-convex

target function, one can derive that complexity of such problem is similar to convex

ones rather than non-convex (see [21] and references therein).

6 Higher-Order Methods

6.1 Second-Order Methods

Another branch of optimization incremental methods for solving (4) are methods

that use the second-order information about the function. This information is very

helpful to escape saddle-points by using a negative curvature. Next we define an

(ε,δ )-second-order stationary point x∗ if

‖∇ f (x∗)‖2 ≤ ε, λmin

(
∇2 f (x∗)

)
≥−δ .

Next in this section we suppose that f (x) has L2-Lipschitz second-order deriva-

tive. The basic method for this class of problems is a Cubic Regularization method

(CR) [188].

xk+1
Cubic = xk + argmin

s∈Rn

[
∇ f (xk)⊤s+

1

2
s⊤∇2 f (xk)s+

H

6
‖s‖3

2

]
, (39)

where H ≥ 0. It globally converges to the minimum for convex functions and con-

verges to a (ε,δ )-second-order stationary point for non-convex function within

O(ε−3/2) number of iterations. Note, that the subproblem (39) is also non-convex

but in [188] authors proposed a method to solve this problem as a convex problem

via special choose of H and line-search for a dual problem. A related line of work

considers trust region methods [64, 52, 54, 55, 53], where a classical Newton step is

calculated on a Euclidean ball of a carefully chosen radius. Both cubic regularized

Newton methods and trust region methods can be extended to work for constrained

problems with linear and conic constraints [124, 86, 85]. In general, all these al-

gorithms work well for the problems in moderate dimensions. Unfortunately, for

many large-scale Machine Learning problems it is hard to calculate the full Hes-

sian and the inverse such a large matrix. Recent work has therefore explored the

use of Hessian-vector products ∇2 f (x) · s, which can be computed as efficiently as

gradients in many cases including neural networks by using autogradient technique.

By this Hessian-vector product we can efficiently find xk+1
Cubic by variants of gradient

descent [47]. Several algorithms incorporating Hessian-vector products [7, 9] have

been shown to achieve faster convergence rates than gradient descent in the non-

stochastic setting. However, in the stochastic setting where we only have access to

stochastic Hessian-vector products, significantly less progress has been made.
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One of the improvement of this method was done in [255]. The authors introduce

a momentum step and obtain faster convergence rate. This technique is widely used

to speed up the first order methods and also can speed up the second order method.

Algorithm 9 CRm

1: Input: Initialization x0 = y0 ∈ R
n,ρ < 1,H > L2.

2: for k = 0,1, . . . do

3: Cubic step:

sk+1 = argmin
s

[
∇ f (xk)⊤s+

1

2
s⊤∇2 f (xk)s+

H

6
‖s‖3

2

]
,

yk+1 = xk + sk+1.

4: Momentum step:

βk+1 = min{ρ ,‖∇ f (yk+1)‖2,‖yk+1− xk‖2},
zk+1 = yk+1 +βk+1(y

k+1− yk).

5: Monotone Step:

xk+1 = argmin
x∈{yk+1,zk+1}

f (x).

6: end for

Also, second-order methods that have access to the Hessian of f can exploit

negative curvature to more effectively escape saddles and arrive at local minima. To

show this concept we introduce one of such methods [258]. There are two types of

steps: gradient steps and a step in a negative curvature for the Hessian. So

• If ‖∇ f (xk)‖2 > ε , we do gradient step.

• Otherwise, if λmin

(
∇2 f (xk)

)
<−δ , choose sk to be the eigenvector correspond-

ing to λmin

(
∇2 f (xk)

)
) and do step xk+1 = xk +αksk.

There are different policies to αk and gradient steps. The main idea here is to use

the first-order methods as a cheap main method and switch to expensive second-

order methods when we reach local stationary point and want to escape it to find

a better local minimum. Methods with this idea are still developing. In [99, 136] it

was proved that gradient methods with additive noise are able to escape from non-

degenerate saddle points and find approximate local minima. These ideas lead to

the state of art first-order methods to find local minima with Hessian-vector product

[49, 212, 9, 265, 10, 138, 90, 191]. In recent works [91, 137, 211] it was proved that

stochastic gradient descent can escape from saddle point and converges to approxi-

mate local minima.
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6.2 Stochastic Second-Order Methods

Now we move to stochastic version of problem (3). Firstly, we speak about on-

line version (7), where we minimize expectation of some stochastic function. In the

work [244] authors propose a stochastic optimization method that utilizes stochas-

tic gradients and Hessian-vector products to find an (ε,δ )-second-order stationary

point using only O(ε−3.5) oracle evaluations. This rate improves upon the O(ε−4)
rate of stochastic gradient descent, and matches the best-known result for finding

local minima without the need for any delicate acceleration or variance reduction

techniques.

Algorithm 10 Stochastic Cubic Regularization

Require: mini-batch sizes r1, r2, initialization x0, number of iterations N, and final tolerance ε .

1: for k = 0, . . . ,N do

2: Sample S1←{ξi}r1
i=1, S2←{ξi}r2

i=1.

3: gk= 1
r1

∑ξi∈S1
∇ f (xk; ξi)

4: Bk[·]= 1
r2

∑ξi∈S2
∇2 f (xk,ξi)(·)

5: sk = argmin
s

{
ψk(s) = s⊤gk + 1

2
s⊤Bks+ L2

6
‖s‖3

2

}

6: xk+1← xk + sk

7: end for

Ensure: The final iterate xN+1.

This is a stochastic cubic regularization algorithm in Algorithm 10. To obtain

stochastic gradients and Hessians, we can sample independent batches of S1and

S2 in each iteration, but they can also be connected so that S2 ⊆ S1. The average

gradient is denoted by

gk =
1

r1
∑

ξi∈S1

∇ f (xk,ξi)

and the average Hessian by

Bk =
1

r2
∑

ξi∈S2

∇2 f (xk,ξi),

this implies a stochastic cubic submodel:

ψk(s) = s⊤gk +
1

2
s⊤Bks+

L2

6
‖s‖3

2.

This subproblem should be solved by special gradient-based subroutine. It is

written in details in [244]. Since only the gradient is used to solve the subproblem,

we need to compute only a Hessian-vector product Bk[s] but not a full Hessian Bk.

If our function can be represented by a computational tree, then we can use auto-
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gradient techniques and compute Hessian-vector products as fast as we compute

gradients up to a small constant.

How many Hessians should we take? By concentration inequalities it is possible

to show that we need

|S2|= r2 = O
(
ε−1
)
.

So in total, the method converges with O
(
ε−3/2

)
iterations and O

(
ε−5/2

)
Hes-

sian calculations of the function.

In paper [16] this approach is improved by using special variance reduction tech-

nique. Authors get method that needs only O(ε−3) gradients and Hessian-vector

products for finding second-order stationary point. Also, in this article authors prove

lower bounds for higher-order stochastic problems.

What is the main advantage of such methods? We calculate fewer Hessians than

in the full CR version and also do it in parallel if we have many cores for com-

puting. The simplicity of the algorithms, both at fast rates and when escaping from

saddle-points, leads us to very good optimization methods for non-convex stochastic

problems.

Next we go to offline version that works with sum of functions (8).

f (x) =
1

m

m

∑
i=1

fi(x), (40)

where fi(x) has Lipschitz continuous Hessian. In this regime we have m func-

tions and hence classic CR needs to compute O(mε−3/2) Hessians. To reduce it

in papers [149, 262] authors used subsampled gradient and subsampled Hessian,

which achieve Õ(mε−3/2∧ε−7/2) gradient complexity and Õ(mε−3/2∧ε−5/2) Hes-

sian complexity similarly to the previous section. Next appears many articles with

different stochastic variance-reduced cubic(SVRC) methods. To collect this re-

sults in one place we add a table (see Table 5) with the convergence rates, where

a∧b = min{a,b}.

Method Gradient Hessian

CR [188] O
(
m · ε−3/2

)
O
(
m · ε−3/2

)

SCR [149, 262] Õ
(
m · ε−3/2∧ ε−7/2

)
Õ
(
m · ε−3/2∧ ε−5/2

)

SVRC1 [287] Õ
(
m4/5 · ε−3/2

)
Õ
(
m4/5 · ε−3/2

)

SVRC2 [254, 288] Õ
(
m · ε−3/2

)
Õ
(
m2/3 · ε−3/2

)

SVRC3 [277] Õ
(
m · ε−3/2∧m2/3 · ε−5/2

)
Õ
(
m2/3 · ε−3/2

)

STR [222] Õ
(
m · ε−3/2∧m1/2 · ε−2

)
Õ
(
m1/2 · ε−3/2∧ ε−2

)

SRVRC [284] Õ
(
m · ε−3/2∧m1/2 · ε−2∧ ε−3

)
Õ
(
m1/2 · ε−3/2∧ ε−2

)

Lower bound [88] Ω
(
m1/4 · ε−3/2

)
Ω
(
m1/4 · ε−3/2

)

Table 5: An Overview of the number of computations of gradients and Hessians of

functions in (40).
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As a result, we have a method that not only works efficiently with the big sum by

utilizing stochastic nature, but also employs Hessian information to escape saddles

more effectively and arrive at to better local minimum. This statement is supported

by the experiments described in [263, 196, 176, 199]. The authors of these papers

experiment with various second-order methods and show how they compete with

first-order methods without any second-order information in practice. These papers’

main conclusions are that second-order methods find deeper local minima and avoid

saddle-points. They are more robust when hyperparameters are used. Subsampling

speeds up computations and allows for the parallelization of such methods. As a re-

sult, second-order methods may be competitive with first-order methods in practice.

6.3 Tensor Methods

Next, we present high-order or tensor methods for finding local minima of a

highly smooth and non-convex objective function. High-order derivatives better de-

scribe functions and enable you to use curvature to improve convergence.

First, we lay out some standard assumptions about the smoothness of the function

f . In the following, we will denote the directional derivative of the function f at x

along the directions h j ∈Rn, j = 1, . . . , p as

∇p f (x)[h1, . . . ,hp].

For instance, ∇ f (x)[h] = ∇ f (x)⊤h and ∇2 f (x)[h]2 = h⊤∇2 f (x)h.

The functions fi for each p = 0, . . . ,3 has Lp-Lipschitz-continuous derivatives,

‖∇p fi(x)−∇p fi(y)‖2 ≤ Lp‖x− y‖2

for all x,y ∈ Rn.

From this inequality we get next tensor method for p = 3,

xk+1
Tensor = xk + argmin

s∈Rn

[
∇ f (xk)[s]+

1

2
∇2 f (xk)[s]2 +

1

6
∇3 f (xk)[s]3 +

H

4!
‖s‖4

2

]
,

In papers [29, 51, 50] it was proved that tensor p-order method with Taylor approx-

imation is optimal, match lower bounds, and converges with the rate O(ε−(p+1)/p)
for non-convex problems, hence for the third-order methods we get the rate O(ε−4/3)
instead of O(ε−3/2) for the second-order methods. So, we get that third-order meth-

ods are faster than second-order methods in terms of iterations.

Another crucial motivation is that the second-order method could get stuck at

the so-called degenerate saddle point, where the Hessian matrix has nonnegative

eigenvalues with some eigenvalues equal to 0 [15].

In paper [289] it is shown how gradient descent and cubic regularization method

stuck in such points for even small problems, like f (x,y) = x3− 3xy2 in degenerate

saddle point (0,0). So, we should use third-order information to escape them.
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This lead us to the third-order critical point. We define next critically measures

χ f ,1(xk) = ‖∇ f (xk)‖2,

χ f ,2(xk) = max
{

0,−λmin

(
∇2 f (xk)

)}
,

χ f ,3(xk) = max
y∈Zk+1

∣∣∇3 f (xk)[y]
3
∣∣ ,

where Zk+1 is the kernel of ∇2 f (xk). Then, we define x∗ a (ε1,ε2,ε3)-third-order

critical point if

χ f ,1(xk)≤ ε1, χ f ,2(xk)≤ ε2, χ f ,3(xk)≤ ε3,

Third-order method converges to a (ε1,ε2,ε3)-third-order critical point with the

rate O
(

max
(

ε
−4/3

1 ,ε−2
2 ,ε−4

3

))
.

But the calculation of the third-order derivative would be very computationally

expensive. This problem leads us to stochastic tensor methods. The main idea of the

stochastic method that by different concentration inequalities we can compute much

fewer Hessians and third-order derivatives for sum type problems, than gradients.

Correct proportions is written in (45). For example, if we have 200000 functions

in sum, we may compute full gradient, only 10000 Hessians and 100 third-order

derivatives and get the same speed as for full Hessian and full third-order derivatives.

In paper by [171] introduce such method that work with batch tensors and con-

verges as fast as for full-batch methods. The optimization algorithm we consider

is detailed in Algorithm 11. This algorithm uses sub-sampled derivatives instead of

exact quantities and its implementation relies on tensor-vector products only. The

proposed approach is shown to find an (ε1,ε2,ε3)-third-order critical point in at

most O
(

max
(

ε
−4/3

1 ,ε−2
2 ,ε−4

3

))
iterations, thereby matching the rate of determin-

istic approaches.

We construct an inexact Taylor approximation model and add a fourth-order reg-

ularization defined as:

φk(s) = f (xk)+ gk[s]+
1

2
Bk[s]2 +

1

6
T k[s]3,

ψk(s) = φk(s)+
Hk

4
‖s‖4

2, (41)

where gk,Bk and T k approximate the derivatives ∇ f (xk),∇2 f (xk) and ∇3 f (xk)
through sampling as follows. Three sample sets Sg,Sb and St are drawn and the

derivatives are then estimated as

gk =
1

|Sg| ∑
i∈Sg

∇ fi(x
k),Bk =

1

|Sb| ∑
i∈Sb

∇2 fi(x
k),

T k =
1

|St | ∑
i∈St

∇3 fi(x
k).
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Algorithm 11 Stochastic Tensor Method (STM)

1: Input:

Starting point x0 ∈Rn (e.g x0 = 0)

0 < γ1 < 1 < γ2 < γ3,1 > η2 > η1 > 0, and H0 > 0,Hmin > 0

2: for k = 0,1, . . .,until convergence do

3: Sample gradient gk , Hessian Bk and T k such that Eq. (42), Eq. (43) & Eq. (44) hold.

4: Obtain sk by solving ψk(s
k) (Eq. (41)).

5: Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

f (xk)−φk(sk)
.

6: Set

xk+1 =

{
xk + sk if ρk ≥ η1

xk otherwise.

7: Set

Hk+1 =





[max{Hmin,γ1Hk},Hk] if ρk > η2 (very successful iteration)

[Hk,γ2Hk] if η2 ≥ ρk ≥ η1 (successful iteration)

[γ2Hk,γ3Hk] otherwise (unsuccessful iteration).

8: end for

It is worth mentioning that the implementation of the algorithm does not re-

quire the computation of the Hessian or the third-order tensor, both of which would

demand significant computational resources, but rather directly computes Tensor-

vector products with a complexity of order O(n).
We will make use of the following condition in order to reach an ε-critical point

(where ε = ε1). For a given ε accuracy, one can choose the size of the sample sets

Sg,Sb,St for sufficiently small κg,κb,κt > 0 such that:

‖gk−∇ f (xk)‖2 ≤ κgε, (42)

‖(Bk−∇2 f (xk))s‖2 ≤ κbε2/3‖s‖2, ∀s ∈ R
n, (43)

‖T k[s]2−∇3 f (xk)[s]2‖2 ≤ κtε
1/3‖s‖2

2, ∀s ∈ R
n. (44)

In practice, we can choose the size of the sample sets Sg,Sb and St as follows

rg = Õ

(
L2

0

κ2
g ε2

)
, rb = Õ

(
L2

1

κ2
b ε4/3

)
, rt = Õ

(
L2

2

κ2
t ε2/3

)
, (45)

where Õ hides poly-logarithmic factors and a polynomial dependency to n. We can

see that due to the stochastic nature of the data and tensor concentration inequalities,

we can use far fewer computations while still achieving the same convergence speed

as a full-batch method.

As shown in [88], the lower bounds for sum type problem are still rather far from

upper bound even for the second-order methods. Hence, further research in this
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area may lead to new methods for sum-type problems by using variance reduction

techniques. Another branch of possible research is a combination of tensor methods

with first or second-order methods.

7 Zeroth-Order Methods

Gradient free or zeroth-order optimization methods, which use only function val-

ues, are becoming increasingly important in machine learning problems, especially

in reinforcement learning [175], black-box adversarial attacks on deep neural net-

works [197] and other problems with structure making gradients difficult or infea-

sible to obtain.

While there is a class of methods that does not have any connection to the gradi-

ent, for example, random search algorithms [217] (which are one of the first meth-

ods of zeroth-order optimization, beside grid search), the Nelder–Mead algorithm

[181], the model-based methods (see Chapters 2-6 and 10-11 in [65]) or the re-

cent stochastic three points (STP) method [26] and its momentum variant STMP

[113] most zeroth-order optimization methods use gradient estimations, such as

g(x) = ∑n
i=1 [( f (x+µei)− f (x))/µ]ei (where ei are columns of n× n identity matrix In,

i ∈ {1, . . . ,n}), then for good enough functions ( f ∈ C
1,1
L i.e. continuously differ-

entiable with Lipschitz-continuous gradient) it can be shown, for example, that

‖g(x)−∇ f (x)‖2 6 µL
√

n. One then can consider some first-order optimization

scheme, replace actual gradients with their estimations, and use bounds like this to

return to gradients from estimations in proofs, obtaining the results for the zeroth-

order case relatively easy.

While such deterministic zeroth-order schemes (like the GD with gradient esti-

mation of the same form as above) often suffer from the problem dimensionality

because of the number of oracle calls needed to reconstruct the gradient (n for the

estimation mentioned above, see also [24] for other examples), in a randomized ap-

proach one can use two- or one- point schemes of gradient approximation which

makes every iteration simpler, sometimes leading to better results in terms of oracle

calls [166]. Another benefit of the stochastic approach is that such methods often

have good theoretical properties, for example, the Gaussian smoothing approach

[189] that gives a smoothed version of the initial function, for which the conver-

gence of stochastic zeroth-order algorithm can be easily proved, which can be later

used to show the convergence of the algorithm for the initial function. And there

are setups (for example online learning [40]) where one is limited to use only sev-

eral (or even one) oracle queries thus being unable to construct the full gradient

approximation, so the stochastic approach becomes the only option.

We begin with the formalization of these zeroth-order randomized schemes - we

have a problem with the form

min
x∈Q⊆Rn

f (x)
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then stochastic zeroth-order methods generate {xk} s.t.

xk+1 = A
(

f̂ ,X ,P,{xi}k
i=0,{ui}k

i=0

)

so the procedure A gives us xk+1 based on function values (obtained via oracle f̂ ),

history of {xk}, random vectors {uk}, and parameters P such as dimension n of X , Lν

and ν – Hölder parameters, etc. Function f̂ is not necessarily equal to f , we can, for

example, use f̂ (x) = f (x)+ ε(x) where |ε(x)| ≪ | f (x)|, or f̂ (x,u) = f (x)+ ε(x,u)
s.t. Eu[ f̂ (x,u)] = f (x).

In the subsections, we will discuss the characteristics of several zeroth-order

gradient estimations and then the zeroth-order methods for sum-minimization type

problems in a non-convex setup. Other information on gradient-free optimization

(such as structured objectives) can be found in the recent survey [157].

7.1 Random Directions Gradient Estimations

Let us start with the methods following the standard zeroth-order scheme of using

gradient approximation to benefit from the analysis of first-order methods. In this

section all methods have a form similar to the classic gradient descent

xk+1 = xk− hkg(xk,uk)

with only difference that instead of the true gradient we use the gradient approx-

imation g(x,u). One way to build such gradient approximations is to use random

directions to compute finite differences in the form

g(xk,uk) :=
f̂ (xk + µuk)− f̂ (xk)

µ
·uk

It makes sense to use centrally symmetric distributions for uk, for example uni-

formly distributed over the unit Euclidean sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1} (see

[95, 111, 83]), or uk ∼ N (0, In) — so-called Gaussian smoothing introduced in

[189]. In this article, the authors proved Gaussian approximation

fµ(x) =
1

κ

∫

Rn

f (x+ µu)e−
1
2
‖u‖2

2du

(there κ =
∫

E e−‖u‖
2
2/2du=(2π)n/2) to have several good properties, such as convexity

preservation (if f is convex then fµ is convex too), differentiability, and if f ∈C
0,0
L0

or f ∈ C
1,1
L1

(i.e. Lipschitz-continuous function with constant L0 or function with

Lipschitz-continuous gradient with L1 respectively) then the same holds for fµ with
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L0( fµ)6 L0( f ) and L1( fµ)6 L1( f ) respectively. It can be also shown that | fµ(x)−
f (x)| 6 µL0

√
n for the case of f ∈C

0,0
L0

.

While in that paper the authors mostly discuss the convex case, there are some

results ([189][Section 7]) for a non-convex objective f too. They consider a process

xk+1 = xk− hkg(xk,uk), with g defined above, f̂ = f and uk ∼N (0, In), and show

that for the case of f ∈ C
1,1
L1

this process converges in the sense of EU‖∇ fµ(x)‖2

(where U = {uk}N−1
k=0 ):

1

N

N−1

∑
k=0

EU

[
‖∇ fµ(x

k)‖2
2

]
6 8(n+ 4)L1

[
fµ(x

0)− f ∗

N
+

3µ2(n+ 4)

32
L1

]

then using the fact that ([189][Lemma 3]) ‖∇ fµ(x)−∇ f (x)‖2 6 [µL1/2](n+3)3/2 we

obtain (from ‖∇ f (x)‖2
2 6 2‖∇ fµ(x)−∇ f (x)‖2

2 + 2‖∇ fµ(x)‖2
2)

1

N

N−1

∑
k=0

EU

[
‖∇ f (xk)‖2

2

]
62

µ2L2
1

4
(n+ 3)3

+ 16(n+ 4)L1

[
fµ(x

0)− f ∗

N
+

3µ2(n+ 4)

32
L1

]

and choosing µ = O
(

ε/[n3/2L1]
)

we ensure 1
N ∑N−1

k=0 EU

[
‖∇ f (xk)‖2

2

]
6 ε2 with the

upper bound for the expected number of steps N = O(n/ε2).

For the case of f ∈C
0,0
L0

1

SN

N−1

∑
k=0

hkEU

[
‖∇ fµ(x

k)‖2
2

]
6

1

SN

[
( fµ(x

0)− f ∗)+
1

µ
n

1/2(n+ 4)2L3
0

N−1

∑
k=0

h2
k

]

they show only that this process converges to the stationary point of fµ(x) – consider

Q with diam(Q)6 R, then it can be shown that we need to make

N = O

(
n(n+ 4)2L5

0R

ε4δ

)

steps to ensure that 1
N ∑N−1

k=0 EU

[
‖∇ fµ(x

k)‖2
2

]
6 ε2 keeping functional gap | fµ(x)−

f (x)| 6 δ small. Authors also mention that with the hk → 0 and µ → 0 the conver-

gence in the sense of EU‖∇ f (x)‖2 can be proved too.

These results can be extended [226] to the case of noisy f̂ i.e. | f̂ (x)− f (x)| 6 δ
for f with Hölder continuous gradient (‖∇ f (x)−∇ f (y)‖2 6 Lν‖x− y‖ν

2) – it can

be shown that for a small enough noise δ these convergence rates can be preserved.

More specifically, to ensure 1
N ∑N−1

k=0 EU

[
‖∇ f (xk)‖2

2

]
6 ε2 one need to make

N = O

(
n2+ 1−ν

2ν

ε
2
ν

)
steps under the assumption that noise δ = O

(
ε

3+ν
2ν

n
3+7ν

4ν

)
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where ν is a Hölder parameter. For the convergence in the sense of smoothed func-

tion gradient norm 1
N ∑N−1

k=0 EU

[
‖∇ fµ(x

k)‖2
2

]
6 ε2 it can be shown

N = O

(
n

7−3ν
2

ε
2(3−ν)

1+ν

)
with δ = O

(
ε

5−ν
1+ν

n
13−3ν

4

)

with functional gap | fµ(x)− f (x)| = O
(

ε/
[
n
(1+ν)/2

])
. For the case of ν = 1 (i.e.

f ∈ C
1,1
L1

) these results can be improved to N = O(n/ε2) (n times better) achieving

the same rate of convergence as in previous paper [189].

Such noisy setup is also interesting because it can be shown [210], that for a

non-convex function f̂ (x) s.t. | f̂ (x)− f (x)| 6 ε f , where initial f is convex and 1-

Lipschitz and ε f ∼ max
{

ε2/
√

n, ε/n
}

there exists an algorithm which finds a point x̃

s.t. f̂ (x̃) 6 f̂∗+ ε with complexity Poly
(
n, 1

ε

)
. The dependence ε f (ε) is optimal in

this class of algorithms.

This Gaussian smoothing technique was later used in works [101] (RSGF) and

[103] (RSPGF) to obtain complexity guarantees for stochastic zeroth-order opti-

mization. In the first one ([101]), the unconstrained problem Q = R
n is considered,

where f̂ = F(x,ξ ) s.t. Eξ [F(x,ξ )] = f (x) and F(·,ξ ) has a Lipschitz-continuous

gradient with constant L1, ξ is a random variable whose distribution P is supported

on Ξk ⊆ Rn. The procedure (7) has a form similar to the one proposed in [189]

xk+1 = xk− hkG(xk,ξ k,uk), G(xk,ξ k,uk) :=
f̂ (xk + µuk,ξ k)− f̂ (xk,ξ k)

µ
·uk,

and from Eξ [F(x,ξ )] = f (x) it follows that

Eξ ,u [G(x,ξ ,u)] = ∇ fµ(x).

The method then chooses the xk from generated {xk}N
k=1 as k = R where R is

some random variable with a probability mass function PR supported on {1, . . . ,N}.
The main goal to introduce this random iteration count R is to derive new complexity

results for non-convex stochastic optimization case.

For the case of f ∈C
1,1
L1

, smoothing parameter µ , D f =
√

2( f (x1)− f ∗)/L, variance

σ2 (Eξ

[
‖∇ f̂ (x,ξ )−∇ f (x)‖2

2

]
6 σ2) and the probability mass function

PR(k) =
hk− 2L(n+ 4)h2

k

N

∑
i=1

(hi− 2L(n+ 4)h2
i )

they obtain ([101][Theorem 3.2])
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1

L
E
[
‖∇ f (xR)‖2

2

]
6

6

D2
f + 2µ2(n+ 4)

(
1+L(n+ 4)2

N

∑
k=1

(
hk
4
+Lh2

k

))
+ 2(n+ 4)σ2

N

∑
k=1

h2
k

N

∑
k=1

[
hk− 2L(n+ 4)h2

k

]

where the expectation is taken with respect to R, {ξ k}. After choosing specific con-

stant stepsizes hk = 1/[
√

n+4] ·min
{

1/[4L
√

n+4], D̃/[σ
√

N]
}

(note that this makes PR uni-

form on {1, . . . ,N}) they get ([101][Corollary 3.3])

1

L
E
[
‖∇ f (xR)‖2

2

]
6

12(n+ 4)LD2
f

N
+

2σ
√

n+ 4√
N

(
D̃+

D2
f

D̃

)

where D̃ > 0 is our estimation of D f (for example some upper bound). It can be

shown that to ensure P{‖∇ f (xR)‖2
2 6 ε} > 1−Λ (so-called (ε,Λ)-solution) the

total number of calls to the oracle f̂ can be bounded as

O


nL2D2

f

Λε
+

nL2

Λ 2

(
D̃+

D2
f

D̃

)2
σ2

ε2




Another method that is considered in [101] is a two-phase method (2-RSGF),

which uses the first one (RSGF) S = log(2/Λ) times as a subroutine producing a list

of candidates {x̄k}S
k=1 and then the output point x̄∗ is chosen in such a way that

‖g(x̄∗)‖2 = min
k=1,...,S

‖g(x̄k)‖2, g(x̄k) :=
1

T

T

∑
i=1

G(x̄k,ξ k,uk)

then it can be shown ([101][Theorem 3.4]) that (ε,Λ)-solution will be achieved after

taking

O



nL2D2
f log(1/Λ)

ε
+ nL2

(
D̃+

D2
f

D̃

)2
σ2

ε2
log(1/Λ)+

n log2 (1/Λ)

Λ

(
1+

σ2

ε

)



calls to the f̂ which is better than the previous one in terms of Λ .

A more general problem minx∈Q⊆Rn Ψ(x) = f (x)+h(x), where f ∈C
1,1
L and h(x)

is a simple convex and possibly non-smooth function is considered in [103]. They

use a mini-batched version of gradient estimation from the previous paper [101]

and generalized projection obtaining ([103][Theorem 4, Corollaries 6-7]) similar

bounds for the gradient norm.

In [219], the authors use symmetric gradient estimations based on uniform distri-

bution over the sphere to build a less dimension depending method. They consider

the minimization problem minx∈Rn f (x) = Eξ [F(x,ξ )] = Eξ [ f̂ (x,ξ )] (note that in
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this paper authors consider both Rd and Rn with d≪ n) where f (x) is L-Lipschitz,

and µ-smooth, |F(x,ξ )| 6 Ω and F variance is bounded by V f . It was shown that

using

g(xk,ξ k,uk) := n
f̂ (xk + µuk,ξ k)− f̂ (xk− µuk,ξ k)

2µ
·uk

where uk ∼U
(
Sn−1

)
(uniform distribution on the unit sphere Sn−1) and the process

xk+1 = xk−αg(xk,ξ k,uk) after N steps

1

N

N

∑
i=1

E
[
‖∇ f (xi)‖2

2

]
= O

(
n

N1/2
+

n
2/3

N1/3

)

Now consider the case when for a given ξ , F(x,ξ ) = g(r(x,θ ∗),ψ∗) (there

g(·,ψ) and r(·,θ ) are parameterized function classes), where r(·,θ ∗) : Rn → Rd

where d≪ n. To put it simply, the authors consider the case when F(·,ξ ) : Rn→R

while it is actually defined on an d-dimensional manifold M for all ξ . That means

that if one knows the manifold (i.e. θ ∗), and g and r are smooth the chain rule can

be applied giving ∇ f (x) = J(x,θ ∗)∇rg(r,ψ) (where J(x,θ ∗) = ∂ r(x,θ∗)/∂x) leading

to

g(xk,ξ k,uk)) := d
f̂ (xk + µJquk,ξ k))− f̂ (xk− µJquk,ξ k))

2µ
·uk

where Jq is the orthonormalized J(xk,θ ∗) and uk ∼U
(
Sd−1

)
, and this gives

1

N

N

∑
i=1

E
[
‖∇ f (xi)‖2

2

]
= O

(
d

N1/2
+

d
2/3

N1/3

)

which is much better than the previous one (because d ≪ n). However, this is im-

practical due to the fact that it requires the knowledge of θ ∗. Authors mix two pre-

vious estimations and estimate θ and ψ on every step, obtaining the method that

([219][Theorem 1]) after N steps ensures

1

N

N

∑
i=1

E
[
‖∇ f (xi)‖2

2

]
= O

(
n

1/2

N
+

n
1/2 + d+ dn

1/2

N1/2
+

d
2/3 + n

1/2d
2/3

N1/3

)

which is better than the initial bound for d 6 n
1/2.

While such gradient estimates based on random directions are common it can

be shown that in terms of the number of samples required to the approximate gra-

dient to ensure norm condition (or at least ensure it with some probability) random

directions based methods lose to standard finite differences [24, 25, 23]. In these pa-

pers, authors consider an unconstrained optimization problem minx∈Rn f (x) where

f̂ (x) = f (x) + ε(x) is computable, the noise ε is bounded uniformly: |ε(x)| 6 ε f
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and f (x) ∈C
1,1
L or f (x) ∈C

2,2
M (i.e. twice continuously differentiable function with

M-Lipschitz continuous Hessian) .

The main idea in [24] is to compare the number of calls r (essentially a batch

size) to the oracle f̂ (x) that will be enough to ensure norm condition

‖g(x)−∇ f (x)‖2 6 θ‖∇ f (x)‖2, θ ∈ [0,1)

for zeroth-order gradient estimation g(x). This condition simplifies the transition

from gradient estimations to gradient when proving the convergence of algorithms.

One of its implications is that g(x) is a descent direction for the function φ . In [25]

the line-search method that uses such gradient approximations, ensuring the norm

condition, is shown to converge.

They consider several methods of gradient estimation, deterministic (Forward

and Central Finite Differences (FFD and CFD) and Linear Interpolation (LI) as

generalization) and stochastic (Gaussian Smoothed Gradients (GSG and its cen-

tered version cGSG) and Sphere Smoothed Gradients (BSG and cBSG)), for the

latter authors obtain the number of calls needed to ensure the norm condition with

probability 1− δ .

Name Gradient estimation g(x) form Number of calls r ‖∇ f (x)‖2

FFD
n

∑
i=1

f̂ (x+µei)− f̂ (x)
µ ei n

2
√

nLε f

θ

CFD
n

∑
i=1

f̂ (x+µei)− f̂ (x−µei)
2µ ei n

2
√

n 3
√

Mε2
f

3√
6θ

LI
n

∑
i=1

f̂ (x+µui)− f̂ (x)
µ ui, ui = [Q]i, n

2‖Q−1‖
√

nLε f

θ

GSG 1
r

r

∑
i=1

f̂ (x+µui)− f̂ (x)
µ ui, ui ∼N (0, In)

12n
δθ2 +

n+20
16δ

6n
√

Lε f

θ

cGSG 1
r

r

∑
i=1

f̂ (x+µui)− f̂ (x−µui)
2µ ui, ui ∼N (0, In)

12n
δθ2 +

n+30
144δ

12 3
√

n7/2Mε2
f

θ

BSG n
r

r

∑
i=1

f̂ (x+µui)− f̂ (x)
µ ui, ui ∼U

(
Sn−1

) [
8n
θ2 +

8n
3θ + 11n+104

24

]
log n+1

δ

4n
√

Lε f

θ

cBSG n
r

r

∑
i=1

f̂ (x+µui)− f̂ (x−µui)
2µ ui, ui ∼U

(
Sn−1

) [
8n
θ2 +

8n
3θ + 9n+192

27

]
log n+1

δ

4 3
√

n7/2Mε2
f

θ

Table 6: Bounds on number of f̂ calls r, and ‖∇ f (x)‖2 that ensure the norm condi-

tion ‖g(x)−∇ f (x)‖2 6 θ‖∇ f (x)‖2. For the GSG, cGSG, BSG and cBSG these are

the results with probability 1−δ . The gradient norm bound (last column) essentially

means that for a noisy oracle f̂ we can ensure norm condition only for big enough

gradients. The LI method is basically FFD with directions given as columns of the

nonsingular matrix Q. When Q is orthonormal the g(x) takes a form from the table.

Let us take a look at two of these methods: FFD and GSG. For the first one, the

gradient estimation takes the form
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g(x) :=
n

∑
i=1

f̂ (x+ µei)− f̂ (x)

µ
ei

where ei are the columns of In. It can be shown that for such g(x) the following

holds

‖g(x)−∇ f (x)‖2 6
µL
√

n

2
+

2ε f

√
n

µ
.

If there was no noise (ε f = 0) we could make this approximation as close to the

gradient as we want, so we would be able to ensure the norm condition in n calls

to the f̂ . This is also true for a small enough noise (for example even from this

inequality we can take ε f = Lµ2/4 obtaining ‖g(x)−∇ f (x)‖2 6 µL
√

n). Authors

provide such noise bound in form of lower bound on ‖∇ f (x)‖2 for which the norm

condition can still be ensured

2

√
ε f

L
6 µ 6

θ‖∇ f (x)‖2√
nL

⇒
2
√

nLε f

θ
6 ‖∇ f (x)‖2

In other words, that means that we can converge to the neighborhood where

‖∇ f (x)‖2 ≈ 2
√

nLε f/θ .

For the GSG they consider the mini-batched version of Gaussian smoothing from

[189]

g(x,{ui}) :=
1

r

r

∑
i=1

f̂ (x+ µui)− f̂ (x)

µ
ui, ui ∼N (0, In)

and prove that the norm condition will be ensured with probability 1− δ after

r >
3n

δθ 2

n

(
√

n− 1)2
+

(n+ 4)

16δ
+

1

δ
= Ω

(
3n

θ 2δ

)

calls, which is while linear on n is still worse than the plain n in FFD, because

of δ , and additional constants. However, this is a sufficient number of calls, not a

necessary, so authors derive the lower bound for r ([24][Section 2.3.1])

r >
1−
√

δ

θ 2
(n+ 1)

necessary to have probability P(‖g(x)−∇ f (x)‖2 6 θ‖∇ f (x)‖2) > 1− δ . In their

numerical experiments they show that to ensure the norm condition with θ < 1/2

with probability of at least 1/2 more than n oracle calls are needed, so this lower

bound is weak.

The sufficient lower bound can be improved using smoothing on a sphere for

which they obtain Ω (n/θ 2 · log [(n+1)/δ]), yet it is still worse than deterministic vari-

ants, and in practice its behavior is very similar to the Gaussian directions based

approach.
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There are also results for the case of f (x) ∈ C
2,2
M (centered versions of the esti-

mations), they can be found in Table 6.

7.2 Variance-Reduced Zeroth-Order Methods

One special case of the min f (x) problem is the finite sum minimization which

was considered in previous sections for the first-order methods. These problems in

zeroth-order setup arise in reinforcement learning [93] (there as a minimization of

a long-term cost which is essentially a sum of functions) and non-stationary online

optimization problems [281].

Let us start with the ZO-SVRG from [166] – a zeroth-order version of SVRG

from [139].

There a non-convex finite-sum problem of the form

min
x∈Rn

f (x) =
1

m

m

∑
i=1

fi(x)

where fi ∈ C
1,1
L i.e. ‖∇ fi(x)−∇ fi(y)‖2 6 L‖x− y‖2 for any x,y ∈ Rn and i ∈

{1, . . . ,m} is considered. Authors use the standard assumption that the variance of

stochastic gradients is bounded

1

m

m

∑
i=1

‖∇ fi(x)−∇ fi(y)‖2
2 6 σ2

and consider several different gradient estimates: two based on random directions

on a unit sphere (in notation of [25] these are BSG with N = 1 and N = q (see Table

6), called RandGradEst and Avg-RandGradEst respectively), and one deterministic

coordinate estimation (variant of CFD from Table 6 with possibly different µ j for

each direction e j called CoordGradEst)

RandGradEst : ∇̂ fi(x) =
n

µ
[ fi(x+ µui)− fi(x)]u

i,

Avg-RandGradEst : ∇̂ fi(x) =
n

µq

q

∑
j=1

[ fi(x+ µui, j)− fi(x)]u
i, j,

CoordGradEst : ∇̂ fi(x) =
1

2µ

n

∑
j=1

[ fi(x+ µ je j)− fi(x− µ je j)]e j

there i ∈ {1, . . . ,m}, µ > 0, and {e j}n
j=1 are standard basis vectors (columns of In).

For a mini-batch I ⊆ {1, . . . ,m} of size r, authors denote

∇̂ fI(x) =
1

r
∑
i∈I

∇̂ fi(x)
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Algorithm 12 ZO-SVRG [166]

Require: stepsizes {hk
s}, epoch length T , starting point x0 ∈ R

n, batch size r ≥ 1, smoothing

parameter µ > 0, number of iterations N = S ·T
φ0 = x0

0 = x0

for s = 0,1,2, . . .,S−1 do

for k = 0,1,2, . . .,T −1 do

Uniformly randomly pick set Ik from {1, . . . ,m} such that |Ik| = r

gk = 1
r ∑

i∈Ik

(
∇̂ fi(x

k
s )− ∇̂ fi(φs)

)
+ ∇̂ f (φs)

xk+1
s = xk

s −hk
s gk

end for

φs+1 = x0
s+1 = xk

s

end for

Pick ξ uniformly at random from {0, . . . ,N−1}
return xξ

and the algorithm is the same as for SVRG (Algorithm 6), with the only difference

that instead of true gradients update

xk+1
s = xk

s − hk
svk

s , vk
s = ∇ fIk (x

k
s)−∇ fIk (x

0
s )+∇ f (x0

s )

they use gradient estimations

xk+1
s = xk

s − hk
s v̂k

s , v̂k
s = ∇̂ fIk (x

k
s)− ∇̂ fIk (x

0
s )+ ∇̂ f (x0

s )

This estimation ∇̂ f (x0
s ) is no longer unbiased for zeroth-order gradient estimations,

and that is the main problem for the convergence analysis of this method. They show

that under assumptions mentioned above ZO-SVRG algorithm after N = S ·T (there

S is a number of epochs) steps ensures that

RandGradEst : E
[
‖∇ f (x̄)‖2

2

]
= O

(
n

N
+

δn

r

)

Avg-RandGradEst : E
[
‖∇ f (x̄)‖2

2

]
= O

(
n

N
+

δn

r ·min{n,q}

)

CoordGradEst : E
[
‖∇ f (x̄)‖2

2

]
= O

( n

N

)

there n is a dimension, r = |I| – batch size, q is the number of directions used to

estimate gradient via Avg-RandGradEst, x̄ is uniformly chosen from {xk
s}S−1,T−1

s,k=0 ,

N = S ·T is a total number of steps and

δn =

{
1, if Ik draws samples from {1,. . . , m} with replacement

j(b < n), . . . without replacement

where j(b < n) = 1 if b < n and j(b < n) = 0 otherwise.
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Basically, that means that CoordGradEst, the deterministic policy of gradient

estimations, achieves the convergence rates of the original SVRG. In their tests,

however, in terms of training loss versus function queries ZO-SVRG (the variant

without mini-batching and with random directions on the sphere) beats ZO-SVRG-

Ave (based on Avg-RandGradEst) and ZO-SVRG-Coord (based on CoordGradEst).

Algorithm 13 SpiderSZO [90]

Require: n0 ∈ [1, n1/2/6], Lipschitz constant L, epoch length T , starting point x0 ∈R
n, outer batch

size r1 ≥ 1, inner batch size r2 ≥ 1, number of iterations N = S ·T
for k = 0,1,2, . . .,N−1 do

if k mod T = 0 then

Uniformly randomly pick set Ik from {1, . . . ,m} (with replacement) such that |Ik|= r1

Compute gk =
n

∑
j=1

(
1
r1

∑
i∈Ik

[ fi(x
k+µe j )− fi(x

k)]
µ

)
e j

else

Create set of pairs Ik = {(i,ui)} where i uniformly randomly picked from {1, . . . ,m} (with

replacement) and independent ui ∼N (0, In) such that |Ik| = r2

Compute gk = 1
r2

∑
(i,ui)∈Ik

(
fi(x

k+µui)− fi(x
k)

µ ui− fi(x
k−1+µui)− fi(x

k−1)
µ ui

)
+gk−1

end if

xk+1 = xk−hkgk where hk = min
(

ε
Ln0‖vk‖2

, 1
2Ln0

)

end for

Pick ξ uniformly at random from {0, . . . ,N−1}
return xξ

Another discussed above algorithm that can be used in the zeroth-order finite-

sum minimization setting is SPIDER [90]. The zeroth-order variant (Algorithm

13) of the algorithm blends stochastic and deterministic gradient estimations, using

mini-batched FFD (Table 6) every p steps to reconstruct vk, which is later updated

by mini-batched GSG.

The hk =min
(

ε/[Ln0‖vk‖2], 1/[2Ln0]
)

is a stepsize policy from Normalized Gradient

Descent (NGD, [184]), where the stepsize is inverse-proportional to the norm of the

gradient.

Authors show, that after N =O(1/ε2) iterations and O
(
nmin

(
m1/2/ε2,1/ε3

))
(there

n is a dimension and m is a number of functions) IZO calls (i.e. calls of the oracle

that returns the value of fi(x) given x and i) this algorithm ensures

E[‖∇ f (x̄)‖2]6 6ε

where x̄ is uniformly chosen from {xk}N−1
k=0 . This result is better than what follows

directly from [189], at least by the factor of m
1/2 (the direct application of the results

from [189] requires m calls on every step, and gives E[‖∇ f (x̄)‖2] 6 ε in O(n/ε2)
steps so the number of IZO calls would be O(nm/ε2)).

The results of two previously discussed papers [166, 90] were improved in the

recent work [134]. Authors show that ZO-SVRG-Coord actually has a better con-

vergence rate ([134][Theorem 2]) of E
[
‖∇ f (x̄)‖2

2

]
= O(1/N) (n times better than
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the previous analysis). At first they consider an intermediate variant of ZO-SVRG-

Coord and ZO-SVRG-Ave called ZO-SVRG-Coord-Rand, that uses CFD and BSG

(Table 6) for ∇̂ f (φs) and ∇̂ fi(x
k
s)− ∇̂ fi(φs) parts of

gk =
1

r
∑
i∈Ik

(
∇̂ fi(x

k
s)− ∇̂ fi(φs)

)
+ ∇̂ f (φs)

(from Algorithm 12) respectively, while variants in [166] used only one type of gra-

dient estimation at once. Then authors proof ([134][Corollary 1]) the convergence

rate E
[
‖∇ f (x̄)‖2

2

]
= O(1/N) and show ([134][Lemmas 1-2]) that although the re-

placement of BSG with CFD requires n more oracle calls it achieves more accurate

gradient estimation so the convergence rate stays the same for the ZO-SVRG-Coord.

Another part of this work is devoted to SPIDER. Authors construct a new algo-

rithm (called ZO-SPIDER-Coord) in a way similar to the previous one – they use

CFD instead of GSG in Algorithm 13 and show that it has the same rate of conver-

gence, but with bigger stepsize hk = 1/[4L] (that doesn’t depend on ε), which is better

in practice.

One particular case of finite-sum minimization is considered in [281]. In this pa-

per, authors consider non-stationary online optimization problems, when the objec-

tive function being queried is time-varying, so one is limited to the use of one-point

estimators.

Such estimators can be constructed easily in the stochastic zeroth-order case. For

example we can consider GSG (Table 6) with N = 1 then

Eu(g(x)) = Eu

[
f (x+ µu)− f (x)

µ
u

]
= Eu

[
f (x+ µu)

µ
u

]
= ∇ fµ(x)

so we can chose g(x) := [ f (x+µu)/µ]u and obtain a reasonable one-point estimation.

The problem is that the variance of such estimations explodes as µ → 0 (see [25]).

In this work, authors consider the residual feedback estimator

g̃k(x
k) :=

uk

µ

(
fk(x

k + µuk)− fk−1(x
k−1 + µuk−1)

)

where uk,uk−1 ∼N (0, In). They show that (Lemma 2.4)

E[g̃k(x
k)] = ∇ fµ,k(x

k), ∀xk ∈ X and k

(there ∇ fµ,k is a gradient of smoothed fk). They consider the online bandit problem

with regret function

RT
g,µ =

T−1

∑
k=0

E

[
‖∇ fµ,k(x

k)‖2
2

]

and show ([281][Theorem 4.2]) that for xk+1 = ΠX

(
xk−η g̃k(x

k)
)

(where ΠX is the

projection operator onto set X) if f ∈C
0,0
L0
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RT
g,µ = O



n
3/2L2

0

ε
3/2

f

(
WT +W̃T T−1

)
T

1/2 + n
3/2L0ε

1/2

f T
1/2





and if additionally f ∈C
1,1
L1

([281][Theorem 4.3])

RT
g =

T−1

∑
k=0

E

[
‖∇ fk(x

k)‖2
2

]
= O

(
n

4/3L0WT T
1/2 + n

4/3L1L−1
0 W̃T

)

where WT and W̃T are constants s.t.

T

∑
k=1

E [ fk(x)− fk−1(x)]6WT , ∀T,x

T

∑
k=1

E
[
| fk(x)− fk−1(x)|2

]
6 W̃T , ∀T,x.

That bound implies that RT
g/T → 0 if WT = o

(
T

1/2
)

and W̃T = o(T ). Authors

also consider ([281][Section 5]) the stochastic online optimization case where f̂t =
Ft(x,ξt ) s.t. E [Ft(x,ξt )] = ft (x) and show that under the assumptions of the same

form as above (with WT,ξ and W̃T,ξ ) similar regret bounds can be achieved.

In their numerical experiments, authors compare conventional one-point and

two-point approaches with one-point residual feedback. Even though the latter

works worse than the two-point variant, it has lower variance and achieves better

results than the conventional one-point feedback, and can be used in practice, in

contrast to two-point feedback.

8 Globalization Techniques

In the previous sections we mainly considered guarantees for the methods to

converge to a stationary point or local extremum. Global performance guarantees are

available only for some subclasses of non-convex minimization problems. Despite

that there are several practical techniques for convergence globalization for the local

methods, which we briefly describe next, following [282].

8.1 Multistart Technique

The first approach involves using an algorithm which converges to a local min-

imum and running it multiple times from different starting points. This may result

in the algorithm for finding multiple local minima of the objective, some of which

might in fact be global solutions.
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To be more concrete, we consider the problem

min
x∈[0,1]n

f (x) .

Let the initial points be sampled from the uniform distribution on [0,1]n. If the

Lebesgue measure of the attraction basin (the set of points, initialized at which

the local algorithm converges to the global minimum) of the global minimum is

µ > 0, then the expected number of points required to find the global minimum is

m = Õ(1/µ). If the attraction basin is a ball of radius r, then µ ∼ rn. Hence, it is

reasonable to expect that the number of initial points required depends on n expo-

nentially. For that reason, this approach to global optimization becomes impractical

as n grows.

The effectiveness of this approach also depends on the chosen initial points. The

quality of a family of initial points
{

x0,i
}m

i=1
can be characterized by the quantity

dn

({
x0,i
}m

i=1

)
= max

x∈[0,1]n
min

i=1,...,m

∥∥x− x0,i
∥∥

2
.

One of the ways to iteratively generate the starting points
{

x0,k
}m

k=1
is called

the quasi Monte Carlo scheme using low-discrepancy sequences, for example, the

Van der Corput sequence. Let {pi}n
i=1 be a sequence of distinct prime numbers,

and let φi (k) be the k-th element of the Van der Corput sequence in base pi. Ex-

plicitly, φi(k) =
lk,i

∑
j=0

a j p
− j−1
i , where lk,i is the length of the representation of k in

base pi k =
lk,i

∑
j=0

a j p
j
i . Finally, set x0,k = (φ1 (k) , ..1.,φn (k)), k = 1, ...,m. In this case

dn

({
x0,i
}m

i=1

)
= O

(√
nm−1/n lnm

)
, while the optimal value, which is achieved at

the uniform grid, is O
(√

nm−1/(2n)
)
.

8.2 Multidimensional Bisection

The main shortcoming of the approach described above is that the family
{

x0,k
}m

k=1
is constructed without taking into account any properties of f (x). Assume now

that, for all x,y ∈ [0,1]n , | f (y)− f (x)| 6 M‖y− x‖. Then, for any y, the function

f (y)−M‖x− y‖ is a minorant of f (x). Consequently, for any {yk}m
k=1 the func-

tion max
k=1,...,m

f (yk)−M‖x− yk‖ is also a minorant of f (x). Then one may choose the

next initial point to be the minimizer of the minorant constructed using the previous

initial points [89]:

x0,m+1 = argmin
x

max
k=1,...,m

{
f
(

x0,k
)
−M

∥∥∥x− x0,k
∥∥∥
}
.
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In the one-dimensional case, each minorant is just a piecewise linear function, and

its minimum is easy to compute explicitly. In higher-dimensions, this idea is more

difficult to implement, and the resulting algorithms also tend to become slower as

n increases. This method also requires an estimate of the Lipschitz constant and is

sensitive to the accuracy of this estimate.

8.3 Langevin Dynamics

The last but not least approach which we consider in this section is inspired by

the Langevin dynamics, which is defined by the stochastic differential equation

dx(t) =−∇ f (x(t))dt +
√

2T dW (t) ,

where W (t) is a Wiener process (also known as Brownian motion) and T is the

temperature parameter. It has been shown that the distribution of x(t) converges to

a distribution with density

exp
(
− f (x)

/
T
)

∫
exp
(
− f (y)

/
T
)
dy

as t → ∞, and as T → 0+ this distribution concentrates around the global minima.

To apply this in practice, the continuous dynamics has to be discretized. One of the

ways to do that is as follows:

xk+1 = xk− h∇ f (xk)+
√

2hTεk,

where h > 0 is the stepsize and εk is standard gaussian random variable. Non-

asymptotic results demonstrating the convergence of this method to an approximate

global minimum were presented in the work [261]. In this paper, the temperature

parameter T was assumed to be constant. However, other strategies are sometimes

used in practice, for example,

Tk =
c

ln(2+ k)
,

which ensures Tk→ 0+ as k→ ∞.
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27. A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan. On biased compression for dis-

tributed learning. arXiv preprint arXiv:2002.12410, 2020.

28. S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster semi-definite

optimization. In Conference on Learning Theory, pages 530–582, 2016.

29. E. G. Birgin, J. Gardenghi, J. M. Martı́nez, S. A. Santos, and P. L. Toint. Worst-case evalua-

tion complexity for unconstrained nonlinear optimization using high-order regularized mod-

els. Mathematical Programming, 163(1-2):359–368, 2017.

30. A. Blum, J. Hopcroft, and R. Kannan. Foundations of data science. Cambridge University

Press, 2016.

31. A. Blum and R. L. Rivest. Training a 3-node neural network is np-complete. In Advances in

neural information processing systems, pages 494–501, 1989.

32. T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Applied

and computational harmonic analysis, 27(3):265–274, 2009.

33. L. Bogolubsky, P. Dvurechensky, A. Gasnikov, G. Gusev, Y. Nesterov, A. M. Raigorodskii,

A. Tikhonov, and M. Zhukovskii. Learning supervised pagerank with gradient-based and

gradient-free optimization methods. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4914–

4922. Curran Associates, Inc., 2016. arXiv:1603.00717.

34. L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In

Proceedings of the symposium on learning and data science, Paris , 2009.

35. L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

36. L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages

421–436. Springer, 2012.

37. L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learn-

ing. Siam Review, 60(2):223–311, 2018.

38. S. Boyd and L. Vandenberghe. Convex Optimization. NY Cambridge University Press, 2004.

39. J. Bu and M. Mesbahi. A note on Nesterov’s accelerated method in nonconvex optimization:

a weak estimate sequence approach. arXiv preprint arXiv:2006.08548, 2020.

40. S. Bubeck. Introduction to online optimization. 2011.

41. S. Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn.,

8(3–4):231–357, nov 2015.

42. E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and

algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

43. E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations

of Computational mathematics, 9(6):717, 2009.

44. E. J. Candes and T. Tao. Decoding by linear programming. IEEE transactions on information

theory, 51(12):4203–4215, 2005.

45. E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.

IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.



70 Danilova, Dvurechensky, Gasnikov, Gorbunov, Guminov, Kamzolov, Shibaev

46. E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted ℓ1 minimiza-

tion. Journal of Fourier analysis and applications, 14(5-6):877–905, 2008.

47. Y. Carmon and J. C. Duchi. Gradient descent efficiently finds the cubic-regularized non-

convex newton step. arXiv preprint arXiv:1612.00547, 2016.

48. Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “Convex until proven guilty”: Dimension-

free acceleration of gradient descent on non-convex functions. volume 70 of Proceedings

of Machine Learning Research, pages 654–663, International Convention Centre, Sydney,

Australia, 06–11 Aug 2017. PMLR.

49. Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex

optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

50. Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary

points II: first-order methods. Mathematical Programming, Sep 2019.

51. Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary

points i. Mathematical Programming, 184(1):71–120, Nov 2020.

52. C. Cartis, N. I. Gould, and P. L. Toint. Adaptive cubic regularisation methods for uncon-

strained optimization. part i: motivation, convergence and numerical results. Mathematical

Programming, 127(2):245–295, 2011.

53. C. Cartis, N. I. Gould, and P. L. Toint. Universal regularization methods: Varying the power,

the smoothness and the accuracy. SIAM Journal on Optimization, 29(1):595–615, 2019.

54. C. Cartis, N. I. M. Gould, and P. L. Toint. Adaptive cubic regularisation methods for un-

constrained optimization. part ii: worst-case function- and derivative-evaluation complexity.

Mathematical Programming, 130(2):295–319, Dec 2011.

55. C. Cartis, N. I. M. Gould, and P. L. Toint. Improved second-order evaluation com-

plexity for unconstrained nonlinear optimization using high-order regularized models.

arXiv:1708.04044, 2018.

56. V. Charisopoulos, A. R. Benson, and A. Damle. Entrywise convergence of iterative methods

for eigenproblems. arXiv preprint arXiv:2002.08491, 2020.

57. X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of adam-type algorithms

for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

58. Y. Chen and Y. Chi. Harnessing structures in big data via guaranteed low-rank matrix esti-

mation. arXiv preprint arXiv:1802.08397, 2018.

59. Y. Chen, Y. Chi, J. Fan, and C. Ma. Gradient descent with random initialization: Fast global

convergence for nonconvex phase retrieval. Mathematical Programming, 176(1-2):5–37,

2019.

60. Z. Chen and T. Yang. A variance reduction method for non-convex optimization with im-

proved convergence under large condition number. arXiv preprint arXiv:1809.06754, 2018.

61. Z. Chen and Y. Zhou. Momentum with variance reduction for nonconvex composition opti-

mization. arXiv preprint arXiv:2005.07755, 2020.

62. Y. Chi, Y. M. Lu, and Y. Chen. Nonconvex optimization meets low-rank matrix factorization:

An overview. arXiv preprint arXiv:1809.09573, 2018.

63. P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In

Fixed-point algorithms for inverse problems in science and engineering , pages 185–212.

Springer, 2011.

64. A. Conn, N. Gould, and P. Toint. Trust Region Methods. Society for Industrial and Applied

Mathematics, 2000.

65. A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimization. So-

ciety for Industrial and Applied Mathematics, 2009.

66. F. E. Curtis and K. Scheinberg. Optimization methods for supervised machine learning: From

linear models to deep learning. arXiv preprint arXiv:1706.10207, 2017.

67. A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex sgd. In

Advances in Neural Information Processing Systems, pages 15236–15245, 2019.

68. C. D. Dang and G. Lan. Stochastic block mirror descent methods for nonsmooth and stochas-

tic optimization. SIAM J. on Optimization, 25(2):856–881, Apr. 2015.

69. D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex func-

tions. SIAM Journal on Optimization, 29(1):207–239, 2019.



Recent theoretical advances in non-convex optimization 71

70. A. Defazio. Understanding the role of momentum in non-convex optimization: Practical

insights from a lyapunov analysis. arXiv preprint arXiv:2010.00406, 2020.

71. A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method

with support for non-strongly convex composite objectives. In Proceedings of the 27th

International Conference on Neural Information Processing Systems, NIPS’14, pages 1646–

1654, Cambridge, MA, USA, 2014. MIT Press.

72. A. Defazio and L. Bottou. On the ineffectiveness of variance reduced optimization for deep

learning. In Advances in Neural Information Processing Systems, pages 1753–1763, 2019.

73. A. Defazio, J. Domke, et al. Finito: A faster, permutable incremental gradient method for big

data problems. In International Conference on Machine Learning, pages 1125–1133, 2014.

74. A. Défossez, L. Bottou, F. Bach, and N. Usunier. On the convergence of adam and adagrad.

arXiv preprint arXiv:2003.02395, 2020.

75. V. Demin, D. Nekhaev, I. Surazhevsky, K. Nikiruy, A. Emelyanov, S. Nikolaev, V. Rylkov,

and M. Kovalchuk. Necessary conditions for stdp-based pattern recognition learning in a

memristive spiking neural network. Neural Networks, 134:64–75, 2021.

76. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

77. J. Diakonikolas and M. I. Jordan. Generalized momentum-based methods: A Hamiltonian

perspective. arXiv preprint arXiv:1906.00436, 2019.

78. T. Ding, D. Li, and R. Sun. Spurious local minima exist for almost all over-parameterized

neural networks. 2019.

79. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12(Jul.):2121–2159, 2011.

80. J. Duchi, M. I. Jordan, and B. McMahan. Estimation, optimization, and parallelism when

data is sparse. In Advances in Neural Information Processing Systems, pages 2832–2840,

2013.

81. D. Dvinskikh, A. Ogaltsov, A. Gasnikov, P. Dvurechensky, and V. Spokoiny. On the line-

search gradient methods for stochastic optimization. IFAC-PapersOnLine, 53(2):1715–1720,

2020. 21th IFAC World Congress, arXiv:1911.08380.

82. P. Dvurechensky. Gradient method with inexact oracle for composite non-convex optimiza-

tion. arXiv:1703.09180, 2017.

83. P. Dvurechensky, E. Gorbunov, and A. Gasnikov. An accelerated directional derivative

method for smooth stochastic convex optimization. European Journal of Operational

Research, 290(2):601 – 621, 2021.

84. P. Dvurechensky, S. Shtern, and M. Staudigl. First-order methods for convex optimization.

EURO Journal on Computational Optimization, 9:100015, 2021. arXiv:2101.00935.

85. P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic opti-

mization. arXiv:2111.00100, 2021.

86. P. Dvurechensky, M. Staudigl, and C. A. Uribe. Generalized self-concordant hessian-barrier

algorithms. arXiv:1911.01522, 2019. WIAS Preprint No. 2693.

87. P. E. Dvurechensky, A. V. Gasnikov, E. A. Nurminski, and F. S. Stonyakin. Advances in

Low-Memory Subgradient Optimization, pages 19–59. Springer International Publishing,

Cham, 2020. arXiv:1902.01572.

88. N. Emmenegger, R. Kyng, and A. N. Zehmakan. On the oracle complexity of higher-order

smooth non-convex finite-sum optimization. arXiv preprint arXiv:2103.05138, 2021.

89. Y. G. Evtushenko. Numerical methods for finding global extrema (case of a non-uniform

mesh). USSR Computational Mathematics and Mathematical Physics, 11(6):38–54, 1971.

90. C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization

via stochastic path-integrated differential estimator. In Advances in Neural Information

Processing Systems, pages 689–699, 2018.

91. C. Fang, Z. Lin, and T. Zhang. Sharp analysis for nonconvex sgd escaping from saddle

points. In Conference on Learning Theory, pages 1192–1234, 2019.

92. I. Fatkhullin and B. Polyak. Optimizing static linear feedback: Gradient method. arXiv

preprint arXiv:2004.09875, 2020.



72 Danilova, Dvurechensky, Gasnikov, Gorbunov, Guminov, Kamzolov, Shibaev

93. M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi. Global convergence of policy gradient

methods for the linear quadratic regulator, 2019.

94. S. Feizi, H. Javadi, J. Zhang, and D. Tse. Porcupine neural networks:(almost) all local optima

are global. arXiv preprint arXiv:1710.02196, 2017.

95. A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the ban-

dit setting: Gradient descent without a gradient. In Proceedings of the Sixteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 385–394, Philadelphia,

PA, USA, 2005. Society for Industrial and Applied Mathematics.

96. C. A. Floudas and P. M. Pardalos. Encyclopedia of optimization. Springer Science & Busi-

ness Media, 2008.

97. A. Gasnikov. Universal gradient descent. MCCME, Moscow, 2021.

98. A. Gasnikov, P. Dvurechensky, M. Zhukovskii, S. Kim, S. Plaunov, D. Smirnov, and

F. Noskov. About the power law of the pagerank vector component distribution. part 2.

the buckley–osthus model, verification of the power law for this model, and setup of real

search engines. Numerical Analysis and Applications, 11(1):16–32, 2018.

99. R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradi-

ent for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

100. R. Ge and J. Zou. Intersecting faces: Non-negative matrix factorization with new guarantees.

In International Conference on Machine Learning, pages 2295–2303. PMLR, 2015.

101. S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic

programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. arXiv:1309.5549.

102. S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochas-

tic programming. Mathematical Programming, 156(1):59–99, 2016.

103. S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for non-

convex stochastic composite optimization. Mathematical Programming, 155(1):267–305,

2016. arXiv:1308.6594.

104. S. Ghadimi, G. Lan, and H. Zhang. Generalized uniformly optimal methods for nonlinear

programming. Journal of Scientific Computing, 79(3):1854–1881, Jun 2019.

105. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),

42(6):1115–1145, 1995.

106. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org .

107. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press

Cambridge, 2016.

108. E. Gorbunov, K. P. Burlachenko, Z. Li, and P. Richtarik. Marina: Faster non-convex dis-

tributed learning with compression. In M. Meila and T. Zhang, editors, Proceedings of the

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine

Learning Research, pages 3788–3798. PMLR, 18–24 Jul 2021.

109. E. Gorbunov, M. Danilova, and A. Gasnikov. Stochastic optimization with heavy-tailed noise

via accelerated gradient clipping. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

15042–15053. Curran Associates, Inc., 2020.

110. E. Gorbunov, M. Danilova, I. Shibaev, P. Dvurechensky, and A. Gasnikov. Near-optimal high

probability complexity bounds for non-smooth stochastic optimization with heavy-tailed

noise. arXiv:2106.05958, 2021.

111. E. Gorbunov, P. Dvurechensky, and A. Gasnikov. An accelerated method for derivative-

free smooth stochastic convex optimization. arXiv preprint arXiv:1802.09022 (accepted to

SIOPT), 2018.
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