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Abstract. Modern power systems are now in continuous process of mas-
sive changes. Increased penetration of distributed generation, usage of
energy storage and controllable demand require introduction of a new
control paradigm that does not rely on massive information exchange
required by centralized approaches. Distributed algorithms can rely only
on limited information from neighbours to obtain an optimal solution for
various optimization problems, such as optimal power flow, unit commit-
ment etc.
As a generalization of these problems we consider the problem of de-
centralized minimization of the smooth and convex partially separable
function f =

∑
l

k=1 f
k(xk, x̃) under the coupled

∑
l

k=1(A
kxk − bk) ≤ 0

and the shared Ãx̃ − b̃ ≤ 0 affine constraints, where the information
about Ak and bk is only available for the k-th node of the computational
network.
One way to handle the coupled constraints in a distributed manner is
to rewrite them in a distributed-friendly form using the Laplace matrix
of the communication graph and auxiliary variables (Khamisov, CDC,
2017). Instead of using this method we reformulate the constrained opti-
mization problem as a saddle point problem (SPP) and utilize the consen-
sus constraint technique to make it distributed-friendly. Then we provide
a complexity analysis for state-of-the-art SPP solving algorithms applied
to this SPP.
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1 Introduction

Optimal operation of power systems relies heavily on the ability of system opera-
tor to solve efficiently a number of optimization problems such as optimal power
flow, unit commitment, as well as a number of online problems such as frequency
and voltage control. Traditionally such problems were solved by System Oper-
ators in a centralized way. However, recent developments in implementation of
distributed energy sources, storage systems and possibility of demand response
can be effectively controlled by distributed algorithms. Such approach has a
number of potential benefits, namely reduction of necessary communications be-
tween agents, increased robustness with respect to malfunction of any agent and
possibility to increase cybersecurity and privacy of each agent.

The detailed surveys on the application of distributed algorithms in power
systems is given in [10,14]. These applications often lead to the necessity of solv-
ing an optimization problem, which can be formulated as distributed optimiza-
tion problem with coupled constraints. Distributed approaches for optimization
problems with coupled constraints can be separated into two main groups: (i)
primal, dual or primal-dual consensus algorithms [2,9,19,8,11,12,13]; (ii) ADMM-
based algorithms [1,16,3,18].

In this paper we propose a novel optimization approach for convex opti-
mization problems with coupled linear equality and inequality constraints. Here
introduction of specially placed Laplace matrices is used to model communi-
cations between neighboring agents in a computational network described as a
connected graph. In the core of our approach lies: 1) the reduction of the de-
centralized optimization problem with constraints to decentralized saddle point
problem; 2) applying decentralized Mirror Prox algorithm from [15] to solve the
obtained saddle point problem. We obtain the same rate of convergence ∼ 1/N
(N – number of communication steps / oracle calls) as the best known com-
petitors, like ADMM [7]. The main benefit of our approach is that the local
optimization problem at each node is much simpler than in the ADMM-based
approaches since we use only gradient oracle instead of complicated proximal
mapping which may require a matrix inversion. Compared to the dual algo-
rithms of [11,12,13], we consider a more general setting in which the objective
may be non-separable and there are local linear constraints at each node of the
computational network.

2 Problem Statement

Let us consider the following optimization problem:

min
x∈Rn

f(x), (1a)

A′x− b′ = 0, A′ ∈ R
m×n, b′ ∈ R

m, (1b)

C′x− d′ ≤ 0, C′ ∈ R
h×n, d′ ∈ R

h, (1c)
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where f : R
n → R is a differentiable strictly convex function. It is assumed

that constraints (1b) and (1c) are consistent and there exists a unique solution
x∗. Thus, Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient
optimality conditions.

Let us now consider the case, when problem (1) must be solved by a multi-
agent network with l agents connected by a graph defined by a Laplacian matrix
W . For this case, we assume, that each agent seeks to find its own subvector
xk ∈ R

nk , k ∈ {1, . . . , l} (
∑l

k=1 nk = n) and the shared vector x̃ ∈ R
ñ. We

denote vector of private variables by x = (x1⊤, . . . , xl⊤)⊤. Additionally, function
f is partially separable:

f(x, x̃) =

l
∑

k=1

fk(xk, x̃)

and each fk is known only to agent k. Each agent has partial information Ak ∈
R

m×nk , bk ∈ R
m, Ck ∈ R

h×nk and dk ∈ R
h about constraints’ parts correspond-

ing only to variables xk: A := [A1, . . . , Al, ], b :=
∑l

k=1 b
k, C := [C1, . . . , Cl] and

n :=
∑l

k=1 nk. Additionally we assume that there are shared constraints with

matrices Ã ∈ R
m̃×ñ, C̃ ∈ R

h̃×ñ and vectors b̃ ∈ R
m̃, d̃ ∈ R

h̃ which are known to
all agents.

As a result, each agent k has only its own part of the objective function
fk(xk, x̃) and parts of the coupled equality and inequality constraints respec-
tively: Akxk − bk and Ckxk − dk.

Therefore, we have an optimization problem of the following form:

min
x∈Rn+ñ

l
∑

k=1

fk(xk, x̃), (2a)

s.t.

l
∑

k=1

(Akxk − bk) = 0, (2b)

l
∑

k=1

(Ckxk − dk) ≤ 0, (2c)

Ãx̃− b̃ = 0, (2d)

C̃x̃− d̃ ≤ 0. (2e)

Here x̃ ∈ R
ñ is a subvector of x that contains global variables used by all agents.

3 Mathematical setting

Assumption 1 For every k = 1, . . . , l

1. fk(xk, x̃) is differentiable.
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2. (Convexity) ∀xk, x′k ∈ X k, ∀x̃, x̃′ ∈ X̃

fk(x′k, x̃′) ≥ fk(xk, x̃) +

〈

∇fk(xk, x̃),

(

x′k − xk

x̃′ − x̃

)〉

.

3. (Lipschitz smoothness)

∥

∥∇fk(x′k, x̃′)−∇fk(xk, x̃)
∥

∥ ≤ Lk

∥

∥

∥

∥

(

x′k − xk

x̃′ − x̃

)∥

∥

∥

∥

.

Assumption 2 Variable x is subject to block constraints: xk ∈ ∏nk

i=1[ξ
k,i, ηk,i] =

X k, ξk,i, ηk,i ∈ R and x̃ ∈ ∏ñ
i=1[ξ̃

i, η̃i] = X̃ , ξ̃i, η̃i ∈ R .

This is a natural assumption since in a real-world system maximal and minimal
values of every control and auxiliary variable are limited. Let us also denote

– λmax(A), λ
+
min(A) — the largest and the smallest positive eigenvalues of a

matrix A.

– σmax(A) =
√

λmax(A⊤A) and σ+
min(A) =

√

λ+
min(A

⊤A) — the largest and

the smallest positive singular value of a matrix A.
– χ(A) = σmax(A)

σ
+

min
(A)

— condition number of a matrix A on (KerA)
⊤

.

– ProjS(x) — projection of x onto a set S.

The key instrument in separating shared variables and coupled constraints
is introducing the consensus constraint with the help of matrix W defined as
follows:

1. W is symmetric positive semi-definite matrix.
2. (Network compatibility) For all i, j = 1, . . . , l the entry of W : [W ]ij = 0 if

i 6= j and there is no edge in the communication graph between nodes i and j.
This property allows to perform multiplications by W in a distributed man-
ner (only using information from neighbours in the communication graph).

3. (Kernel property) For any v = [v1, . . . , vm]⊤ ∈ R
m, Wv = 0 if and only

if v1 = . . . = vm, i.e. KerW = span {1}. This property allows to rewrite
pairwise equality constraint in a distributed way.

An example of matrix satisfying this assumption is the graph Laplacian
W∈ R

m×m:

[W ]ij ,











−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of the node i, i.e., the number of neighbors of the
node.

Matrix W can be used to rewrite pairwise equality of scalars. To rewrite
pairwise equality of vector variables with equal dimesion we will use the following
extension of matrix W , called communication matrix :

W = W ⊗ Id, (3)

where ⊗ denotes the Kronecker product and d is the dimension of the vector
variables.
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4 Distributed saddle point problem formulation

4.1 Saddle point problem and consensus constraints

We reformulate problem (1) as saddle point problem:

min
x,x̃

max
λ,λ̃

µ,µ̃≥0

l
∑

k=1

[

fk(xk, x̃) + λ⊤(Akxk − bk) + µ⊤(Ckxk − dk)
]

+

λ̃⊤(Ãx̃− b̃) + µ̃⊤(C̃x̃− d̃). (4)

Let us unify the analysis of equality and inequality constraints by stacking
Lagrange multipliers λ and µ in a single dual variable

y =

(

λ
µ

)

, y ∈ Y = R
m × R

h
+.

And similarly we introduce the joined dual variable for the coupled con-
straints:

ỹ =

(

λ̃
µ̃

)

, ỹ ∈ Ỹ = R
m̃ × R

h̃
+.

To solve this saddle point problem in a distributed manner we have to sep-
arate dual variables y by making their copies at each node and introducing
consensus constraint into the saddle point problem, as described in [15]. That
brings us to the following formulation:

min
x,x̃,z

max
y,ỹ

l
∑

k=1

[

fk(xk, x̃) + yk⊤
(

Akxk − bk

Ckxk − dk

)]

+ z⊤Wy + ỹ⊤
(

Ãx̃− b̃

C̃x̃− d̃

)

(5)

To separate the terms corresponding to the shared constraints (2d), (2e) we
should go back to the optimization problem (2) and do the same trick with
them: make a copy of x̃ at each node and introduce consensus constraint. So we
transform (2d), (2e) into equivalent system

Ãx̃k + b̃ = 0, k ∈ {1, . . . , l}, (6a)

C̃x̃k + d̃ ≤ 0, k ∈ {1, . . . , l}, (6b)

W̃x̃ = 0, (6c)

where x̃ = (x̃1⊤, . . . , x̃l⊤)⊤, W̃ = W ⊗ Iñ.
Note, that each node can handle constraints (6a) and (6b) independently, so

we don’t have to introduce additional consensus constraints over corresponding
dual variables in the final saddle point problem:
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min
x,x̃,z

max
y,ỹ,z̃

l
∑

k=1

[

fk(xk, x̃k) + yk⊤
(

Akxk − bk

Ckxk − dk

)

+ ỹk⊤
(

Ãx̃k − b̃

C̃x̃k − d̃

)]

+z⊤Wy+z̃⊤W̃x̃

= min
x,x̃,z

max
y,ỹ,z̃

l
∑

k=1

gk(xk, x̃k, yk, ỹk) + z⊤Wy + z̃⊤W̃x̃, (7)

where y = (y1⊤, . . . , yl⊤)⊤, W = W ⊗ Im+h.
We will also use the following notation:

G(x, x̃,y, ỹ) =

l
∑

k=1

gk(xk, x̃k, yk, ỹk), (8)

and
Gw(x, x̃,y, ỹ) = G(x, x̃,y, ỹ) + z⊤Wy + z̃⊤W̃x̃. (9)

4.2 Comparison with [4], [5]

In this subsection we show the equivalence of our approach and approach from
[4], [5] from the perspective of saddle point problems. Since the shared variables
x̃ are handled in the same way in both approaches (by introducing the constraint
W̃x̃ = 0 into the optimization problem), we consider the case without shared
variables and only with equality-type constraints to simplify the derivations.

Let us introduce a set of new matrices and vectors:

A = diag(A1, . . . , Al),b = (b1⊤, . . . , bl⊤)⊤, (10)

Wmk = diag(Wk•, . . . ,Wk•) ∈ R
m×ml,Wm =







Wm1

...
Wml






∈ R

ml×ml, (11)

In [4], [5] the following distributed-friendly reformulation of problem (2) is
proposed, and its equivalence to the original problem is shown:

min
x∈Rn,y∈Rml

{

f(x) =

l
∑

k=1

fk(xk)

}

, (12a)

Ax− b+Wmy = 0. (12b)

Here a sort of consensus constraint is integrated directly into the minimization
problem, which differs from our technique of adding consensus constraint into the
corresponding saddle point problem. Note also that Wm and W differ in their
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structure (the way of constructing matrix W for using it with multi-dimensional
variables).

The saddle point problem corresponding to the minimization problem (12)
is

min
x,y

max
z

L(x,y, z) = min
x,y

max
z

f(x) + z⊤ (Ax− b+Wmy) . (13)

Let us now compare this problem with the saddle point problem (7). By
rewriting sum in (7) and using the symmetry of W we have

min
x,z

max
y

l
∑

k=1

[

fk(xk) + yk⊤(Akxk − bk)
]

+ z⊤Wy

= min
x,z

max
y

f(x) + y⊤(Ax − b) + z⊤Wy

= min
x,z

max
y

f(x) + y⊤(Ax − b+Wz). (14)

Since W and Wm differ only in the arrangement of columns, problems (13)
and (14) differ only in the arrangement of components of maximized variables.
Therefore, both approaches leads to the same saddle point problem.

5 Algorithm

We use classical Extragradient algorithm from [6]. Being applied to the problem
(7) it converges to the solutions of the primal and the dual problems as will be
shown in the next sections. Here we describe it in an explicit form, so it is ready
to be applied to the problem (2), see Algorithm 1.

Note, that the projection in our case is a simple clipping and can be performed
independently for each component of the variable.

6 Smoothness and domain size analysis

In this section we will perform some technical analysis to obtain the relations
between parameters of the input data to the problem (object functions and
constrains) and parameters of Extragradient’s convergence rate.

6.1 Bounds on ‖y∗‖, ‖ỹ∗‖

To calculate Lipschitz smoothness constants of the problem we have to localize
y∗ (dual part of solution of the initial saddle problem (4), which is also a solution
to the dual problem under our assumptions), i.e. find Ry such that Y lies in a ball
in R

m with center in 0 and radius Ry, and y∗ ∈ Y. From optimality conditions
for dual problem of (2)

∇xL = ∇xf + (A⊤, C⊤)y∗ = 0 (15)
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Algorithm 1 Decentralized Extragradient for problem (2)

1: Initialize x0 ∈ X ,y0 = z0 = ~0l(m+h), x̃0 ∈ X̃ l, ỹ = ~0
l(m̃+h̃), z̃0 = ~0lñ

2: for i = 0, . . . , N − 1 do

3: Compute z′i = Wzi, y
′
i = Wyi, z̃

′
i = W̃z̃i, x̃

′
i = W̃x̃i.

4: Make intermediate gradient step

x
k

i+ 1
2

= ProjX

(
x
k

i − h∇
xkf

k(xk

i , x̃
k

i )− h(Ak⊤
, C

k⊤)yk

i

)

x̃
k

i+ 1
2

= Proj
X̃

(
x̃
k

i − h∇x̃kf
k(xk

i , x̃
k

i )− hz̃
′k
i

)

y
k

i+ 1
2

= ProjY

(
y
k

i + h

(
Akxk

i − bk

Ckxk

i − dk

)
+ hz

′k
i

)

ỹ
k

i+ 1
2

= Proj
Ỹ

(
ỹ
k

i + h

(
Ãkx̃k

i − b̃k

C̃kx̃k

i − d̃k

))

z
k

i+ 1
2

= z
k

i − hy
′k
i

z̃
k

i+ 1
2

= z̃
k

i + hx̃
′k
i

5: Compute z′
i+ 1

2

= Wz
i+ 1

2
, y′

i+ 1
2

= Wy
i+ 1

2
, z̃′

i+ 1
2

= W̃z̃
i+ 1

2
, x̃′

i+ 1
2

= W̃x̃
i+ 1

2
.

6: Make gradient step

x
k

i+1 = ProjX

(
x
k

i − h∇xkf
k(xk

i+ 1
2

, x̃
k

i+ 1
2

)− h(Ak⊤
, C

k⊤)yk

i+ 1
2

)

x̃
k

i+1 = Proj
X̃

(
x̃
k

i − h∇
x̃kf

k(xk

i+ 1
2

, x̃
k

i+ 1
2

)− hz̃
′k

i+ 1
2

)

y
k

i+1 = ProjY

(

y
k

i + h

(
Akxk

i+ 1
2

− bk

Ckxk

i+ 1
2

− dk

)

+ hz
′k

i+ 1
2

)

ỹ
k

i+1 = Proj
Ỹ

(
ỹ
k

i + h

(
Ãkx̃k

i+ 1
2

− b̃k

C̃kx̃k

i+ 1
2

− d̃k

))

z
k

i+1 = z
k

i − hy
′k

i+ 1
2

z̃
k

i+1 = z̃
k

i + hx̃
′k

i+ 1
2

7: end for

Ensure: For t ∈ {x,y, z, x̃, ỹ, z̃} compute t̂
N =

1

N

N−1∑

k=0

t
k+ 1

2 .

∇x̃L = ∇x̃f + (Ã⊤, C̃⊤)ỹ∗ = 0. (16)
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Since for any y ∈ kerAT vector y∗+y is also a solution, we consider only solution
with the smallest norm (it’s enough for saddle point problem solution’s quality

criteria and convergence analysis), i. e. y∗ ∈
(

kerAT
)⊥

.

Therefore

‖y∗‖2 ≤ ‖∇xf(x
∗, x̃∗)‖2

(σ+
min ((A⊤, C⊤)))2

,

‖ỹ∗‖2 ≤ ‖∇x̃f(x
∗, x̃∗)‖2

(σ+
min((Ã

⊤, C̃⊤)))2
,

where σ+
min(A) =

√

min{λ > 0 : ∃x 6= 0 : AATx = λx}. Hence we get

Lemma 1. Saddle point problem (7), which is unconstrained on variables y, ỹ,
is equivalent to the same problem with constraints ‖y‖ ≤ Ry and ‖ỹ‖ ≤ Rỹ,
where

Ry =
√
l

max
x∈X ,x̃∈X̃

‖∇xf(x, x̃)‖

σ+
min ((A⊤, C⊤))

, Rỹ =
√
l

max
x∈X ,x̃∈X̃

‖∇x̃f(x, x̃)‖

σ+
min

(

(Ã⊤, C̃⊤)
) . (17)

6.2 Bounds on ‖z∗‖, ‖z̃∗‖

Next we want to find constants for Euclidean-case bounds for Theorem 3.5 [15].
To specify, how the convergence rate depends on problem’s parameters, we need
to find scalars My,Mx̃, Lxx, Lyx, LxyLyy, determined by inequalities

‖∇yg
k(xk, x̃k, yk, ỹk)‖ ≤ My ∀k, xk ∈ Xk, yk ∈ Y (18a)

‖∇x̃gk(x
k, x̃k, yk, ỹk)‖ ≤ Mx̃ ∀k, xk ∈ Xk, yk ∈ Y (18b)

‖∇xG(x,y)−∇xG(x′,y)‖ ≤ Lxx‖x− x′‖ ∀x,x′ ∈ X ,y ∈ Y (18c)

‖∇xG(x,y)−∇xG(x,y′)‖ ≤ Lxy‖y− y′‖ ∀x ∈ X ,y,y′ ∈ Y (18d)

‖∇yG(x,y)−∇yG(x′,y)‖ ≤ Lyx‖x− x′‖ ∀x,x′ ∈ X , ∀y ∈ Y (18e)

‖∇yG(x,y)−∇yG(x,y′)‖ ≤ Lyy‖y − y′‖ ∀x ∈ X , ∀y,y′ ∈ Y, (18f)

where x = (x⊤, x̃⊤)⊤ and y = (y⊤, ỹ⊤)⊤

By using the triangle inequality

‖∇ykgk(xk, x̃k, yk, ỹk)‖ = ‖∇yky⊤(Akxk − bk)‖ =

∥

∥

∥

∥

(

Akxk − bk

Ckxk − dk

)∥

∥

∥

∥

≤

max
k∈{1,...,l}

{

σmax

(

(Ak⊤, Ck⊤)
)

Rxk +
∥

∥

∥(bk
⊤
, dk

⊤
)
∥

∥

∥

}

= My,
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and

‖∇x̃kgk(xk, x̃k, yk, ỹk)‖ = ‖
(

Ã⊤, C̃⊤
)

ỹk‖ ≤ σmax

((

Ã⊤, C̃⊤
))

Rỹ

= χ
(

(Ã⊤, C̃⊤)
)

max
x∈X ,x̃∈X̃

‖∇x̃f(x, x̃)‖ = Mx̃.

Then by directly applying Lemma 4.2 in [15] we have

Lemma 2. Saddle point problem (7), which is unconstrained on variables z, z̃,
is equivalent to the same problem with constraints ‖z‖ ≤ Rz and ‖z̃‖ ≤ Rz̃,
where

Rz =

√
2lMy

λ+
min(W)

, Rz̃ =

√
2lMx̃

λ+
min(W̃)

. (19)

6.3 Smoothness constants

Let us find smoothness constants of function G. From (7) we have

∇xG(x,y)−∇xG(x′,y) =







∇f1(x1, x̃1)−∇f1(x1′ , x̃1′)
...

∇f l(xl, x̃l)−∇f l(xl′ , x̃l′ )






.

By Assumption 1

‖∇xG(x,y)−∇xG(x′,y)‖2 =

l
∑

k=1

‖∇fk(xk, x̃k)−∇fk(xk′

, x̃k′

)‖2

≤
l

∑

k=1

L2
k

∥

∥

∥

∥

(

x′k − xk

x̃′ − x̃

)∥

∥

∥

∥

2

≤ max
k

L2
k‖x− x′‖2.

Taking square root from both parts of the inequality we get

Lxx = max
k∈{1,...,l}

Lk.

Similarly, for other variables

∇xG(x,y)−∇xG(x,y′) =

(

(A⊤, C⊤) (y − y′)
(

Ã⊤, C̃⊤
)

(ỹl − ỹl
′

)

)

,

∇yG(x,y)−∇yG(x′,y) =

























(A1⊤, C1⊤)⊤(x1 − x1′)
...

(Al⊤, Cl⊤)⊤(xl − xl′)
(

Ã⊤, C̃⊤
)⊤

(x̃1 − x̃1′ )
...

(

Ã⊤, C̃⊤
)⊤

(x̃l − x̃l′ )

























.
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and

Lxy = max

{

max
k∈{1,...,l}

σmax

(

(Ak⊤, Ck⊤)
)

, σmax

(

(Ã⊤, C̃⊤)
)

}

= Lyx,

Lyy = 0.

7 Main result

Let us denote

Lζ = 2 · max{R2
xx̃

Lxx̃,xx̃, R
2
yỹ

Lyỹ,yỹ,

√
2Rxx̃RyỹLxx̃,yỹ + 2Mxx̃Rxx̃

λmax(W̃)

λ+
min(W̃)

+ 2MyỹRyỹ

λmax(W)

λ+
min(W)

}.

Then, following the arguments presented in Theorem 3.5 from [15], we intro-
duce ζ = (x⊤, x̃⊤,y⊤, ỹ⊤, z⊤, z⊤)⊤. We also define a norm for ζ as follows:

‖ζ‖2 =
‖x‖2
R2

x

+
‖x̃‖2
R2

x̃

+
‖y‖2
R2

y

+
‖ỹ‖2
R2

ỹ

+
‖z‖
R2

z

+
‖z̃‖2
R2

z̃

According to the standard analysis of Mirror-Prox algorithm, the duality gap
is bounded as follows:

Gw(xN , x̃N , zN ,y, ỹ, z̃)−Gw(x, x̃, z,yN , ỹN , z̃N ) ≤ Lζ

2N
‖ζ − ζ0‖2, (20)

Substituting y = 0, ỹ = 0, z̃ = 0,x = x∗, x̃ = x̃∗, z = 0 we get complexity
estimate by function residual:

ℓ
∑

k=1

f(xk
N , x̃k

N )−
ℓ

∑

k=1

f(xk
∗ , x̃∗) ≤

3Lζ

N
. (21)

Analogously, we obtain bounds for affine constraints and consensus constraints

‖AxN − b‖+ ‖CxN − d‖ ≤ 17
√
2Lζ

N
min

k=1,...,l
σ+
min(A

k⊤, Ck⊤),

∥

∥

∥
Ãx̃− b

∥

∥

∥
+
∥

∥

∥
C̃x̃− d

∥

∥

∥
≤ 17

√
2Lζ

N
min

k=1,...,ℓ
σ+
min(Ã

⊤, C̃⊤),

‖WyN‖ ≤ 17
√
2Lζ

2N
λ+
min(W),

∥

∥

∥W̃x̃N

∥

∥

∥ ≤ 17
√
2Lζ

2N
λ+
min(W̃).
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Remark 1. In the problem formulation (2) we can additionally assume that xk ∈
Qk ⊆ R

nk , x̃ ∈ Q̃ ⊆ R
ñ, where Qk and Q̃ – simple convex sets, i.e. simplex, ball,

half plane e.t.c. In this case instead of decentralized Extragradient method for
saddle point problem (Mirror Prox with euclidian prox-function) one should use
general decentralized Mirror Prox algorithm [15].

8 Numerical experiment

For the purpose of numerical experiment data is taken from [17]. Here 6 bus
system contains 2 generators. DC optimal power flow problem of the following
form is considered:

min
pG∈P
θ∈Θ,

∑

i∈G

ci(p
G
i ) (22a)

pGi − pDi = Bij(θi − θj), (22b)

|(θi − θj)/Xij | ≤ Fmax
ij . (22c)

Optimization variables:

– pGi , i ∈ {1, . . . , l} — generator power output;

– θi, i ∈ {1, . . . , l} — phase angle of the bus i.

Parameters:

– P =
∏l

i=1

[

pG,min
i , pG,max

i

]

— minimal and maximal generation. For nodes

without generation pG,min
i = pG,max

i = 0.

– Θ =
∏l

i=1 [−θmax
i , θmax

i ] — maximal phase angle

– pDi , i ∈ {1, . . . , l} — demand;

– Bij = Bji, i, j ∈ {1, . . . , l} — line susceptances. If no power line between
nodes i and j then Bij = 0 else Bij > 0. Xij = −Bij , i, j ∈ {1, . . . , l} are
line reactances;

– Fmax
ij , i, j ∈ {1, . . . , l} — maximal power flow on the line (i, j);

Cost functions:

ci(·), i ∈ {1, . . . , l} — convex sufficiently smooth functions, representing the
cost of operating a generator at given power.

The obtained results are consistent with the results in [17]: generation is
equal to 110 MW and 200 MW for the 1-st and 2-nd generators respectively. The
results of numerical experiment are given in Fig. 1. Here the plots of function
value and constraint residual convergence.
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Fig. 1: Results of the numerical experiment for DC optimal power flow problem
on 6-bus system [17]
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