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Abstract In this paper we propose three p-th order tensor methods for µ-
strongly-convex-strongly-concave saddle point problems (SPP). The first method
is based on the assumption of p-th order smoothness of the objective and it

achieves a convergence rate of O

(

(

LpR
p−1

µ

)
2

p+1

log µR2

εG

)

, where R is an es-

timate of the initial distance to the solution, and εG is the error in terms of
duality gap. Under additional assumptions of first and second order smooth-
ness of the objective we connect the first method with a locally superlin-
ear converging algorithm and develop a second method with the complexity

of O

(

(

LpR
p−1

µ

)
2

p+1

log
L2Rmax{1,L1

µ }
µ + log

log
L3
1

2µ2εG

log
L1L2
µ2

)

. The third method is a

modified version of the second method, and it solves gradient norm minimiza-

tion SPP with Õ

(

(

LpR
p

ε∇

)
2

p+1

)

oracle calls, where ε∇ is an error in terms

of norm of the gradient of the objective. Since we treat SPP as a particular
case of variational inequalities, we also propose three methods for strongly
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monotone variational inequalities with the same complexity as the described
above.

Keywords Variational inequality · Saddle point problem · High-order
smoothness · Tensor methods · Gradient norm minimization

1 Introduction

In this work we focus on two types of saddle point problems (SPP). The first
one is the classic minimax problem:

min
x∈X

max
y∈Y

g(x, y), (1)

where g : X × Y → R is a convex over X and concave over Y, and the sets
X ,Y are convex. This is a particular case of a more general problem, called
monotone variational inequality (MVI). In MVI we have a monotone operator
F : Z → R

n over a convex set Z ⊂ R
n and we need to find

z∗ ∈ Z : ∀z ∈ Z, 〈F (z), z∗ − z〉 ≤ 0. (2)

If we set Z = X ×Y and F (z) = (∇xg(x, y),−∇yg(x, y)), then MVI is equiv-
alent to the min-max SPP (1).

The second problem is gradient norm minimization of SPP:

min
(x,y)∈X×Y

‖∇g(x, y)‖2. (3)

For both problems we consider unconstrained case with X = R
n and Y =

R
m. Additionally, we assume g(x, y) is µ-strongly convex in x ∈ R

n and µ-
strongly concave in y ∈ R

m.
There is a number of papers on numerical methods for SPP (1) in convex-

concave setting [13, 18, 20, 27, 28]. One of the most popular among first-order
methods for this setting is the Mirror-Prox algorithm [18], which treats saddle-
point problems via solving the corresponding MVI. According to [19], this
method achieves optimal complexity of O(1/ε) iterations for first-order meth-
ods applied to smooth convex-concave SPP in large dimensions.

Additional assumption of strong convexity and strong concavity lead to
better results. The algorithms from [8, 15, 23, 25, 27] achieve iteration com-
plexity of O(L/µ log(1/ε)). In [14] the authors proposed an algorithm with
complexity O(L/

√
µxµy log

3(1/ε)), which matches up to a logarithmic factor

the lower bound, obtained in [29]. It worths to mention that log3(1/ε) fac-
tor can be improved, namely, it is possible to achieve iteration complexity of
O(L/

√
µxµy log(1/ε)) (see [5]).

The methods listed above use first-order oracles, and it is known from
optimization that tensor methods, which use higher-order derivatives, have
faster convergence rate, yet for the price of more expensive iteration. The idea
of using derivatives of high order in optimization is not new (see [10]). The most
common type of high-order methods use second-order oracles, for example



Tensor methods for strongly convex strongly concave SPP and strongly MVI 3

Newton method [21, 24] and its modifications such as the cubic regularized
Newton method [22]. Recently the idea of exploiting oracles beyond the second
order started to attract increased attention, especially in convex optimization
[1, 3, 4, 6, 7].

However, much less is known on high-order methods for SPP and MVIs.
In [17] the authors propose a second-order method based on their Hybrid Prox-

imal Extragradient framework [16]. The resulting complexity is O(1/ε
2
3 ). A re-

cent work [2] shows how to modify Mirror-Prox method using oracles beyond

second order and improves complexity to reach duality gap ε to O(1/ε
2

p+1 ) for
convex-concave problems with p-th order Lipschitz derivatives. The paper [11]
proposes a cubic regularized Newton method for solving SPP, which has global
linear and local superlinear convergence rate if ∇g(x, y) and ∇2g(x, y) are
Lipschitz-continuous and g(x, y) is strongly convex in x and strongly concave
in y.

In our work we make a next step and propose a Tensor method for strongly
monotone variational inequalities and, as a corollary, a Tensor method for sad-
dle point problems with strongly-convex-strongly-concave objective. Standing
on the ideas from [2] and [11], our work can be split into three parts.

Firstly, we apply restart technique [26] to the HighOrderMirrorProx Al-
gorithm 1 from [2], which is possible because of strong convexity and strong
concavity of the objective. Such a modification improves the algorithm com-

plexity to O

(

(

LpR
p−1

µ

)
2

p+1

log µR2

εG

)

, where R is an upper bound for the initial

distance to the solution ‖(x1, y1)− (x∗, y∗)‖2 and Lp is the Lipschitz constant
of the p-th derivative, and εG is the error in terms of duality gap.

Secondly, using an estimate of the area of local superlinear convergence,
when the algorithm reaches this area, we switch to the Cubic-Regularized
Newton Algorithm 3 from [11] to obtain local superlinear convergence of our
algorithm. The total complexity of the final Algorithm 4 becomes

O

(

(

LpR
p−1

µ

)
2

p+1

log
L2Rmax{1,L1

µ }
µ + log

log
L3
1

2µ2εG

log
L1L2
µ2

)

, where L1 and L2 are Lip-

schitz constans for first and second order derivatives respectively. We want to
emphasize, that the obtained log log(1/ε) dependency on ε cannot be improved
even in convex optimization [12].

Thirdly, we apply framework from [4] to the Algorithm 4 to solve the prob-

lem (3) and obtain the Algorithm 5. Its convergence rate is Õ

(

(

LpR
p

ε∇

)
2

p+1

)

,

where by tilde we mean additional multiplicative log factor, and ε∇ is an error
in terms of gradient norm of the objective.

Our paper is organized as follows. First of all, in Section 2 we provide
necessary notations and assumptions (Section 2.1). Then, we present the new
algorithm and obtain its convergence rate in Section 3. Firstly, in Section 3.1 we
talk only about restarted algorithm from [2] and get its complexity. Secondly,
in Section 3.2 we describe how to connect it to Algorithm 3 from [11] in its
quadratic convergence area and get the final Algorithm 4 convergence rate.



4 Petr Ostroukhov 1 et al.

Thirdly, in Section 3.3 we focus on how to wrap Algorithm 4 in a framework
from [4] and obtain its complexity. Finally, in Section 4 we discuss our results
and present some possible directions for future work.

2 Preliminaries

We use z ∈ R
n × R

m to denote the pair (x, y), ∇pg(z)[h1, ..., hp], p ≥ 1 to
denote directional derivative of g at z along directions hi ∈ R

n × R
m, i =

1, ..., p. The norm of the p-th order derivative is defined as

‖∇pg(z)‖2 := max
h1,...,hp∈Rn×Rm

{|∇pg(z)[h1, ..., hp]| : ‖hi‖2 ≤ 1, i = 1, ..., p}

or equivalently

‖∇pg(z)‖2 := max
h∈Rn×Rm

{|∇pg(z)[h]p| : ‖h‖2 ≤ 1}.

Here we denote ∇pg(z)[h, ..., h] as ∇pg(z)[h]p. Also here and below ‖ · ‖2 is a
Euclidean norm for vectors.

Taylor approximation of some function f at point z up to the order of p
we denote by

Φf
z,p(ẑ) :=

p
∑

i=0

1

i!
∇if(z)[ẑ − z]i.

For ease of notation, the Taylor approximation of the objective g we denote
by Φ(x,y),p(x̂, ŷ) ≡ Φz,p(ẑ) ≡ Φg

z,p(ẑ).
By D : Z ×Z → R

n we denote Bregman divergence induced by a function
d : Z → R, which is continuously-differentiable and 1-strongly convex. The
definition of Bregman divergence is

D(z1, z2) := d(z1)− d(z2)− 〈∇d(z2), z1 − z2〉.

In our paper we use half of squared Euclidean distance as Bregman divergence

D(z1, z2) =
1

2
‖z1 − z2‖22. (4)

During the analysis of convergence of our approach for gradient norm min-
imization (3) we will need the regularized Taylor approximation of objective
g:

Ω(x,y),p,Lp
(x̂, ŷ) :=

Φ(x,y),p(x̂, ŷ) +
Lp(

√
2)p−1

(p+ 1)!
‖x̂− x‖p+1

2 − Lp(
√
2)p−1

(p+ 1)!
‖ŷ − y‖p+1

2 .

Its min-max point we denote by

T g
p,Lp

(x, y) ∈ Arg min
x̃∈Rn

max
ỹ∈Rm

{

Ω(x,y),p,Lp
(x̃, ỹ)

}

.
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As we mentioned earlier, in this paper we consider two types of SPP:
classic minimax problem (1) and gradient norm minimization (3). We need to
introduce the definitions of approximate solutions of these problems. We use
different indices in error notations for these problems to avoid ambiguity.

Firstly, the problem (1) is usually solved in terms of the duality gap

GX×Y(x, y) := max
y′∈Y

g(x, y′)− min
x′∈X

g(x′, y). (5)

Since in our case X = R
n and Y = R

m, we drop the notations of these sets
from index of the duality gap and denote duality gap just as G(x, y). Then,
we define εG-approximate solution of (1):

x̃∗ ∈ R
n, ỹ∗ ∈ R

m ⇒ G(x̃∗, ỹ∗) ≤ εG. (6)

Secondly, for the problem (3) we don’t need any additional functionals,
and ε∇-approximate solution of (3) is of the form

x̃∗ ∈ R
n, ỹ∗ ∈ R

m ⇒ ‖∇g(x̃∗, ỹ∗)‖2 ≤ ε∇. (7)

2.1 Assumptions

We assume objective g is strongly convex, strongly concave and p-times dif-
ferentiable.

Assumption 1 g(x, y) is µ-strongly convex in x and µ-strongly concave in y.

Recall that the definition of strong convexity and strong concavity is as follows.

Definition 1 g : Rn × R
m → R is called µ-strongly convex and µ-strongly

concave if

∀x1, x2 ∈ R
n, y ∈ R

m ⇒ 〈∇xg(x1, y)−∇xg(x2, y), x1 − x2〉 ≥ µ‖x1 − x2‖22,
(8)

∀y1, y2 ∈ R
m, x ∈ R

n ⇒ 〈−∇yg(x, y1) +∇yg(x, y2), y1 − y2〉 ≥ µ‖y1 − y2‖22.
(9)

Before showing the connection between problem (1) and MVI (2) we need
the definition of strong monotonicity.

Definition 2 F : Z → R
n is strongly monotone if

〈F (z1)− F (z2), z1 − z2〉 ≥ µ‖z1 − z2‖22. (10)

Denote z =

(

x
y

)

, and operator F : Rn × R
m → R

n × R
m:

F (z) = F (x, y) :=

(

∇xg(x, y)
−∇yg(x, y)

)

. (11)

According to these definitions, the min-max problem (1) can be tackled via
solving the MVI problem (2) with the specific operator F given in (11). In our
work we use the following assumptions.
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Assumption 2 F (z) satisfies first order Lipschitz condition:

‖F (z1)− F (z2)‖2 ≤ L1‖z1 − z2‖2
⇔ ‖∇g(z1)−∇g(z2)‖2 ≤ L1‖z1 − z2‖2. (12)

Assumption 3 F (z) satisfies second order Lipschitz condition:

‖∇F (z1)−∇F (z2)‖2 ≤ L2‖z1 − z2‖2
⇔ ‖∇2g(z1)−∇2g(z2)‖2 ≤ L2‖z1 − z2‖2. (13)

Assumption 4 F (z) satisfies p-th order Lipschitz condition (p-smooth):

‖∇p−1F (z1)−∇p−1F (z2)‖2 ≤ Lp‖z1 − z2‖2
⇔ ‖∇pg(z1)−∇pg(z2)‖2 ≤ L2‖z1 − z2‖2. (14)

We should note, that, to be consistent with [2], we define p-th order smoothness
(Lipschitzness) of F as a property of (p−1)-th derivative of F , and, therefore,
as a property of p-th derivative of g.

3 Main results

Firstly, in this section we propose the algorithm for finding εG-approximate
solution to problem (6), where g : Rn × R

m → R is p-smooth and µ-strongly-
convex-concave (assumptions 4 and 1), which allows to achieve iteration com-

plexity of O

(

(

LpR
p−1

µ

)
2

p+1

log µR2

εG

)

, where R > ‖z1 − z∗‖2. This algorithm

is a restarted modification of Algorithm 1.

Secondly, we develop the algorithm for tackling the same problem, where
g is first, second and p-th order Lipschitz and µ-strongly-convex-concave func-
tion (all assumptions 1, 2, 3, 4). It involves the idea of exploiting previous
algorithm and then switching to the Algorithm 3 in its quadratic convergence
area. Thus, we obtain the Algorithm 4, that allows to achieve iteration com-

plexity of O

(

(

LpR
p−1

µ

)
2

p+1

log
L2Rmax{1,L1

µ }
µ + log

log
L3
1

2µ2εG

log
L1L2
µ2

)

.

Thirdly, we propose the algorithm to find ε∇-approximate solution to prob-
lem (7), where all the assumptions 1, 2, 3, 4 hold. To achieve this we use
the Algorithm 4, which we mentioned earliear, inside the framework from
[4]. Final complexity of such algorithm in terms of norm of the gradient is

Õ

(

(

LpR
p

ε∇

)
2

p+1

)

, where by tilde we mean additional multiplicative log factor.
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Algorithm 1 HighOrderMirrorProx [Algorithm 1 in [2]]
1: Input z1 ∈ Z, p ≥ 1, T > 0.
2: for t = 1 to T do

3: Determine γt, ẑt such that:

ẑt = arg min
z∈Z

{γt〈ΦF
zt,p

(ẑt), z − zt〉 +D(z, zt)},

p!

32Lp‖ẑt − zt‖p−1

2

≤ γt ≤
p!

16Lp‖ẑt − zt‖p−1

2

,

zt+1 = arg min
z∈Z

{〈γtF (ẑt), z − ẑt〉+D(z, zt)}.

4: Define ΓT
def
=

∑T
t=1 γt

5: return z̄T
def
= 1

ΓT

∑T
t=1 γtẑt.

3.1 Restarted HighOrderMirrorProx

As mentioned earlier, in this subsection we provide restarted modification
of Algorithm 1. But, initially, we need to give some additional information
from [2].

Since our goal is an approximate solution to MVI, we define its ε-approximate
solution as

z∗ ∈ Z : ∀z ∈ Z ⇒ 〈F (z), z∗ − z〉 ≤ ε. (15)

At the same time, the bounds of Algorithm 1 is of the form

∀z ∈ Z ⇒ 1

ΓT

T
∑

t=1

γt〈F (zt), zt − z〉 ≤ ε, (16)

where points zt and γt > 0 are produced by the Algorithm 1, and ΓT =
∑T

t=1 γt. The following lemma establishes the relation between (15) and (16).

Lemma 1 (Lemma 2.7 from [2]) Let F : Z → R
n, be monotone, zt ∈

Z, t = 1, ..., T , and let γt > 0. Let z̄t = 1
ΓT

∑T
t=1 γtzt. Assume (16) holds.

Then z̄t is an ε-approximate solution to (2).

MVI problem (2), which is sometimes called ”weak MVI”, is closely con-
nected to strong MVI problem, where we need to find

z∗ ∈ Z : ∀z ∈ Z ⇒ 〈F (z∗), z∗ − z〉 ≤ 0. (17)

If F is continuous and monotone, the problems (2) and (17) are eqiuvalent.
The convergence rate of the Algorithm 1 is stated in the following lemma.

Lemma 2 (Lemma 4.1 from [2]) Suppose F : Z → R
n is p-th order Lip-

schitz and let ΓT =
∑T

t=1 γt. Then, the iterates {ẑt}t∈[T ], generated by Algo-
rithm 1, satisfy

∀z ∈ Z ⇒ 1

ΓT

T
∑

t=1

〈γtF (ẑt), ẑt − z〉 ≤ 16Lp

p!

(

D(z, z1)

T

)
p+1
2

. (18)
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Algorithm 2 Restarted HighOrderMirrorProx
1: Input z1 ∈ Z, p ≥ 1, 0 < εG < 1, R : R ≥ ‖z1 − z∗‖2.
2: k = 1
3: z̃1 = z1

4: for i ∈ [n], where n =
⌈

1

2
log µR2

εG

⌉

do

5: Set Ri =
R

2i−1

6: Set Ti =

⌈

(

64LpR
p−1
i

µ

) 2
p+1

⌉

7: Run Algorithm 1 with z̃i, p, Ti as input
8: z̃i+1 = z̄Ti

9: return z̃i

Thus, these two lemmas tell us, that if zt and γt are generated by the Algorithm
1, and the right hand side of (18) is smaller than ε, then z̄t =

1
ΓT

∑T
t=1 γtzt is an

ε-solution to regular MVI (15). Hence, it is also a solution to a convex-concave
SPP. The natural way to improve the method for convex-concave problem in
tighter strongly-convex-strongly-concave setting is to use restarts [26]. As a
result, we obtain Algorithm 2.

Theorem 1 Suppose F : Rn×R
m → R

n×R
m, that is defined in (11), is p-th

order Lipschitz and µ-strongly monotone (Assumptions 1 and 4 hold). Denote
R such that R ≥ ‖z1 − z∗‖2. Then Algorithm 2 complexity is

O

(

(

LpR
p−1

µ

)
2

p+1

log
µR2

εG

)

. (19)

Proof From (17) and (18) we get the following:

T
∑

t=1

γt〈F (ẑt)− F (z∗); ẑt − z∗〉 ≤ 16Lp

p!

(‖z1 − z∗‖22
2T

)
p+1
2

. (20)

From this and the fact that F (x) is µ-strongly monotone we have

µ‖z̄T − z∗‖22
(∗)
≤ µ

ΓT

T
∑

t=1

γt‖ẑt − z∗‖22
(10)

≤ 1

ΓT

T
∑

t=1

γt〈F (ẑt)− F (z∗); ẑt − z∗〉

(21)

(20)

≤ 16Lp

p!

(‖z1 − z∗‖22
2T

)
p+1
2

,

where (*) follows from convexity of ‖z‖22.
Now we restart the method every time the distance to solution decreases

at least twice. Let Ti be such that ‖z̄Ti
− z∗‖2 ≤ ‖z̃i−z∗‖2

2 , where z̃i is the
point, where we restart our algorithm. Denote R1 = R ≥ ‖z̃1 − z∗‖2, Ri =
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R1/2
i−1 ≥ ‖z̃i − z∗‖2. Then the number of iterations before (i+ 1)-th restart

is

µ‖z̄Ti
− z∗‖22

(21)

≤ 16Lp

p!

(‖z̃i − z∗‖22
2Ti

)

p+1
2

≤ 16Lp

p!

(

R2
i

2Ti

)
p+1
2

≤ µ‖z̃i − z∗‖22
4

≤ µR2
i

4

⇔ Ti ≥
R2

i

2

(

64Lp

p!µR2
i

)
2

p+1

≥
(

64LpR
p−1
i

µ

)
2

p+1

=

⌈(

64LpR
p−1
i

µ

)
2

p+1
⌉

.

Next we need to obtain the number of restarts n, required to achieve the
desired accuracy. From (20) we get

1

ΓTn

Tn
∑

t=1

γt〈F (ẑt)− F (z∗); ẑt − z∗〉 ≤ 16Lp

p!

(‖z̃n − z∗‖22
2Tn

)
p+1
2

≤ 16Lp







R2
n

(

64LpR
p−1
n

µ

)
2

p+1







p+1
2

=
µR2

n

4
=

µR2

22n
≤ εG.

⇔ n ≥ 1

2
log

µR2

εG
=

⌈

1

2
log

µR2

εG

⌉

.

Finally, the total number of iterations is

N =

n
∑

i=1

Ti =

n
∑

i=1

⌈(

64LpR
p−1
i

µ

)
2

p+1
⌉

≤
(

64Lp

µ

)
2

p+1
n
∑

i=1

R
2(p−1)
p+1

i + n

≤
(

64LpR
p−1

µ

)
2

p+1

n+ n

=

(

64LpR
p−1

µ

)
2

p+1
⌈

1

2
log

µR2

εG

⌉

+

⌈

1

2
log

µR2

εG

⌉

= O

(

(

LpR
p−1

µ

)
2

p+1

log
µR2

εG

)

.

This completes the proof. ⊓⊔

3.2 Local quadratic convergence

Just like in previous subsection, becides introducing the Algorithm 3 and its
convergence rate we need to provide some prerequisite information from [11].
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Algorithm 3 CRN-SPP [Algorithm 1 in [11]]

1: Input z0, ε, γ̄ > 0, ρ, α ∈ (0, 1), g satisfies Assumptions 1, 2 and 3.
2: while m(zk) > ε do

3: γk = γ̄
4: while True do

5: Solve the subproblem (x̃k+1, ỹk+1) = argminx maxy gk(x, y; γk)
6: if γk(‖x̃k+1 − xk‖+ ‖ỹk+1 − yk‖) > µ then

7: γk = ργk
8: else

9: break

10: dk = (x̃k+1 − xk; ỹk+1 − yk)
11: if m(zk + αdk) < m(zk + dk) then

12: zk+1 = zk + αdk
13: else if m(zk + αdk) ≥ m(zk + dk) then

14: zk+1 = zk + dk
15: k = k + 1
16: return zk

Because of strong convexity and strong concavity of g(x, y) a unique solu-
tion z∗ to a SPP (1) exists, and F (z∗) = 0. Thus, we can use the following
merit function from [11] during analysis of Algorithm 3 complexity.

m(z) :=
1

2
‖F (z)‖22 =

1

2
(‖∇xg(x, y)‖22 + ‖∇yg(x, y)‖22). (22)

Algorithm 3 solves additional saddle point subproblem on each step, that we
denote as

min
x∈Rn

max
y∈Rm

gk(x, y, γk) :=

g(zk) + 〈∇g(zk), z − zk〉+
1

2
∇2g(zk)[z − zk]

2 +
γk
3
‖x− xk‖32 −

γk
3
‖y − yk‖32,

where γk is some constant.
This proposition provides the relation between the merit function m(z)

and the duality gap under assumptions 1 and 2.

Proposition 1 (Proposition 2.5 from [11]) Let assumptions 1 and 2 hold.
For problem (1) and any point z = (x, y) the duality gap (5) and the merit
function (22) satisfy the following inequalities

µ

L2
1

m(z) ≤ G(x, y) ≤ L1

µ2
m(z). (23)

The next theorem proves local quadratic convergence of the Algorithm 3,
and it is based on Theorem 3.6 from [11].

Theorem 2 (Theorem 3.6 from [11]) Suppose F : Z → R
n is µ-strongly

monotone, first and second order Lipschitz operator (assumptions 1, 2 and 3

hold). Let {zk} be generated by Algorithm 3 with γ̄ = L2µ
2

2L2 , ξ = max
{

1, L1

µ

}

and
z0 : ‖z0 − z∗‖2 ≤ µ

L2ξ
. (24)
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Algorithm 4 Restarted HighOrderMirrorProx with local quadratic conver-
gence
1: Input z1 ∈ Z, p ≥ 1, 0 < εG < 1, R : R ≥ ‖z1 − z∗‖2, ρ ∈ (0, 1), α ∈ (0, 1).
2: z̃1 = z1

3: for i ∈ [n], where n =
⌈

log L2Rξ
µ

+ 1
⌉

do

4: Set Ri =
R

2i−1

5: Set Ti =

⌊

R2
i
2

(

64Lp

p!µRi

) 2
p+1

⌋

6: Run Algorithm 1 with z̃i, p, Ti as input
7: z̃i+1 = z̄Ti

8: Run Algorithm 3 with z̃i+1, ε̃ = µ2εG
L

, γ̄ = L2µ
2

2L2
1
, ρ, α, g as input

9: return zk

Then

∀k ≥ 0 ‖zk+1 − z∗‖2 ≤ L2ξ

µ
‖zk − z∗‖22, (25)

Proof Here we provide only the modified part of its proof. The rest of it can
be found in [11].

If zk+1 = z̃k+1 = zk + dk, then

‖zk+1 − z∗‖2 = ‖z̃k+1 − z∗‖2 ≤ L2

µ
‖zk − z∗‖22 ≤

L2ξ

µ
‖zk − z∗‖22.

Else if zk+1 = ẑk+1 = zk + αdk, then

‖zk+1 − z∗‖2 = ‖ẑk+1 − z∗‖2 ≤ L1L2

µ2
‖zk − z∗‖22 ≤

L2ξ

µ
‖zk − z∗‖22.

Hence, we get (25).

Now we need to find the area, where (25) works:

∃c : ∀k ≥ 0 : ‖zk − z∗‖2 ≤ c ⇒ ‖zk+1 − z∗‖2 ≤ L2ξ

µ
‖zk − z∗‖22

⇔ ‖zk+1 − z∗‖2 ≤ L2ξ

µ
‖zk − z∗‖2 ≤ L2ξc

2

µ
= c

⇔ c =
µ

L2ξ
.

Thus, we get (24). ⊓⊔

Our idea is to use Algorithm 2 until it reaches the area (24) and then switch to
Algorithm 3. Algorithm 4 provides the pseudocode of this idea. From Proposi-
tion 1, our Theorem 1 and Theorem 2, we obtain the complexity of Algorithm
4.
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Theorem 3 Suppose F : R
n × R

m → R
n × R

m, that is defined in (11),
is µ-strongly monotone, first, second and p-th order Lipschitz operator (all

assumptions 1, 2, 3, 4 hold). Denote R : R ≥ ‖z1−z∗‖2 and ξ = max
{

1, L1

µ

}

.

Then the complexity of Algorithm 4 is

O





(

LpR
p−1

µ

)
2

p+1

log
L2ξR

µ
+ log

log
L3

1

2µ2εG

log L1L2

µ2



 . (26)

Proof First of all, we need to find the number of restarts n of Algorithm 2
to reach the area of local quadratic convergence of Algorithm 3 from (24):
‖z̃n − z∗‖2 ≤ µ

L2ξ
. We can choose such n, that

‖z̃n − z∗‖2 ≤ Rn ≤ µ

L2ξ
.

Therefore, the number of restarts is

R

2n−1
≤ µ

L2ξ
⇔ n =

⌈

log
L2Rξ

µ
+ 1

⌉

.

Next we switch to Algorithm 3 and we need to obtain its number of iterations
until convergence. Denote by ε′ the accuracy of solution in terms of the merit
function (22). Owing to first order Lipschitzness of F (z) and the fact that
F (z∗) = 0, we can get

ε′ = m(zk) =
1

2
‖F (zk)‖22 =

1

2
‖F (zk)− F (z∗)‖22 ≤ L2

1

2
‖zk − z∗‖22. (27)

Now we establish a connection between the solution in terms of merit function
m(z) and the duality gap G(x, y). From (27) and (23) we get the following:

εG = G(x, y) = max
y′∈Rn

f(x, y′)− min
x′∈Rn

f(x′, y) ≤ L1

µ2
m(zk) =

L1

µ2
ε′

⇔ µ2εG
L1

≤ ε′. (28)

Then, from (25), (24), (27) and (28) we can obtain the needed number of
iterations k

µ2εG
L1

(27),(28)

≤ L2
1

2
‖zk − z∗‖22

(25)

≤ L2
1

2

(

L1L2

µ2
‖zk−1 − z∗‖22

)2

≤ L2
1

2

(

L1L2

µ2

(

L1L2

µ2
‖zk−2 − z∗‖22

)2)2

≤ ...

≤ L2
1

2

(

L1L2

µ2

)2k−1−2

‖z1 − z∗‖2k2
(24)

≤ L2
1

2

(

L1L2

µ2

)2k−1−2(
µ2

L1L2

)2k

⇔ 2µ2εG
L3
1

≤
(

µ2

L1L2

)2k−1+2

⇔ log
2µ2εG
L3
1

≤ (2k−1 + 2) log
µ2

L1L2
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Since log(µ2/L1L2) < 0,

log
2µ2εG
L3
1

≤ 2k−1 log
µ2

L1L2
⇔ k =

⌈

log
log

L3
1

2µ2εG

log L1L2

µ2

⌉

+ 1.

Finally, the total number of iterations of Algorithm 4 is

N =

n
∑

i=1

Ti + k

≤
(

64LpR
p−1

µ

)
2

p+1
⌈

log
L2ξR

µ
+ 1

⌉

+

⌈

log
L2ξR

µ
+ 1

⌉

+









log
log

L3
1

2µ2εG

log L1L2

µ2









+ 1

= O





(

LpR
p−1

µ

)
2

p+1

log
L2ξR

µ
+ log

log
L3

1

2µ2εG

log L1L2

µ2





⊓⊔

3.3 Gradient norm minimization

In this subsection we apply the framework from [4] to Algorithm 4, introduce
Algorithm 5 for problem (7) and analyze its complexity in terms of the norm
of the gradient ‖∇g(x, y)‖2.

Firstly, we need to introduce some technical lemmas.

Lemma 3 If g(x, y) is p-Lipchitz (14), then its partial p-th order derivatives
are also Lipschitz.

∀x̂, x ∈ R
n, ŷ, y ∈ R

m ⇒ ‖∇p
xiyp−ig(x̂, ŷ)−∇p

xiyp−ig(x, y)‖2 ≤ Lp‖ẑ − z‖2.
(29)

Proof Here we provide proof only for ∇p
x...x. For other partial derivatives the

proof is analogous.
From definition of ‖ · ‖2

‖∇p
x...xg(x̂, ŷ)−∇p

x...xg(x, y)‖2 = max
‖s‖2≤1

|(∇p
x...xg(x̂, ŷ)−∇p

x...xg(x, y))[s]
p|

= max
‖s‖2≤1

∣

∣

∣

∣

∣

(∇pg(x̂, ŷ)−∇pg(x, y))

[(

s
0

)]p
∣

∣

∣

∣

∣

≤ max
‖h‖2≤1

|(∇pg(x̂, ŷ)−∇pg(x, y))[h]p|

= ‖∇pg(x̂, ŷ)−∇pg(x, y)‖2 ≤ Lp‖ẑ − z‖2.

⊓⊔
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Lemma 4 Let ∇p
x...xg(x, y) be Lipschitz (29). Then

∀n ∈ [p] ⇒ ‖∇p−n
x...xg(ẑ)−∇p−n

x...xΦ(x,y),p(ẑ)‖2 ≤ Lp(
√
2)n

(n+ 1)!
‖ẑ − z‖n+1

2 . (30)

Proof We prove this by induction.

The base of induction n = 1 follows from the definition of Taylor approxi-
mation. Denote f(z) = ∇p−1

x...xg(z).

‖∇p−1
x...xg(ẑ)−∇p−1

x...xΦ(x,y),p(ẑ)‖2
= ‖∇p−1

x...xg(ẑ)−∇p−1
x...xg(z)−∇p

x...xxg(z)[x̂− x]−∇p
x...xyg(z)[ŷ − y]‖2

= ‖f(ẑ)− f(z)−∇f(z)[ẑ − z]‖2

= ‖
∫ 1

0

〈∇f(z + τ(ẑ − z))−∇f(z); ẑ − z〉dτ‖2

≤
∫ 1

0

∥

∥

∥

∥

(

∇p
x...xxg(z + τ(ẑ − z))

∇p
x...xyg(z + τ(ẑ − z))

)

−
(

∇p
x...xxg(z)

∇p
x...xyg(z))

)∥

∥

∥

∥

2

‖ẑ − z‖2dτ

=

∫ 1

0

√

‖∇p
x...xxg(z + τ(ẑ − z))−∇p

x...xxg(z)‖22 + ‖∇p
x...xyg(z + τ(ẑ − z))−∇p

x...xyg(z)‖22·

·‖ẑ − z‖2dτ
(29)

≤
√
2Lp‖ẑ − z‖22

∫ 1

0

τdτ =
Lp

√
2

2
‖ẑ − z‖22.

Now assume it holds for n = p− 1:

‖∇xg(ẑ)−∇xΦ(x,y),p(ẑ)‖2

=

∥

∥

∥

∥

∇xg(ẑ)−∇xg(z)− (∇2
xxg(z)[x̂− x]−∇2

xyg(z)[ŷ − y])− ...−

−∇x

(

1

p!
∇pg(z)[ẑ − z]p

)∥

∥

∥

∥

2

≤ Lp(
√
2)p−1

p!
‖ẑ − z‖p2. (31)
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And consider n = p

|g(ẑ)− Φ(x,y),p(ẑ)|

= |g(ẑ)− g(z)−∇xg(z)[x̂− x]−∇yg(z)[ŷ − y]− ...− 1

p!
∇pg(z)[ẑ − z]p|

≤
∫ 1

0

∥

∥

∥

∥

(

∇xg(z + τ(ẑ − z))
∇yg(z + τ(ẑ − z))

)

−
(

∇xg(z)
∇yg(z)

)

−

−τ

(

∇2
xxg(z)[x̂− x] +∇2

xyg(z)[ŷ − y]
∇2

yxg(z)[x̂− x] +∇2
yyg(z)[ŷ − y]

)

− ...−

−τp−1

p!

(

∇x(∇pg(z)[ẑ − z]p)
∇y(∇pg(z)[ẑ − z]p)

)∥

∥

∥

∥

2

‖ẑ − z‖2dτ

=

∫ 1

0

(

‖∇xg(z + τ(ẑ − z))−∇xg(z)−

−τ(∇2
xxg(z)[x̂− x] +∇2

xyg(z)[ŷ − y])− ...−

−τp−1

p!
∇x(∇pg(z)[ẑ − z]p)‖22+

+‖∇yg(z + τ(ẑ − z))−∇yg(z)−
−τ(∇2

yxg(z)[x̂− x] +∇2
yyg(z)[ŷ − y])− ...−

−τp−1

p!
∇y(∇pg(z)[ẑ − z]p)‖22

)1/2

‖ẑ − z‖2dτ.

If we denote ẑ = z + τ(ẑ − z) in (31), each of two factors under the square
root is indeed what we had for n = p− 1. Finally,

‖∇xg(ẑ)−∇xΦ(x,y),p(ẑ)‖2 ≤
√
2
Lp(

√
2)p−1

p!
‖ẑ − z‖p+1

2

∫ 1

0

τpdτ

=
Lp(

√
2)p

(p+ 1)!
‖ẑ − z‖p+1

2 .

For any other partial derivative in (30) the result is the same and can be
obtained in a similar way. ⊓⊔

The next lemma is a modified version of Lemma 5.2 from [9] for SPP.

Lemma 5 (Lemma 5.2 from [9]) Let (x̃, ỹ) = T g
p,M (x, y) , p ≥ 2, where

M ≥
√
2pLp > 1√

2
pLp and assumption 4 hold. Then

‖∇g(x̃, ỹ)‖
p+1
p

2

M
3p+1
2p

2
2p2+p+1

2p p(p+ 1)!
≤ g(x, ỹ)− g(x̃, y). (32)

Proof

‖∇g(x̃, ỹ)‖22 = ‖∇xg(x̃, ỹ)‖22 + ‖∇yg(x̃, ỹ)‖22.
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Firstly, consider ∇x:

‖∇xg(x̃, ỹ)‖22 = ‖∇xg(x̃, ỹ)−∇xΦ(x,y),p(x̃, ỹ) +∇xΦ(x,y),p(x̃, ỹ)−
−∇xΩ(x,y),p,M (x̃, ỹ) +∇xΩ(x,y),p,M(x̃, ỹ)‖22

≤
(

‖∇xg(x̃, ỹ)−∇xΦ(x,y),p(x̃, ỹ)‖2+

+‖∇xΦ(x,y),p(x̃, ỹ)−∇xΩ(x,y),p,M(x̃, ỹ)‖+ ‖∇xΩ(x,y),p,M (x̃, ỹ)‖2
)2

≤
(

2
p−1
2 Lp

p!
‖z̃ − z‖p2 +

2
p−1
2 M

p!
‖x̃− x‖p2

)2

≤ 2pM2‖z̃ − z‖2p2 .

For ∇y in a similar way we get the same result

‖∇xg(x̃, ỹ)‖22 ≤ 2pM2‖z̃ − z‖2p2 .

Summing these two results, we obtain

‖∇g(x̃, ỹ)‖22 ≤ 2p+1M
(

‖x̃− x‖22 + ‖ỹ − y‖22
)p
. (33)

Secondly, consider point (x̃, y). From (30) it is obvious that

|g(x̃, y)−Φ(x,y),p(x̃, y)| ≤
Lp(

√
2)p

(p+ 1)!
‖(x̃, y)− (x, y)‖p+1

2 =
Lp(

√
2)p

(p+ 1)!
‖x̃− x‖p+1

2 .

From this fact we get

g(x̃, y) ≤ Φ(x,y),p(x̃, y) +
Lp(

√
2)p

(p+ 1)!
‖x̃− x‖p+1

2

= Φ(x,y),p(x̃, y) +
Lp(

√
2)p−1

(p+ 1)!
‖x̃− x‖p+1

2 −

−
(

M(
√
2)p−1

(p+ 1)!
‖x̃− x‖p+1

2 − Lp(
√
2)p

(p+ 1)!
‖x̃− x‖p+1

2

)

= Ω(x,y),p,M(x̃, y)− (M − Lp

√
2)
(
√
2)p−1‖x̃− x‖p+1

2

(p+ 1)!

≤ Ω(x,y),p,M (x̃, ỹ)− (M − Lp

√
2)

(
√
2)p−1‖x̃− x‖p+1

2

(p+ 1)!
.

Since M ≥
√
2pLp ⇔ −Lp

√
2 ≥ −M

p . we have

Ω(x,y),p,M(x̃, ỹ)− g(x̃, y) ≥ M(p− 1)(
√
2)p−1‖x̃− x‖p+1

2

p(p+ 1)!
≥ M‖x̃− x‖p+1

2

p(p+ 1)!
.

(34)
Now consider the point (x, ỹ). In a similar way we can get the following

result:

g(x, ỹ)−Ω(x,y),p,M (x̃, ỹ) ≥ M‖ỹ − y‖p+1
2

p(p+ 1)!
. (35)
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From the sum of (34) and (35) we obtain

g(x, ỹ)− g(x̃, y) ≥ M

p(p+ 1)!

(

‖x̃− x‖p+1
2 + ‖ỹ − y‖p+1

2

)

. (36)

Finally, we need to connect (33) and (36). From Hölder’s inequality we can
get

(

n
∑

i=1

xp
i

)
1
p

≤ n
q−p
qp

(

n
∑

i=1

xq
i

)
1
q

,

where q, p ∈ N, q > p ≥ 1. Now, from (33) it follows that

(‖∇g(x̃, ỹ)‖22
2p+1M

)
1
2p

≤
(

‖x̃− x‖22 + ‖ỹ − y‖22
)

1
2 .

And, from (36) we can get

(

p(p+ 1)!(g(x, ỹ)− g(x̃, y))

M

)
1

p+1

≥
(

‖x̃− x‖p+1
2 + ‖ỹ − y‖p+1

2

)
1

p+1

.

Since p ≥ 2, we obtain the final result

‖∇g(x̃, ỹ)‖
p+1
p

2

M
3p+1
2p

2
2p2+p+1

2p p(p+ 1)!
≤ g(x, ỹ)− g(x̃, y).

⊓⊔

Now we have all the needed information to estimate the final convergence
rate of the Algorithm 5 for gradient norm minimization.

Theorem 4 Assume the function g(x, y) : Rn × R
m → R is convex by x and

concave by y, p times differentiable on R
n with Lp-Lipschitz p-th derivative.

Let z̃ be generated by Algorithm 5. Then

‖∇g(z̃)‖2 ≤ ε∇,

and the total complexity of Algorithm 5 is

O

(

(

LpR
p

ε∇

)
2

p+1

log
L2R

2ξ

ε∇

)

,

where ξ = max
{

1, 4RL1

ε

}

.

Proof Denote z∗µ = (x∗
µ, y

∗
µ) the saddle point of gµ(z). First of all, since gµ(x, y)

is strongly-convex-strongly-concave function, we can apply restart technique
to it every time the distance to its saddle point ‖z − z∗µ‖2 reduces twice. To
check this, we consider upper estimate of the distance to the solution of regular
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Algorithm 5 Restarted HighOrderMirrorProx with local quadratic conver-
gence for gradient norm minimization
1: Input z1 ∈ Z, p ≥ 1, 0 < ε∇ < 1, R : R ≥ ‖z1 − z∗‖2, ρ ∈ (0, 1), α ∈ (0, 1).
2: Define:

z̃1 = z1, M =
√
2pLp, µ =

ε

4R
, ξ = max

{

1,
4RL1

ε∇

}

,

ε′ =
M

3p+1
2p ε

p+1
p

∇

2
2p2+3p+3

2p p(p+ 1)!

,

gµ(x, y) = g(x, y) +
µ

2

(

‖x− x1‖22 − ‖y − y1‖22
)

.

3: for i ∈ [n], where n =
⌈

log L2Rξ
µ

+ 1
⌉

do

4: Set Ri =
R

2i−1

5: Set Ti =

⌈

(

64LpR
p−1
i

p!µ

) 2
p+1

⌉

6: Run Algorithm 1 for gµ with z̃i, p, Ti as input
7: z̃i+1 = z̄Ti

8: Run Algorithm 3 with z̃i+1, ε′, γ̄ = L2µ
2

2L2
1
, ρ, α, gµ as input

9: Find z̃ = T
gµ
p, M

(zk)
10: Output z̃.

function R : R ≥ ‖z∗ − z‖2 and show, that on each i-th restart ‖z∗µ − zi‖2 ≤
‖z∗ − zi‖2 ≤ Ri. We prove this by induction.

g(x∗
µ, y1) +

µ

2
‖x∗

µ − x1‖22 = gµ(x
∗
µ, y1) ≤ gµ(x

∗, y1) = g(x∗, y1) +
µ

2
‖x∗ − x1‖22

≤ g(x∗
µ, y1) +

µ

2
‖x∗ − x1‖22

⇔ ‖x∗
µ − x1‖2 ≤ ‖x∗ − x1‖2.

g(x1, y
∗
µ)−

µ

2
‖y∗µ − y1‖2 = gµ(x1, y

∗
µ) ≥ gµ(x1, y

∗) = g(x1, y
∗)− µ

2
‖y∗ − y1‖22

≥ g(x1, y
∗
µ)−

µ

2
‖y∗ − y1‖22

⇔ ‖y∗µ − y1‖2 ≤ ‖y∗ − y1‖2.
This gives us

‖z∗µ − z1‖2 ≤ ‖z∗ − z1‖2 ≤ R.

Now suppose, that ‖z∗µ − zi‖2 ≤ ‖z∗− zi‖2 ≤ Ri = R/2i−1. Consider i+1.
From the proof of Theorem 1 and our choice of Ti in Algorithm 5, we know,
that

µ‖zi+1 − z∗µ‖22 = µ‖z̄Ti
− z∗µ‖22 ≤ 16Lp

p!

(

R2
i

2Ti

)

p+1
2

≤ µR2
i+1

⇔ ‖zi+1 − z∗µ‖2 ≤ Ri+1.
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From Theorem 3 we already know the number of restarts to reach the area

of quadratic convergence: n =
⌈

log L2Rξ
µ + 1

⌉

.

Next, we need to show, that Algorithm 5 converges in terms of ‖∇gµ(z)‖2.
Let z̃ = (x̃, ỹ) be the output of Algorithm 5. From the definition of gµ we get

‖∇g(x̃, ỹ)‖22 = ‖∇xgµ(x̃, ỹ)− µ(x̃− x1)‖22 + ‖∇ygµ(x̃, ỹ) + µ(ỹ − y1)‖22
≤ (‖∇xgµ(x̃, ỹ)‖2 + µ‖x̃− x‖2)2 + (‖∇ygµ(x̃, ỹ)‖2 + µ‖ỹ − y‖2)2

≤ 2
(

‖∇xgµ(x̃, ỹ)‖22 + ‖∇ygµ(x̃, ỹ)‖22
)

+ 2µ2
(

‖x̃− x‖22 + ‖ỹ − y‖22
)

= 2‖∇gµ(x̃, ỹ)‖22 + 2µ2‖z̃ − z1‖22

⇔ ‖∇g(x̃, ỹ)‖2 ≤
√

2‖∇gµ(x̃, ỹ)‖22 + 2µ2‖z̃ − z1‖22.
Firstly, we estimate ‖∇gµ(x̃, ỹ)‖2. From (32) we know, that

‖∇gµ(x̃, ỹ)‖
p+1
p

2

M
3p+1
2p

2
2p2+p+1

2p p(p+ 1)!

(32)

≤ gµ(x, ỹ)− gµ(x̃, y)

≤ max
ỹ∈Rm

gµ(x, ỹ)− min
x̃∈Rn

gµ(x̃, y) = Gµ(x, y) ≤ ε′.

⇔ ‖∇gµ(x̃, ỹ)‖2 ≤





2
2p2+p+1

2p p(p+ 1)!ε′

M
3p+1
2p





p
p+1

=
ε∇
2
. (37)

Secondly, we estimate µ‖z̃ − z1‖2. By definition of R we know, that

‖z∗ − z1‖2 ≤ R.

And since z̃ is closer to solution then z1, we have

‖z̃ − z∗‖2 ≤ ‖z∗ − z1‖2 ≤ R.

From these facts and triangle inequality we get

µ‖z̃ − z1‖2 ≤ µ (‖z̃ − z∗‖2 + ‖z∗ − z1‖2) ≤ 2Rµ =
ε∇
2
. (38)

Thus, from (37) and (38) we obtain

‖∇gµ(x̃, ỹ)‖2 ≤
√

2ε2∇/4 + 2ε2∇/4 = ε∇.

Finally, we need to estimate complexity of the Algorithm 5.

N =

n
∑

i=1

Ti + k ≤
(

64Lp

p!µ

)
2

p+1
n
∑

i=1

R
2(p−1)
p+1

i + n+ k

≤
(

64LpR
p−1

p!µ

)
2

p+1

· n+ n+ k

= O

(

(

LpR
p

ε∇

)
2

p+1

log
L2R

2ξ

ε∇

)

,
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where ξ = max
{

1, 4RL1

ε∇

}

. Here k is the number of iterations of Algorithm 3

inside Algorithm 5. We dropped it due to its log log dependence on ε∇.
⊓⊔

4 Discussion

In this work we propose three methods for p-th order tensor methods for
strongly-convex-strongly-concave SPP. Two of these methods tackle classical
minimax SPP (1) and MVI (2) problems, and the third method aims at gra-
dient norm minimization of SPP (3).

The methods for minimax problem are based on the ideas, developed in
the works [2] and [11]. In [2] the authors use p-th order oracle to construct an
algorithm for MVI problems with monotone operator. As a corollary, this al-
gorithm allows to solve SPP with convex-concave objective. Because of strong
convexity and strong concavity of our problem, we can apply a restart tech-
nique to the method from [2] and get better algorithm complexity. To further
improve local convergence rate we switch to the algorithm from [11] in the area
of its quadratic convergence. This way we get rid of the multiplicative loga-
rithmic factor and get additive log log factor in the final complexity estimate
and get locally quadratic convergence.

The method for gradient norm minimization relies on the works [9] and [4].
From [9] we take the result, that connects norm of the gradient of the objective
with objective residual, and slightly modify it for SPP. This step allows us to
use the framework from [4] and use our optimal algorithm for minimax SPP
for gradient norm minimization.

In spite of all the improvements, we should remind about many additional
assumptions about the problem, which reduces number of real problems, that
can suit to it.

One of possible directions for further research are the more general Hölder
conditios instead of Lipschitz conditions and uniformly convex case. Addition-
ally, the author in [2] provided implementation details of the Algorithm 1 only
for p = 2. Therefore, the questions about its realizaition for p > 2 are still
opened.
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