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Abstract: Decentralized optimization is widely used in large scale and privacy preserving machine
learning and various distributed control and sensing systems. It is assumed that every agent in
the network possesses a local objective function, and the nodes interact via a communication
network. In the standard scenario, which is mostly studied in the literature, the local functions
are dependent on a common set of variables, and, therefore, have to send the whole variable set
at each communication round. In this work, we study a different problem statement, where each
of the local functions held by the nodes depends only on some subset of the variables. Given
a network, we build a general algorithm-independent framework for decentralized partitioned
optimization that allows to construct algorithms with reduced communication load using a
generalization of Laplacian matrix. Moreover, our framework allows to obtain algorithms with
non-asymptotic convergence rates with explicit dependence on the parameters of the network,
including accelerated and optimal first-order methods. We illustrate the efficacy of our approach
on a synthetic example.
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1. INTRODUCTION

Distributed algorithms is a classical Borkar and Varaiya
(1982); Tsitsiklis and Athans (1984); DeGroot (1974), yet
actively developing research area with many applications in-
cluding robotics, resource allocation, power system control,
control of drone or satellite networks, distributed statistical
inference and optimal transport, multiagent reinforcement
learning Xiao and Boyd (2006); Rabbat and Nowak (2004);
Ram et al. (2009); Kraska et al. (2013); Uribe et al. (2018);
Kroshnin et al. (2019); Ivanova et al. (2020). Recent surge
of interest to such problems in optimization and machine
learning is motivated by large-scale learning problems with
privacy constraints and other challenges such as data being
produced or stored distributedly Bottou (2010); Boyd
et al. (2011); Nedié et al. (2017). An important part of
this research studies decentralized distributed optimization
algorithms over arbitrary networks of computing agents, e.g.
sensors or computers, which is represented by a connected
graph in which two agents can communicate with each
other if there is an edge between them. This imposes
communication constraints and the goal of the whole
system Nedié¢ et al. (2009) is to cooperatively minimize a
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global objective using only local communications between
agents, each of which has access only to a local piece of the
global objective.

In this paper, we further exploit additional structure in such
problems and consider distributed partitioned optimization
problems also known as optimization with overlapping
variables and distributed optimization of partially separable
objective functions. Such problems arise in many modern
big-data applications, e.g., distributed matrix completion,
distributed estimation in power networks, network utility
maximization, distributed resource allocation, cooperative
localization in wireless networks, building maps by robotic
networks Erseghe (2012); Kekatos and Giannakis (2012);
Carli and Notarstefano (2013); Notarnicola et al. (2017);
Cannelli et al. (2020). As in the standard formulations, the
goal is to minimize a sum of m functions f;(x), i =1,...,m
with each f;(x) stored at a node of the computational
network. Yet, unlike standard distributed problems, the
space of decision variables is divided into n blocks, and
each of f;(x) may depend only on a, possibly small, subset
of blocks. Such sparse structure leads to inefficiency of the
standard approaches Scaman et al. (2017); Kovalev et al.
(2020) since they require each node to store and send the
whole vector of variables instead of storing and exchanging
with other nodes a small vector of variables which influences



its local objective f;(x). This leads to inefficient usage of
computational and communication resources.

Theory of algorithms exploiting such additional structure
seems to be underdeveloped in the literature. Necoara and
Clipici (2016) propose a parallel version of a randomized
(block) coordinate descent method for minimizing the sum
of a partially separable smooth convex function and a
fully separable non-smooth convex function. Moreover, they
explain how to implement their algorithms in a distributed
setup and obtain convergence rate guarantees. Cannelli
et al. (2020) consider convex and nonconvex constrained
optimization with a partially separable objective function
and propose an asynchronous algorithm with rate guaran-
tees for this class of problems. Finally, Notarnicola et al.
(2017) propose asynchronous dual decomposition algorithm
for such problems and prove its asymptotic convergence.

Despite very advanced results and techniques, these works
have two limitations. Firstly, their distributed algorithms
assume that the number of functions m is the same as the
number of variables blocks n and each node 4 stores not
only the objective f;, but also the i-th block of variables.
Secondly, and more importantly, they assume that the
computational graph is aligned with the dependence of
fi’s on the blocks of variables. The latter means that
if f; depends on the block variable 2, then the nodes
i and ¢ are connected by an edge of the computational
network. In this paper, we do not make such assump-
tions and consider a more general setting. Moreover, we
propose a general algorithm-independent framework that
allows to reformulate distributed partitioned optimization
problem using in a way suitable for application of many
decentralized distributed optimization algorithms, see, e.g.,
Yang et al. (2019); Gorbunov et al. (2020); Dvinskikh and
Gasnikov (2021). Our approach makes it possible to go
beyond optimization problems and apply it to decentralized
methods for saddle-point problems Rogozin et al. (2021)
and variational inequalities Kovalev et al. (2022). At the
core of our framework lie mixing matrices, e.g., Laplacian
of the computational graph, which are widely used in
decentralized optimization Gorbunov et al. (2020). Our
approach allows to flexibly choose computational subgraph
for each block of variables and the corresponding mixing
matrices in order to make the storage, computational,
and communication complexity smaller. This, in partic-
ular, allows obtaining algorithms with non-asymptotic
convergence rates (unlike Notarnicola et al. (2017)) with
explicit dependence on the parameters of the computational
network, including accelerated and optimal algorithms
(unlike Cannelli et al. (2020); Necoara and Clipici (2016)).

We illustrate the effectiveness of our reformulation-based
framework by considering graphs of a certain structure.
These graphs have a two-layer hierarchy: the first layer
is represented by groups of nodes that communicate on
their local variable blocks, while the upper level reflects
the communications between the groups. Within the inter-
group information exchange, the nodes from each group
share the variables according to the links between the
groups. The reasons to consider such topologies are as
follows: first, such structures are scalable in terms of the
number of groups and the number of agents within each
group. Second, these graphs admit closed-form calculation

of the Laplacian spectra, which influence the convergence
rates of distributed algorithms. Moreover, such hierarchical
graphs mimic the nature of the distributed estimators that
consider local variables as private information and exchange
the shared variables with certain neighbors only (e.g. in
distributed power system state estimation, see Kekatos
and Giannakis (2012); Notarnicola et al. (2017). Such
graphs allow us to study the asymptotics of the condition
number of the Laplacian matrix for both approaches: with
a common state vector and with blocks of variables, and
show that our approach leads to better convergence rates
of distributed algorithms.

This paper is organized as follows. In Section 2, we describe
our framework for partitioned optimization problems.
Namely, we describe the generalization of Laplacian matrix
in Section 2.1, give an example of building such a matrix
in Section 2.2 and analyze its spectral characteristics in
Section 2.3. After that, we illustrate how our approach
works on a synthetic network example in Section 3. There
we consider a hierarchical network that consists of n
cliques of size k connected by a ring graph and show that
using our approach decreases the condition number of the
communication matrix by ©(n2k) times.

1.1 Notation

Throughout this paper, L(G) denotes the Laplacian matrix
of graph G = (V,&):

deg(i)7 ifi =4,
0, else,

where deg(i) denotes the number of nodes adjacent to
node i. We also let I, be the identity matrix of size p x p,
1, be the all-ones vector of length p and Oy be a vector

consisting of p zeros. We denote el(,q) =(0,...,1,...,0)T
the g-th coordinate vector in RP. After that, Apax(-) and
AT (-) are the largest and smallest positive eigenvalues
of matrix, respectively, and x(-) = Amax(-)/AL. () is the
condition number. Finally, A(-) denotes the set of unique
eigenvalues of a matrix.

2. DISTRIBUTED PARTITIONED OPTIMIZATION
2.1 The proposed framework

Consider the following distributed partitioned optimization
problem:
m
; — £ V]

min f(e), f@):=3_F (a2}, (1)
where N; C {1,...,n}, i.e., each function f; depends on
a subset Vil of variables! 2! € R, ¢ = 1,...,n and
these subsets may be of different size and even overlap.
Further, we assume that there is a computational network
represented by a connected graph G = (V,E&), where
V = {1,...,m} is the set of nodes and &£ is the set of

I For simplicity, we consider variables z¢ € R, but everything can be
straightforwardly generalized for the case when 2f € R™¢ are blocks
of variables which do not intersect and the sum of all their dimensions
is equal to n.



edges connecting the elements of V', and that each f; is
locally held by a separate computational node of G. The
goal of the network is to cooperatively solve problem (1)
under communication constraints: two nodes may exchange
information if and only if there is an edge in £ connecting
these nodes. Unlike previous works, it is allowed that two
functions f; and f; depend on the same variable z¢, but
nodes ¢ and j are not connected by an edge in G.

To exploit the partitioned structure of the problem, for
every variable z¢, we deﬁne a set of nodes that hold
functions dependent onzt: VECY (le. VE={i: L€ N}
and consider_an undirected and connected communication
subnetwork G* = (V¢ £%) with £¢ C €. By construction, an

edge (i, 7) lies in £ if f; and fJ depend on zf and (i, j) € €.

The standard approaches Gorbunov et al. (2020) to solve
distributed optimization problems require each node to
store a local approximation of the whole vector x € R™ and
communicate it to the neighbors. To reduce the storage
requirements and the amount of communicated information,
we assume that each node 7 holds an approximation xf only
of the variables x¢ such that £ € Nj, i.e. f; depends on .
To obtain a problem equivalent to (1) we impose consensus

. Z _ é _ _ . .

constraints z; =z, =...= Tjipep v~vhere 1y, Jpe are
the nodes of V. Since all the graphs G¢ are connected and
have vertices V¥, we can equivalently rewrite (1) using the

approximations ac‘f as
min F(x

min F(x) = gf (2)

s.t. x; —xf Y(i,j) € & £ =1,.
The next reformulation step is based on stating the con-
straints of this problem as a system of linear equations using
a communication matrix, which requires some notation.
For each node i, we define a vector z; € R™ such that
its f-th component xf = 0 if £ ¢ N, i.e., f; does not
depend on z¢ and :cf is the above-defined approximation

of z* if ¢ € Nj. Also, we introduce the stacked vector
x = [zf ...z}]T € R™ and x’ = [z{...2f,]T € R™

to be the vector of approximations to the variable z*
with the convention that z¢ = 0 if £ ¢ N;. We further
introduce graphs G* = (V, &%) for £ = 1,...,m, which are
graphs G¢ augmented with isolated vertices (if needed).

The communicgution matrix W associated with the set of
networks {Qe} 1 is defined as 2

n
W = Z LG @elPeT, (3)

=1
According to the definition of x, we have (L(G%) ®
eVel!) x = (L(GH)x") e and Wx = S (L(G)x")®
e'! . Thus, we conclude that the linear constraint Wx =0
is equlvalent to {L GhHxt = 0}2 1» Which, in turn, by the
definition of the graph Laplacian, are equlvalent to the
constraints in (2). Finally, we introduce f;(z) = f;(zVi)
for e =1,...,m. Functions f; depend only on the variable
subset N, but formally take the whole variable vector as
their argument. Combining everything together, we obtain

the following equivalent reformulation of (1) and (2)

2 Instead of L(GY) we can take a doubly stochastic mixing matrix.

min F(x
xER™

Zfzxz s.t. Wx = 0. (4)
=1

Thus, our framework results in this reformulation which
is standard for decentralized optimization and allows to
apply a long list of algorithms to solve (1) by solving (4).
Any decentralized consensus-based optimization algorithms
Gorbunov et al. (2020), including the state-of-the-art primal
(OPAPC Kovalev et al. (2020)) and dual (MSDA Scaman
et al. (2017)) methods can be applied to our problem
reformulation. The communication complexity of these
algorithms explicitly depends on the parameters of the
network through the condition number x (W) of W. Thus,
in what follows we focus on studying the spectrum of W.

Remark 1. When all f; depend on the common set of
variables, i.e. N; = {1,...,n} for i« = 1,...,m, we
have L(GY) = W for { = .,n. In this case W =
W ® >, eVel? T = W ® I,,, which is the standard

communication matrix used in decentralized optimization.

2.2 Example

Consider a graph G = (V, &), where V = {1,2,3},€ =
{(1,2),(1,3)}, i.e. G and let us have two variables xl 22,

Let fi = fi(z',2?) , fo = fo(a!) and f3 = f3(2?). We
build correspondlng Laplamans for the variables z! and z2
as follows.

AL

a) Original graph G (b) Subgraphs G! and G

Fig. 1. Graph G of the computational network with three
nodes and subgraphs G! (in blue), G2 (in green)
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According to (3) W has the following form:
W =L(G) ®ee] +L(G") @ere,
10-1
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On the other hand, the Laplacian of the original network G
(not taking into account the different variables) writes as

2-1-1
L(g):[-1 1 o].
101

Note, that the condition number of W is better as compared
to the one of L(G): we have x(W) =1 and x(L(G)) = 3.



2.8 Spectrum of W

In this section, we analyze the spectrum of the novel
communication matrix W.

Lemma 2. For matrix W defined in (3) we have A(W

U AL(GY)).

=1
Proof. Firstly, let Wx = Ax for some x # 0 and \ € C.

By definition of W, we have L(G*)x! = Ax‘for £ =1,...,n
Since x # 0, there exists ¢ such that x¢ # 0, and therefore

e e@ A(L(GY).

Secondly, let L(G%)x* = Ax’ for some £ =1,...,

x = x¢ ® egf)

) =

n. Setting

we obtain
n

Wx =3 (L(G) ®efed)T)(x" ®el))
j=1

= (L(G)x") @ e
ie. A € A(W

=Ax'®el) =xx
U A(L(G
A(L(G

). As a result, A(W %)) and

A(L(G") €

1

) <
A(W), therefore, 6 ) = A(W).

s

14

It immediately follows from Lemma 2 that Apax (W)

14 + o )
121[&;(’” )\max(L(g )) and )\mm(w) = 1I<n[1£n )\mln( (g ) .
Thus, we have

max )\max(L(Qe))

1<t<n

Concerning the example in Figure 1, we have A\pax (L(G1)) =

Ahin(L(G1) = 1, Anax(L(G7)) = AL, (L(G7)) = 1 and
therefore x(W) = 1.

Remark 3. We can determine L(G) up to a positive
multiplicative constant. Since that we can consider
Amax(L(GY)) = 1 for all [ = 1,...,n without loss of
generality. For that we need some preprocessmg to estimate
{/\max L(G%)) } ,—; Dby using Power method (see Golub and
Van Loan (2013)) that could be done in a decentralized
manner. We also note that x(W) from (5) can be bounded
from below by the largest diameter of graphs G/, 1 = 1,...,n
Moreover, for many important classes of graphs this lower
bound is tight up to a Inn factor Scaman et al. (2017).

3. ILLUSTRATIVE EXAMPLE: CYCLE OF CLIQUES

We illustrate the effect of using matrix W defined in (3) on
a synthetic example. Our test case is a computing network
with a two-level hierarchical structure. In the lower layer
we have a clique with k£ > 2 nodes. Each node in a clique
is supposed to share a local variable with its neighbors. In
the upper level n cliques communicate through undirected
cyclic topology: every clique has a “negotiator”, i.e. a node
that has links with similar neighboring nodes (first node
of every clique w.l.o.g.). We denote our graph Grc.

For every clique, we consider its union with two adjacent
nodes and call such subgraph a ”crown”, see Figure
2b. Overall, we have n ”crowns” G¢, ¢ = 1,...,n, each

corresponding to one of the n variables, i.e., each function
f; held by a vertex i of G* depends on z!. Further, if a
node i lies in the intersection of two ”crowns”, its part f; of
the objective depends also on the variables corresponding
to each of the neighboring ”crowns”. All ”crowns” G¢ are
isomorphic and further denote the ”crown” graph as G.,..

Consider an example of graph Grc with n = 3 given
in Figure 2a and enumerate the vertices of the top
”crown” as shown in Figure 2b. Here, the lower lever of
hierarchy are the cliques, depicted in black. The upper
level of communication is an undirected ring (in red). The

“crowns” can be treated as the cliques supplemented by

two extra vertices and corresponding edges. Then the
functions f4, f5, fg depend only on the variable ! since the
corresponding nodes belong only to the top ”crown”. On the
other hand, each of the nodes 1, 2, 3 lies in the intersection
of all 3 crowns and therefore functions fi, fa, f3 depend

on z', 22, 23. In this section, we illustrate that matrix W

(a) Graph Gre with
n = 3 cliques of size
k=4

(b) Subgraph G, corresponding to
variable z!

”

Fig. 2. Hierarchical graph with cliques and its ”crown

subgraph

defined in (3) has a better condition number than the
Laplacian L(Ggrc).

Theorem 4. For the hierarchical ring-clique graph it holds
X(W) = ©(k), x(L(Grc)) = ©(n*k?).

We prove Theorem 4 in a sequence of Lemmas 7, 8, 9,
10 presented below in this section. Theorem 4 illustrates
the flexibility and efficiency of our approach compared to
standard approaches that do not take into account the
partitioned structure of problem (1). Substituting matrix
W instead of L(Grc) allows to enhance the convergence
rate of decentralized algorithms. In the following corollary,
we illustrate this speedup on state-of-the-art primal and
dual optimization methods.

Corollary 5. Let all the functions f;, be L-smooth, pu
strongly-convex and stored at the nodes of Grc. Consider
two algorithms: dual MSDA Scaman et al. (2017) and
primal OPAPC Kovalev et al. (2020). If we use L(Grc),
each of these methods has communication complexity

O (\/%nk In é), the communication complexity becomes
(0] (\/%\/E In %) if we use W, where € is the accuracy.

Remark 6. Obviously, in general case there may be ex-
amples of graphs where our approach does not provide
significant improvement in terms of condition numbers
of the corresponding Laplacian matrices. However, the
essential feature of partitioned representation of the state
vector with sharing of the necessary states only makes
this formulation of the distributed optimization problem



attractive in terms of more sparse communication topology
and reduced information exchange (as compared to (4)). It
also corresponds to the preservation of the privacy of the
data of interacting groups of nodes.

We first estimate x(W). From Lemma 2 it follows that
A(W) = A(L(G.)), where G, denotes the ”crown” graph.
To estimate the asymptotics of the condition number of
”crown” graph, i.e., the condition number of its Laplacian,
we use a technique described in Pozrikidis (2014).

Lemma 7. The condition number of crown-graph has
asymptotics x(L(G.r)) = O(k), where k is the clique size.

Proof. Firstly, to find the eigenvalues 5
of L(G.r), we find the eigenvalues of
L(G..), where G, is the complement
of Ger.

The complement has one isolated ver-
tex (node 3 in Figure 3). We denote
the Laplacian of the connected part of
Ger (i-e. graph in Figure 3 with vertices 4 2
{1,2,4,5,6}) as L'(Gor).

B Fig. 3: Comple-
L'(Ger) = diag(k + 2,k +2,2,...,2) ment of G,.
- 1k+1(ei(€1+)1 + el?lﬂT - (el(clJZl + 91(62421)1;-1

Eigenvalues \' of L'(G,,) are defined through the equation
det (L' (Gor) — Niy) = 0
which, via linear conversions, leads us to the equation
[(k=XN+12-X)"2]- W\ —k-1]=0.

Thus, the eigenvalues of L’ (_C';cr) have the form \| =
0, My =Xy =k+1, N} =... =\, = 2. Using Eq.
2.2.22 from Pozrikidis (2014), we obtain the eigenvalues of
L(gcr) to be )\1 :0, )\2:k+2, )\3:)\4:1, )\5::
Ai+2 = k. This, Lemma 2 gives x(W) = x(L(G)) = (k +
2)/1 = O(k).

Our next goal is to estimate x(L(Grc)) and show that it is
worse than x(W). To compute x(L(Ggrc)), we decompose
L(Gre) into Laplacians of a k-clique Go and a ring
graph Gp that has n nodes. We also introduce matrix
B = eWe®T
k Sk
following form.

that allows us to write L(Grc) in the

L(Grc) =In ® L(Gc) + L(Gr) ® B (6)
Let {\;}, be the eigenvalues of Gg. To obtain the
eigenvalues of L(Ggr¢), we diagonalize it and decompose its
spectrum. The result is formulated in the following Lemma.

Lemma 8. A(L(Gre)) = _QA(L(QC) + AB).

Proof. Let L(Ggr) = ST1US, where ¥ = diag (A1, g, . ...
is a diagonal matrix with eigenvalues of L(Gr) and SST =
I,,. We define

L=(S®I) 'L(Gre)(S®Ty) =1, ®L(Gc) + ¥ @ B.

Whence, A(L) = A(L(Gre)). Indeed, let x be an eigenvec-
tor of L(Gre) such that L(Gre)x = 0x. Then

L-(S®L)'x)=0-((SaL) 'x),

ie., (S®I;)x is an eigenvector of L.

, A\n) Estimating AF

Further, for any eigenvalue 6 of f, we have

Nk (L(Ge) + \iB) 1
L|:|= : =01:]1,
.fll"n (L(Ge) + AnB) z, x'n
ie., (L(Ge) + AiB)x; = 0x; for i = 1,...,n. Consequently,
AL) = ‘Lnjl A(L(Gc) + \iB), which concludes the proof.

Due to Lemma 8, we only have to find the spectrums
A(L(Ge) + \;B) for i = 1,...,n. We do this by applying
the matrix determinant lemma.

Lemma 9. The matrix L(Gc) + AB has the following
eigenvalues.

kA VA2 2(k — 2)A + k2

910‘) 2 i (7&)
6a(\) = k+X— /A2 +22(k:—2))\+k2, (7b)
03(\) = ... =0,(\) = k.

Proof. Let 0 denote some eigenvalue of L(G¢) + AB.
Then, L(Gc) + AB — 0, = A — 1;1], where A =
diag (k+X—0,k—0,....,k—0).

Firstly, note that § = k is an eigenvalue of L(G¢c) + AB.
Indeed, substituting 6 = k, we obtain

Al -1 e-- -1
-1 -1----1

A-1,10 =1 . .. .|,
111

which has determinant equal to 0.

Further, we assume that 6 # k. According to the matrix
determinant lemma we have

det (A—1;1))=(1-1T-A7"-1) - detA

= (1“1_9:1) (k4 X—0)(k— )1
= (k—0)""2(0 — 6,)(6 — 6y)

where 61 and 05 are defined in (7).

Equation (7) gives explicit formulas for eigenvalues of
L(Gre), and it remains to estimate Amax(L(Grc)) and
At (L(Gre))- The eigenvalues of the ring graph G have
the form \; = 2 — 2cos % Note that 0 < \; < 4.
For the largest eigenvalue of L(Gr¢), we have
E+4+/4+2k—-2) -2+ k2
A (L(Grc)) < FEATNVATAE ) DR

+in(L(Gre)) is less straightforward and we
need to compute the minimal s defined in (7b) over

A€ {Al,...,)\n}.
Lemma 10. Tt holds that A}, (L(Gre)) = O(537)-

o(k)

Proof. Firstly, let us show that 62(\) defined in (7b) is
monotonically increasing by considering its derivative:

df2(N) —k—A+2 1

= +
X 2v/k2+ 22 +2(k—2)\ 2




Since k > 2, k+ X —2 < /k2+ A2 +2(k — 2)A, and we

have da;/(\’\) > 0. Since 62(0) = 0, the minimal positive

eigenvalue of L(Ggrc) is reached at minimal positive A, that
is, A (Gre) = 62(2 — 2cos 27).

min

Secondly, we approximate 65(2 — 2 cos 27”) using the Taylor
series at m — oo and get

o 472 1
O(2—2 — | = — — .
2( coSs n) n2k+0(n3)

It follows that A\l (Gre) = O(:37).
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