
An Accelerated Directional Derivative Method for Smooth

Stochastic Convex Optimization

Pavel Dvurechensky Eduard Gorbunov Alexander Gasnikov ∗

August 20, 2020

Abstract

We consider smooth stochastic convex optimization problems in the context of algorithms
which are based on directional derivatives of the objective function. This context can be consid-
ered as an intermediate one between derivative-free optimization and gradient-based optimiza-
tion. We assume that at any given point and for any given direction, a stochastic approximation
for the directional derivative of the objective function at this point and in this direction is avail-
able with some additive noise. The noise is assumed to be of an unknown nature, but bounded
in the absolute value. We underline that we consider directional derivatives in any direction,
as opposed to coordinate descent methods which use only derivatives in coordinate directions.
For this setting, we propose a non-accelerated and an accelerated directional derivative method
and provide their complexity bounds. Our non-accelerated algorithm has a complexity bound
which is similar to the gradient-based algorithm, that is, without any dimension-dependent fac-
tor. Our accelerated algorithm has a complexity bound which coincides with the complexity
bound of the accelerated gradient-based algorithm up to a factor of square root of the problem
dimension. We extend these results to strongly convex problems.

1 Introduction

Zero-order or derivative-free optimization considers problems of minimization of a function using
only, possibly noisy, observations of its values. This area of optimization has a long history, starting
as early as in 1960 [64, 34], see also [17, 67, 23]. Even an older area of optimization, which started in
19th century [19], considers first-order methods which use the information about the gradient of the
objective function. In this paper, we choose an intermediate class of problems. Namely, we assume
that at any given point and for any given direction, a noisy stochastic approximation for the direc-
tional derivative of the objective function at this point in this direction is available. We underline
that we consider directional derivatives in any direction, as opposed to coordinate descent meth-
ods which rely only on derivatives in coordinate directions. We refer to the class of optimization

∗This paper was published in European Journal of Operational Research (DOI: https://doi.org/10.1016/j.
ejor.2020.08.027).
P. Dvurechensky (pavel.dvurechensky@wias-berlin.de) is with Weierstrass Institute for Applied Analysis and Stochas-
tics and Institute for Information Transmission Problems RAS. E. Gorbunov (eduard.gorbunov@phystech.edu, eduard-
gorbunov.github.io) is with Moscow Institute of Physics and Technology and National Research University Higher
School of Economics. A. Gasnikov (gasnikov@yandex.ru) is with Moscow Institute of Physics and Technology, Na-
tional Research University Higher School of Economics and Institute for Information Transmission Problems RAS

1

ar
X

iv
:1

80
4.

02
39

4v
2

 [
m

at
h.

O
C

]
 2

1
Se

p
20

20

https://doi.org/10.1016/j.ejor.2020.08.027
https://doi.org/10.1016/j.ejor.2020.08.027
https://eduardgorbunov.github.io/
https://eduardgorbunov.github.io/

methods, which use directional derivatives of the objective function, as directional derivative meth-
ods. Unlike well developed areas of derivative-free and first-order stochastic optimization methods,
the area of directional derivative optimization methods for stochastic optimization problems is not
sufficiently covered in the literature. This class of optimization methods can be motivated by at
least three situations.

The first one is connected to Automatic Differentiation [71]. Assume that the objective function
is given as a computer program, which performs elementary arithmetic operations and elementary
functions evaluations. Automatic Differentiation allows to calculate the gradient of this objective
function and the additional computational cost is no more than five times larger than the cost of
the evaluation of the objective value. The drawback of this approach is that it requires to store
in memory the result of all the intermediate operations, which can require large memory amount.
On the contrary, calculation of the directional derivative is easier than the calculation of the full
gradient and requires the same memory amount as the calculation of the value of the objective [49].
Since a random vector can be a part of the program input or some randomness can be used during
the program execution, stochastic optimization problems can also be considered.

Importantly, automatic calculation of the directional derivative does not require the objective
function to be smooth. This fact motivates the study of directional derivative methods in connection
to Deep Learning. Indeed, learning problem is often stated as a problem of minimization of a loss
function. A non-smooth activation function, called rectifier, is frequently used in Deep Learning
as a building block for the loss function. Formally speaking, this non-smoothness does not allow
to use Automatic Differentiation in the form of backpropagation to calculate the gradient of the
objective function. At the same time, directional derivatives can be calculated by properly modified
backpropagation.

The second motivating situation is connected to quasi-variational inequalities, which are used
in modelling of different phenomena, such as sandpile formation and growth [63], determination of
lakes and river networks [6], and superconductivity [5]. It happens that directional derivatives can
be calculated for such problems [54] as a solution to some auxiliary problem. Since this subproblem
can not always be solved exactly, the noise in the directional derivative naturally arises. If the
considered physical phenomenon takes place in some random media, stochastic optimization can
be a natural approach to use.

The third motivating situation is connected to derivative-free stochastic optimization. In this
situation a gradient approximation, based on the difference of stochastic approximations for the
values of the objective in two close points, can be considered as a noisy directional derivative in
the direction given by the difference of these two points [33]. In this case, derivative-free stochastic
optimization can be considered as a particular case of directional derivative stochastic optimization.

Motivated by potential presence of non-stochastic noise in the problem, we assume that the noise
in the directional derivative consists of two parts. Similar to stochastic optimization problems, the
first part is of a stochastic nature. On the opposite, the second part is an additive noise of an
unknown nature, but bounded in the absolute value. More precisely, we consider the following
optimization problem

min
x∈Rn

{
f(x) := Eξ[F (x, ξ)] =

∫
X
F (x, ξ)dP (x)

}
, (1)

where ξ is a random vector with probability distribution P (ξ), ξ ∈ X , and for P -almost every
ξ ∈ X , the function F (x, ξ) is closed and convex. Moreover, we assume that, for P almost every

2

ξ, the function F (x, ξ) has gradient g(x, ξ), which is L(ξ)-Lipschitz continuous with respect to the
Euclidean norm and there exists L2 > 0 such that

√
EξL(ξ)2 6 L2 < +∞. Under this assumptions,

Eξg(x, ξ) = ∇f(x) and f has L2-Lipschitz continuous gradient with respect to the Euclidean norm.
Also we assume that

Eξ[‖g(x, ξ)−∇f(x)‖22] 6 σ2, (2)

where ‖ · ‖2 is the Euclidean norm.
Finally, we assume that an optimization procedure, given a point x ∈ Rn, direction e ∈ S2(1)

and ξ independently drawn from P , can obtain a noisy stochastic approximation f̃ ′(x, ξ, e) for the
directional derivative 〈g(x, ξ), e〉:

f̃ ′(x, ξ, e) = 〈g(x, ξ), e〉+ ζ(x, ξ, e) + η(x, ξ, e),

Eξ(ζ(x, ξ, e))2 6 ∆ζ , ∀x ∈ Rn, ∀e ∈ S2(1),

|η(x, ξ, e)| 6 ∆η, ∀x ∈ Rn,∀e ∈ S2(1), a.s. in ξ, (3)

where S2(1) is the Euclidean sphere or radius one with the center at the point zero and the values
∆ζ , ∆η are controlled and can be made as small as it is desired. Note that we use the smoothness
of F (·, ξ) to write the directional derivative as 〈g(x, ξ), e〉, but we do not assume that the whole
stochastic gradient g(x, ξ) is available.

It is well-known [50, 25, 31, 36] that, if the stochastic approximation g(x, ξ) for the gradient of

f is available, an accelerated gradient method has complexity bound O
(

max
{√

L2/ε, σ
2/ε2

})
,

where ε is the target optimization error. The question, to which we give a positive answer in this
paper, is as follows.

Is it possible to solve a smooth stochastic optimization problem with the same ε-dependence in
the complexity and only noisy observations of the directional derivative?

1.1 Related work

We first consider the related work on directional derivative optimization methods and, then, a
closely related class of derivative-free methods with two-point feedback, the latter meaning that an
optimization method uses two function value evaluations on each iteration. Since all the considered
methods are randomized, we compare oracle complexity bounds in terms of expectation, that is,
a number of directional derivatives or function values evaluations which is sufficient to achieve an
error ε in the expected optimization error Ef(x̂) − f∗, where x̂ is the output of an algorithm and
f∗ is the optimal value of f .

1.1.1 Directional derivative methods

Deterministic smooth optimization problems. In [60], the authors consider the Euclidean
case and propose a non-accelerated and an accelerated directional derivative method for smooth
convex problems with complexity bounds O(nL2/ε) and O(n

√
L2/ε) respectively. Also they pro-

pose a non-accelerated and an accelerated method for problems with µ-strongly convex objective
and prove complexity bounds O(nL2/µ log2(1/ε)) and O(n

√
L2/µ log2(1/ε)) respectively. For a

more general case of problems with additional bounded noise in directional derivatives, but also for
the Euclidean case, an accelerated directional derivative method was proposed in [33] and a bound
O(n

√
L2/ε) was proved.

3

We also should mention coordinate descent methods. In the seminal paper [57], a random coor-
dinate descent for smooth convex and µ-strongly convex optimization problems were proposed and
O(L/ε) and O(L/µ log2(1/ε)) complexity bounds were proved, where L is an effective Lipschitz
constant of the gradient varying from n to some average over coordinates coordinate-wise Lipschitz
constant. In the same paper, an accelerated version of random coordinate descent was proposed
for convex problems and O(n

√
L/ε) complexity bound was proved. Papers [52, 35, 53, 65] gen-

eralize accelerated random coordinate descent for different settings, including µ-strongly convex
problems, and [61, 3, 41] provide a O(

√
L/ε) and O(

√
L/µ log2(1/ε)) complexity bounds, where L

is an effective Lipschitz constant of the gradient varying from n to some average over coordinates
coordinate-wise Lipschitz constant, and, in the best case, is dimension-independent. An acceler-
ated random coordinate descent with inexact coordinate-wise derivatives was proposed in [33] with
O(n

√
L/ε) complexity bound and also a unified view on directional derivative methods, coordinate

descent and derivative-free methods.
Stochastic optimization problems. A directional derivative method for non-smooth stochas-

tic convex optimization problems was introduced in [60] with a complexity bound O(n2/ε2). A
random coordinate descent method for non-smooth stochastic convex and µ- strongly convex opti-
mization problems were introduced in [24] with complexity bounds O(n/ε2) and O(n/µε) respec-
tively.

1.1.2 Derivative-free methods

Deterministic smooth optimization problems. A non-accelerated and an accelerated derivative-
free method for this type of problems were proposed in [60] for the Euclidean case with the bounds
O(nL2/ε) and O(n

√
L2/ε) respectively. The same paper proposed a non-accelerated and an accel-

erated method for µ-strongly convex problems with complexity bounds O(nL2/µ log2(1/ε)) and
O(n

√
L2/µ log2(1/ε)) respectively. A non-accelerated derivative-free method for deterministic

problems with additional bounded noise in function values was proposed in [15] together with
O(nL2/ε) bound and application to learning parameter of a parametric PageRank model, see also
[38, 37]. Deterministic problems with additional bounded noise in function values were also con-
sidered in [33], where several accelerated derivative-free methods, including Derivative-Free Block-
Coordinate Descent, were proposed and a bound O(n

√
L/ε) was proved, where L depends on the

method and, in some sense, characterizes the average over blocks of coordinates Lipschitz constant
of the derivative in the block. Mixed first-order/zero-order setting is considered in [13]. After our
paper appeared as a preprint, the papers [10, 16] studied derivative-free quasi-Newton methods
for problems with noisy function values, and the paper [11] reported theoretical and empirical
comparison of different gradient approximations for zero-order methods.

Stochastic optimization problems. Most of the authors in this group solve a more general
problem of bandit convex optimization and obtain bounds on the so-called regret. It is well known
[20] that a bound on the regret can be converted to a bound on the expected optimization error.
Non-smooth stochastic optimization problems were considered in [60], where an O(n2/ε2) complex-
ity bound was proved for a derivative-free method. This bound was improved by [26, 40, 39, 66, 8, 46]
to1 Õ(n2/qR2

p/ε
2), where p ∈ {1, 2}, 1

p + 1
q = 1 and Rp is the radius of the feasible set in the p-

norm ‖ · ‖p. For non-smooth µp-strongly convex w.r.t. to p-norm problems, the authors of [39, 8]

proved a bound Õ(n2/q/(µpε)). A version of these methods for non-smooth saddle-point problems

1Õ hides polylogarithmic factors (lnn)c, c > 0.

4

is developed in [14].
Intermediate, partially smooth problems with a restrictive assumption of boundedness of E ‖g(x, ξ)‖2,

were considered in [26], where it was proved that a proper modification of Mirror Descent algorithm
with derivative-free approximation of the gradient gives a bound O(n2/qR2

p/ε
2) for convex prob-

lems, improving upon the bound Õ(n2/ε2) of [1]. For strongly convex w.r.t 2-norm problems, the
authors of [1] obtained a bound Õ(n2/ε), which was later extended for µp-strongly convex problems

and improved to Õ(n2/q/(µpε)) in [39].
In the fully smooth case, without the assumption that E‖g(x, ξ)‖2 < +∞, papers [43, 42]

proposed a derivative-free algorithm for the Euclidean case with the bound

Õ

(
max

{
nL2R2

ε
,
nσ2

ε2

})
.

In [45], the authors proposed a non-accelerated and an accelerated derivative-free method with the
bounds

Õ

max

n
2
qL2R

2
p

ε
,
n

2
q σ2R2

p

ε2

 , Õ

max

n 1
2

+ 1
q

√
L2R2

p

ε
,
n

2
q σ2R2

p

ε2

respectively, where Rp characterizes the distance in p-norm between the starting point of the algo-
rithm and a solution to (1), p ∈ {1, 2} and q ∈ {2,∞} is the conjugate to p, given by the identity
1
p + 1

q = 1.
The authors of [21] combine accelerated derivative-free optimization with accelerated variance

reduction technique for finite-sum convex problems in the Euclidean setup.
Other works. For a recent review of derivative-free optimization see [51] and for a review of

stochastic optimization, including derivative-free optimization, see [62].

1.2 Our contributions

As we have seen above, only two results on directional derivative methods for non-smooth stochastic
convex optimization are available in the literature, and, to the best of our knowledge, nothing is
known about directional derivative methods for smooth stochastic convex optimization, even in
the well-developed area of random coordinate descent methods. Our main contribution consists
in closing this gap in the theory of directional derivative methods for stochastic optimization and
considering even more general setting with additional noise of an unknown nature in the directional
derivative.

Our methods are based on two proximal setups [9] characterized by the value2 p ∈ {1, 2}
and its conjugate q ∈ {2,∞}, given by the identity 1

p + 1
q = 1. The case p = 1 corresponds

to the choice of 1-norm in Rn and corresponding prox-function which is strongly convex with
respect to this norm (we provide the details below). The case p = 2 corresponds to the choice
of the Euclidean 2-norm in Rn and squared Euclidean norm as the prox-function. As our main
contribution, we propose an Accelerated Randomized Directional Derivative (ARDD) algorithm
for smooth stochastic optimization based on noisy observations of directional derivative of the

2Strictly speaking, we are able to consider all the intermediate cases p ∈ [1, 2], but we are not aware of any
proximal setup which is compatible with p /∈ {1, 2}

5

objective. Our method has the complexity bound

Õ

max

n 1
2

+ 1
q

√
L2R2

p

ε
,
n

2
q σ2R2

p

ε2

 , (4)

where Rp characterizes the distance in p-norm between the starting point of the algorithm and a
solution to (1).

As our second contribution, we propose a non-accelerated Randomized Directional Derivative
(RDD) algorithm with the complexity bound

Õ

max

n
2
qL2R

2
p

ε
,
n

2
q σ2R2

p

ε2

 . (5)

Interestingly, for this method when p = 1 and q =∞, we obtain complexity bound which depends on
the dimension n only logarithmically despite we use only noisy directional derivative observations.
Let us comment on the comparison between the accelerated and non-accelerated method. In the
regime of small variance σ2 in both bounds the dominating term is the first one. If p = 1, q = ∞
and L2R

2
p < nε, then the bound for the non-accelerated method is smaller than that of for the

accelerated. In this regime it is preferred to use the non-accelerated method.
Note that, in the case of (1) having a sparse solution, our bounds for p = 1 allow to gain a

factor of
√
n in the complexity of the accelerated method and a factor of n in the complexity of the

non-accelerated method in comparison to the Euclidean case p = 2. Indeed, sparsity of a solution
x∗ means that ‖x∗‖1 = O(1) · ‖x∗‖2 and, if the starting point is zero, we obtain R2

1 = ‖x∗‖21 =
O(1) · ‖x∗‖22 = O(1)R2

2. Hence, the bounds for p = 1 and p = 2 can be compared only based on the
corresponding powers of n, the latter being smaller for the case p = 1, q =∞.

We underline here that our methods are based on random directions drawn from the uniform
distribution on the unit Euclidean sphere and our results for p = 1 can not be obtained by random
coordinate descent.

As our third contribution, we extend the above results to the case when the objective function is
additionally known to be µp-strongly convex w.r.t. p-norm. For this case, we propose an accelerated
and a non-accelerated algorithm which respectively have complexity bounds

Õ

(
max

{
n

1
2

+ 1
q

√
L2

µp
log2

µpR
2
p

ε
,
n

2
q σ2

µpε

})
, Õ

(
max

{
n

2
qL2

µp
log2

µpR
2
p

ε
,
n

2
q σ2

µpε

})
. (6)

In the regime of small variance σ2 in both bounds the dominating term is the first one. If p = 1,
q = ∞ and L2

µp
< n, then the bound for the non-accelerated method is smaller than that of for

the accelerated. In this regime of relatively well-conditioned problems it is preferred to use the
non-accelerated method.

As our final contribution, we consider derivative-free smooth stochastic convex optimization
with inexact values of the stochastic approximations for the function values as a particular case of
optimization using noisy directional derivatives. This allows us to obtain the complexity bounds
of [45] as a straightforward corollary of our results in this paper. At the same time we obtain
new complexity bounds for the strongly convex case which, to the best of our knowledge, were not
known in the literature.

6

Note that our results for accelerated and non-accelerated methods are somewhat similar to the
finite-sum minimization problems of the form

min
x∈Rn

m∑
i=1

fi(x),

where fi are convex smooth functions. For such problems accelerated methods have complexity
Õ(m +

√
mL/ε) and non-accelerated methods have complexity Õ(m + L/ε) (see, e.g. [2] for a

nice review on the topic). As we see, acceleration allows to take the square root of the second
term but for the price of

√
m and the two bounds can not be directly compared without additional

assumptions on the value of mε.
Special note on [45, 70]. One of the novelties and insights in the approach of this paper in

comparison to [45, 70] is to realize that gradient-free methods are a particular case of directional
derivative methods with inexact oracle. Unlike these papers, in the current paper we need to
account for two types of inexactness. One is stochastic with bounded second moment and the
second is bounded a.s. This is a more complicated assumption than the one in [45, 70] and we have
to assume that the error values can be controlled, unlike [45, 70]. Moreover, since the oracle returns
different information, we have to construct our stochastic approximation of the gradient differently,
which also changes the proof technique. We also analyze in this paper the case of strongly convex
objective values, which was not done in [45, 70].

1.3 Paper organization

The rest of the paper is organized as follows. In Section 2, both for convex and strongly convex
problems, we introduce our algorithms, state their convergence rate theorems and corresponding
complexity bounds. Section 3 is devoted to proof of the convergence rate theorem for our accelerated
method and convex objective functions. Section 4 is devoted to proof of the convergence rate
theorem for our non-accelerated method and convex objective functions. In Section 5 we provide
the proofs for the case of strongly convex objective function. Finally, in Section 6 we provide
numerical experiments with two types of objective functions: worst case functions for first-order
methods [56] and least squares problem.

2 Algorithms and main results

In this section, we provide our non-accelerated and accelerated directional derivative methods both
for convex and strongly convex problems together with convergence theorems and corresponding
complexity bounds. The proofs are rather technical and postponed to next sections.

2.1 Preliminaries

We start by introducing necessary objects and technical results.
Proximal setup. Let p ∈ [1, 2] and ‖x‖p be the p-norm in Rn defined as

‖x‖pp =
n∑
i=1

|xi|p, x ∈ Rn,

7

‖ · ‖q be its dual, defined by ‖g‖q = max
x

{
〈g, x〉, ‖x‖p ≤ 1

}
, where q ∈ [2,∞] is the conjugate

number to p, given by 1
p + 1

q = 1, and, for q =∞, by definition ‖x‖∞ = max
i=1,...,n

|xi|.

We choose a prox-function d(x) which is continuous, convex on Rn and is 1-strongly convex on
Rn with respect to ‖·‖p, i.e., for any x, y ∈ Rn d(y)−d(x)−〈∇d(x), y−x〉 ≥ 1

2‖y−x‖
2
p. Without loss

of generality, we assume that min
x∈Rn

d(x) = 0. We define also the corresponding Bregman divergence

V [z](x) = d(x)− d(z)− 〈∇d(z), x− z〉, x, z ∈ Rn. Note that, by the strong convexity of d,

V [z](x) ≥ 1

2
‖x− z‖2p, x, z ∈ Rn. (7)

For the case p = 1, we choose the following prox-function [9]

d(x) =
en(κ−1)(2−κ)/κ lnn

2
‖x‖2κ, κ = 1 +

1

lnn
(8)

and, for the case p = 2, we choose the prox-function to be the squared Euclidean norm

d(x) =
1

2
‖x‖22. (9)

Main technical lemma. In our proofs of complexity bounds, we rely on the following lemma.
The proof is rather technical and is provided in the appendix.

Lemma 2.1. Let e ∈ RS2(1), i.e be a random vector uniformly distributed on the surface of
the unit Euclidean sphere in Rn, p ∈ [1, 2] and q be given by 1

p + 1
q = 1. Then, for n > 8 and

ρn = min{q − 1, 16 lnn− 8}n
2
q
−1

,
Ee‖e‖2q ≤ ρn, (10)

Ee
(
〈s, e〉2‖e‖2q

)
≤ 6ρn

n
‖s‖22, ∀s ∈ Rn. (11)

Stochastic approximation of the gradient. Based on the noisy stochastic observations (3) of
the directional derivative, we form the following stochastic approximation of ∇f(x)

∇̃mf(x) =
1

m

m∑
i=1

f̃ ′(x, ξi, e)e, (12)

where e ∈ RS2(1), ξi, i = 1, ...,m are independent realizations of ξ, m is the batch size.

2.2 Algorithms and main results for convex problems

Our Accelerated Randomized Directional Derivative (ARDD) method is listed as Algorithm 1.

Theorem 2.2. Let ARDD method be applied to solve problem (1). Then

E[f(yN)]− f(x∗) 6 384Θpn2ρnL2

N2 + 4N
nL2
· σ2

m + 61N
24L2

∆ζ + 122N
3L2

∆2
η

+
12
√

2nΘp
N2

(√
∆ζ

2 + 2∆η

)
+ N2

12nρnL2

(√
∆ζ

2 + 2∆η

)2

,
(13)

8

Algorithm 1 Accelerated Randomized Directional Derivative (ARDD) method

Input: x0 —starting point; N > 1 — number of iterations; m > 1 — batch size.
Output: point yN .

1: y0 ← x0, z0 ← x0.
2: for k = 0, . . . , N − 1. do
3: αk+1 ← k+2

96n2ρnL2
, τk ← 1

48αk+1n2ρnL2
= 2

k+2 .

4: Generate ek+1 ∈ RS2(1) independently from previous iterations and ξi, i = 1, ...,m – inde-
pendent realizations of ξ.

5: Calculate

∇̃mf(xk+1) =
1

m

m∑
i=1

f̃ ′(xk+1, ξi, e)e.

6: xk+1 ← τkzk + (1− τk)yk.
7: yk+1 ← xk+1 − 1

2L2
∇̃mf(xk+1).

8: zk+1 ← argmin
z∈Rn

{
αk+1n

〈
∇̃mf(xk+1), z − zk

〉
+ V [zk] (z)

}
.

9: end for
10: return yN

where Θp = V [z0](x∗) is defined by the chosen proximal setup and E[·] = Ee1,...,eN ,ξ1,1,...,ξN,m [·].

Before we proceed to the non-accelerated method, we give the appropriate choice of the ARDD
method parameters N , m, and accuracy of the directional derivative evaluation ∆ζ , ∆η. These
values are chosen such that the r.h.s. of (13) is smaller than ε. For simplicity we omit numerical
constants and summarize the obtained values of the algorithm parameters in Table 1 below. The last
row represents the total number Nm of oracle calls, that is, the number of directional derivative
evaluations, which was advertised in (4). Note that the bound (13) allows also to choose the
accuracy of the directional derivative evaluation ∆ζ , ∆η decreasing with N . This is done by
making each term with ∆ζ or ∆η in the r.h.s. to be of the same order as the first term.

p = 1 p = 2

N O

(√
n lnnL2Θ1

ε

)
O

(√
n2L2Θ2

ε

)
m O

(
max

{
1,
√

lnn
n ·

σ2

ε3/2
·
√

Θ1

L2

})
O
(

max
{

1, σ2

ε3/2
·
√

Θ2

L2

})
∆ζ O

(
min

{
n(lnn)2L2

2Θ1,
ε2

nΘ1
, ε

3
2√

n lnn
·
√

L2

Θ1

})
O

(
min

{
n3L2

2Θ2,
ε2

nΘ2
, ε

3
2

n ·
√

L2

Θ2

})
∆η O

(
min

{
√
n lnnL2

√
Θ1,

ε√
nΘ1

, ε
3
4

4√
n lnn

· 4

√
L2

Θ1

})
O

(
min

{
n

3
2L2

√
Θ2,

ε√
nΘ2

, ε
3
4√
n
· 4

√
L2

Θ2

})
O-le calls O

(
max

{√
n lnnL2Θ1

ε , σ
2Θ1 lnn
ε2

})
O

(
max

{√
n2L2Θ2

ε , σ
2Θ2n
ε2

})
Table 1: Algorithm 1 parameters for the cases p = 1 and p = 2.

Our Randomized Directional Derivative (RDD) method is listed as Algorithm 2.

9

Algorithm 2 Randomized Directional Derivative (RDD) method

Input: x0 —starting point; N > 1 — number of iterations; m > 1 — batch size.
Output: point x̄N .

1: for k = 0, . . . , N − 1. do
2: α← 1

48nρnL2
.

3: Generate ek+1 ∈ RS2 (1) independently from previous iterations and ξi, i = 1, ...,m – inde-
pendent realizations of ξ.

4: Calculate

∇̃mf(xk) =
1

m

m∑
i=1

f̃ ′(xk, ξi, e)e.

5: xk+1 ← argmin
x∈Rn

{
αn
〈
∇̃mf(xk), x− xk

〉
+ V [xk] (x)

}
.

6: end for

7: return x̄N ← 1
N

N−1∑
k=0

xk

Theorem 2.3. Let RDD method be applied to solve problem (1). Then

E[f(x̄N)]− f(x∗) 6
384nρnL2Θp

N + 2
L2

σ2

m + n
12L2

∆ζ + 4n
3L2

∆2
η +

8
√

2nΘp
N

(√
∆ζ

2 + 2∆η

)
+ N

3L2ρn

(√
∆ζ

2 + 2∆η

)2

,

(14)

where Θp = V [z0](x∗) is defined by the chosen proximal setup and E[·] = Ee1,...,eN ,ξ1,1,...,ξN,m [·].

Before we proceed, we give the appropriate choice of the RDD method parameters N , m, and
accuracy of the directional derivative evaluation ∆ζ , ∆η. These values are chosen such that the
r.h.s. of (14) is smaller than ε. For simplicity we omit numerical constants and summarize the
obtained values of the algorithm parameters in Table 2 below. The last row represents the total
number Nm of oracle calls, that is, the number of directional derivative evaluations, which was
advertised in (5). Note that the bound (14) allows also to choose the accuracy of the directional
derivative evaluation ∆ζ , ∆η decreasing with N . This is done by making each term with ∆ζ or ∆η

in the r.h.s. to be of the same order as the first term.

2.3 Extensions for strongly convex problems

In this subsection, we assume additionally that f is µp-strongly convex w.r.t. p-norm. Our algo-
rithms and proofs rely on the following fact. Let x∗ be some fixed point and x be a random point
such that Ex

[
‖x− x∗‖2p

]
6 R2

p, then

Exd
(
x− x∗
Rp

)
6

Ωp

2
, (15)

where Ex denotes the expectation with respect to random vector x and Ωp is defined as follows.
For p = 1 and our choice of the prox-function (8), Ωp = en(κ−1)(2−κ)/κ lnn = O(lnn) for our choice

10

p = 1 p = 2

N O
(
L2Θ1 lnn

ε

)
O
(
nL2Θ2
ε

)
m O

(
max

{
1, σ

2

εL2

})
O
(

max
{

1, σ
2

εL2

})
∆ζ O

(
min

{
(lnn)2

n L2
2Θ1,

ε2

nΘ1
, εL2

n

})
O
(

min
{
nL2

2Θ2,
ε2

nΘ2
, εL2

n

})
∆η O

(
min

{
lnn√
n
L2

√
Θ1,

ε√
nΘ1

,
√

εL2
n

})
O

(
min

{
√
nL2

√
Θ2,

ε√
nΘ2

,
√

εL2
n

})
O-le calls O

(
max

{
L2Θ1 lnn

ε , σ
2Θ1 lnn
ε2

})
O
(

max
{
nL2Θ2
ε , nσ

2Θ2
ε2

})
Table 2: Algorithm 2 parameters for the cases p = 1 and p = 2.

of κ = 1 + 1
lnn , see [55, 47]. For p = 2 and our choice of the prox-function (9), Ωp = 1. Our

Accelerated Randomized Directional Derivative method for strongly convex problems (ARDDsc)
is listed as Algorithm 3.

Theorem 2.4. Let f in problem (1) be µp-strongly convex and ARDDsc method be applied to
solve this problem. Then

Ef(uK)− f∗ 6 µpR2
p

2 · 2−K + 2∆. (18)

where ∆ = 61N0
24L2

∆ζ + 122N0
3L2

∆2
η +

12
√

2nR2
pΩp

N2
0

(√
∆ζ

2 + 2∆η

)
+

N2
0

12nρnL2

(√
∆ζ

2 + 2∆η

)2

. Moreover,

under an appropriate choice of ∆ζ and ∆η s.t. 2∆ 6 ε/2, the oracle complexity to achieve
ε-accuracy of the solution is

Õ

(
max

{
n

1
2

+ 1
q

√
L2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
.

Despite we have linear convergence in terms of the iterations number, the number of the oracle
evaluations corresponds to sublinear convergence. The reason is that we consider general stochastic
optimization problem, rather than finite-sum problems for which the linear convergence rate is
achievable in terms of the oracle evaluations [2]. Our oracle complexity corresponds to the lower
complexity bounds [55] for general stochastic convex optimization.

Before we proceed to the non-accelerated method, we give the appropriate choice of the accuracy
of the directional derivative evaluation ∆ζ , ∆η for ARDDsc to achieve an accuracy ε of the solution.
These values are chosen such that the r.h.s. of (18) is smaller than ε. For simplicity we omit
numerical constants and summarize the obtained values of the algorithm parameters in Table 3
below. The last row represents the total number of oracle calls, that is, the number of directional
derivative evaluations, which was stated in (6).

Our Randomized Directional Derivative method for strongly convex problems (RDDsc) is listed
as Algorithm 4.

11

Algorithm 3 Accelerated Randomized Directional Derivative method for strongly convex functions
(ARDDsc)

Input: x0 —starting point s.t. ‖x0 − x∗‖2p ≤ R2
p; K > 1 — number of iterations; µp – strong

convexity parameter.
Output: point uK .

1: Set

N0 =

⌈√
8aL2Ωp

µp

⌉
, (16)

where a = 384n2ρn.
2: for k = 0, . . . , K − 1 do
3: Set

mk := max

{
1,

⌈
8bσ2N02k

L2µpR2
p

⌉}
, R2

k := R2
p2
−k +

4∆

µp

(
1− 2−k

)
, (17)

where b = 4
n .

4: Set dk(x) = R2
kd
(
x−uk
Rk

)
.

5: Run ARDD with starting point uk and prox-function dk(x) for N0 steps with batch size mk.

6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK

Algorithm 4 Randomized Directional Derivative method for strongly convex functions (RDDsc)

Input: x0 —starting point s.t. ‖x0 − x∗‖2p ≤ R2
p; K > 1 — number of iterations; µp – strong

convexity parameter.
Output: point uK .

1: Set

N0 =

⌈
8aL2Ωp

µp

⌉
, (19)

where a = 384nρn.
2: for k = 0, . . . , K − 1 do
3: Set

mk := max

{
1,

⌈
8bσ22k

L2µpR2
p

⌉}
, R2

k := R2
p2
−k +

4∆

µp

(
1− 2−k

)
, (20)

where b = 2
4: Set dk(x) = R2

kd
(
x−uk
Rk

)
.

5: Run RDD with starting point uk and prox-function dk(x) for N0 steps with batch size mk.
6: Set uk+1 = yN0 , k = k + 1.
7: end for
8: return uK

12

p = 1 p = 2

∆ζ O

(
min

{
ε
√

L2µ1
n lnnΩ1

, ε2
n(lnn)2L2

2Ω1

R2
1µ

2
1

, ε · µ1
nΩ1

})
O

(
min

{
ε
√
L2µ2
n2Ω2

, ε2
n3L2

2Ω2

R2
2µ

2
2
, ε · µ2

nΩ2

})
∆η O

(
min

{√
ε 4
√

L2µ1
n lnnΩ1

, ε
√
n lnnL2

√
Ω1

R1µ1
,
√
ε ·
√

µ1
nΩ1

})
O
(

min
{√

ε 4
√
L2µ2
n2Ω2

, ε
√
n3L2

√
Ω2

R2µ2
,
√
ε ·
√

µ2
nΩ2

})
O-le calls Õ

(
max

{√
n lnnL2Ω1

µ1
log2

µ1R
2
1

ε
, σ

2Ω1 lnn
µ1ε

})
Õ

(
max

{
n
√
L2Ω2
µ2

log2
µ2R

2
2

ε
, nσ

2Ω2
µ2ε

})

Table 3: Algorithm 3 parameters for the cases p = 1 and p = 2.

Theorem 2.5. Let f in problem (1) be µp-strongly convex and RDDsc method be applied to
solve this problem. Then

Ef(uK)− f∗ 6 µpR2
p

2 · 2−K + 2∆. (21)

where ∆ = n
12L2

∆ζ+ 4n
3L2

∆2
η+

8
√

2nR2
pΩp

N0

(√
∆ζ

2 + 2∆η

)
+ N0

3L2ρn

(√
∆ζ

2 + 2∆η

)2

. Moreover, under

an appropriate choice of ∆ζ and ∆η s.t. 2∆ 6 ε/2, the oracle complexity to achieve ε-accuracy
of the solution is

Õ

(
max

{
n

2
qL2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
.

Despite we have linear convergence in terms of the iterations number, the number of the oracle
evaluations corresponds to sublinear convergence. The reason is that we consider general stochastic
optimization problem, rather than finite-sum problems for which the linear convergence rate is
achievable in terms of the oracle evaluations [2]. Our oracle complexity corresponds to the lower
complexity bounds [55] for general stochastic convex optimization.

Before we proceed, we give the appropriate choice of the accuracy of the directional derivative
evaluation ∆ζ , ∆η for RDDsc to achieve an accuracy ε of the solution. These values are chosen such
that the r.h.s. of (21) is smaller than ε. For simplicity we omit numerical constants and summarize
the obtained values of the algorithm parameters in Table 4 below. The last row represents the total
number of oracle calls, that is, the number of directional derivative evaluations, which was stated
in (6).

p = 1 p = 2

∆ζ O
(

min
{
εL2
n , ε2 (lnn)2L2

2

nR2
1µ

2
1
, ε µ1

nΩ1

})
O
(

min
{
εL2
n , ε2 nL2

2

R2
2µ

2
2
, ε µ2

nΩ2

})
∆η O

(
min

{√
εL2
n , ε lnnL2√

nR1µ1
,
√
ε µ1

nΩ1

})
O

(
min

{√
εL2
n , ε

√
nL2

R2µ2
,
√
ε µ2

nΩ2

})
O-le calls Õ

(
max

{
L2Ω1 lnn

µ1
log2

µ1R2
1

ε , σ
2Ω1
µ1ε

})
Õ
(

max
{
nL2Ω2
µ2

log2
µ2R2

2
ε , nσ

2Ω2
µ2ε

})
Table 4: Algorithm 4 parameters for the cases p = 1 and p = 2.

13

2.4 Corollaries for derivative-free optimization

In this subsection, following [45], we consider derivative-free smooth stochastic optimization in the
two-point feedback situation. We assume that an optimization procedure, given a pair of points
(x, y) ∈ R2n , can obtain a pair of noisy stochastic realizations (f̃(x, ξ), f̃(y, ξ)) of the objective
value f , where

f̃(x, ξ) = F (x, ξ) + Ξ(x, ξ), |Ξ(x, ξ)| 6 ∆, ∀x ∈ Rn, a.s. in ξ, (22)

and ξ is independently drawn from P .
Based on these observations of the objective value, we form the following stochastic approxi-

mation of ∇f(x)

∇̃mf t(x) =
1

m

m∑
i=1

f̃(x+ te, ξi)− f̃(x, ξi)

t
e =

(〈
gm(x, ~ξm), e

〉
+

1

m

m∑
i=1

(ζ(x, ξi, e) + η(x, ξi, e))

)
e,

(23)
where e ∈ RS2(1), ξi, i = 1, ...,m are independent realizations of ξ, m is the batch size, t is some

small positive parameter which we call smoothing parameter, gm(x, ~ξm) := 1
m

m∑
i=1

g(x, ξi), and

ζ(x, ξi, e) =
F (x+ te, ξi)− F (x, ξi)

t
−〈g(x, ξi), e〉, η(x, ξi, e) =

Ξ(x+ te, ξi)− Ξ(x, ξi)

t
, i = 1, ...,m.

By Lipschitz smoothness of F (·, ξ), we have |ζ(x, ξ, e)| 6 L(ξ)t
2 for all x ∈ Rn and e ∈ S2(1).

Hence, Eξ(ζ(x, ξ, e))2 6 L2
2t

2

4 for all x ∈ Rn and e ∈ S2(1). At the same time, from (22), we have
that |η(x, ξ, e)| 6 2∆

t for all x ∈ Rn, e ∈ S2(1) and a.s. in ξ. Applying Theorem 2.2 and Theorem

2.3 with ∆ζ =
L2

2t
2

4 and ∆η = 2∆
t , we reproduce respectively the result of Theorem 2 and Theorem

3 in [45]. Applying Theorem 2.4 and Theorem 2.5 with ∆ζ =
L2

2t
2

4 and ∆η = 2∆
t , we obtain also

complexity bounds (6) for derivative-free smooth stochastic strongly convex optimization, which
was not yet done in the literature.

3 Proof of main result for ARDD method

We divide the proof of Theorem 2.2 into two large steps. First, to simplify the derivations, we prove
this theorem assuming two additional inequalities which connect noisy stochastic approximation of
the gradient (12) with the true gradient and function values. This result is stated as Lemma 3.1.
Then, in Lemma 3.2, we show that our approximation of the gradient (12) indeed satisfies these
two inequalities.

Lemma 3.1. Let {xk, yk, zk}, k > 0 be generated by ARDD method. Assume that there exist
numbers δ1 > 0,δ2 > 0 such that, for all k > 0

E
[〈
∇̃mf(xk+1), zk − x∗

〉]
>

1

n
E [〈∇f(xk+1), zk − x∗〉]− δ1E [‖zk − x∗‖] (24)

and
E
[
‖∇̃mf(xk+1)‖2q

]
6 96ρnL2 (E[f(xk+1)]− E[f(yk+1)]) + δ2, (25)

14

where expectation is taken w.r.t. all randomness and x∗ is a solution to (1). Then

E[f(yN)]− f(x∗) 6 384Θpn2ρnL2

N2 +
12n
√

2Θp
N2 δ1 + N

24ρnL2
δ2 + N2

12ρnL2
δ2

1 , (26)

where Θp = V [z0](x∗) is defined by the chosen proximal setup and the expectation is taken w.r.t.
all randomness.

This result is proved below in subsection 3.1.

Lemma 3.2. Let {xk, yk, zk}, k > 0 be generated by ARDD method. Then (24) and (25) hold
with

δ1 =

√
∆ζ

2
√
n

+
2∆η√
n

(27)

and

δ2 =
96ρn
n
· σ

2

m
+ 61ρn∆ζ + 976ρn∆2

η. (28)

This result is proved below in subsection 3.2.

Proof of Theorem 2.2. Combining Lemma 3.1 and Lemma 3.2, we obtain (13).

3.1 Proof Lemma 3.1

The following lemma estimates the progress in step 8 of ARDD method (and in step 5 of RDD
method), which is a Mirror Descent step.

Lemma 3.3. Assume that z+ = argmin
v∈Rn

{
αn
〈
∇̃mf(x), v − z

〉
+ V [z] (v)

}
. Then, for any fixed

u ∈ Rn,

αnE
[
〈∇̃mf(x), z − u〉

]
6 α2n2

2 E
[
‖∇̃mf(x)‖2q

]
+ E [V [z](u)]− E [V [z+](u)] , (29)

where expectation is taken w.r.t. all randomness.

Proof. For all u ∈ Rn, we have

αn〈∇̃mf(x), z − u〉 = αn〈∇̃mf(x), z − z+〉+ αn〈∇̃mf(x), z+ − u〉
¬
6 αn〈∇̃mf(x), z − z+〉+ 〈−∇V [z](z+), z+ − u〉

= αn〈∇̃mf(x), z − z+〉

+V [z](u)− V [z+](u)− V [z](z+)
®
6
(
αn〈∇̃mf(x), z − z+〉 − 1

2‖z − z+‖2p
)

+V [z](u)− V [z+](u)
¯
6 α2n2

2 ‖∇̃
mf(x)‖2q + V [z](u)− V [z+](u),

(30)

where ¬ follows from the definition of z+, whence 〈∇V [z](z+) + αn∇̃mf t(x), u − z+〉 > 0 for all
u ∈ Rn; follows from the ”‘magic identity”’ Fact 5.3.3 in [9] for the Bregman divergence; ®

follows from (7); and ¯ follows from the Fenchel inequality ζ〈s, z〉 − 1
2‖z‖

2
p ≤

ζ2

2 ‖s‖
2
q . Taking full

expectation we get (29).

Now we prove the following lemma which estimates the one-iteration progress of the whole
algorithm.

15

Lemma 3.4. Let {xk, yk, zk, αk, τk}, k > 0 be generated by ARDD method. Then, under as-
sumptions of Lemma 3.1,

48n2ρnL2α
2
k+1E[f(yk+1)]− (48n2ρnL2α

2
k+1 − αk+1)E [f(yk)]

−E [V [zk](x∗)] + E[V [zk+1](x∗)]− αk+1δ1nE [‖zk − x∗‖p]−
α2
k+1n

2

2 δ2 6 αk+1f(x∗),
(31)

where expectation is taken w.r.t. all randomness, x∗ is a solution to (1).

Proof. Combining (24), (25) and (29), we obtain

αk+1E [〈∇f(xk+1), zk − x∗〉] 6 48α2n2ρnL2 (E [f(xk+1)]− E [f(yk+1)])

+E [Vzk(x∗)]− E[V [zk+1](x∗)] + αk+1δ1nE [‖zk − x∗‖p] +
α2
k+1n

2

2 δ2.
(32)

Further,

αk+1 (E [f(xk+1)]− f(x∗)) 6 αk+1E [〈∇f(xk+1), xk+1 − x∗〉]
= αk+1E [〈∇f(xk+1), xk+1 − zk〉] + αk+1E [〈∇f(xk+1), zk − x∗〉]

¬
=

(1−τk)αk+1

τk
E [〈∇f(xk+1), yk − xk+1〉] + αk+1E [〈∇f(xk+1), zk − x∗〉]

6 (1−τk)αk+1

τk
(E [f(yk)]− E [f(xk+1)]) + αk+1E [〈∇f(xk+1), zk − x∗〉]

(32)

6 (1−τk)αk+1

τk
(E [f(yk)]− E [f(xk+1)]) + 48α2n2ρnL2 (E [f(xk+1)]− E [f(yk+1)])

+E [Vzk(x∗)]− E[V [zk+1](x∗)] + αk+1δ1nE [‖zk − x∗‖p] +
α2
k+1n

2

2 δ2
®
= (48α2

k+1n
2ρnL2 − αk+1)E [f(yk)]− 48α2

k+1n
2ρnL2E[f(yk+1)]

+αk+1E[f(xk+1)] + E [Vzk(x∗)]− E[V [zk+1](x∗)] + αk+1δ1nE [‖zk − x∗‖p] +
α2
k+1n

2

2 δ2.

Here ¬ is since xk+1 := τkzk + (1− τk)yk ⇔ τk(xk+1 − zk) = (1− τk)(yk − xk+1), follows from
the convexity of f and the inequality 1− τk > 0 and ® is since τk = 1

48αk+1n2ρnL2
. Rearranging the

terms, we obtain the statement of the lemma.

We are now ready to finish the proof of Lemma 3.1.

Proof of Lemma 3.1. Note that 48n2ρnL2α
2
k+1 − αk+1 + 1

192n2ρnL2
= 48n2ρnL2α

2
k. That is,

48n2ρnL2α
2
k+1 − αk+1 + 1

192n2ρnL2
= (k+2)2

192n2ρnL2
− k+2

96n2ρnL2
+ 1

192n2ρnL2

= k2+4k+4−2k−4+1
192n2ρnL2

= (k+1)2

192n2ρnL2
= 48n2ρnL2α

2
k.

Telescoping (31) for k = 0, 1, 2, . . . , l − 1 for l 6 N we have3

48n2ρnL2α
2
l E[f(yl)] +

l−1∑
k=1

1
192n2ρnL2

E[f(yk)]− V [z0](x∗) + E[V [zl](x∗)]

−ζ1

l−1∑
k=0

αk+1E[‖u− zk‖p]− ζ2

l−1∑
k=0

α2
k+1 6

l−1∑
k=0

αk+1f(u),

(33)

where we denoted

ζ1 := δ1n, ζ2 :=
n2

2
δ2. (34)

3Note that α1 = 2
96n2ρnL2

= 1
48n2ρnL2

and therefore 48n2ρnL2α
2
1 − α1 = 0.

16

We define Θ := V [z0](x∗), Rk := E[‖x∗ − zk‖p]. Also, from (7), we have that ζ1α1R0 ≤
√

2Θζ1
48n2ρnL2

.

To simplify the notation, we define Bl := ζ2

l−1∑
k=0

α2
k+1 + Θ +

√
2Θζ1

48n2ρnL2
. Since

l−1∑
k=0

αk+1 = l(l+3)
192n2ρnL2

and, for all i = 1, . . . , N , f(yi) 6 f(x∗), we obtain from (33)

(l+1)2

192n2ρnL2
E[f(yl)] 6 f(x∗)

(
(l+3)l

192n2ρnL2
− l−1

192n2ρnL2

)
+Bl − E[V [zl](x

∗)] + ζ1

l−1∑
k=1

αk+1Rk,

0 6 (l+1)2

192n2ρnL2
(E[f(yl)]− f(x∗)) 6 Bl − E[V [zl](x

∗)] + ζ1

l−1∑
k=1

αk+1Rk,

(35)

which gives

E[V [zl](x
∗)] 6 Bl + ζ1

l−1∑
k=1

αk+1Rk. (36)

Moreover,

1
2 (E[‖zl − x∗‖p])2 6 1

2E[‖zl − x∗‖2p] 6 E[V [zl](x
∗)]

(36)

6 Bl + ζ1

l−1∑
k=1

αk+1Rk, (37)

whence,

Rl 6
√

2 ·

√
Bl + ζ1

l−1∑
k=1

αk+1Rk. (38)

Applying Lemma B.1 for a0 = ζ2α
2
1 + Θ +

√
2Θζ1

48n2ρnL2
, ak = ζ2α

2
k+1, b = ζ1 for k = 1, . . . , N − 1, we

obtain

Bl + ζ1

l−1∑
k=1

αk+1Rk 6
(√

Bl +
√

2ζ1 · l2

96n2ρnL2

)2
, l = 1, . . . , N (39)

Since V [z](x∗) > 0, by inequality (35) for l = N and the definition of Bl, we have

(N+1)2

192n2ρnL2
(E[f(yN)]− f(x∗)) 6

(√
BN +

√
2ζ1 · N2

96n2ρnL2

)2 ¬
6 2BN + 4ζ2

1 · N4

(96n2ρnL2)2

= 2ζ2

l−1∑
k=0

α2
k+1 + 2Θ +

√
2Θζ1

24n2ρnL2
+ 4ζ2

1 · N4

(96n2ρnL2)2

6 2Θ +

√
2Θζ1

24n2ρnL2
+ 2ζ2(N+1)3

(96n2ρnL2)2 + 4ζ2
1 · N4

(96n2ρnL2)2

(40)

where ¬ is due to the fact that ∀a, b ∈ R (a + b)2 6 2a2 + 2b2 and is because
N−1∑
k=0

α2
k+1 =

1
(96n2ρnL2)2

N+1∑
k=2

k2 6 1
(96n2ρnL2)2 · (N+1)(N+2)(2N+3)

6 6 1
(96n2ρnL2)2 · (N+1)2(N+1)3(N+1)

6 = (N+1)3

(96n2ρnL2)2 .

Dividing (40) by (N+1)2

192n2ρnL2
and substituting ζ1, ζ2 from (34), we obtain

E[f(yN)]− f(x∗) 6 384Θn2ρnL2

(N+1)2 + 12
√

2Θ
(N+1)2 ζ1 + (N+1)ζ2

24n2ρnL2
+

N4ζ2
1

12n2ρnL2(N+1)2

6 384Θn2ρnL2

N2 + 12n
√

2Θ
N2 δ1 + N

24ρnL2
δ2 + N2

12ρnL2
δ2

1 .

17

3.2 Proof Lemma 3.2

We start with the following technical result which connects our noisy approximation (12) of the
stochastic gradient with the stochastic gradient itself and also with ∇f .

Lemma 3.5. For all x, s ∈ Rn, we have

Ee‖∇̃mf(x)‖2q 6
12ρn
n ‖g

m(x, ~ξm)‖22 + ρn
m

m∑
i=1

ζ(x, ξi)
2 + 16ρn∆2

η, (41)

Ee‖∇̃mf(x)‖22 >
1

2n
‖gm(x, ~ξm)‖22 −

1

2m

m∑
i=1

ζ(x, ξi)
2 − 8∆2

η, (42)

Ee〈∇̃mf(x), s〉 > 1
n〈g

m(x, ~ξm), s〉 − ‖s‖p
2m
√
n

m∑
i=1
|ζ(x, ξi)| − 2∆η‖s‖p√

n
, (43)

Ee‖〈∇f(x), e〉e− ∇̃mf(x)‖22 6 2
n‖∇f(x)− gm(x, ~ξm)‖22 + 1

m

m∑
i=1

ζ(x, ξi)
2 + 16∆2

η, (44)

where gm(x, ~ξm) := 1
m

m∑
i=1

g(x, ξi), ζ(x, ξi) and ∆η are defined in (3).

Proof. First of all, we rewrite ∇̃mf(x) as follows

∇̃mf(x) =

(〈
gm(x, ~ξm), e

〉
+

1

m

m∑
i=1

θ(x, ξi, e)

)
e,

where
θ(x, ξi, e) = ζ(x, ξi) + η(x, ξi, e), i = 1, ...,m.

By (3), we have
|θ(x, ξi, e)| ≤ |ζ(x, ξi)|+ ∆η. (45)

Proof of (41).

Ee‖∇̃mf(x)‖2q = Ee
∥∥∥(〈gm(x, ~ξm), e

〉
+ 1

m

m∑
i=1

θ(x, ξi, e)

)
e
∥∥∥2

q

¬
6 2Ee‖〈gm(x, ~ξm), e〉e‖2q + 2Ee

∥∥∥∥ 1
m

m∑
i=1

θ(x, ξi, e)e

∥∥∥∥2

q

6 12ρn

n ‖g
m(x, ~ξm)‖22 + 2ρn

m

m∑
i=1

(|ζ(x, ξi)|+ ∆η)
2 6 12ρn

n ‖g
m(x, ~ξm)‖22 + ρn

m

m∑
i=1

ζ(x, ξi)
2 + 16ρn∆2

η,

(46)
where ¬ holds since ‖x + y‖2q 6 2‖x‖2q + 2‖y‖2q ,∀x, y ∈ Rn; follows from inequalities (10),(11),

(45) and the fact that, for any a1, a2, . . . , am > 0, it holds that

(
m∑
i=1

ai

)2

6 m
m∑
i=1

a2
i .

18

Proof of (42).

Ee‖∇̃mf(x)‖22 = Ee
∥∥∥(〈gm(x, ~ξm), e

〉
+ 1

m

m∑
i=1

θ(x, ξi, e)

)
e
∥∥∥2

2

¬
> 1

2Ee‖〈g
m(x, ~ξm), e〉e‖22 − 1

m

m∑
i=1

(|ζ(x, ξi)|+ ∆η)
2

> 1

2n‖g
m(x, ~ξm)‖22 − 1

2m

m∑
i=1

ζ(x, ξi)
2 − 8∆2

η,

(47)
where ¬ follows from (45) and inequality ‖x + y‖22 > 1

2‖x‖
2
2 − ‖y‖22, ∀x, y ∈ Rn; follows from

e ∈ S2(1) and Lemma B.10 in [15], stating that, for any s ∈ Rn, E〈s, e〉2 = 1
n‖s‖

2
2.

Proof of (43).

Ee〈∇̃mf(x), s〉 = Ee〈〈gm(x, ~ξm), e〉e, s〉+ Ee 1
m

m∑
i=1

θ(x, ξi, e)〈e, s〉
¬
> 1

n〈g
m(x, ~ξm), s〉 − 1

m

m∑
i=1

(|ζ(x, ξi)|+ ∆η)Ee|〈e, s〉|

> 1

n〈g
m(x, ~ξm), s〉 − ‖s‖p

2m
√
n

m∑
i=1
|ζ(x, ξi)| − 2∆η‖s‖p√

n

(48)

where ¬ follows from Ee[n〈g, e〉e] = g, ∀g ∈ Rn and (45); follows from Lemma B.10 in [15], since
E|〈s, e〉| ≤

√
E〈s, e〉2, and the fact that ‖x‖2 6 ‖x‖p for p 6 2.

Proof of (44).

Ee‖〈∇f(x), e〉e− ∇̃mf(x)‖22 = Ee
∥∥∥∥〈∇f(x), e〉e− 〈gm(x, ~ξm), e〉e− 1

m

m∑
i=1

θ(x, ξi, e)e

∥∥∥∥2

2
¬
6 2Ee

∥∥∥〈∇f(x)− gm(x, ~ξm), e〉e
∥∥∥2

2
+ 2Ee

∥∥∥∥ 1
m

m∑
i=1

θ(x, ξi, e)e

∥∥∥∥2

2

6 2

n‖∇f(x)− gm(x, ~ξm)‖22 + 1
m

m∑
i=1

ζ(x, ξi)
2 + 16∆2

η,

(49)

where ¬ holds since ‖x+y‖22 6 2‖x‖22+2‖y‖22,∀x, y ∈ Rn; follows from e ∈ S2(1) and Lemma B.10
in [15], and (45).

We continue by proving the following lemma which estimates the progress in step 7 of ARDD,
which is a gradient step.

Lemma 3.6. Assume that y = x− 1
2L2
∇̃mf(x). Then,

‖gm(x, ~ξm)‖22 ≤ 8nL2(f(x)− Eef(y)) + 8‖∇f(x)− gm(x, ~ξm)‖22
+5n
m

m∑
i=1

ζ(x, ξi)
2 + 80n∆2

η,
(50)

where gm(x, ~ξm) is defined in Lemma 3.5, ζ(x, ξi) and ∆η are defined in (3).

Proof. Since ∇̃mf(x) is collinear to e, we have that, for some γ ∈ R, y − x = γe. Then, since
‖e‖2 = 1,

〈∇f(x), y − x〉 = 〈∇f(x), e〉γ = 〈∇f(x), e〉〈e, y − x〉 = 〈〈∇f(x), e〉e, y − x〉.

19

From this and L2-smoothness of f we obtain

f(y) 6 f(x) + 〈〈∇f(x), e〉e, y − x〉+ L2
2 ||y − x||

2
2

6 f(x) + 〈∇̃mf(x), y − x〉+ L2||y − x||22 + 〈〈∇f(x), e〉e− ∇̃mf(x), y − x〉 − L2
2 ||y − x||

2
2

¬
6 f(x) + 〈∇̃mf(x), y − x〉+ L2||y − x||22 + 1

2L2
‖〈∇f(x), e〉e− ∇̃mf(x)‖22,

where ¬ follows form the Fenchel inequality 〈s, z〉 − ζ
2‖z‖

2
2 ≤ 1

2ζ ‖s‖
2
2. Using y = x − 1

2L2
∇̃mf(x),

we get
1

4L2
‖∇̃mf(x)‖22 6 f(x)− f(y) + 1

2L2
‖〈∇f(x), e〉e− ∇̃mf(x)‖22

Taking the expectation in e and applying (42), (44), we obtain

1
4L2

(
1

2n‖g
m(x, ~ξm)‖22 − 1

2m

m∑
i=1

ζ(x, ξi)
2 − 8∆2

η

)
6 1

4L2
Ee‖∇̃mf(x)‖22

6 f(x)− Eef(y) + 1
2L2

Ee‖〈∇f(x), e〉e− ∇̃mf(x)‖22
6 f(x)− Eef(y) + 1

2L2

(
2
n‖∇f(x)− gm(x, ~ξm)‖22 + t2

m

m∑
i=1

ζ(x, ξi)
2 + 16∆2

η

)
,

Rearranging the terms, we obtain the statement of the lemma.

We are now ready to finish the proof of Lemma 3.2.

Proof of Lemma 3.2. Taking the expectation w.r.t. all randomness4 of (43) and using inequality

E[|ζ(x, ξi)|] 6
√
E[|ζ(x, ξi)|2]

(3)

6
√

∆ζ ,

we obtain inequality (24) with δ1 =

√
∆ζ

2
√
n

+
2∆η√
n

. Combining (41) and (50), taking the full ex-

pectation and using E[‖∇f(x) − gm(x, ξ)‖22] 6 σ2

m , which follows from (2), we obtain (25) with

δ2 = 96ρn
n · σ2

m + 61ρn∆ζ + 976ρn∆2
η.

4 Proof of main result for RDD method

As in the previous section, we divide the proof of Theorem 2.3 into large steps. First, to simplify
the derivations, we prove this theorem assuming two additional inequalities which connect or noisy
stochastic approximation of the gradient (12) with the true gradient and function values. Then we
show that our approximation of the gradient (12) indeed satisfies these two inequalities.

Lemma 4.1. Let {xk, yk, zk}, k > 0 be generated by RDD method. Assume that there exist
numbers δ1 > 0,δ2 > 0 such that, for all k > 0

E
[〈
∇̃mf(xk), xk − x∗

〉]
>

1

n
E [〈∇f(xk), xk − x∗〉]− δ1E [‖xk − x∗‖p] (51)

E
[
‖∇̃mf(xk)‖2q

]
6

48ρnL2

n
(E [f(xk)]− f(x∗)) + δ2, (52)

4Note that we use s = zk − x∗ which does not depend on ξ1, ξ2, . . . , ξm from the (k + 1)-th iterate and it does
not depend on ek+1. Therefore we can use tower property of mathematical expectation and take firstly conditional
expectation w.r.t. ξ1, . . . , ξm and after that take full expectation.

20

where expectation is taken w.r.t. all randomness and x∗ is a solution to (1). Then

E[f(x̄N)]− f(x∗) 6
384nρnL2Θp

N + n
12ρnL2

δ2 +
8n
√

2Θp
N δ1 + nN

3L2ρn
δ2

1 , (53)

where Θp = V [z0](x∗) is defined by the chosen proximal setup and the expectation is taken w.r.t.
all randomness.

This result is proved below in subsection 4.1.

Lemma 4.2. Let {xk, yk, zk}, k > 0 be generated by RDD method. Then (51) and (52) hold
with

δ1 =

√
∆ζ

2
√
n

+
2∆η√
n

(54)

and

δ2 =
24ρn
n
· σ

2

m
+ ρn∆ζ + 16ρn∆2

η. (55)

This result is proved below in subsection 4.2.

Proof of Theorem 2.3. Combining Lemma 4.1 and Lemma 4.2, we obtain (14).

4.1 Proof Lemma 4.1

Combining (29), (51) and (52) we get

αE [〈∇f(xk), xk − x∗〉] 6 24α2nρnL2 (E [f(xk)]− f(x∗)) + αδ1nE [‖xk − x∗‖p] + α2n2

2 δ2

+E [V [xk](x∗)]− E [V [xk+1](x∗)] ,

whence due to convexity of f we have

(α− 24α2nρnL2)︸ ︷︷ ︸
α
4

(E[f(xk)]− f(x∗)) 6 αδ1nE [‖xk − x∗‖p] + α2n2

2 δ2

+E[V [xk](x∗)]− E[V [xk+1](x∗)],

(56)

because α = 1
48nρnL2

. Summing (56) for k = 0, . . . , l − 1, where l 6 N we get

0 6 Nα
4 (E[f(x̄l)]− f(x∗)) 6 α2n2l

2 δ2 + αδ1n
l−1∑
k=0

E[‖xk − x∗‖p]

+V [x0](x∗)︸ ︷︷ ︸
Θp

−E[V [xl](x
∗)],

(57)

where x̄l
def
= 1

l

l−1∑
k=0

xk. From the previous inequality we get

1
2 (E[‖xl − x∗‖p])2 6 1

2E[‖xl − x∗‖2p] 6 E[V [xl](x∗)]

6 Θp + l · α2n2

2 δ2 + αδ1n
l−1∑
k=0

E[‖xk − x∗‖p],
(58)

21

whence ∀l 6 N we obtain

E[‖xk − x∗‖p] 6
√

2

√√√√Θp + l · α
2n2

2
δ2 + αδ1n

l−1∑
k=0

E[‖xk − x∗‖p]. (59)

Denote Rk = E[‖x∗ − xk‖p] for k = 0, . . . , N . Applying Lemma B.2 for a0 = Θp + αδ1nE[‖x0 −
x∗‖p] 6 Θp + αn

√
2Θpδ1, ak = α2n2

2 δ2, b = nδ1 for k = 1, . . . , N − 1 we have for l = N

Nα
4 (E[f(x̄N)]− f(x∗))

6

(√
Θp +N · α2n2

2 δ2 + αn
√

2Θpδ1 +
√

2nδ1αN

)2

¬
6 2Θp +Nα2n2δ2 + 2αn

√
2Θpδ1 + 4n2δ2

1α
2N2,

whence

E[f(x̄N)]− f(x∗) 6
384nρnL2Θp

N + n
12ρnL2

δ2 +
8n
√

2Θp
N δ1 + nN

3L2ρn
δ2

1 ,

because α = 1
48nρnL2

.

4.2 Proof Lemma 4.2

Taking mathematical expectation w.r.t. all randomness from the (43) we obtain5 inequality (51)

with δ1 =

√
∆ζ

2
√
n

+
2∆η√
n

, because E[|ζ(x, ξi)|] 6
√

E[|ζ(x, ξi)|2]
(3)

6
√

∆ζ . Combining (41) and

‖gm(x, ~ξm)‖22 6 2‖∇f(x)‖22 + 2‖∇f(x)− gm(x, ~ξm)‖22 6 4L2 (E[f(x)]− f(x∗)) + 2‖∇f(x)− gm(x, ~ξm)‖22,
E[‖∇f(x)− gm(x, ~ξm)‖22] 6 σ2

m

and taking full mathematical expectation we obtain (52) with δ2 = 24ρn
n ·

σ2

m + ρn∆ζ + 16ρn∆2
η.

5 Proofs for strongly convex problems

5.1 Accelerated algorithm

Lemma 5.1. Assume that we start ARDD Algorithm 1 from a random point x0 such that

Ex0‖x∗ − x0‖2p 6 R2
p, use the function R2

pd
(
x−x0
Rp

)
as the prox-function and run ARDD for N0

iterations. Then

E[f(yN0)]− f∗ 6
aL2R

2
pΩp

N2
0

+
bσ2N0

mL2
+ ∆,

5Note that we use s = xk − x∗ which does not depend on ξ1, ξ2, . . . , ξm from the (k + 1)-th iterate and it does
not depend on ek+1. Therefore we can use tower property of mathematical expectation and take firstly conditional
expectation w.r.t. ξ1, . . . , ξm and after that take full expectation.

22

where a = 384n2ρn, b = 4
n ,

∆ =
61N0

24L2
∆ζ +

122N0

3L2
∆2
η +

12
√

2nR2
pΩp

N2
0

(√
∆ζ

2
+ 2∆η

)
+

N2
0

12nρnL2

(√
∆ζ

2
+ 2∆η

)2

and the expectation is taken with respect to all the randomness.

Proof. Note that R2
pd
(
x−x0
Rp

)
is strongly convex with constant 1 w.r.t ‖·‖p. Since 0 = arg min d(x),

we have, for the prox-function d̄(x) = R2
pd
(
x−x0
Rp

)
and corresponding Bregman divergence V̄ [x0](x),

Θp = V̄ [x0](x∗) = d̄(x∗)− d̄(x0)− 〈∇d̄(x0), x∗ − x0〉 = d̄(x∗) ≤
R2
pΩp

2
.

Applying Theorem 2.2 an taking additional expectation w.r.t to x0, we finish the proof of the
lemma.

Proof of Theorem 2.4. We prove by induction that

E‖uk − x∗‖2p ≤ R2
k = R2

p2
−k +

4∆

µp

(
1− 2−k

)
. (60)

For k = 0, this inequality obviously holds. Let us assume that it holds for some k ≥ 0 and prove
the induction step. Applying Lemma 5.1 at the step k of Algorithm 3, we obtain that

Ef(uk+1)− f∗ = Ef(yN0)− f∗ 6
aL2R

2
kΩp

N2
0

+
bσ2N0

mkL2
+ ∆.

By definition of N0, we have
aL2R

2
kΩp

N2
0

6
aL2R

2
kΩp

8aL2Ωp
µp

=
µpR

2
k

8
.

By definition of mk, we have

mk >
8bσ2N0

L2µpR2
p2
−k >

8bσ2N0

L2µp

(
R2
p2
−k + 4∆

µp
(1− 2−k)

) =
8bσ2N0

L2µpR2
k

and
bσ2N0

mkL2
6

bσ2N0

L2
8bσ2N0

L2µpR2
k

=
µpR

2
k

8
.

Hence,

Ef(uk+1)− f∗ 6 µpR2
k

4 + ∆ =
µp
4

(
R2
p2
−k + 4∆

µp

(
1− 2−k

))
+ ∆

=
µp
2

(
R2
p2
−(k+1) + 4∆

µp

(
1− 2−(k+1)

))
=

µpR2
k+1

2 .

Since f is strongly convex, we have

E‖uk+1 − x∗‖2p 6
2

µp
(Ef(uk+1)− f∗) 6 R2

k+1.

23

This finishes the induction step and, as a byproduct, we obtain inequality (18).
It remains to estimate the complexity. To make the right hand side of (18) smaller than ε it is

sufficient to choose K =
⌈
log2

µpR2
p

ε

⌉
. To estimate the total number of oracle calls, we write

Number of calls =
K−1∑
k=0

N0mk 6
K−1∑
k=0

N0

(
1 +

8bσ2N02k

L2µpR2
p

)
6 KN0 +

8bσ2N2
0 2K

L2µpR2
p

6

√
8aL2Ωp

µp
log2

µpR
2
p

ε
+

8bσ2

L2µpR2
p

· 8aL2Ωp

µp
·
µpR

2
p

ε

6

√
8aL2Ωp

µp
log2

µpR
2
p

ε
+

64abσ2Ωp

µpε

= Õ

(
max

{
n

1
2

+ 1
q

√
L2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
,

where we used that a = 384n2ρn, b = 4
n and ρn is given in Lemma 2.1.

5.2 Non-accelerated algorithm

Lemma 5.2. Assume that we start RDD Algorithm 2 from a random point x0 such that Ex0‖x∗−
x0‖2p 6 R2

p, use the function R2
pd
(
x−x0
Rp

)
as the prox-function and run RDD for N0 iterations.

Then

E[f(yN0)]− f∗ 6
aL2R

2
pΩp

N0
+

bσ2

mL2
+ ∆,

where a = 192nρn, b = 2, ∆ = n
12L2

∆ζ+
4n

3L2
∆2
η+

8
√

2nR2
pΩp

N0

(√
∆ζ

2 + 2∆η

)
+ N0

3L2ρn

(√
∆ζ

2 + 2∆η

)2

and the expectation is taken with respect to all the randomness.

Proof. Note that R2
pd
(
x−x0
Rp

)
is strongly convex with constant 1 w.r.t ‖·‖p. Since 0 = arg min d(x),

we have, for the prox-function d̄(x) = R2
pd
(
x−x0
Rp

)
and corresponding Bregman divergence V̄ [x0](x),

Θp = V̄ [x0](x∗) = d̄(x∗)− d̄(x0)− 〈∇d̄(x0), x∗ − x0〉 = d̄(x∗) ≤
R2
pΩp

2
.

Applying Theorem 2.3 an taking additional expectation w.r.t to x0, we finish the proof of the
lemma.

Proof of Theorem 2.5. We prove by induction that

E‖uk − x∗‖2p ≤ R2
k = R2

p2
−k +

4∆

µp

(
1− 2−k

)
. (61)

24

For k = 0, this inequality obviously holds. Let us assume that it holds for some k ≥ 0 and prove
the induction step. Applying Lemma 5.2 at the step k of Algorithm 4, we obtain that

Ef(uk+1)− f∗ = Ef(yN0)− f∗ 6
aL2R

2
kΩp

N0
+

bσ2

mkL2
+ ∆.

By definition of N0, we have
aL2R

2
kΩp

N0
6
aL2R

2
kΩp

8aL2Ωp
µp

=
µpR

2
k

8
.

By definition of mk, we have

mk >
8bσ2

L2µpR2
p2
−k >

8bσ2

L2µp

(
R2
p2
−k + 4∆

µp
(1− 2−k)

) =
8bσ2

L2µpR2
k

and
bσ2

mkL2
6

bσ2

L2
8bσ2

L2µpR2
k

=
µpR

2
k

8
.

Hence,

Ef(uk+1)− f∗ 6 µpR2
k

4 + ∆ =
µp
4

(
R2
p2
−k + 4∆

µp

(
1− 2−k

))
+ ∆

=
µp
2

(
R2
p2
−(k+1) + 4∆

µp

(
1− 2−(k+1)

))
=

µpR2
k+1

2 .

Since f is strongly convex, we have

E‖uk+1 − x∗‖2p 6
2

µp
(Ef(uk+1)− f∗) 6 R2

k+1.

This finishes the induction step and, as a byproduct, we obtain inequality (21).
It remains to estimate the complexity. To make the right hand side of (21) smaller than ε it is

sufficient to choose K =
⌈
log2

µpR2
p

ε

⌉
. To estimate the total number of oracle calls, we write

Number of calls =

K−1∑
k=0

N0mk 6
K−1∑
k=0

N0

(
1 +

8bσ22k

L2µpR2
p

)
6 KN0 +

8bσ2N02K

L2µpR2
p

6
8aL2Ωp

µp
log2

µpR
2
p

ε
+

8bσ2

L2µpR2
p

· 8aL2Ωp

µp
·
µpR

2
p

ε

6
8aL2Ωp

µp
log2

µpR
2
p

ε
+

64abσ2Ωp

µpε

= Õ

(
max

{
n

2
qL2Ωp

µp
log2

µpR
2
p

ε
,
n

2
q σ2Ωp

µpε

})
,

where we used that a = 192nρn, b = 2 and ρn is given in Lemma 2.1.

25

6 Numerical experiments

In this section we numerically test our methods on the “worst in the world” function from [56]
and least squares problem. In these problems there is no noise of type η(x, ξ, e) from (3) since one
can compute directional derivatives with machine precision. Moreover, for both examples one can
compute exact functional values, therefore, using small enough smoothing parameter t (see (23)) it
is possible to approximate directional derivatives via finite differences with high enough accuracy.
That is, for the problems we consider in this section the difference between directional derivative
oracle and derivative-free oracle is negligible to influence the behaviour of our methods. Taking it
into account we consider only derivative-free oracle in the experiments and compare our methods
with RSGF from [42].

6.1 Nesterov’s function

We start with numerical tests on Nesterov’s function

f(x) =
L

8

(
x2

1 +
n−1∑
i=0

(xi − xi+1)2 + x2
i

)
− L

4
x1 (62)

which is convex, L-smooth and attains its minimal value f∗ = L
8

(
−1 + 1

n+1

)
at such x∗ =

(x∗1, . . . , x
∗
n)> that x∗i = 1 − i

n+1 for i = 1, . . . , n [56]. We take the starting point x0 such that
all coordinates expect the first one coincides with corresponding coordinates of x∗ and we take 10
as the first coordinate of x0. We also choose L = 10, t = 10−8 and consider n = 100, 1000, 5000.
The results can be found in Figure 1. In these settings ‖x0 − x∗‖1 = ‖x0 − x∗‖2 and our theory
establishes (see Tables 1 and 2) better complexity bounds for the case when p = 1 then for the
Euclidean case especially for big n. The experiments confirm this claim: as one can see in Fig-
ure 1, the choice of `1 proximal setup becomes more beneficial than standard Euclidean setup for
n = 1000 and n = 5000 to reach good enough accuracy. Indeed, our choice of the starting point
and L implies that f(x0) − f(x∗) ≈ 200 and for n = 1000 and n = 5000 ARDD with `1 proximal
setup (ARDD NE in Figure 1) make f(xN)− f(x∗) of order 10−3 − 10−5 faster than ARDD with
p = 2 (ARDD E in Figure 1) and RDD with p = 1 (RDD NE in Figure 1) finds such xN that
f(xN)− f(x∗) is of order 10−3 faster than its Euclidean counterpart (RDD E in Figure 1). Finally,
all of our methods outperform RSGF on the considered problem.

To perform mirror descent step for p = 1 we apply relations obtained in Appendix B from [45].
See other details connected with parameters tuning in C of this work.

6.2 Least squares problem

In this subsection we consider least squares problem:

min
x∈Rn

{
f(x) =

1

2r
‖Ax− b‖22 =

1

r

r∑
i=1

1

2
(Aix− bi)2

}
. (63)

Here A is r × n real matrix, b ∈ Rr and Ai denotes the i-th row of A. Clearly, f(x) is convex and
smooth function. Moreover, each summand fi(x) = 1

2(Aix − bi)2 is also convex and L2.i-smooth

26

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 9

10 7

10 5

10 3

10 1
f(x

k)
f(x

*)
f(x

0)
f(x

*)

Nesterov's function, n = 100, L = 10
ARDD_E
ARDD_NE
RDD_E
RDD_NE
RSGF

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Number of oracle calls

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 1000, L = 10
ARDD_E
ARDD_NE
RDD_E
RDD_NE
RSGF

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 5000, L = 10
ARDD_E
ARDD_NE
RDD_E
RDD_NE
RSGF

Figure 1: ARDD, RDD and RSGF applied to minimize Nesterov’s function (62). We use E and
NE to define `2 and `1 proximal setups respectively (see (8) and (9) for the details). In the plot

for n = 5000 number of oracle calls is divided by 107.

function with L2,i = ‖Ai‖22. One can consider (63) as (1) with F (x, ξ) = fξ(x) = 1
2(Aξx − bξ)2

where ξ is uniformly distributed on {1, 2, . . . , r}. Then, by definition of L2 we have

L2 =
√
EξL2

2,ξ =

√√√√1

r

r∑
i=1

‖Ai‖22 =
‖A‖F√

r
(64)

where ‖A‖F denotes Frobenius norm of matrix A.
In our preliminary experiments elements of A and b were sampled independently from the

standard normal distribution and then matrix A was normalized by its `2-norm. In particular,
we choose r = 300 and n = 400 which implies that f(x) is just convex but not strongly convex
and f(x∗) = 0. Moreover, we compute the solution x∗ as A+b where A+ denotes Moore-Penrose
inverse of A and choose the starting point x0 as x∗ and 100 to the first component. In our tests
the suboptimality of the starting point, i.e. f(x0) − f(x∗), was approximately 3. The results can
be found in Figure 2. We want to notice that in these preliminary experiments with stochasticity
in functional values in experiments with ARDD it was needed to tune not only αk+1 that appears
in the mirror descent step, but also the stepsize for the gradient step, see the details in C.

27

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 11

10 9

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Least squares problem, r = 300, n = 400
ARDD_E
ARDD_NE
RDD_E
RDD_NE
RSGF

Figure 2: ARDD, RDD and RSGF applied to solve least squares problem (63). We use E and NE
to define `2 and `1 proximal setups respectively (see (8) and (9) for the details). For all methods
batch size m equals 50. By oracle call we mean one computation of functional value of a summand.
Number of oracle calls is divided by 108.

7 Conclusion

In this paper we propose four novel directional derivative methods for smooth stochastic convex
and strongly convex optimization with corollaries for derivative-free optimization. These methods
are able to work with Euclidean and non-Euclidean proximal setups. We prove complexity results
showing that in non-Euclidean case complexities of our methods outperform state-of-the-art results
for directional derivative and derivative-free methods in terms of the dependence on the dimension
of the problem under assumption that `1 and `2 norms of x0−x∗ are close to each other, e.g. when
x0 = 0 and x∗ is sparse. Moreover, we analyze our methods under general assumptions on the
noisy oracle and provide bounds for the admissible noise levels. Since we use mini-batches, we are
able to separate iteration complexity and sample complexity, the former being up to a dimension-
dependent factor the same as for accelerated gradient method in the standard deterministic full-
gradient setting. This makes our methods amenable to parallel computation setting [29] and leads
to acceleration in this setting compared to standard stochastic gradient methods [26]. Finally, we
conduct several experiments providing numerical justifications of the obtained results.

Using an additional “light-tail” assumption that Eξ[exp(‖g(x, ξ)−∇f(x)‖22/σ2)] 6 exp(1) and
techniques of [44] our algorithms and analysis can be extended to obtain results in terms of prob-
ability of large deviations. For example, in the case of controlled noise levels ∆ζ ,∆η this means
that an algorithm outputs a point x̂ which satisfies P{f(x̂)− f(x∗) 6 ε} > 1− δ, where δ ∈ (0, 1) is
the confidence level, for the price of extra ln 1

δ factor in N and m. As directions of future research
we would like to point a primal-dual extension for problems with linear constraints in the spirit
of [32, 22, 4, 7, 30, 27, 59], an extension with line-search to adapt to an unknown value of L2

using the techniques in [18, 12, 28], an extension for the case of intermediate smoothness [58, 48]
or interpolation between accelerated and non-accelerated methods [36, 31], as well as extension to

28

a more general type of inexactness called inexact model of the objective [69, 68].

Acknowledgements

The research is supported by the Ministry of Science and Higher Education of the Russian Feder-
ation (Goszadaniye) No. 075-00337-20-03, project No. 0714-2020-0005.

A Proof of Lemma 2.1

Here we prove that, for e ∈ RS2 (1)

E[‖e‖2q] 6 min{q − 1, 16 lnn− 8}n
2
q
−1
, (65)

E[〈s, e〉2‖e‖2q] 6 6‖s‖22 min{q − 1, 16 lnn− 8}n
2
q
−2
. (66)

We start with proving the following inequality which could be rough for big q:

E[‖e‖2q] 6 (q − 1)n
2
q
−1
, 2 6 q <∞. (67)

We have

E[‖e‖2q] = E

[(
n∑
k=1

|ek|q
) 2
q

]
¬
6

(
E
[
n∑
k=1

|ek|q
]) 2

q
= (nE[|e2|q])

2
q , (68)

where ¬ is due to probabilistic version of Jensen’s inequality (function ϕ(x) = x
2
q is concave,

because q > 2) and is because mathematical expectation is linear and components of vector e
are identically distributed.

Moreover, due to Poincare lemma, we have

e
d
=

ξ√
ξ2

1 + · · ·+ ξ2
n

, (69)

where ξ is Gaussian random vector which mathematical expectation is zero vector and covariance
matrix is identical. Then

E[|e2|q] = E

[
|ξ2|q

(ξ2
1+...+ξ2

n)
q
2

]

=
∫
·· ·
∫

Rn
|x2|q

(
n∑
k=1

x2
k

)− q
2

· 1

(2π)
n
2
· exp

(
−1

2

n∑
k=1

x2
k

)
dx1 . . . dxn.

Consider spherical coordinates:

x1 = r cosϕ sin θ1 . . . sin θn−2,
x2 = r sinϕ sin θ1 . . . sin θn−2,
x3 = r cos θ1 sin θ2 . . . sin θn−2,
x4 = r cos θ2 sin θ3 . . . sin θn−2,

. . .
xn = r cos θn−2,

r > 0, ϕ ∈ [0, 2π), θi ∈ [0, π], i = 1, n− 2.

29

The Jacobian of mapping is

det

(
∂(x1, . . . , xn)

∂(r, ϕ, θ1, θ2, . . . , θn−2)

)
= rn−1 sin θ1(sin θ2)2 . . . (sin θn−2)n−2.

Then mathematical expectation E[|e2|q] could be rewritten in the following form:

E[|e2|q]
=

∫
·· ·
∫

r>0, ϕ∈[0,2π),

θi∈[0,π], i=1,n−2

rn−1| sinϕ|q| sin θ1|q+1| sin θ2|q+2 . . . | sin θn−2|q+n−2

· e
− r

2

2

(2π)
n
2
dr . . . dθn−2

= 1

(2π)
n
2
Ir · Iϕ · Iθ1 · Iθ2 · . . . · Iθn−2 ,

where

Ir =
+∞∫
0

rn−1e−
r2

2 dr,

Iϕ =
2π∫
0

| sinϕ|qdϕ = 2
π∫
0

| sinϕ|qdϕ,

Iθi =
π∫
0

| sin θi|q+idθi, i = 1, n− 2.

Now we are going to compute these integrals. Start with Ir:

Ir =
+∞∫
0

rn−1e−
r2

2 dr = /r =
√

2t/ =
+∞∫
0

(2t)
n
2
−1e−tdt = 2

n
2
−1Γ(n2).

To compute other integrals it is useful to consider the following integral (α > 0):

π∫
0

| sinϕ|αdϕ = 2

π
2∫

0

| sinϕ|αdϕ = 2

π
2∫

0

(sin2 ϕ)
α
2 dϕ = /t = sin2 ϕ/

=
1∫
0

t
α−1

2 (1− t)−
1
2dt = B(α+1

2 , 1
2) =

Γ(α+1
2

)Γ(1
2

)

Γ(α+2
2

)
=
√
π

Γ(α+1
2

)

Γ(α+2
2

)
.

From this we obtain

E[|e2|q] = 1

(2π)
n
2
Ir · Iϕ · Iθ1 · Iθ2 · . . . · Iθn−2

= 1

(2π)
n
2
· 2

n
2
−1Γ(n2) · 2

√
π

Γ(q+1
2

)

Γ(q+2
2

)
·
√
π

Γ(q+2
2

)

Γ(q+3
2

)
·
√
π

Γ(q+3
2

)

Γ(q+4
2

)
· . . . ·

√
π

Γ(q+n−1
2

)

Γ(q+n
2

)

= 1√
π
· Γ(n

2
)Γ(q+1

2
)

Γ(q+n
2

)
.

(70)

Now, we want to show that ∀ q > 2

1√
π
·

Γ(n2)Γ(q+1
2)

Γ(q+n2)
6

(
q − 1

n

) q
2

. (71)

At the beginning show that (71) holds for q = 2 (and arbitrary n):

1√
π
·

Γ(n2)Γ(2+1
2)

Γ(2+n
2)

− 1

n
=

1√
π
·

Γ(n2) · 1
2Γ(1

2)
n
2 Γ(n2)

− 1

n
=

1

n
− 1

n
= 0 6 0.

30

Consider the function

fn(q) =
1√
π
·

Γ(n2)Γ(q+1
2)

Γ(q+n2)
−
(
q − 1

n

) q
2

where q > 2. Also consider ψ(x) = d(ln(Γ(x)))
dx with x > 0 which is called (digamma function). For

gamma function it holds
Γ(x+ 1) = xΓ(x), x > 0.

Taking natural logarithm from it and taking derivative w.r.t. x:

ln Γ(x+ 1) = ln Γ(x) + lnx,
d(ln(Γ(x+1)))

dx = d(ln(Γ(x)))
dx + 1

x ,

which could be written in digamma-function-notation:

ψ(x+ 1) = ψ(x) +
1

x
. (72)

One can show that digamma function is monotonically increases when x > 0. To prove this fact
we are going to show that (

Γ′(x)
)2
< Γ(x)Γ′′(x). (73)

That is,

(Γ′(x))2 =

(
+∞∫
0

e−t ln t · tx−1dt

)2

¬
<

+∞∫
0

(
e−

t
2 t

x−1
2

)2
dt ·

+∞∫
0

(
e−

t
2 t

x−1
2 ln t

)2
dt =

+∞∫
0

e−ttx−1dt

︸ ︷︷ ︸
Γ(x)

·
+∞∫
0

ettx−1 ln2 tdt

︸ ︷︷ ︸
Γ′′(x)

,

where ¬ follows from Cauchy-Schwartz inequality (the equality cannot occur because functions

e−
t
2 t

x−1
2 and e−

t
2 t

x−1
2 ln t are linearly independent). From (73) follows that

d2(ln Γ(x))

dx2
=

(
Γ′(x)

Γ(x)

)′
=

Γ′′(x)

Γ(x)
− (Γ′(x))2

(Γ(x))2

(73)
> 0,

which shows that digamma function increases.
Now we show that fn(q) decreases on the interval [2,+∞). To obtain it is sufficient to consider

ln(f(q)):
ln(fn(q))

= ln
(

Γ(n
2

)√
π

)
+ ln

(
Γ
(
q+1

2

))
− ln

(
Γ
(q+n

2

))
− q

2 (ln(q − 1)− lnn) ,

d(ln(fn(q)))
dq = 1

2ψ
(
q+1

2

)
− 1

2ψ
(q+n

2

)
− 1

2 ln(q − 1)− q
2(q−1) + 1

2 lnn.

We are going to show that d(ln(fn(q)))
dq < 0 for q > 2. Let k = bn2 c (the closest integer which is no

31

greater than n
2). Then ψ

(q+n
2

)
> ψ

(
k − 1 + q+1

2

)
and lnn 6 ln(2k + 1), whence

d(ln(fn(q)))
dq

< 1
2

(
ψ
(
q+1

2

)
− ψ

(
k − 1 + q+1

2

))
− 1

2 ln(q − 1)− q
2(q−1) + 1

2 ln(2k + 1)

(72)
= 1

2

(
ψ
(
q+1

2

)
−
k−1∑
i=1

1
q+1

2
+k−i−1

− ψ
(
q+1

2

))
− q

2(q−1) + 1
2 ln

(
2k+1
q−1

)
¬
6 −1

2

k−1∑
i=1

2
q−1+2k−2i −

1
q−1 + 1

2 ln
(

2k+1
q−1

)
= −1

2

(
2
q−1 + 2

q+1 + 2
q+3 + . . .+ 2

q+2k−3

)
+ 1

2 ln
(

2k+1
q−1

)

< −1

2 ln
(
q+2k−1
q−1

)
+ 1

2 ln
(

2k+1
q−1

) ®
6 −1

2 ln
(

2k+1
q−1

)
+ 1

2 ln
(

2k+1
q−1

)
= 0,

where ¬ and ® is because q > 2, is due to estimation of integral of 1
x by integral of g(x) =

1
q−1+2i , x ∈ [q − 1 + 2i, q − 1 + 2i+ 2], i = 0, 2k − 1 which is no less than f(x):

2

q − 1
+

2

q + 1
+

2

q + 3
+ . . .+

2

q + 2k − 3
>

q+2k−1∫
q−1

1

x
dx = ln

(
q + 2k − 1

q − 1

)
.

So, we shown that d(ln(fn(q)))
dq < 0 for q > 2 arbitrary natural number n. Therefore for any fixed

number n the function fn(q) decreases as q increase, which means that fn(q) 6 fn(2) = 0, i.e., (71)
holds. From this and (68),(70) we obtain that ∀ q > 2

E[||e||2q]
(68)

6 (nE[|e2|q])
2
q

(70),(71)

6 (q − 1)n
2
q
−1
. (74)

However, inequality (74) is useless when q is big (with respect to n). Consider left hand side of

(74) as function of q and find its minimum for q > 2. Consider hn(q) = ln(q− 1) +
(

2
q − 1

)
lnn (it

is logarithm of the right hand side of (74)). Derivative of h(q) is

dh(q)
dq = 1

q−1 −
2 lnn
q2 ,

1
q−1 −

2 lnn
q2 = 0,

q2 − 2q lnn+ 2 lnn = 0.

If n > 8, then the point where the function obtains its minimum on the set [2,+∞) is q0 =

lnn
(

1 +
√

1− 2
lnn

)
(for the case n 6 7 it turns out that q0 = 2; further without loss of generality

we assume n > 8). Therefore for all q > q0 it is more useful to use the following estimation:

E[||e||2q]
¬
< E[||e||2q0]

(74)

6 (q0 − 1)n
2
q0
−1

6 (2 lnn− 1)n
2

lnn
−1

= (2 lnn− 1)e2 1
n 6 (16 lnn− 8) 1

n 6 (16 lnn− 8)n
2
q
−1
,

(75)

where ¬ is due to ‖e‖q < ‖e‖q0 for q > q0, follows from q0 6 2 lnn, q0 > lnn. Putting estimations
(74) and (75) together we obtain (65).

32

Now we are going to prove (66). Firstly, we want to estimate
√
E[‖e‖4q]. Due to probabilistic

Jensen’s inequality (q > 2)

E[||e||4q] = E

((n∑
k=1

|ek|q
)2
) 2

q

 6

(
E

[(
n∑
k=1

|ek|q
)2
]) 2

q

¬
6

(
E
[(
n

n∑
k=1

|ek|2q
)]) 2

q
=
(
n2E[|e2|2q]

) 2
q

(70),(71)

6 n
4
q

((
2q−1
n

) 2q
2

) 2
q

= (2q − 1)2n
4
q
−2
,

where ¬ is because

(
n∑
k=1

xk

)2

6 n
n∑
k=1

x2
k for x1, x2, . . . , xn ∈ R and follows from that mathe-

matical expectation is linear and components of the random vector e are identically distributed.
From this we obtain √

E[||e||4q] 6 (2q − 1)n
2
q
−1
. (76)

Consider the right hand side of the inequality (76) as a function of q and find its minimum for q > 2.

Consider hn(q) = ln(2q − 1) +
(

2
q − 1

)
lnn (logarithm of the right hand side (76)). Derivative of

h(q) is
dh(q)
dq = 2

2q−1 −
2 lnn
q2 ,

2
2q−1 −

2 lnn
q2 = 0,

q2 − 2q lnn+ lnn = 0.

If n > 3, the the point where the function obtains its minimum on the set [2,+∞) is q0 =

lnn
(

1 +
√

1− 1
lnn

)
(for the case n 6 2 it turns out that q0 = 2; further without loss of gen-

erality we assume that n > 3). Therefore for all q > q0:√
E[||e||4q]

¬
<
√

E[||e||4q0]
(76)

6 (2q0 − 1)n
2
q0
−1

6 (4 lnn− 1)n
2

lnn
−1

= (4 lnn− 1)e2 1
n 6 (32 lnn− 8) 1

n 6 (32 lnn− 8)n
2
q
−1
,

(77)

where ¬ is due to ‖e‖q < ‖e‖q0 for q > q0, follows from q0 6 2 lnn, q0 > lnn. Putting estimations
(76) and (77) together we get inequality√

E[||e||4q] 6 min{2q − 1, 32 lnn− 8}n
2
q
−1
. (78)

Now we are going to find E[〈s, e〉4], where s ∈ Rn is some vector. Let Sn(r) be a surface area of
n-dimensional Euclidean sphere with radius r and dσ(e) be unnormalized uniform measure on n-

dimensional Euclidean sphere. From this it follows that Sn(r) = Sn(1)rn−1, Sn−1(1)
Sn(1) = n−1

n
√
π

Γ(n+2
2

)

Γ(n+1
2

)
.

Besides, let ϕ be the angle between s and e. Then

E[〈s, e〉4] = 1
Sn(1)

∫
S

〈s, e〉4dσ(ϕ) = 1
Sn(1)

π∫
0

||s||42 cos3 ϕSn−1(sinϕ)dϕ

= ||s||42
Sn−1(1)
Sn(1)

π∫
0

cos4 ϕ sinn−2 ϕdϕ = ||s||42 · n−1
n
√
π

Γ(n+2
2

)

Γ(n+1
2

)

π∫
0

cos4 ϕ sinn−2 ϕdϕ.
(79)

33

Compute the integral:

π∫
0

cos4 ϕ sinn−2 ϕdϕ = 2

π
2∫

0

cos4 ϕ sinn−2 ϕdϕ = /t = sin2 ϕ/

=

π
2∫

0

t
n−3

2 (1− t)
3
2dt = B(n−1

2 , 5
2) =

Γ(5
2

)Γ(n−1
2

)

Γ(n+4
2

)
=

3
2
· 1
2

Γ(1
2

)Γ(n−1
2

)
n+2

2
·Γ(n+2

2
)

= 3
n+2 ·

√
πΓ(n−1

2
)

2Γ(n+2
2

)
.

From this and (79) we obtain

E[〈s, e〉4] = ||s||42 · n−1
n
√
π

Γ(n+2
2

)

Γ(n+1
2

)
· 3
n+2 ·

√
πΓ(n−1

2
)

2Γ(n+2
2

)

= ||s||42 ·
3(n−1)

2n(n+2) ·
Γ(n−1

2
)

n−1
2

Γ(n−1
2

)
=

3||s||42
n(n+2)

¬
6 3||s||42

n2 .
(80)

To prove (66), it remains to use (78), (80) and Cauchy-Schwartz inequality ((E[XY])2 6 E[X2] ·
E[Y 2]):

E[〈s, e〉2||e||2q]
¬
6
√
E[〈s, e〉4] · E[||e||4q] 6

√
3||s||22 min{2q − 1, 32 lnn− 8}n

2
q
−2
.

B Technical Results

Lemma B.1. Let a0, . . . , aN−1, b, R1, . . . , RN−1 be non-negative numbers such that

Rl 6
√

2 ·

√√√√(l−1∑
k=0

ak + b

l−1∑
k=1

αk+1Rk

)
l = 1, . . . , N, (81)

where αk+1 = k+2
96n2ρnL2

for all k ∈ N. Then for l = 1, . . . , N

l−1∑
k=0

ak + b
l−1∑
k=1

αk+1Rk 6

√√√√ l−1∑

k=0

ak +
√

2b · l2

96n2ρnL2

2

. (82)

Proof. For l = 1 it is trivial inequality. Assume that (82) holds for some l < N and prove it for
l + 1. From the induction assumption and (81) we obtain

Rl 6
√

2

(√
l−1∑
k=0

ak +
√

2b · l2

96n2ρnL2

)
, (83)

34

whence

l∑
k=0

ak + b
l∑

k=1

αk+1Rk =
l−1∑
k=0

ak + b
l−1∑
k=1

αk+1Rk + al + bαl+1Rl

¬
6

(√
l−1∑
k=0

ak +
√

2b · l2

96n2ρnL2

)2

+ al +
√

2bαl+1

(√
l−1∑
k=0

ak +
√

2b · l2

96n2ρnL2

)

=
l∑

k=0

ak + 2

√
l−1∑
k=0

ak ·
√

2b l2

96n2ρnL2
+ 2b2 l4

(96n2ρnL2)2 +
√

2bαl+1

(√
l−1∑
k=0

ak +
√

2b · l2

96n2ρnL2

)

=
l∑

k=0

ak + 2

√
l−1∑
k=0

ak ·
√

2b
(

l2

96n2ρnL2
+

αl+1

2

)
+ 2b2

(
l4

(96n2ρnL2)2 + αl+1 · l2

96n2ρnL2

)

6

l∑
k=0

ak + 2

√
l∑

k=0

ak ·
√

2b (l+1)2

96n2ρnL2
+ 2b2 (l+1)4

(96n2ρnL2)2 =

(√
l∑

k=0

ak +
√

2b · (l+1)2

96n2ρnL2

)2

,

where ¬ follows from the induction assumption and (83), is because
l−1∑
k=0

ak 6
l∑

k=0

ak and

l2

96n2ρnL2
+

αl+1

2 = 2l2+l+2
192n2ρnL2

6 (l+1)2

96n2ρnL2
,

l4

(96n2ρnL2)2 + αl+1 · l2

96n2ρnL2
6 l4+(l+2)l2

(96n2ρnL2)2 6 (l+1)4

(96n2ρnL2)2 .

Lemma B.2. Let a0, . . . , aN−1, b, R1, . . . , RN−1 be non-negative numbers such that

Rl 6
√

2 ·

√√√√(l−1∑
k=0

ak + bα
l−1∑
k=1

Rk

)
l = 1, . . . , N. (84)

Then for l = 1, . . . , N

l−1∑
k=0

ak + bα

l−1∑
k=1

Rk 6

√√√√ l−1∑

k=0

ak +
√

2bαl

2

. (85)

Proof. For l = 1 it is trivial inequality. Assume that (85) holds for some l < N and prove it for
l + 1. From the induction assumption and (84) we obtain

Rl 6
√

2

(√
l−1∑
k=0

ak +
√

2bαl

)
, (86)

35

whence

l∑
k=0

ak + bα
l∑

k=1

Rk =
l−1∑
k=0

ak + bα
l−1∑
k=1

Rk + al + bαRl

¬
6

(√
l−1∑
k=0

ak +
√

2bαl

)2

+ al +
√

2bα

(√
l−1∑
k=0

ak +
√

2bαl

)

=
l∑

k=0

ak + 2

√
l−1∑
k=0

ak ·
√

2bαl + 2b2α2l2 +
√

2bα

(√
l−1∑
k=0

ak +
√

2bαl

)

=
l∑

k=0

ak + 2

√
l−1∑
k=0

ak ·
√

2bα
(
l + 1

2

)
+ 2b2α2

(
l2 + l

)

6

l∑
k=0

ak + 2

√
l∑

k=0

ak ·
√

2bα(l + 1) + 2b2α2(l + 1)2 =

(√
l∑

k=0

ak +
√

2bα(l + 1)

)2

,

where ¬ follows from the induction assumption and (86), is because
l−1∑
k=0

ak 6
l∑

k=0

ak.

C Parameters tuning

In our analysis it is needed to choose αk+1 = k+2
96n2ρnL2

for ARDD and α = 1
48nρnL2

. However, one can
tune these parameters in order to achieve better convergence rate in practice. In our experiments
we choose αk+1 = γ · k+2

96n2ρnL2
, α = γ · 1

48nρnL2
and tune numerical factor γ. In [42] authors

prove convergence results for stepsize6 α = 1√
n+4

min
{

1
4L
√
n+4

, D̃
σ
√
N

}
where D̃ is some numerical

constant, therefore, in our experiments with RSGD we use stepsizes α = γ· 1√
n+4

min
{

1
4L
√
n+4

, 1√
N

}
where we also tune numerical factor γ.

C.1 Nesterov’s function

One can find our numerical results with tuning stepsizes for each method in Figures 3-5. Our
tests with Nesterov’s function show that for this problem ARDD E and RDD work better with
γ ∈ [32, 64] and RSGF shows the best performance with γ ∈ [4, 10]. Interestingly, ARDD and
RDD with p = 1 require to choose γ significantly larger (of order 103 − 104) than for Euclidean
methods in order to get competitive or even better convergence rate. Moreover, ARDD E, RDD E
and RSGF disconverge for γ ≥ 64, 200, 20 respectively. So, our empirical observation is as follows:
ARDD and RDD with non-Euclidean proximal setup are able to converge with significantly larger
stepsizes than its Euclidean counterpart.

We summarize best options for γ that we use in the experiments presented in Section 6 in
Table 5.

C.2 Least squares problem

In addition to the tuning of γ in ARDD we also tried different options for L2: instead of L2 from
(64) we tried β · ‖A‖F√

r
with different β. We tried β = 0.001, 0.01, 0.1, 1, 2, 5 and 10, but the best

6If σ = 0, then one should ignore the second term in the minimum.

36

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 9

10 7

10 5

10 3

10 1
f(x

k)
f(x

*)
f(x

0)
f(x

*)

Nesterov's function, n = 100, L = 10
ARDD_E 1.0
ARDD_E 2.0
ARDD_E 4.0
ARDD_E 8.0
ARDD_E 16.0
ARDD_E 32.0

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 100, L = 10
ARDD_NE 1.0
ARDD_NE 100.0
ARDD_NE 500.0
ARDD_NE 1000.0
ARDD_NE 2000.0
ARDD_NE 3000.0

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 100, L = 10
RDD_E 1.0
RDD_E 2.0
RDD_E 4.0
RDD_E 8.0
RDD_E 16.0
RDD_E 32.0
RDD_E 64.0
RDD_E 128.0
RDD_E 150.0
RDD_E 175.0

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 100, L = 10
RDD_NE 1.0
RDD_NE 100.0
RDD_NE 500.0
RDD_NE 1000.0
RDD_NE 2000.0
RDD_NE 3000.0
RDD_NE 5000.0
RDD_NE 10000.0
RDD_NE 12000.0

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 100, L = 10
RSGF 1.0
RSGF 2.0
RSGF 4.0
RSGF 10.0

Figure 3: Stepsize tuning for ARDD, RDD and RSGF applied to minimize Nesterov’s function
(62). We use E and NE to define `2 and `1 proximal setups respectively (see (8) and (9) for the
details). Numbers in labels in upper right corners denote different choices of γ that are used.

ARDD E ARDD NE RDD E RDD NE RSGF

n = 100 32 2000 32 12000 10

n = 1000 32 2000 64 3000 4

n = 5000 32 1000 64 3000 10

Table 5: The optimal choices of γ for ARDD, RDD and RSGF applied to minimize Nesterov’s
function (62) for different dimension n.

results were obtained for β = 0.01. One can find our numerical results with tuning γ in Figure 6.
Besides m = 50 we tried different batch sizes. In general, the behaviour of the considered methods
was similar after proper parameters tuning.

References

[1] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization
with multi-point bandit feedback. In COLT 2010 - The 23rd Conference on Learning Theory,
2010.

[2] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pages 1200–1205, New York, NY, USA, 2017. ACM. arXiv:1603.05953.

[3] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtarik, and Yang Yuan. Even faster accelerated coordi-
nate descent using non-uniform sampling. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1110–1119, New York, New York, USA,
20–22 Jun 2016. PMLR. First appeared in arXiv:1512.09103.

37

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Number of oracle calls

10 7

10 5

10 3

10 1
f(x

k)
f(x

*)
f(x

0)
f(x

*)

Nesterov's function, n = 1000, L = 10
ARDD_E 1.0
ARDD_E 2.0
ARDD_E 4.0
ARDD_E 8.0
ARDD_E 16.0
ARDD_E 32.0

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Number of oracle calls

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 1000, L = 10
ARDD_NE 1.0
ARDD_NE 1000.0
ARDD_NE 2000.0

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 1000, L = 10
RDD_E 1.0
RDD_E 2.0
RDD_E 4.0
RDD_E 8.0
RDD_E 16.0
RDD_E 32.0
RDD_E 64.0
RDD_E 128.0
RDD_E 150.0
RDD_E 175.0

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 1000, L = 10
RDD_NE 1.0
RDD_NE 100.0
RDD_NE 1000.0
RDD_NE 2000.0
RDD_NE 3000.0

0 250000 500000 750000 10000001250000150000017500002000000
Number of oracle calls

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 1000, L = 10
RSGF 1.0
RSGF 2.0
RSGF 4.0
RSGF 10.0

Figure 4: Stepsize tuning for ARDD, RDD and RSGF applied to minimize Nesterov’s function
(62). We use E and NE to define `2 and `1 proximal setups respectively (see (8) and (9) for the
details). Numbers in labels in upper right corners denote different choices of γ that are used.

[4] A. S. Anikin, A. V. Gasnikov, P. E. Dvurechensky, A. I. Tyurin, and A. V. Chernov. Dual
approaches to the minimization of strongly convex functionals with a simple structure under
affine constraints. Computational Mathematics and Mathematical Physics, 57(8):1262–1276,
2017.

[5] John W. Barrett and Leonid Prigozhin. A quasi-variational inequality problem in supercon-
ductivity. Mathematical Models and Methods in Applied Sciences, 20(5):679–706, 2010.

[6] John W. Barrett and Leonid Prigozhin. Lakes and rivers in the landscape: A quasi-variational
inequality approach. Interfaces and Free Boundaries, 16(2):269–296, 2014.

[7] Anastasia Bayandina, Pavel Dvurechensky, Alexander Gasnikov, Fedor Stonyakin, and Alexan-
der Titov. Mirror descent and convex optimization problems with non-smooth inequality con-
straints. In Pontus Giselsson and Anders Rantzer, editors, Large-Scale and Distributed Opti-
mization, chapter 8, pages 181–215. Springer International Publishing, 2018. arXiv:1710.06612.

[8] Anastasia Bayandina, Alexander Gasnikov, and Anastasia Lagunovskaya. Gradient-free two-
points optimal method for non smooth stochastic convex optimization problem with additional
small noise. Automation and remote control, 79(7), 2018. arXiv:1701.03821.

[9] Aaron Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization (Lecture
Notes). Personal web-page of A. Nemirovski, 2015.

[10] Albert S. Berahas, Richard H. Byrd, and Jorge Nocedal. Derivative-free optimization of noisy
functions via quasi-Newton methods. SIAM Journal on Optimization, 29(2):965–993, 2019.

[11] Albert S. Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theo-
retical and empirical comparison of gradient approximations in derivative-free optimization.
arXiv:1905.01332, 2019.

38

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 7

10 5

10 3

10 1
f(x

k)
f(x

*)
f(x

0)
f(x

*)

Nesterov's function, n = 5000, L = 10
ARDD_E 1.0
ARDD_E 2.0
ARDD_E 4.0
ARDD_E 8.0
ARDD_E 16.0
ARDD_E 32.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 8

10 6

10 4

10 2

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 5000, L = 10
ARDD_NE 1.0
ARDD_NE 100.0
ARDD_NE 1000.0
ARDD_NE 2000.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 5000, L = 10
RDD_E 1.0
RDD_E 8.0
RDD_E 32.0
RDD_E 64.0
RDD_E 150.0
RDD_E 175.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 5000, L = 10
RDD_NE 1.0
RDD_NE 100.0
RDD_NE 1000.0
RDD_NE 2000.0
RDD_NE 3000.0
RDD_NE 10000.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e7

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Nesterov's function, n = 5000, L = 10
RSGF 1.0
RSGF 2.0
RSGF 4.0
RSGF 10.0

Figure 5: Stepsize tuning for ARDD, RDD and RSGF applied to minimize Nesterov’s function
(62). We use E and NE to define `2 and `1 proximal setups respectively (see (8) and (9) for the
details). Number of oracle calls is divided by 107. Numbers in labels in upper right corners denote
different choices of γ that are used.

[12] Albert S. Berahas, Liyuan Cao, and Katya Scheinberg. Global convergence rate analysis of a
generic line search algorithm with noise. arXiv:1910.04055, 2019.

[13] Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method
for composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 2020. Accepted, arXiv:1911.10645.

[14] Aleksandr Beznosikov, Abdurakhmon Sadiev, and Alexander Gasnikov. Gradient-free methods
for saddle-point problem. In A. Kononov and et al., editors, Mathematical Optimization Theory
and Operations Research 2020, Cham, 2020. Springer International Publishing. accepted,
arXiv:2005.05913.

[15] Lev Bogolubsky, Pavel Dvurechensky, Alexander Gasnikov, Gleb Gusev, Yurii Nesterov, An-
drei M Raigorodskii, Aleksey Tikhonov, and Maksim Zhukovskii. Learning supervised pager-
ank with gradient-based and gradient-free optimization methods. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 4914–4922. Curran Associates, Inc., 2016. arXiv:1603.00717.

[16] Raghu Bollapragada and Stefan M. Wild. Adaptive sampling quasi-Newton methods for
derivative-free stochastic optimization. arXiv:1910.13516, 2019.

[17] R.P. Brent. Algorithms for Minimization Without Derivatives. Dover Books on Mathematics.
Dover Publications, 1973.

[18] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models. Mathematical Programming, 169(2):337–375, Jun 2018.

39

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 10

10 8

10 6

10 4

10 2

100
f(x

k)
f(x

*)
f(x

0)
f(x

*)

Least squares problem, r = 300, n = 400
ARDD_E 0.0001
ARDD_E 0.001
ARDD_E 0.01
ARDD_E 0.1
ARDD_E 0.2
ARDD_E 0.5
ARDD_E 0.7
ARDD_E 1.0
ARDD_E 2.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 11

10 9

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Least squares problem, r = 300, n = 400
ARDD_NE 0.1
ARDD_NE 1.0
ARDD_NE 5.0
ARDD_NE 10.0
ARDD_NE 20.0
ARDD_NE 50.0
ARDD_NE 75.0
ARDD_NE 100.0
ARDD_NE 125.0
ARDD_NE 200.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 9

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Least squares problem, r = 300, n = 400
RDD_E 1.0
RDD_E 5.0
RDD_E 10.0
RDD_E 20.0
RDD_E 50.0
RDD_E 100.0
RDD_E 150.0
RDD_E 175.0
RDD_E 200.0
RDD_E 500.0
RDD_E 700.0
RDD_E 1000.0
RDD_E 2000.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 7

10 5

10 3

10 1

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Least squares problem, r = 300, n = 400
RDD_NE 1.0
RDD_NE 2000.0
RDD_NE 4000.0
RDD_NE 8000.0
RDD_NE 16000.0
RDD_NE 32000.0
RDD_NE 64000.0
RDD_NE 128000.0
RDD_NE 200000.0
RDD_NE 400000.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of oracle calls 1e8

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

f(x
k)

f(x
*)

f(x
0)

f(x
*)

Least squares problem, r = 300, n = 400
RSGF 1.0
RSGF 100.0
RSGF 1000.0
RSGF 2000.0
RSGF 4000.0

Figure 6: Stepsize tuning for ARDD, RDD and RSGF applied to solve least squares problem (63).
We use E and NE to define `2 and `1 proximal setups respectively (see (8) and (9) for the details).
For all methods batch size m equals 50. By oracle call we mean one computation of functional
value of a summand. Number of oracle calls is divided by 108.

[19] Augustin Cauchy. Méthode générale pour la résolution des systémes d’équations simultanées.
Comptes rendus hebdomadaires des séances de l’Académie des sciences, 55:536–538, 1847.

[20] Nicolò Cesa-bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-
line learning algorithms. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, pages 359–366. MIT Press, 2002.

[21] Yuwen Chen, Antonio Orvieto, and Aurelien Lucchi. An accelerated DFO algorithm for finite-
sum convex functions. In Proceedings of the 37th International Conference on Machine Learn-
ing, Proceedings of Machine Learning Research. PMLR, 2020. (accepted), arXiv:2007.03311.

[22] Alexey Chernov, Pavel Dvurechensky, and Alexander Gasnikov. Fast Primal-Dual Gradient
Method for Strongly Convex Minimization Problems with Linear Constraints, pages 391–403.
Springer International Publishing, Cham, 2016.

[23] A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimization. Society
for Industrial and Applied Mathematics, 2009.

[24] Cong D. Dang and Guanghui Lan. Stochastic block mirror descent methods for nonsmooth
and stochastic optimization. SIAM J. on Optimization, 25(2):856–881, April 2015.

[25] Olivier Devolder. Stochastic first order methods in smooth convex optimization. CORE Dis-
cussion Paper 2011/70, 2011.

[26] John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal
rates for zero-order convex optimization: The power of two function evaluations. IEEE Trans.
Information Theory, 61(5):2788–2806, 2015. arXiv:1312.2139.

40

[27] Darina Dvinskikh, Eduard Gorbunov, Alexander Gasnikov, Pavel Dvurechensky, and Cesar A.
Uribe. On primal and dual approaches for distributed stochastic convex optimization over
networks. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 7435–7440,
2019. arXiv:1903.09844.

[28] Darina Dvinskikh, Aleksandr Ogaltsov, Alexander Gasnikov, Pavel Dvurechensky, and
Vladimir Spokoiny. On the line-search gradient methods for stochastic optimization. IFAC-
PapersOnLine, 2020. Accepted, arXiv:1911.08380.

[29] P. E. Dvurechensky, A. V. Gasnikov, and A. A. Lagunovskaya. Parallel algorithms and proba-
bility of large deviation for stochastic convex optimization problems. Numerical Analysis and
Applications, 11(1):33–37, Jan 2018. arXiv:1701.01830.

[30] Pavel Dvurechensky, Darina Dvinskikh, Alexander Gasnikov, Csar A. Uribe, and Angelia
Nedić. Decentralize and randomize: Faster algorithm for Wasserstein barycenters. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, NeurIPS 2018, pages 10783–10793. Curran As-
sociates, Inc., 2018. arXiv:1806.03915.

[31] Pavel Dvurechensky and Alexander Gasnikov. Stochastic intermediate gradient method for
convex problems with stochastic inexact oracle. Journal of Optimization Theory and Applica-
tions, 171(1):121–145, 2016.

[32] Pavel Dvurechensky, Alexander Gasnikov, Evgenia Gasnikova, Sergey Matsievsky, Anton
Rodomanov, and Inna Usik. Primal-dual method for searching equilibrium in hierarchical
congestion population games. In Supplementary Proceedings of the 9th International Confer-
ence on Discrete Optimization and Operations Research and Scientific School (DOOR 2016)
Vladivostok, Russia, September 19 - 23, 2016, pages 584–595, 2016. arXiv:1606.08988.

[33] Pavel Dvurechensky, Alexander Gasnikov, and Alexander Tiurin. Randomized similar triangles
method: A unifying framework for accelerated randomized optimization methods (coordinate
descent, directional search, derivative-free method). arXiv:1707.08486, 2017.

[34] Vaclav Fabian. Stochastic approximation of minima with improved asymptotic speed. Ann.
Math. Statist., 38(1):191–200, 02 1967.

[35] Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate descent.
SIAM Journal on Optimization, 25(4):1997–2023, 2015. First appeared in arXiv:1312.5799.

[36] A. V. Gasnikov and P. E. Dvurechensky. Stochastic intermediate gradient method for convex
optimization problems. Doklady Mathematics, 93(2):148–151, Mar 2016.

[37] A. V. Gasnikov, P. E. Dvurechensky, M. E. Zhukovskii, S. V. Kim, S. S. Plaunov, D. A.
Smirnov, and F. A. Noskov. About the power law of the pagerank vector component distri-
bution. Part 2. The Buckley–Osthus model, verification of the power law for this model, and
setup of real search engines. Numerical Analysis and Applications, 11(1):16–32, 2018.

[38] A. V. Gasnikov, E. V. Gasnikova, P. E. Dvurechensky, A. A. M. Mohammed, and E. O.
Chernousova. About the power law of the pagerank vector component distribution. Part 1.

41

Numerical methods for finding the pagerank vector. Numerical Analysis and Applications,
10(4):299–312, 2017.

[39] A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko.
Stochastic online optimization. single-point and multi-point non-linear multi-armed bandits.
convex and strongly-convex case. Automation and Remote Control, 78(2):224–234, Feb 2017.
arXiv:1509.01679.

[40] A. V. Gasnikov, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko. Gradient-free prox-
imal methods with inexact oracle for convex stochastic nonsmooth optimization problems on
the simplex. Automation and Remote Control, 77(11):2018–2034, Nov 2016. arXiv:1412.3890.

[41] Alexander Gasnikov, Pavel Dvurechensky, and Ilnura Usmanova. On accelerated randomized
methods. Proceedings of Moscow Institute of Physics and Technology, 8(2):67–100, 2016. In
Russian, first appeared in arXiv:1508.02182.

[42] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.
arXiv:1309.5549.

[43] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approxima-
tion methods for nonconvex stochastic composite optimization. Mathematical Programming,
155(1):267–305, 2016. arXiv:1308.6594.

[44] Eduard Gorbunov, Darina Dvinskikh, and Alexander Gasnikov. Optimal decentralized dis-
tributed algorithms for stochastic convex optimization. arXiv preprint arXiv:1911.07363, 2019.

[45] Eduard Gorbunov, Pavel Dvurechensky, and Alexander Gasnikov. An accelerated method for
derivative-free smooth stochastic convex optimization. arXiv:1802.09022, 2018.

[46] Xiaowei Hu, Prashanth L.A., Andrs Gyrgy, and Csaba Szepesvari. (bandit) convex optimiza-
tion with biased noisy gradient oracles. In Arthur Gretton and Christian C. Robert, editors,
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, vol-
ume 51 of Proceedings of Machine Learning Research, pages 819–828, Cadiz, Spain, 09–11 May
2016. PMLR.

[47] Anatoli Juditsky and Yuri Nesterov. Deterministic and stochastic primal-dual subgradient
algorithms for uniformly convex minimization. Stochastic Systems, 4(1):44–80, 2014.

[48] Dmitry Kamzolov, Pavel Dvurechensky, and Alexander V. Gasnikov. Universal intermediate
gradient method for convex problems with inexact oracle. Optimization Methods and Software,
0(0):1–28, 2020. arXiv:1712.06036.

[49] K. Kim, Yu. Nesterov, V. Skokov, and B. Cherkasskii. Effektivnii algoritm vychisleniya
proisvodnyh i ekstremalnye zadachi (efficient algorithm for calculation of derivatives and ex-
treme problems). Ekonomika i matematicheskie metody, 20(2):309–318, 1984.

[50] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1):365–397, Jun 2012. Firs appeared in June 2008.

42

[51] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization methods.
Acta Numerica, 28:287404, 2019.

[52] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In Proceedings of the 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, FOCS ’13, pages 147–156, Washington, DC, USA, 2013.
IEEE Computer Society. First appeared in arXiv:1305.1922.

[53] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 3059–3067. Curran Associates,
Inc., 2014. First appeared in arXiv:1407.1296.

[54] Boris S. Mordukhovich and Jiri V. Outrata. Coderivative analysis of quasivariational in-
equalities with applications to stability and optimization. SIAM Journal on Optimization,
18(2):389–412, 2007.

[55] A.S. Nemirovsky and D.B. Yudin. Problem Complexity and Method Efficiency in Optimization.
J. Wiley & Sons, New York, 1983.

[56] Yurii Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Aca-
demic Publishers, Massachusetts, 2004.

[57] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012. First appeared in 2010 as CORE
discussion paper 2010/2.

[58] Yurii Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

[59] Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal-dual
accelerated gradient methods with small-dimensional relaxation oracle. Optimization Methods
and Software, pages 1–28, 2020. arXiv:1809.05895.

[60] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Found. Comput. Math., 17(2):527–566, April 2017. First appeared in 2011 as CORE discussion
paper 2011/16.

[61] Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent
method on structured optimization problems. SIAM Journal on Optimization, 27(1):110–123,
2017. First presented in May 2015 http://www.mathnet.ru:8080/PresentFiles/11909/7_

nesterov.pdf.

[62] Warren B. Powell. A unified framework for stochastic optimization. European Journal of
Operational Research, 275(3):795 – 821, 2019.

[63] Leonid Prigozhin. Variational model of sandpile growth. European Journal of Applied Mathe-
matics, 7(3):225235, 1996.

[64] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
The Computer Journal, 3(3):175–184, 1960.

43

http://www.mathnet.ru:8080/PresentFiles/11909/7_nesterov.pdf
http://www.mathnet.ru:8080/PresentFiles/11909/7_nesterov.pdf

[65] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. In Eric P. Xing and Tony Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 64–72, Bejing, China, 22–24 Jun 2014. PMLR. First appeared in
arXiv:1309.2375.

[66] Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-
point feedback. Journal of Machine Learning Research, 18:52:1–52:11, 2017. First appeared
in arXiv:1507.08752.

[67] James C. Spall. Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc.,
New York, NY, USA, 1 edition, 2003.

[68] Fedor Stonyakin, Alexander Tyurin, Alexander Gasnikov, Pavel Dvurechensky, Artem Aga-
fonov, Darina Dvinskikh, Dmitry Pasechnyuk, Sergei Artamonov, and Victorya Piskunova.
Inexact relative smoothness and strong convexity for optimization and variational inequalities
by inexact model. arXiv:2001.09013, 2020.

[69] Fedor S. Stonyakin, Darina Dvinskikh, Pavel Dvurechensky, Alexey Kroshnin, Olesya
Kuznetsova, Artem Agafonov, Alexander Gasnikov, Alexander Tyurin, César A. Uribe, Dmitry
Pasechnyuk, and Sergei Artamonov. Gradient methods for problems with inexact model of the
objective. In Michael Khachay, Yury Kochetov, and Panos Pardalos, editors, Mathematical Op-
timization Theory and Operations Research, pages 97–114, Cham, 2019. Springer International
Publishing. arXiv:1902.09001.

[70] E. A. Vorontsova, A. V. Gasnikov, E. A. Gorbunov, and P. E. Dvurechenskii. Accelerated
gradient-free optimization methods with a non-euclidean proximal operator. Automation and
Remote Control, 80(8):1487–1501, 2019.

[71] R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7(8):463–
464, August 1964.

44

	1 Introduction
	1.1 Related work
	1.1.1 Directional derivative methods
	1.1.2 Derivative-free methods

	1.2 Our contributions
	1.3 Paper organization

	2 Algorithms and main results
	2.1 Preliminaries
	2.2 Algorithms and main results for convex problems
	2.3 Extensions for strongly convex problems
	2.4 Corollaries for derivative-free optimization

	3 Proof of main result for ARDD method
	3.1 Proof Lemma 3.1
	3.2 Proof Lemma 3.2

	4 Proof of main result for RDD method
	4.1 Proof Lemma 4.1
	4.2 Proof Lemma 4.2

	5 Proofs for strongly convex problems
	5.1 Accelerated algorithm
	5.2 Non-accelerated algorithm

	6 Numerical experiments
	6.1 Nesterov's function
	6.2 Least squares problem

	7 Conclusion
	A Proof of Lemma 2.1
	B Technical Results
	C Parameters tuning
	C.1 Nesterov's function
	C.2 Least squares problem

