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Abstract

In this paper we consider the application of several gradient methods to the traffic assignment
problem: we search equilibria in the stable dynamics model (Nesterov and De Palma, 2003) and the
Beckmann model. Unlike the celebrated Frank–Wolfe algorithm widely used for the Beckmann
model, these gradients methods solve the dual problem and then reconstruct a solution to the
primal one. We deal with the universal gradient method, the universal method of similar triangles,
and the method of weighted dual averages, and estimate their complexity for the problem. Due
to the primal-dual nature of these methods, we use a duality gap in a stopping criterion. In
particular, we present a novel way to reconstruct admissible flows in the stable dynamics model,
which provides us with a computable duality gap.

Keywords: stable dynamics model, Beckmann model, traffic equilibrium, universal gradient
method, universal method of similar triangles, method of weighted dual averages, duality gap

1 Introduction
The Beckmann model for searching static traffic equilibria in road networks is among the most widely
used models by transportation planners (Beckmann et al., 1956; Patriksson, 2015). The equilibria found
are practical for evaluating the network efficiency and distribution of business centers and residential
areas, and establishing urban development plans, etc. This model introduces a cost function on every
link of a transportation network, which defines a dependence of the travel cost on the flow along the
link. In practice the BPR functions are usually employed (US Bureau of Public Roads, 1964):

τe(fe) = t̄e

(
1 + ρ

(
fe
f̄e

) 1
µ

)
, (1)

where t̄e are free flow times, and f̄e are road capacities of a given network’s link e. We take these
functions with parameters ρ = 0.15 and µ = 0.25.

Nesterov and De Palma (2003) proposed an alternative model called the stable dynamics model,
which takes an intermediate place between static and dynamic network assignment models. Namely, its
equilibrium can be interpreted as the stationary regime of some dynamic process. Its key assumption
is that we no longer introduce a complex dependence of the travel cost on the flow (as in the standard
static models), but only pose capacity constraints, i.e. the flow value on each link imposes the feasible
set of travel times

τe(fe) =


t̄e, 0 ≤ fe < f̄e,

[t̄e,∞] , fe = f̄e,

+∞, fe > f̄e.

(2)
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Unlike in the Beckmann model, there is no one-to-one correspondence between equilibrium travel times
and flows on the links of the network. We can illustrate the difference on a simple example of two
parallel routes (Figure 1).

Figure 1: Parallel routes

Let the input flow take values 1000, 2000, and 3000 veh/h. For the stable dynamics model, in the
first and second cases, all drivers choose the upper route; the equilibrium travel time simply equals
the upper route’s free flow time (0.5 h) in the first case and varies from 0.5 h to 1 h (according to the
model) in the second. In the third case, the input flow exceeds the upper route’s capacity, so the upper
route’s flow is 2000 veh/h, the lower one’s is 1000 veh/h, and the equilibrium travel time is 1 h. All
these equilibria can be interpreted as stationary regimes of some dynamic processes, e.g. the last case
can be viewed as the result of the queue at the beginning of the upper route (since this route’s capacity
is smaller than the input flow) created by drivers who wanted to take this route until the waiting time
plus the route’s travel time reached the lower route’s travel time (Nesterov and De Palma, 2003). In
the Beckmann model equilibria are as follows: for all three cases only the upper route is used, and the
equilibrium travel times are approximately 0.5 h, 0.6 h, and 0.9 h, respectively. Chudak et al. (2007)
conducted a detailed comparison — for large and small networks — of equilibria in these two models.

In the Beckmann model, searching equilibria reduces to minimization of a potential function. One
of the most popular and effective approaches to solve this problem numerically is the famous Frank–
Wolfe method (Frank and Wolfe, 1956; Jaggi, 2013) as well as its numerous modifications (Fukushima,
1984; LeBlanc et al., 1985; Arezki and Van Vliet, 1990; Chen et al., 2002).

In the case of the stable dynamics model, one cannot directly apply the Frank–Wolfe method.
However, an equilibrium can be found as a solution of a pair of primal and dual optimization problems.
The same holds also for the Beckmann model, so in both cases we can apply primal-dual (sub)gradient
methods.

In this work, we compare several primal-dual gradient methods for searching equilibria in both the
Beckmann and the stable dynamics models, namely, the universal gradient method (UGM) (Nesterov,
2015), the universal method of similar triangles (UMST) (Gasnikov and Nesterov, 2018), and the
method of weighted dual averages (WDA) (Nesterov, 2009). The main advantage of the above universal
methods is an automatic adjustment to a local (Hölder) smoothness of a minimized function, which
is especially important since the dual problems we are dealing with are essentially non-smooth. Due
to the primal-dual nature of these methods, one can use an adaptive stopping criterion guaranteeing
required accuracy.

The main contributions of this paper include the following:

• We propose a novel way to reconstruct admissible flows (i.e., meeting the capacity constraints
and induced by flows on the paths) in the stable dynamics model and a novel computable duality
gap, which can be used in a stopping criterion.

• We provide theoretical upper bounds on the complexity of searching equilibria by the considered
algorithms: UMST, UGD, and WDA.

• We conducted numerical experiments comparing these algorithms on the Anaheim transportation
network—the source code is available for use and can be found in Kubentayeva (2021).

The paper is organized as follows. In Section 2 we give a problem statement, define equilibria in
the Beckmann and the stable dynamics models and corresponding optimization problems. Section 3
is devoted to the complexity analysis of UGM, UMST, and WDA. We show that the number of
iterations required to obtain an ε-solution of primal and dual problems is O(1/ε2) for UGM and
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UMST. In Section 4 results of experiments on Anaheim transportation network are presented. Finally,
some conclusions are drawn in Section 5.

2 Problem statement
Let the urban road network be represented by a directed graphG = (V,E), where vertices V correspond
to intersections or centroids (Sheffi, 1985) and edges E correspond to roads, respectively. Suppose we
are given the travel demands: namely, let dw(veh/h) be a trip rate for an origin-destination pair w
from the set OD ⊆ {w = (i, j) : i ∈ O, j ∈ D}. Here O ⊆ V is the set of all possible origins of
trips, and D ⊆ V is the set of destination nodes. For OD pair w = (i, j) denote by Pw the set of all
simple paths from i to j. Respectively, P =

⋃
w∈OD Pw is the set of all possible routes for all OD

pairs. Agents traveling from node i to node j are distributed among paths from Pw, i.e. for any p ∈ Pw
there is a flow xp ∈ R+ along the path p, and

∑
p∈Pw xp = dw. Flows from vertices from the set O

to vertices from the set D create the traffic in the entire network G, which can be represented by an
element of

X =
{
x ∈ R|P |+ :

∑
p∈Pw

xp = dw, w ∈ OD
}
.

Note that the dimension of X can be extremely large: e.g. for n×nManhattan network log |P | = Ω(n).
To describe a state of the network we do not need to know an entire vector x, but only flows on arcs:

fe(x) =
∑
p∈P

δepxp for e ∈ E,

where δep = 1{e ∈ p}. Let us introduce a matrix Θ such that Θe,p = δep for e ∈ E, p ∈ P , so in vector
notation we have f = Θx. To describe an equilibrium we use both path- and link-based notations
(x, t) or (f, t).

Beckmann model. One of the key ideas behind the Beckmann model is that the cost (e.g. travel
time, gas expenses, etc.) of passing a link e is the same for all agents and depends solely on the flow
fe along it. In what follows, we denote this cost for a given flow fe by te = τe(fe). Another essential
point is a behavioral assumption on agents called the first Wardrop’s principle: we suppose that each
of them knows the state of the whole network and chooses a path p minimizing the total cost

Tp(t) =
∑
e∈p

te.

The cost functions are supposed to be continuous, non-decreasing, and non-negative. Then (x∗, t∗),
where t∗ = (t∗e)e∈E , is an equilibrium state, i.e. it satisfies conditions

t∗e = τe(f
∗
e ), where f∗ = Θx∗,

x∗pw > 0 =⇒ Tpw(t∗) = Tw(t∗) = min
p∈Pw

Tp(t
∗),

if and only if x∗ is a minimum of the potential function:

Ψ(x) =
∑
e∈E

∫ fe

0

τe(z)dz︸ ︷︷ ︸
σe(fe)

−→ min
f=Θx, x∈X

⇐⇒ Ψ(f) =
∑
e∈E

σe(fe) −→ min
f=Θx: x∈X

, (B)

and t∗e = τe(f
∗
e ) (Beckmann et al., 1956).

Another way to find an equilibrium numerically is by solving a dual problem. According to Theo-
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rem 4 from Nesterov and De Palma (2003), we can construct it in the following way:

min
f=Θx: x∈X

Ψ(f) = min
x∈X, f

[
Ψ(f) + sup

t∈R|E|
〈t,Θx− f〉

]
= sup
t∈R|E|

min
x∈X, f

[Ψ(f) + 〈t,Θx− f〉]

= sup
t∈R|E|

[
−
∑
e∈E

max
fe
{tefe − σe(fe)}+ min

x∈X

∑
p

∑
e∈E

teδepxp

]

= max
t∈domσ∗

−

[∑
e∈E

σ∗e(te)−
∑
w∈OD

dwTw(t)

]
= −min

t≥t̄
Q(t),

where

σ∗e(te) = sup
fe≥0
{tefe − σe(fe)} = f̄e

(
te − t̄e
t̄eρ

)µ
(te − t̄e)

1 + µ

is the conjugate function of σe(fe), e ∈ E. Finally, we obtain the dual problem, the solution of which
is t∗:

Q(t) = −
∑
w∈OD

dwTw(t) +
∑
e∈E

σ∗e(te) −→ min
t≥t̄

. (DualB)

When we search for the solution to this problem numerically, on every step of an applied method
we can reconstruct primal variable f from the current dual variable t: f ∈ ∂

∑
w∈OD dwTw(t) (see

Subsection 3.1). Then we can use the duality gap — which is always nonnegative — for the estimation
of the method’s accuracy:

∆(f, t) = Ψ(f) +Q(t).

It vanishes only at the equilibrium (f∗, t∗).
Stable dynamics model (Nesterov and De Palma, 2003). An equilibrium state (x∗, t∗) of

the stable dynamics model satisfies the next conditions:

t∗e ∈ τe(f∗e ),

x∗pw > 0 =⇒ Tpw(t∗) = Tw(t∗),

where τ(f) is defined earlier by (2). The above formula can be reformulated in terms of an optimization
problem:

x∗ = arg min
x∈X

∑
w∈OD

∑
p∈Pw

xpTp(t
∗)

= arg min
x∈X

∑
e∈E

t∗efe(x)

= arg min
x∈X

∑
e∈E

[t∗efe(x)− (t∗e − t̄e)f̄e],

t∗e ∈ τe(f∗e )⇐⇒ t∗e = arg max
te≥t̄e

te(f
∗
e − f̄e)

= arg max
te≥t̄e

[te(f
∗
e − f̄e) + t̄ef̄e].

Here, we add underlined constant terms to show that the pair (f∗, t∗) is an equilibrium if and only if
it is a solution of the saddle-point problem∑

e∈E
[tefe − (te − t̄e)f̄e] −→ min

f=Θx:
x∈X

max
te≥t̄e

, (SaddleSD)

where its primal problem is

Ψ(x) = sup
te≥t̄e

∑
e∈E

[tefe − (te − t̄e)f̄e] =
∑
e∈E

t̄efe +
∑
e∈E

sup
te≥t̄e

(te − t̄e)(fe − f̄e) −→ min
f=Θx:x∈X

⇐⇒ Ψ(f) =
∑
e∈E

fet̄e −→ min
f=Θx:

x∈X, fe≤f̄e

, (SD)
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and its dual problem is

Q(t) = − inf
f=Θx:x∈X

∑
e∈E

[tefe − (te − t̄e)f̄e]

= −
∑
w∈OD

dwTw(t) + 〈t− t̄, f̄〉 −→ min
te≥t̄e

. (DualSD)

In contrast with the Beckmann model, the equilibrium state in the stable dynamics model is defined
by pair (f∗, t∗) (in particular, it differs from the system optimum (f∗, t̄) in the model only by the time
value).

3 Numerical methods
We have the following objective functions

• The stable dynamics model:

Q(t) = −
∑
w∈OD

dwTw(t)︸ ︷︷ ︸
Φ(t)

+ 〈t− t̄, f̄〉︸ ︷︷ ︸
h(t)

,

• The Beckmann model:

Q(t) = −
∑
w∈OD

dwTw(t)︸ ︷︷ ︸
Φ(t)

+
∑
e∈E

f̄e

(
te − t̄e
t̄eρ

)µ
(te − t̄e)

1 + µ︸ ︷︷ ︸
h(t)

.

In both cases it has form
Q(t) = Φ(t) + h(t) −→ min

t≥t̄
. (3)

The optimization problem (3) is convex, non-smooth and composite. We use all these properties to
identify the best optimization method to solve the considered problem.

3.1 Subgradient
In our research, we consider first-order methods, i.e. they require a subgradient of Φ(t), the properties
and effective computation of which we discuss in this section.

To get the subdifferential ∂ Φ(t) let us re-write Φ(t) in the following way:

Φ(t) = −
∑
w∈OD

dwTw(t) = −
∑
w∈OD

dw min
p∈Pw

〈t, ap〉,

where the vector ap = (δep)e∈E encodes a path p. Obviously, the shortest path may not be unique.
Using the rules of subgradient calculus (Rockafellar, 2015) we get the following expression:

∂ Φ(t) = −
∑
w∈OD

dw ∂

(
min
p∈Pw

〈t, ap〉
)

= −
∑
w∈OD

dwConv{ap : p ∈ Pw, Tp(t) = Tw(t)},

i.e. the subdifferential ∂ Φ(t) is a sum of convex hulls of binary vectors that encode the shortest length
paths. An important consequence is that for any t1, t2 ∈ R|E|+ and ∇Φ(t1) ∈ ∂ Φ(t1), ∇Φ(t2) ∈ ∂ Φ(t2)
the following bound holds:

‖∇Φ(t1)−∇Φ(t2)‖2 ≤M =
√

2H
∑
w∈OD

dw, (4)

where H is the diameter of the graph G.
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Note that any element from the set ∂ Φ(t) has form∇Φ(t) = −f , where f = Θx is a flow distribution
on links induced by x ∈ X concentrated on the shortest paths for given times t (and vice versa: any
such f corresponds to a subgradient of Φ(t)).

In practice, the calculation of flows f is the most expensive part, since we have to find the shortest
paths for all pairs w ∈ OD. We use the following algorithm 1. We use Dijkstra’s algorithm (Dijkstra
et al., 1959) to find the shortest paths in line 3, which runs in O(|E| + |V | log |V |) time; finding the
traversal order with topological sort (Section 22.4 in Cormen et al. (2009)) and further flows aggregation
have linear performance O(|V |). Hence, the total complexity of Algorithm 1 is O

(
|O|(|E|+|V | log |V |)

)
.

When the transportation network is an (almost) planar graph or another sparse graph, |E| = O(|V |)
and the complexity is O(|O| · |V | log |V |). Moreover, flows reconstruction for every source o ∈ O
can be computed in parallel. And Dijkstra’s algorithm also can be parallelized and has efficient
implementations (Crauser et al., 1998; Chao and Hongxia, 2010).

Algorithm 1 Flows reconstruction
Input: times t
1: f := 0|E| {flows on edges}
2: for origin o in O do
3: Get a shortest-path tree To from o to all destinations in D with weights t
4: traversal_order := TopologicalSort(To) {sorting from furthest to closest vertices}
5: fout := 0|V | {total output flow from each vertex}
6: fout[v] := dw for w = (o, v) ∈ OD
7: for v in traversal_order do
8: Get predecessor p of v in To
9: e := (p, v)

10: f [e] := f [e] + fout[v]
11: fout[p] := fout[p] + fout[v]
12: end for
13: end for
14: return flows f

3.2 Reconstruction of admissible flows in SD model
For given times t considered Algorithm 1 reconstructs feasible flows f , i.e. f = Θx for some x ∈
X. These flows meet all the constraints in the Beckmann model, but they can violate the capacity
constraints in the stable dynamics model. In the latter case, an additional step is required to obtain
admissible flows from f . Note that we could instead find flows that meet capacity constraints first
(Theorem 8 from Nesterov and De Palma (2003)), but to reconstruct feasible flows from them is a
more complex problem.

Suppose we are given some flows g = Θx such that

ξ = 1−max
e∈E

ge/f̄e > 0. (5)

Then for any f = Θx we can construct admissible flows π(f) in the following way: let η = maxe∈E fe/f̄e−
1, then

π(f) =

{
f, η ≤ 0,
ξf+ηg
ξ+η , η > 0.

In practice, we propose the following procedure to find admissible flows g: run some optimization
method (e.g. UGM) for a small number of iterations for the same problem but with decreased capacities:
1
2 f̄ instead of f̄ ; if obtained feasible flows f̂N satisfy f̂N ≤ 3

4 f̄ , then take g = f̂N ; otherwise, run it
again with capacities 3

4 f̄ and check f̂N ≤ 7
8 f̄ , etc.

Stopping criterion. The stopping criterion we use for the stable dynamics model is based on a
duality gap

Q(t̂N ) + Ψ(π(f̂N )) ≤ ε, (6)
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where f̂N ∈ {Θx : x ∈ X}, t̂N ≥ t̄ are estimates of an equilibrium (f∗, t∗) after N iterations of the
applied method. Note that here the duality gap with f̂N is not applicable.

3.3 Universal gradient method
The method for solving non-smooth problems with smooth techniques was proposed by Nesterov (2015)
and was called the universal gradient method. The pseudocode of UGM for the considered problem (3)
is provided in Algorithm 2. Here the euclidean prox-structure is used. Note that we did not specify
the stopping criterion as it can be different for different models.

Algorithm 2 Universal gradient method
Input: L0 > 0, accuracy ε > 0
1: Set t0 := t̄, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do
5: tk+1 := arg min

t∈domh
〈∇Φ(tk), t− tk〉+ h(t) + Lk+1

‖t−tk‖2
2

2

6: if Φ(tk+1) ≤ Φ(tk) +
〈
∇Φ(tk), tk+1 − tk

〉
+ Lk+1

‖tk+1−tk‖2
2

2 + ε
2 then

7: break
8: else
9: Lk+1 := 2Lk+1

10: end if
11: end while
12: k := k + 1
13: until Stopping criterion is fulfilled

Now let us define

f̂N = − 1

SN

N−1∑
k=0

∇Φ(tk)

Lk+1
, t̂N =

1

SN

N∑
k=1

tk

Lk
, SN =

N∑
k=1

1

Lk
, (7)

where Lk are the estimates of the local Lipschitz constant in UGM and UMST methods.
Convergence of the UGM was proved in Nesterov (2015) and is summarized in the following lemma

and theorem.

Lemma 3.1. After N iterations of UGM for the stable dynamics model it holds that

Q(t̂N )−Q(t∗) ≤ R2

SN
+
ε

2
, (8)

0 ≤ Q(t̂N ) + Ψ(f̂N ) + 〈t∗ − t̄, (f̂N − f̄)+〉 ≤
R2

SN
+
ε

2
, (9)

‖(f̂N − f̄)+‖2 ≤
4R

SN
+

√
2ε

SN
, (10)

where f̂N , t̂N , and SN are defined by (7), and R = ‖t∗ − t̄‖2 is the distance from the starting point to
a solution.

Theorem 3.2. Let L0 ≤ M2

ε , where M comes from (4). Then after at most

NQ = 2

(
RM

ε

)2

(11)

iterations of UGM for the stable dynamics model it holds that Q(t̂N ) − Q(t∗) ≤ ε. Moreover, the
stopping criterion (6) is fulfilled after at most

Nstop = O

((
RM

ε

)2

max

{
1,

(
〈g − f∗, t̄〉
ξRmine f̄e

)2
})

(12)

7



iterations, where ξ comes from (5).

Now we provide results on the rate of convergence for the Beckmann model. The stopping criterion
in this case is the following:

Q(t̂N ) + Ψ(f̂N ) ≤ ε. (13)

Lemma 3.3. After N iterations of UGM for the Beckmann model it holds that

Q(t̂N )−Q(t∗) ≤ R2

SN
+
ε

2
,

0 ≤ Q(t̂N ) + Ψ(f̂N ) ≤ ‖τ(f̂N )− t̄‖22
SN

+
ε

2
,

where f̂N , t̂N , SN are defined by (7), and R = ‖t∗ − t̄‖2

Theorem 3.4. Let L0 ≤ M2

ε , where M comes from (4). Then after at most

NQ = 2

(
RM

ε

)2

(14)

iterations of UGM for the Beckmann model it holds that Q(t̂N ) − Q(t∗) ≤ ε. Moreover, the stopping
criterion (13) is fulfilled after at most

Nstop = 2

(
R̃M

ε

)2

(15)

iterations, where

R̃2 = ρ2
∑
e∈E

t̄2e

f̄
2/µ
e

( ∑
w∈OD

dw

)2/µ

. (16)

3.4 Universal Method of Similar Triangles
Let us introduce the following notations:

φ0(t) =
1

2

∥∥t− t0∥∥2

2
,

φk+1(t) = φk(t) + αk+1

[
Φ(yk+1) +

〈
∇Φ(yk+1), t− yk+1

〉
+ h(t)

]
.

Flows are reconstructed in the following way:

f̂N = − 1

AN

N∑
k=1

αk∇Φ(yk) (17)

Lemma 3.5. After N iterations of UMST for the stable dynamics model it holds that

Q(tN )−Q(t∗) ≤ R2

AN
+
ε

2
, (18)

0 ≤ Q(tN ) + Ψ(f̂N ) + 〈t∗ − t̄, (f̂N − f̄)+〉 ≤
R2

AN
+
ε

2
, (19)

‖(f̂N − f̄)+‖2 ≤
4R

AN
+

√
2ε

AN
, (20)

where f̂N is defined by (17) and R = ‖t∗ − t̄‖2 is the distance from the starting point to a solution.
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Algorithm 3 Universal Method of Similar Triangles
Input: L0 > 0, accuracy ε > 0
1: u0 = t0 := t̄, A0 := 0, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do

5:


αk+1 := 1

2Lk+1
+
√

1
4L2

k+1
+ Ak

Lk+1
, Ak+1 := Ak + αk+1

yk+1 := αk+1u
k+Akt

k

Ak+1
, uk+1 := arg min

t∈domh
φk+1(t)

tk+1 := αk+1u
k+1+Akt

k

Ak+1

6: if Φ(tk+1) ≤ Φ(yk+1) +
〈
∇Φ(yk+1), tk+1 − yk+1

〉
+ Lk+1

2

∥∥tk+1 − yk+1
∥∥2

2
+ αk+1

2Ak+1
ε then

7: break
8: else
9: Lk+1 := 2Lk+1

10: end if
11: end while
12: k := k + 1
13: until Stopping criterion is fulfilled

Theorem 3.6. Let L0 ≤ 4M2

ε , where M comes from (4). Then after at most

NQ = 4

(
RM

ε

)2

(21)

iterations of UGM for the stable dynamics model it holds that Q(tN ) − Q(t∗) ≤ ε. Moreover, the
stopping criterion (6) with t̂N = tN is fulfilled after at most

Nstop = O

((
RM

ε

)2

max

{
1,

(
〈g − f∗, t̄〉
ξRmine f̄e

)2
})

(22)

iterations, where ξ comes from (5).

Theorem 3.7. Let L0 ≤ 4M2

ε , where M comes from (4). Then after at most

NQ = 4

(
RM

ε

)2

(23)

iterations of UMST for the Beckmann model it holds that Q(tN )−Q(t∗) ≤ ε. Moreover, the stopping
criterion (13) with t̂N = tN is fulfilled after at most

Nstop = 4

(
R̃M

ε

)2

(24)

iterations, where R̃ is defined by (16).

3.5 Method of Weighted Dual Averages
Convergence of WDA-method was proved in Nesterov (2009) and is summarized in the following

theorem.

Theorem 3.8. Non-composite WDA-method satisfies the following bounds

• for the stable dynamics model:

Q(t̂k)−Q(t∗) = O

(
M + ‖f̄‖2√

k

(
R2

χ
+ χ

))
,

• for the Beckmann model if µ ≤ 1:

Q(t̂k)−Q(t∗) = O

(
1√
k

(
M + max

e
f̄e

[
2R+ χ

t̄eρ

]µ)(
R2

χ
+ χ

))
.
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Algorithm 4 Method of Weighted Dual Averages
Input: accuracy ε > 0, constant χ > 0
1: s0 := ~0, t0 := t̄, k := 0
2: repeat
3: Compute subgradient gk, set sk+1 := sk + 1

‖gk‖2 g
k

• non-composite case: gk := ∇Φ(tk) +∇h(tk)

• composite case: gk := ∇Φ(tk)

4: Set βk+1 := β̂k+1

χ , where β̂k+1 =
∑k
i=0

1
β̂i
, β̂0 = 1

5: Set tk+1

• non-composite case: tk+1 := arg min
t∈domh

〈sk+1, t〉+ βk+1

2

∥∥t− t0∥∥2

2

• composite case: tk+1 := arg min
t∈domh

〈sk+1, t〉+ βk+1

2

∥∥t− t0∥∥2

2
+
∑k
i=0

1
‖gk‖2h(t)

6: k := k + 1
7: until Stopping criterion is fulfilled

4 Numerical experiments
This section presents numerical results for the algorithms described above, namely, composite variants
of UMST and UGM, both composite and non-composite WDA-method, on the Anaheim network
(Transportation Networks for Research Core Team, 2021; Chudak et al., 2007). The network consists
of 38 zones, 416 nodes, and 916 links. Experiments and the source code in Python 3(Van Rossum
and Drake, 2009) can be found in Kubentayeva (2021). We used Dijkstra’s algorithm for finding the
shortest paths in the network from the graph-tool library (Peixoto, 2014), where it is implemented in
C++. We also used the Numpy library (Harris et al., 2020) for all vector operations.

Stable dynamics model. Parameters of the network are adjusted to the Beckmann model, so we
have to increase the capacities to ensure the existence of an equilibrium for the stable dynamics model.
In our experiments, the capacities are multiplied by 2.5. In Figure 2, we plot the number of (inner)
iterations of the algorithms required to fulfill the stopping criterion (6) against 1/ε. We consider the
number of inner iterations for Alg. 3 and Alg. 2 since the complexity of an inner iteration in this case
is similar to the complexity of an iteration of the other algorithms. Note that according to (Nesterov,
2015, formula (2.23)) the number N(k) of inner iterations of UGM or UMST at step k is bounded as

N(k) ≤ 2k + log2

(
M2

εL0

)
,

so asymptotic rates from Theorems 3.2, 3.4, 3.6, and 3.7 are still valid.
As we can see, the best results are shown by UMST, followed by UGM having similar performance.

Both composite and non-composite WDA-method are much slower.
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Figure 2: Convergence rates of UMST, UGM, composite and non-composite WDA-methods for the
stable dynamics model with the stopping criterion (6). Here ε̃ is the relative accuracy ε/∆0, where
∆0 is the duality gap at the start point.

Beckmann model. For the Beckmann model we also compare our methods with the Frank–Wolfe
algorithm (Alg. 5) — which theoretical convergence rate for convex objective (with Lipschitz-continuous
gradient) is O(1/ε) (Pedregosa et al., 2020; Jaggi, 2013).

Algorithm 5 Frank-Wolfe algorithm
Input: accuracy ε > 0
1: t0 := t̄, f0 := arg min

s∈{Θx:x∈X}
〈t0, s〉, k := 0

2: repeat
3: sk := arg min

s∈{Θx:x∈X}
〈tk, s〉, tke := ∂Ψ(fk)

∂fe
= τe(f

k)

4: γk := 2
k+2 , f

k+1 := (1− γk)fk + γks
k

5: k := k + 1
6: until Stopping criterion is fulfilled

Figure 3 shows the convergence rates of the methods for the Beckmann model. The Frank–Wolfe
method demonstrates the best results and is followed by UMST. Unlike the stable dynamics case,
composite WDA-method is faster than UGM. However, the non-composite WDA-method has the
worst performance again.
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Figure 3: Convergence rates of UMST, UGM, composite and non-composite WDA-methods, and the
Frank–Wolfe method for the Beckmann model with the stopping criterion (13). Here ε̃ is the relative
accuracy ε/∆0, where ∆0 is the duality gap at the start point.

5 Conclusion
We considered several primal-dual subgradient methods for finding equilibria in the stable dynamics
and the Beckmann models. We suggested a way to reconstruct admissible flows in the stable dynamics
model, which provides us with a novel computable duality gap. Complexity bounds for UMST and
UGM were presented in terms of the iterations number required to achieve a desired accuracy in
the dual function value or the duality gap. Finally, we conducted numerical experiments comparing
convergence of the considered algorithms on the Anaheim transportation network: UMST is the best
one for optimization of the dual problems in both models. Also, using the duality gap as a stopping
criterion, we compared these methods with the Frank–Wolfe algorithm for the Beckmann model —
which, as expected, remains the most suitable approach in this case (but it is not applicable for the
stable dynamics model).

The reader may be interested in another related topic, searching stochastic traffic equilibria. In
Gasnikov and Kubentayeva (2018); Baimurzina et al. (2019) we with our colleagues studied the appli-
cation of the UMST for finding Nash–Wardrop stochastic equilibria in the Beckmann model. In this
case, a driver selects a route randomly according to Gibbs’ distribution taking into account current
time costs on the links of the network. It leads to iteration complexity O( 1√

γε ), where γ > 0 is a
stochasticity parameter (when γ → 0 the model boils down to the ordinary Beckmann model). How-
ever, the great decrease in the number of iterations comes along with a more expensive calculation of
the objective function’s gradient.
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6 Appendix

6.1 Proofs for UGM
Proof of Lemma 3.1. Note that function Φ(t) satisfies (4). Then according to Theorem 1 in Nes-
terov (2015) applied with ν = 0 one has

Q(t̂N ) ≤ 1

SN

N∑
k=1

1

Lk
Q(tk)

≤ min
t≥t̄

{
1

SN

N−1∑
k=0

1

Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t0‖22
SN

}
+
ε

2
. (25)

Equation (8) follows immediately if one substitutes t = t∗. Now let us estimate the first term on the
r.h.s.

min
t≥t̄

{
1

SN

N−1∑
k=0

1

Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t̄‖22
SN

}

= min
t≥t̄

 1

SN

N−1∑
k=0

1

Lk+1

[
Φ(tk) + 〈∇Φ(tk), 0− tk〉

]︸ ︷︷ ︸
≤Φ(0)

−〈f̂N , t〉+ 〈f̄ , t− t̄〉+
‖t− t̄‖22
SN


≤ Φ(0)− 〈f̂N , t̄〉+ min

t≥t̄

{
〈f̄ − f̂N , t− t̄〉+

‖t− t̄‖22
SN

}
= −Ψ(f̂N )− SN‖(f̂N − f̄)+‖22

4
.

Here we used that Φ(0) = −
∑
w∈OD dwTw(0) = 0. Therefore,

Q(t̂N ) + Ψ(f̂N ) +
SN‖(f̂N − f̄)+‖22

4
≤ ε

2
.
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Now notice that, since the flow f̂N is induced by some traffic distribution x ∈ X, we have

0 ≤ Φ(t∗) + 〈t∗, f̂N 〉

= Q(t∗)− 〈t∗ − t̄, f̄〉+ Ψ(f̂N )− 〈t̄, f̂N 〉+ 〈t∗, f̂N 〉

= Q(t∗) + Ψ(f̂N ) + 〈t∗ − t̄, f̂N − f̄〉

≤ Q(t̂N ) + Ψ(f̂N ) + 〈t∗ − t̄, (f̂N − f̄)+〉,

hence
Q(t̂N ) + Ψ(f̂N ) ≥ −〈t∗ − t̄, (f̂N − f̄)+〉 ≥ −R‖(f̂N − f̄)+‖2.

This yields
SN‖(f̂N − f̄)+‖22

4
−R‖(f̂N − f̄)+‖2 ≤

ε

2
,

and thus

‖(f̂N − f̄)+‖2 ≤
2R

SN

(
1 +

√
1 +

εSN
2R2

)
≤ 4R

SN
+

√
2ε

SN
.

Proof of Theorem 3.2. Theorem 1 in Nesterov (2015) ensures that Lk ≤ M2

ε for all k ≥ 0, thus
SN ≥ εN

M2 . Then the first bound (11) follows immediately from (8).
Now let us prove the second bound. First, suppose f̂Ne ≤ f̄e for all e ∈ E. Then π(f̂N ) = f̂N , thus

by (9) for N = NQ

Q(t̂N ) + Ψ(π(f̂N )) = Q(t̂N ) + Ψ(f̂N ) ≤ R2

SN
+
ε

2
≤ (RM)2

εN
+
ε

2
≤ ε.

Otherwise, if f̂Ne 6≤ f̄e, one has π(f̂N ) = ξf̂N+ηg
ξ+η , where η = maxe∈E f̂

N
e /f̄e − 1, hence (8) and (9)

yield

Q(t̂N ) + Ψ(π(f̂N )) ≤ ξ

ξ + η

(
Q(t̂N ) + Ψ(f̂N )

)
+

η

ξ + η

(
Q(t̂N ) + Ψ(g)

)
=

ξ

ξ + η

(
Q(t̂N ) + Ψ(f̂N )

)
+

η

ξ + η

(
Q(t̂N )−Q(t∗)

)
+

η

ξ + η
(Ψ(g)−Ψ(f∗))

≤ R2

SN
+
ε

2
+
η

ξ
〈g − f∗, t̄〉.

Finally, according to (10)

η = max
e∈E

f̂Ne /f̄e − 1 =

∥∥∥∥∥ (f̂N − f̄)+

f̄

∥∥∥∥∥
∞

≤ 1

mine f̄e

∥∥∥(f̂N − f̄)+

∥∥∥
2
≤ 1

mine f̄e

(
4R

SN
+

√
2ε

SN

)
.

Combining all bounds together we obtain

Q(t̂N ) + Ψ(π(f̂N )) ≤ R2M2

εN
+
〈g − f∗, t̄〉
ξmine f̄e

(
4RM2

εN
+

√
2M2

N

)
+
ε

2
,

and substituting N = Nstop, we conclude that the stopping criterion (6) is fulfilled.

Proof of Lemma 3.3. First of all, note that

max
t≥t̄

{
〈f̂N , t〉 −

∑
e∈E

σ∗e(te)

}
=
∑
e∈E

σe(f̂
N
e ) = Ψ(f̂N ),
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and maximum is attained at point t = ∇Ψ(f̂N ) = τ(f̂N ). As in the proof of Theorem 3.2, the
inequality (25) holds in Beckmann’s model case. Then the first term in the r.h.s. can be estimated as
follows

min
t≥t̄

{
1

SN

N−1∑
k=0

1

Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t̄‖22
SN

}

= min
t≥t̄

 1

SN

N−1∑
k=0

1

Lk+1

[
Φ(tk) + 〈∇Φ(tk), 0− tk〉

]︸ ︷︷ ︸
≤Φ(0)

−〈f̂N , t〉+
∑
e∈E

σ∗e(te) +
‖t− t̄‖22
SN


≤ Φ(0) +

{∑
e∈E

σ∗e(te(f̂
N
e ))− 〈f̂N , τ(f̂N )〉+

‖τ(f̂N )− t̄‖22
SN

}

= −Ψ(f̂N ) +
1

SN
‖τ(f̂N )− t̄‖22,

and we finally get an upper bound on the duality gap:

0 ≤ Q(t̂N ) + Ψ(f̂N ) ≤ ‖τ(f̂N )− t̄‖22
SN

+
ε

2
.

In the same time, substituting t = t∗ one obtains

Q(t̂N ) ≤ Q(t∗) +
‖t∗ − t̄‖2

SN
+
ε

2
.

Proof of Theorem 3.4. By construction, t̂Ne ≤
∑
w∈OD dw for all e ∈ E, thus ‖τ(f̂N ) − t̄‖2 ≤ R̃.

According to Theorem 1 in Nesterov (2015) SN ≥ εN
M2 , thus the statement follows immediately from

Lemma 3.3.

6.2 Proofs for UMST
Proof of Lemma 3.5. According to the inequality (30) in Gasnikov and Nesterov (2018)

Q(tN ) ≤ min
t≥t̄

{
1

AN

N∑
k=1

αk
[
Φ(yk) +

〈
∇Φ(yk), t− yk

〉]
+ h(t) +

‖t− t0‖22
2AN

}
+
ε

2
. (26)

Note that the above inequality has the same form as (25), if one replaces SN with AN , 1
Lk+1

with αk,

yk with tk, and ‖t−t
0‖22

SN
with ‖t−t

0‖22
2AN

. Then the claim follows by the same reasoning as in the proof of
Lemma 3.1.

Proof of Theorem 3.6. Due to (4) one has

Φ(tk+1) ≤ Φ(yk+1) + 〈∇Φ(yk+1), tk+1 − yk+1〉+M‖tk+1 − yk+1‖2.

From Young’s inequality we get that

M‖tk+1 − yk+1‖2 ≤
αk+1

2Ak+1
ε+

Ak+1M
2

2αk+1ε
‖tk+1 − yk+1‖22.

If Lk+1 ≥ Ak+1M
2

αk+1ε
, then the stopping condition for inner iterations is fulfilled. Therefore, at the end

of the k-th iteration either Lk+1 <
2Ak+1M

2

αk+1ε
or Lk+1 = Lk

2 .

Now we are going to prove by induction that αk ≥ ε
2M2 , which is equivalent to Lk ≤ 2M2

ε + 4M4

ε2 Ak,
for all k ≥ 1. For k = 1 it follows from A1 = α1 and L0 ≤ 4M2

ε . In case where Lk+1 <
2Ak+1M

2

αk+1ε
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equation Ak+1 = Lk+1α
2
k+1 immediately yields αk+1 ≥ ε

2M2 . If Lk+1 = Lk
2 , then by the induction

hypothesis and monotonicity of the sequence {Ak}k∈N we obtain

Lk+1 ≤
M2

ε
+

2M4

ε2
Ak−1 <

2M2

ε
+

4M4

ε2
Ak.

Therefore,

AN ≥
εN

2M2
. (27)

Arguing in the same way as in the proof of Theorem 3.2 we obtain that

Q(tN )−Q(t∗) ≤ 2R2M2

εN
+
ε

2

and

Q(t̂N ) + Ψ(π(f̂N )) ≤ 2R2M2

εN
+
〈g − f∗, t̄〉
ξmine f̄e

(
8RM2

εN
+

√
4M2

N

)
+
ε

2
.

After substitution N = NQ or N = Nstop the claim follows.

Proof of Theorem 3.7. Repeating the proof of Theorem 3.4 we obtain that

Q(tN )−Q(t∗) ≤ R2

AN
+
ε

2
, Q(tN ) + Ψ(f̂N ) ≤ R̃2

AN
+
ε

2
.

Then we conclude applying (27).

6.3 Proof of Theorem 3.8 (WDA)
According to eq. (3.5) from Nesterov (2009),

Q(t̂k)−Q(t∗) = O

(
L√
k

(
R2

χ
+ χ

))
,

whenever ‖gk‖2 ≤ L for all k.
In case of the stable dynamics model ∇h(t) = f̄ , thus we can take L = M + ‖f̄‖2.
For the Beckmann model

∂h(t)

∂te
= f̄e

(
te − t̄e
t̄eρ

)µ
.

Theorem 3 in Nesterov (2009) yields that ‖tk − t∗‖22 ≤ R2 + χ2 for all k, thus ‖tk − t̄‖2 ≤ 2R + χ.
Then using µ ≤ 1 one obtains

‖∇h(tk)‖2 ≤ ‖tk − t̄‖µ2 max
e

f̄e
(t̄eρ)µ

≤ (2R+ χ)µ max
e

f̄e
(t̄eρ)µ

,

thus we can take

L = M + max
e
f̄e

(
2R+ χ

t̄eρ

)µ
.
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