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ABSTRACT

Motivated, in particular, by the entropy-regularized optimal transport problem, we
consider convex optimization problems with linear equality constraints, where the
dual objective has Lipschitz p-th order derivatives, and develop two approaches for
solving such problems. The first approach is based on the minimization of the norm of
the gradient in the dual problem and then the reconstruction of an approximate pri-
mal solution. Recently, Grapiglia and Nesterov [22] showed lower complexity bounds
for the problem of minimizing the gradient norm of the function with Lipschitz p-th
order derivatives. Still, the question of optimal or near-optimal methods remained
open as the algorithms presented in [22] achieve suboptimal bounds only. We close
this gap by proposing two near-optimal (up to logarithmic factors) methods with

complexity bounds Õ(ε−2(p+1)/(3p+1)) and Õ(ε−2/(3p+1)) with respect to the initial
objective residual and the distance between the starting point and solution respec-
tively. We then apply these results (having independent interest) to our primal-dual
setting. As the second approach, we propose a direct accelerated primal-dual tensor
method for convex problems with linear equality constraints, where the dual objec-
tive has Lipschitz p-th order derivatives. For this algorithm, we prove Õ(ε−1/(p+1))
complexity in terms of the duality gap and the residual in the constraints. We il-
lustrate the practical performance of the proposed algorithms in experiments on
logistic regression, entropy-regularized optimal transport problem, and the minimal
mutual information problem.

KEYWORDS

Tensor methods; gradient norm; nearly optimal methods; optimal transport;
primal-dual methods

1. Introduction

The idea of using higher-order derivatives in optimization methods has been known
since the 1970’s [26], with increased interests recently [1, 4–6, 10, 46]. Using high-
order oracles has been shown to have better oracle complexities provably. However,
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their main practical bottleneck was the requirement of solving an auxiliary problem at
each iteration that involved minimizing a regularized Taylor expansion of the objective,
which in general, is a non-convex problem. Nesterov in [37] showed that an appropriate
regularization makes the auxiliary problem convex. Moreover, he proposed an efficient
method for solving the corresponding subproblem for the third-order method. This
motivated a resurgence of research that introduced high-order (also referred to as
tensor) methods for convex [8, 9, 20, 21, 25, 27, 38, 39, 47] and non-convex settings [6,
10].

In this paper, we consider a convex optimization problem with linear equality con-
straints of the form

min
Ax=b

f(x), (1)

where f : Rn → R is a convex function, A ∈ R
m×n, b ∈ R

m, and its dual

max
λ∈Rm

{

ϕ(λ) := 〈λ, b〉 +max
x∈Q

(−f(x)− 〈A⊺λ, x〉)
}

, (2)

where we assume that ϕ has Lipschitz-continuous p-th derivative with constant Mp.
One way to tackle this problem is by minimizing the gradient norm of the dual

function [36]. In this case, the dual problem (2) is unconstrained, the gradient norm
of the dual objective is equal to the primal constraints residual, and finding an ε-
stationary point for the dual problem allows one to find an approximate solution to
the primal problem, see the details in Section 2.

Recently in [22], the authors considered a more general setting of composite convex
optimization problems with Hölder-continuous higher-order derivatives and proposed
a set of methods for finding approximate stationary points. As a particular case of [22,
Corollary 5.8], it follows that to find an ε-stationary point x̄ such that ‖∇f(x̄)‖2 ≤ ε,
their proposed method requires

O
((

MpR
p/ε
)1/(p+1))

iterations with R being an estimate for the initial distance to the solution, i.e., ‖x0 −
x∗‖2 ≤ R. Moreover, as a particular case of [22, Corollary 5.10], it follows that to find
an ε-stationary point, their proposed method needs

Õ
((

Mp∆
p
0/ε

p+1
)1/(p+1))

iterations with ∆0 being an estimate for the initial objective residual, i.e., f(x0)−f∗ ≤
∆0. However, these complexity bounds do not match the corresponding lower bounds
obtained in [22, Theorem 6.6] and [22, Theorem 6.8] respectively, where the number
of iterations required to find an ε-stationary point is of the order, respectively,

Ω
((

MpR
p/ε
)2/(3p+1))

and Ω
((

Mp∆
p
0/ε

p+1
)2/(3p+1))

.

In [7, 20, 21], the authors considered finding ε-approximate solution x̄ in terms of
the objective residual, i.e., such that f(x̄) − f∗ ≤ ε. They proposed a class of near-
optimal methods up to a logarithmic factor for unconstrained minimization problem in
the general convex setting and under the additional assumption of uniform convexity.
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We build upon the algorithm, developed in [7], and propose methods for finding an
approximate stationary point with near-optimal (up to a logarithmic multiplier) oracle
complexities [22], see Table 1.

Table 1. Complexity of minimizing the gradient norm from [22] and from this paper (Ω means “lower
bound”).

Property Lower bound [22] Upper Bound [22] Upper Bound (this paper)

f(x0)− f∗ ≤ ∆0 Ω
(

Mp∆
p
0

εp+1

) 2
3p+1

Õ
(

Mp∆
p
0

εp+1

) 1
p+1

Õ
(

Mp∆
p
0

εp+1

) 2
3p+1

‖x0 − x∗‖2 ≤ R Ω
(

MpR
p

ε

) 2
3p+1

O
(

MpR
p

ε

) 1
p+1

Õ
(

MpR
p

ε

) 2
3p+1

In addition, our methods can be used for strongly convex high-order smooth func-
tions, and we provide complexity estimations for finding ε-approximate stationary
point for this case. Moreover, we explain how our methods can be extended to obtain
near-optimal methods for functions with Hölder-continuous high-order derivatives.

An alternative approach to tackle Problem (1), widely used in first-order meth-
ods [2, 3, 12, 17, 18, 23, 29–31, 41, 43–45, 48], constructs so-called primal-dual methods
in which the main iterates are made for the dual problem with the goal being to find
an ε-approximate solution to the dual problem. Then, the information generated while
the dual algorithm works is used, e.g., by averaging, to reconstruct an ε-approximate
solution to the primal problem. Motivated by such methods in the first-order setting,
we propose an accelerated primal-dual high-order method that guarantees O(1/kp+1)
decay after k iterations both for the primal-dual gap and linear constraints infeasibil-
ity. To our knowledge, this is the first high-order primal-dual accelerated method. In
particular, we are not aware of any primal-dual second-order methods.

This paper is organized as follows. We start in Section 2 with examples to motivate
finding approximate stationary points of convex functions. We describe the entropy-
regularized optimal transport problem and show that its structure provides a natural
justification for tensor methods that exploit the high-order smoothness properties of
the corresponding dual problem. Section 3 recalls some auxiliary results used later to
prove our main results. Section 4.1 presents the near-optimal algorithm for finding ap-
proximate stationary points for the initial objective residual; near-optimal complexity
bounds are shown explicitly. Section 4.2 shows the corresponding near-optimal algo-
rithm for the initial variable residual; near-optimal complexity bounds are also shown.
In Section 5, we propose and prove convergence rate guarantees of our accelerated
primal-dual tensor method for problems with linear equality constraints. Section 6
shows some numerical results on the proposed algorithms for the logistic regression
problem, entropy-regularized optimal transport problem, and minimization of “bad”
functions, which give the lower bounds for the considered problem class. We provide
numerical comparisons of the proposed tensor method for gradient norm minimiza-
tion and primal-dual accelerated tensor method on entropy-regularized optimal trans-
port and minimal mutual information problems. In addition, we compare numerically
proposed algorithms with heuristical primal-dual modification of algorithm from [7].
Finally, conclusions and future work are presented in Section 7.

Notation: Let p ≥ 1. We denote by ∇pf(x)[h1, ..., hp] the directional deriva-
tive of function f at x along directions hi ∈ R

n, i = 1, ..., p. ∇pf(x)[h1, ..., hp] is a
symmetric p-linear form and its norm is defined as

‖∇pf(x)‖2 = max
h1,...,hp∈Rn

{∇pf(x)[h1, ..., hp] : ‖hi‖2 ≤ 1, i = 1, ..., p},
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or equivalently

‖∇pf(x)‖2 = max
h∈Rn

{|∇pf(x)[h, ..., h]| : ‖h‖2 ≤ 1}.

We denote ‖·‖2 as the standard Euclidean norm, but our algorithm and derivations
can be generalized for the Euclidean norm given by a general positive semi-definite
matrix B. In what follows, we also use notation ∇pf(x)[h]p ≡ ∇pf(x)[h, ..., h]. We
consider convex, p times differentiable on R functions satisfying Lipschitz condition
for p-th derivative

‖∇pf(x)−∇pf(y)‖2 ≤Mp‖x− y‖2, x, y ∈ R
n. (3)

Given a function f , numbers p ≥ 1 and M ≥ 0, define

Φx,p(y) ,

p
∑

i=0

1

i!
∇if(x)[y − x]i,

Ωx,p,M(y) , Φx,p(y) +
M

(p + 1)!
‖y − x‖p+1

2 , (4)

T f
p,M (x) ∈ Arg min

y∈Rn
Ωx,p,M(y). (5)

The main reason for using such regularization in (4) is that, generally speaking, Taylor
approximation of a convex function can be non-convex, and such regularization makes
it convex [37] for sufficiently large M . Thus, from (3) and Taylor’s theorem, it can be
shown [6, Eqs. (2.6) and (2.7)], that

|f(y)− Φx,p(y)| ≤
Mp

p!
‖y − x‖p+1

2 , (6)

‖∇f(y)−∇Φx,p(y)‖2 ≤ Mp

(p− 1)!
‖y − x‖p2. (7)

2. A motivating example: problems with linear constraints

Let us consider a convex optimization problem with linear constraints

min
x∈Q⊆E

{f(x) : Ax = b} , (8)

where E is a finite-dimensional real vector space, Q is a simple closed convex set, A is
a given linear operator from E to some finite-dimensional real vector space H, b ∈ H
is given, f is a convex function on Q with respect to some chosen norm ‖ · ‖E on E.

The Lagrange dual problem for (8), written as a minimization problem, is

min
λ∈H∗

{

ϕ(λ) := 〈λ, b〉+max
x∈Q

(−f(x)− 〈A⊺λ, x〉)
}

. (9)

We assume that the dual objective is smooth. In this case, by the Demyanov-Danskin
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theorem [15], ∇ϕ(λ) = b−Ax(λ), where

x(λ) := argmaxx∈Q (−f(x)− 〈A⊺λ, x〉) .

Having the dual formulation in (9) at hand, the following proposition justifies why
minimizing the norm of a gradient is useful in the convex setting.

Proposition 2.1 (Lemma 1 in [19]). Let λ ∈ H∗ be such that −〈λ,∇ϕ(λ)〉 ≤ εf , and
‖∇ϕ(λ)‖H ≤ εeq. Then

f(x(λ))− f∗ ≤ εf , ‖Ax(λ) − b‖H ≤ εeq. (10)

Proposition 2.1 implies that if there is a method for the dual Problem (9) and
this method generates a bounded sequence of iterates λk and a point λk s.t., the
gradient of the dual objective is small, then, using the relation x(λk) we can reconstruct
an approximate solution to the primal problem. This is the general motivation for
convex optimization methods for minimizing the objective gradient norm. Moreover,
the complexity bound for the dual method directly translates to the complexity for
solving the primal problem without any overhead.

To further motivate the high-order methods to minimize the objective gradient
norm, we present a particular example of a smooth dual objective with Lipschitz
continuous high-order derivatives. This example is the Entropy-regularized optimal
transport problem [13, 14]. Next, we briefly describe the problem and the properties
of the dual objective.

Consider two histograms p, q ∈ Σn on a support of size n, where Σn is the standard
simplex. Also, consider a matrix M ∈ R

n×n
+ which is symmetric and accounts for the

“cost” of transportation such that Mij is the cost of moving a unit of mass from bin i
to bin j in the corresponding supports of distributions p and q. For example, given
support points (xi)1≤i≤n on the Euclidean space, one can consider Mij = ‖xi − xj‖22,
which corresponds to 2-Wasserstein distance.

The entropy-regularized optimal transport problem is defined as:

Wγ(p, q) , min
X∈U(p,q)

{〈M,X〉 − γE(X)}, (11)

where 〈M,X〉 is the Frobenius dot-product, γ ≥ 0 is a regularization parame-
ter, E(X) , −∑i,jXij ln(Xij), and U is the transportation polytope defined as

U(p, q) , {X ∈ R
n×n
+ | X1n = p,X⊺1n = q}.

It is known that Problem (11) is strongly convex and admits a unique optimal solu-
tion X∗ [14]. If γ = 0 and Mij = ‖xi − xj‖r2, Wγ(p, q) in (11) is known as the r-th
power of the r-Wasserstein distance between p and q.
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A standard way to deal with (11) is to write its dual as follows:

min
X∈U(p,q)

〈M,X〉 + γ〈X, lnX〉

= min
X∈Σn2

〈M,X〉 + γ〈X, lnX〉+max
ξ,η

{〈ξ, p −X1n〉+ 〈η, q −X⊺1n〉}

= max
ξ,η

{

〈ξ, p〉+ 〈η, q〉+ min
X∈Σn2

{〈M + ξ1n
⊺ + 1nµ

⊺ + γ lnX,X〉}
}

= max
ξ,η

−γln
n
∑

i,j=1

exp

(

−1

γ
(Mij − ξi − ηj)

)

+ 〈ξ, p〉+ 〈η, q〉. (12)

In this case, the explicit dependence of the primal solution from the dual variables is
given by

X(ξ, η) =
diag

(

e
ξ

γ

)

e−
M

γ diag
(

e
η

γ

)

e
ξ

γ e−
M

γ e
η

γ

, (13)

where the function e(·) indicates component-wise exponentiation of vectors and ma-
trices, i.e., [e(A)]ij = exp(Aij). Also, for a vector a, diag(a) denotes a diagonal matrix
with the vector a on the diagonal. We underline that as opposed to the standard
dual problem derived in [13], we consider X to lie not in R

n×n
+ , but rather in the

standard simplex of the size n2, the latter being the corollary of the marginal con-
straints X1n = p, X⊺1n = q since p, q ∈ Σn. This allows us to obtain a high-order
smooth dual objective with a softmax form, as we will show next. On the contrary,
the dual problem in [13] has a sum of exponents in the dual objective, meaning that
the derivatives are not Lipschitz-continuous.

To show the correspondence to a general primal and dual pair of Problems (8)–(9),
let us assume without loss of generality that E = R

n2

, ‖ · ‖E = ‖ · ‖1, and variable x =
vec(X) ∈ R

n2

to be the vector obtained from a matrix X by writing each column of X
below the previous column. For the dual space we consider H = R

2n, ‖ · ‖H = ‖ · ‖2.
Also we set f(x) = 〈M,X〉 + γ〈X, lnX〉, Q = Σn2 , b⊺ = (p⊺, q⊺), A : Rn2 → R

2n

defined by the identity (A vec(X))⊺ = ((X1n)
⊺, (X⊺1n)

⊺), and λ⊺ = (ξ⊺, η⊺). Note
that the matrix A has the form

A =











In In In ...

1⊺

n 0⊺

n 0⊺

n ...

0⊺

n 1⊺

n 0⊺

n ...

... ... ... ...











,

where In is the identity matrix, 0⊺

n is the vector of all zeros. Using these notations, we
can write the dual problem in (12) as

max
λ

−γln
n
∑

i,j=1

exp

(

− [M −A⊺λ]ij
γ

)

+ 〈λ, b〉

= max
λ

−smaxγ(A
⊺λ−M) + 〈λ, b〉 (14)

= min
λ

smaxγ(A
⊺λ−M)− 〈λ, b〉 (15)
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where

smaxγ(y) , γ log

(

m
∑

i=1

exp(yi/γ)

)

. (16)

More importantly, the following property holds.

Proposition 2.2 ( [9, Theorem 3.4] ). Let z ∈ R
n, c ∈ R

m and A : Rn → R
m. Then

the function smaxγ(Az − c) is (order 3) 15
γ3 -smooth with respect to ‖ · ‖A⊺A.

As a corollary, the dual objective in (15) has (15/γ3)-Lipschitz-continuous third
derivative w.r.t. ‖ · ‖AA⊺ . Equivalently to the first order Lipschitz constant from [35],
we can write third order Lipschitz constant from Proposition 2.2 as 15‖A‖4E→H/γ

3.
Due to our choice of norms in E and H, ‖A‖E→H is equal to the maximal Euclidean
norm of the columns of matrix A. Thus, ‖A‖E→H =

√
2.

We can conclude that minimizing the norm of the gradient of the dual objective
allows one to obtain an approximate solution to the corresponding primal problem
that estimates the optimal transport cost and optimal transportation plan in this
case. Thus, having a fast method that exploits the high-order smoothness of the dual
problem can provide efficient algorithms for the computation of Sinkhorn distance [13]
defined as the solution to entropy regularized optimal transport problem.

3. Preliminaries

In this section, we present a series of auxiliary results that will later enable the de-
velopment of our near-optimal algorithms, which will be presented in Section 4. The
reader might skip this section and revisit it for proof details.

We measure the complexity of algorithms in the number of calls to the oracle of
the objective function. By oracle of some objective f we mean some mapping x 7→
{f(x),∇f(x), ...,∇pf(x)},∀x ∈ domf, p ≥ 1.

To make the paper self-contained, in this section, we recall the near-optimal tensor
methods for minimization of convex objective functions with Lipschitz-continuous p-th
derivative [7].

Theorem 3.1 (Theorem 1 in [7]). Let f be a convex function with Mp-Lipschitz
p-th derivative. Assume, that exists R > 0 : ‖x0 − x∗‖2 ≤ R, and let

cp = 2p−1(p+ 1)
3p+1

2 /(p − 1)!. Then, for all N ≥ 0, the output of Algorithm 1 has
the following property

f(yN)− f(x∗) ≤ cpMpR
p+1

N
3p+1

2

. (18)

Moreover, each iteration k requires O (ln(1/ε)) oracle calls.

At the core of the result in Theorem 3.1, the authors in [7] use the following auxiliary
result that we will later use in our proofs. We restate this result for completeness.

Lemma 3.2 (Lemma 11 from [7]). Let cp = 2p−1(p+ 1)
3p+1

2 /(p − 1)!, and k ≥ 0.
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Algorithm 1 Accelerated Taylor Descent [7, Algorithm 1]

Require: N — iteration number.
1: Set A0 = 0, x0 = y0 = 0
2: for k = 0, 1, 2, . . . , N − 1 do

3: Compute λk+1 > 0 and yk+1 ∈ R
d such that

1

2
≤ λk+1

Mp‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
, (17)

where

ak+1 =
λk+1 +

√

λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1,

x̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
xk, yk+1 = T f

p,pMp
(x̃k).

4: xk+1 = xk − ak+1∇f(yk+1).
5: end for

6: return yN

Then, Ak from Algorithm 1 has the following property

Ak ≥ 1

cpMpRp−1
k

3p+1

2 . (19)

The following statement from [32] also holds for Algorithm 1.

Theorem 3.3 (Theorem 3.6 in [32]). Let sequence (xk, x̃k, yk), k ≥ 0 be generated by
Algorithm 1, and define R := ‖x0 − x∗‖2. Then for all N ≥ 0

1

2
‖xN − x∗‖22 +AN (f(yN )− f(x∗)) +

1

4

N
∑

k=1

AkLk−1‖yk − x̃k−1‖22 ≤
R2

2
, (20)

f(yN )− f(x∗) ≤ R2

2AN
, ‖xN − x∗‖2 ≤ R, (21)

N
∑

k=1

AkLk−1‖yk − x̃k−1‖22 ≤ 2R2. (22)

Algorithm 1 requires intermediate steps to find Lk and yk+1. Since they depend on
each other, we need to find them iteratively with a binary search procedure described
in [7, Section 4].

Since we know that Ωx,p,M(y) is convex, then z̃ = T f
p,M(x) exists. Thus,

∀x ∈ R
n ⇒Ωx,p,M(z̃)

(5)
= min

y∈Rn
Ωx,p,M(y) ≤ Ωx,p,M(x)

(4)
= f(x). (23)

We use this inequality to prove the following lemma, which is a particular case of [22,

8



Lemma 5.2] with ν = 1, θ = 0, and ϕ = 0.

Lemma 3.4 (Lemma 5.2 in [22]). Let p ≥ 1, Mp < ∞, M ≥ (p + 2)Mp and let for
some x ∈ R

n

z̃ = T f
p,M (x).

Then,

f(x)− f(z̃) ≥ 1

4(p + 2)!M
1

p

‖∇f(z̃)‖
p+1

p

2 .

Proof. From triangle inequality, (7) and definition of z̃, we get

‖∇f(z̃)‖2 = ‖∇f(z̃)−∇Φx,p(z̃) +∇Φx,p(z̃)−∇Ωx,p,M(z̃) +∇Ωx,p,M(z̃)‖2
≤ ‖∇f(z̃)−∇Φx,p(z̃)‖2 + ‖∇Φx,p(z̃)−∇Ωx,p,M(z̃)‖+ ‖∇Ωx,p,M(z̃)‖2
(7)

≤ Mp

(p − 1)!
‖z̃ − x‖p2 +

M

p!
‖z̃ − x‖p2 =

(

pMp

p!
+
M

p!

)

‖z̃ − x‖p2
≤ 2M‖z̃ − x‖p2. (24)

Next, from (6), (23) follows

f(z̃)
(6)

≤ Φx,p(z̃) +
Mp

p!
‖z̃ − x‖p+1

2 = Φx,p(z̃) +
(p+ 1)Mp

(p + 1)!
‖z̃ − x‖p+1

2

= Φx,p(z̃) +
M

(p+ 1)!
‖z̃ − x‖p+1

2 − (M − (p+ 1)Mp)

(p + 1)!
‖z̃ − x‖p+1

2

= Ωx,p,M(z̃)− (M − (p+ 1)Mp)

(p+ 1)!
‖z̃ − x‖p+1

2

(23)

≤ f(x)− (M − (p + 1)Mp)

(p+ 1)!
‖z̃ − x‖p+1

2 .

Since M ≥ (p + 2)Mp ⇔ 1
p+2M ≥Mp, we get

f(x)− f(z̃) ≥ (M − (p+ 1)Mp)

(p + 1)!
‖z̃ − x‖p+1

2

≥
(M − p+1

p+2M)

(p+ 1)!
‖z̃ − x‖p+1

2

=
M

(p+ 2)!
‖z̃ − x‖p+1

2 . (25)
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If we combine (24) and (25), we obtain the final result for all p ≥ 1

f(x)− f(z̃) ≥ M

(p+ 2)!
‖z̃ − x‖p+1

2 =
M

(p+ 2)!
(‖z̃ − x‖p2)(p+1)/p

(24)

≥ M

(p + 2)!

(‖∇f(z̃)‖2
2M

)
p+1

p

=
‖∇f(z̃)‖

p+1

p

2

2
p+1

p M
1

p (p + 2)!

≥ ‖∇f(z̃)‖
p+1

p

2

4M
1

p (p+ 2)!
.

4. Near-optimal tensor methods for gradient norm minimization

In this section, we will build upon Algorithm 1 to develop near-optimal tensor meth-
ods for gradient norm minimization of convex functions. This section is divided into
two parts: first, we develop near-optimal tensor methods with respect to an estimate
of the initial objective residual in Subsection 4.1 presented in Algorithm 2, then in
Subsection 4.2, we develop near-optimal tensor methods with respect to an estimate of
the initial argument residual presented in Algorithm 3. Note that both proposed algo-
rithms have Algorithm 1 at their core, and rely on the bounds presented in Section 3.

4.1. Near-optimal tensor methods with respect to the initial objective

residual

In this subsection, we build up from Algorithm 1 to develop a near-optimal algorithm
for which we can provide explicit complexity bounds for approximating a station-
ary point. The obtained oracle complexity bound matches up to a logarithmic factor
the lower complexity bound presented in [22]. This subsection focuses on complexity
bounds that depend on the initial objective residual. Thus, the basic assumption is
that the starting point x0 satisfies f(x0)− f∗ ≤ ∆0.

Theorem 4.1. Let p ≥ 2. Assume the function f is convex, p times differen-
tiable on R

n with Mp-Lipschitz p-th derivative. Assume, that ∆0 > 0 is such that
f(x0)− f∗ ≤ ∆0. Let z̃ be generated by Algorithm 2. Then

‖∇f(z̃)‖2 ≤ ε,

and the total number of iterations of Algorithm 1 required by Algorithm 2 is

O

(

M
2

3p+1
p

ε
2(p+1)

3p+1

∆
2p

3p+1

0 + log2
2

4p−3

p+1 ∆0(pMp)
1

p (p+ 1)!

ε
p

p+1

)

.

Moreover, the total oracle complexity is within a O
(

ln 1
ε

)

factor of the above iteration
complexity due to the use of binary search in Algorithm 1.
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Algorithm 2 Near-optimal algorithm with respect to initial objective residual

Require: p ≥ 2, Mp, x0, ∆0 : f(x0)− f∗ ≤ ∆0, ε > 0.
1: Define:

k = 0, Mµ = (p + 2)Mp, µ =
ε2

32∆0
, ε̃ =

(ε/2)
p+1

p

4(p + 2)!M
1

p

µ

,

z0 = x0, fµ(x) = f(x) +
µ

2
‖x− x0‖22.

2: while ∆k ≥ ε̃ where ∆k = ∆0 · 2−k. do
3: Set zk+1 as the output of Algorithm 1 applied to fµ(x) starting from zk and run

for Nk steps, where Nk is such that ANk
≥ 2/µ.

4: k = k + 1.
5: end while

6: Find z̃ = T
fµ
p, Mµ

(zk).
7: return z̃.

Proof. By definition of fµ(x):

fµ(x0)− fµ(x
∗
µ) = f(x0)− f(x∗µ)−

µ

2
‖x∗µ − x0‖22 ≤ f(x0)− f(x∗) ≤ ∆0,

Where x∗µ is the minimum of fµ(x). So, for k = 0 we have fµ(zk)− fµ(x
∗
µ) ≤ ∆k. Let

us assume that fµ(zk)−fµ(x∗µ) ≤ ∆k and show that fµ(zk+1)−fµ(x∗µ) ≤ ∆k+1. As you
can see, we use Algorithm 1 inside Algorithm 2 and restart it every time ANk

≥ 2/µ.
We can do this due to the strong convexity of fµ. From (21), strong convexity and
this restart condition it holds that

fµ(zk+1)− fµ(x
∗
µ)

(21)

≤
‖zk − x∗µ‖22

2ANk

≤ 1

2ANk

(

2(fµ(zk)− fµ(x
∗
µ))

µ

)

≤ ∆k

µANk

≤ ∆k

2
= ∆k+1. (26)

Thus, fµ(zk)− fµ(x
∗
µ) ≤ ∆k for all k ≥ 0.

Although such a stopping criterion is useful for numerical experiments, it is not ob-
vious how to derive a theoretical upper bound for the number of steps of Algorithm 1.
We can use (19) and (26) to obtain an upper bound for the number Ñk of steps of Al-
gorithm 1 sufficient to fulfill this stopping criterion. Denote by AÑk

such constant AN ,

which we get after Ñk steps of the Algorithm 1. Then

fµ(zk+1)− fµ(x
∗
µ)

(26)

≤ ∆k

µAÑk

.

From strong convexity, we know that

‖zk − x∗µ‖2 ≤
√

2

µ
∆k.

11



Thus, we can choose Rk =
√

(2/µ)∆k.
From (19) we can choose Nk to fulfill the stopping criterion AÑk

≥ 2/µ:

Ñk = max















(

2cpMp2
p+1

2

µ
p+1

2

∆
p−1

2

k

)
2

3p+1









, 1







. (27)

Therefore, we get

fµ(zk+1)− fµ(x
∗
µ)

(26)

≤ ∆k

µAÑk

≤ cpMp

Ñ
3p+1

2

k

(

2∆k

µ

)
p+1

2

≤ ∆k

2
.

Next, we estimate ‖∇fµ(z̃)‖2. Since z̃ = T
fµ
p,Mµ

(zk), and according to Lemma 3.4,

we have

fµ(zk)− fµ(z̃) ≥
1

4(p+ 2)!M
1

p

µ

‖∇fµ(z̃)‖
p+1

p

2 . (28)

At the same time, by the stopping criterion in Algorithm 2,

fµ(zk)− fµ(z̃) ≤ fµ(zk)− fµ(x
∗
µ) ≤ ∆k ≤ ε̃. (29)

By the definition of ε̃ and (28), (29), we have that

‖∇fµ(z̃)‖2 ≤ ε

2
. (30)

Since the right-hand side of (28) is non-negative, we can state that

fµ(z̃) ≤ fµ(zk). (31)

By definition, fµ is µ-strongly convex and, using (31), we get

µ

2
‖x∗µ − x0‖22 ≤ fµ(x0)− fµ(x

∗
µ) ≤ ∆0, (32)

µ

2
‖z̃ − x∗µ‖22 ≤ fµ(z̃)− fµ(x

∗
µ)

(31)

≤ fµ(zk)− fµ(x
∗
µ) ≤ ∆k ≤∆0. (33)

Applying triangle inequality to the sum of (32) and (33), we get

µ

2
‖z̃ − x0‖22 ≤ µ

(

‖x∗µ − x0‖22 + ‖z̃ − x∗µ‖22
)

≤ 4∆0,

and

‖z̃ − x0‖2 ≤ 2

√

2∆0

µ
.

12



By definition of µ in Algorithm 2, we have

µ‖z̃ − x0‖2 ≤ µ · 2
√

2∆0

µ
= 2
√

2µ∆0 =
ε

2
. (34)

Finally, according to the definition of fµ, (30), (34) and triangle inequality, we get

‖∇f(z̃)‖2 ≤ ‖∇fµ(z̃)‖2 + µ‖z̃ − x0‖2 ≤
ε

2
+
ε

2
= ε.

It remains to upper bound the total number of steps of Algorithm 1. Denote

c̃ =
(

2cp2
p+1

2

) 2

3p+1 and aggregate Ñk’s from (27)

k
∑

i=0

Ñi ≤ c̃
M

2

3p+1
p

µ
p+1

3p+1

k
∑

i=0

(∆0 · 2−i)
p−1

3p+1 + k ≤ c̃
M

2

3p+1
p

µ
p+1

3p+1

∆
p−1

3p+1

0 ·
k
∑

i=0

2−i p−1

3p+1 + k

Since p ≥ 2,
∑k

i=0 2
−i p−1

3p+1 is a geometric progression with a common ratio of less than
one. Therefore, we can upper bound its partial sum by its infinite sum:

k
∑

i=0

2−i p−1

3p+1 ≤ 2

1− 2−
p−1

3p+1

≤ 2 · 16 = 32. (35)

Thus, we get

k
∑

i=0

Ñi ≤ c̃
M

2

3p+1
p

µ
p+1

3p+1

∆
p−1

3p+1

0 ·
k
∑

i=0

2−i p−1

3p+1 + k ≤ 32c̃
M

2

3p+1
p

µ
p+1

3p+1

∆
p−1

3p+1

0 + log2
∆0

ε̃

= O

(

M
2

3p+1

p

ε
2(p+1)

3p+1

∆
2p

3p+1

0 + log2
2

4p−3

p+1 ∆0(pMp)
1

p (p+ 1)!

ε
p

p+1

)

. (36)

According to Theorem 3.1, the total number of oracle calls is within the O (ln(1/ε))
factor from the number of iterations of Algorithm 1. This completes the proof.

If we omit the dominated factors in the result (36), we obtain the complexity bound

Õ

(

Mp∆
p
0

εp+1

)
2

3p+1

,

where the Õ notation hides an additional multiplicative logarithmic factor. We can
conclude that this bound coincides with the lower bound

Ω
(Mp∆

p
0

εp+1

)
2

3p+1

,

from [22] up to logarithmic and constant factors.
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4.2. Near-optimal tensor methods with respect to the initial variable

residual

In this subsection, we build up from Algorithm 1 to develop a near-optimal algo-
rithm, we provide explicit complexity bounds for approximating a stationary point.
The obtained oracle complexity bound matches the lower bound presented in [22] up
to a logarithmic factor. The basic assumption is that the starting point x0 satisfies
‖x0 − x∗‖2 ≤ R.

Algorithm 3 Near-optimal algorithm for initial argument residual

Require: p ≥ 2, Mp, x0, R : ‖x0 − x∗‖2 ≤ R, ε > 0.
1: Define:

k = 0, Mµ = (p+ 2)Mp, µ =
ε

4R
, ε̃ =

(ε/2)
p+1

p

4(p + 2)!M
1

p

µ

,

z0 = x0, fµ(x) = f(x) +
µ

2
‖x− x0‖22.

2: while µR2
k/2 ≥ ε̃, where Rk = R · 2−k do

3: Set zk+1 = yNk
as the output of Algorithm 1 applied to fµ(x) starting from zk

and run for Nk steps, where Nk is such that ANk
≥ 4/µ.

4: k = k + 1.
5: end while

6: Find z̃ = T
fµ
p, Mµ

(zk).
7: return z̃.

Theorem 4.2. Let p ≥ 2. Assume the function f is convex, p times differentiable
on R

n with Mp-Lipschitz p-th derivative. Assume that there exists R > 0 is such that
‖x0 − x∗‖2 ≤ R. Let z̃ be generated by Algorithm 3. Then

‖∇f(z̃)‖2 ≤ ε (37)

and the total number of iterations of Algorithm 1 required by Algorithm 3 is

O

(

M
2

3p+1
p R

2p

3p+1

ε
2

3p+1

+ log
2

p

p+1 (p+ 1)!(pMp)
1

p

ε
1

p+1

)

.

Moreover, the total oracle complexity is within a O (ln(1/ε)) factor of the above itera-
tion complexity.

Proof. By definition of fµ(x), we have

f(x∗µ)+
µ

2
‖x∗µ−x0‖22 = fµ(x

∗
µ) ≤ fµ(x

∗) = f(x∗)+
µ

2
‖x∗−x0‖22 ≤ f(x∗µ)+

µ

2
‖x∗−x0‖22.

(38)
Hence, ‖x∗µ − x0‖22 ≤ ‖x∗ − x0‖22 ≤ R2. So, for k = 0 we have ‖x∗µ − zk‖2 ≤ Rk.

Let us assume that ‖x∗µ − zk‖2 ≤ Rk and show that ‖x∗µ − zk+1‖2 ≤ Rk+1. Again,
just like in Algorithm 2, we use Algorithm 1 inside Algorithm 3 and restart it every
time ANk

≥ 4
µ . We can do this due to the strong convexity of fµ. From strong convexity,
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(21) and this restart condition, it holds that

µ

2
‖zk+1 − x∗µ‖22 ≤ fµ(zk+1)− fµ(x

∗
µ)

(21)

≤
‖zk − x∗µ‖22

2ANk

≤ R2
k

2ANk

≤ µR2
k

8
=
µR2

k+1

2
. (39)

Thus, ‖zk+1 − x∗µ‖2 ≤ Rk+1, fµ(zk)− fµ(x
∗
µ) ≤ µR2

k

2 for all k ≥ 0.
Since fµ(x) is strongly convex and ∀k ≥ 0 ⇒ ‖zk−x∗µ‖2 ≤ Rk, we can apply restarts

technique. In the same way, as in the previous subsection, we can theoretically estimate
the upper bound Ñk on the number of iterations for Algorithm 1 before the stopping
criterion AÑk

≥ 4/µ holds:

fµ(zk+1)− fµ(x
∗
µ)

(39)

≤ R2
k

2AÑk

.

Therefore, if we choose

Ñk = max

{⌈(

8cpMpR
p−1
k

µ

)
2

3p+1
⌉

, 1

}

, (40)

then from (19) we see that this number of steps is sufficient to fulfill the stopping
criterion AÑk

≥ 4/µ:

fµ(zk+1)− fµ(x
∗
µ) ≤

R2
k

2AÑk

≤ cMpR
p+1
k

Ñ
3p+1

2

k

≤ µR2
k+1

2
.

Next, we estimate ‖∇fµ(z̃)‖2. Since z̃ = T
fµ
p,Mµ

(zk), and according to Lemma 3.4,

we have

fµ(zk)− fµ(z̃) ≥
1

4(p + 2)!M
1

p

µ

‖∇fµ(z̃)‖
p+1

p

2 (41)

At the same time,

fµ(zk)− fµ(z̃) ≤ fµ(zk)− fµ(x
∗
µ) ≤

µR2
k

2
≤ ε̃ (42)

by the stopping criterion of the algorithm. By combining (41) with (42) and from the
choice of ε̃ we get that

‖∇fµ(z̃)‖2 ≤ ε

2
.

Since the right-hand side of (41) is non-negative, we can state that

fµ(z̃) ≤ fµ(zk). (43)
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From this and the definition of a strongly convex function, we have that

µ

2
‖z̃ − x∗µ‖22 ≤ fµ(z̃)− fµ(x

∗
µ)

(43)

≤ fµ(zk)− fµ(x
∗
µ) ≤

µR2
k

2
=
µ

2
(R · 2−k)2 ≤ µR2

2
.

Thus, ‖z̃ − x∗µ‖2 ≤ R. Hence, ‖z̃ − x0‖2 ≤ ‖z̃ − x∗µ‖2 + ‖x∗µ − x0‖2 ≤ 2R.
Finally, from our choice of µ

‖∇f(z̃)‖2 ≤ ‖∇fµ(z̃)‖2 + µ‖z̃ − x0‖2 ≤
ε

2
+ µ · 2R ≤ ε. (44)

It remains to estimate the upper bound of the number of iterations of the Algo-
rithm 1. Summing up the number of operations Ñi, i = 0, ..., k from (40), we obtain

k
∑

i=0

Ñi ≤
k
∑

i=0

[

(

8cpMpR
p−1
i

µ

)
2

3p+1

+ 1

]

=

(

8cpMpR
p−1

µ

)
2

3p+1
k
∑

i=0

2
−2i(p−1)

3p+1 + k

Again, as in Theorem 4.1, since p ≥ 2,
∑k

i=0 2
−2i(p−1)

3p+1 is a geometric progression with
a common ratio lower than one. Therefore, we can upper bound its partial sum with
its infinite sum.

k
∑

i=0

2
−2i(p−1)

3p+1 ≤ 2

1− 2
−2(p−1)

3p+1

≤ 2 · 5 = 10.

k
∑

i=0

Ñi ≤
(

8cpMpR
p−1

µ

)
2

3p+1
k
∑

i=0

2
−2i(p−1)

3p+1 + k ≤ 10

(

8cpMpR
p−1

µ

)
2

3p+1

+
1

2
log2

µR2

2ε̃

= O

(

M
2

3p+1
p R

2p

3p+1

ε
2

3p+1

+
1

2
log

2
p

p−1 (p+ 1)!M
1

p

p

ε
1

p+1

)

. (45)

According to Theorem 3.1, the total number of oracle calls is within the O (ln(1/ε))
factor from the number of iterations of Algorithm 1. This completes the proof.

If we omit the dominated factors in the result (45), we obtain the complexity bound

Õ

(

MpR
p

ε

) 2

3p+1

. (46)

Therefore, we can conclude that this bound coincides with the lower bound

Ω

(

MpR
p

ε

) 2

3p+1

,

from [22] up to logarithmic and constant factors.

Remark 1. As a byproduct, Algorithm 3 can minimize functions f that are already
strongly convex. Indeed, in this case, we deal with the objective f as we now deal with
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the auxiliary objective fµ: we apply Algorithm 1 by epochs to f and restart when the
stopping criterion holds. Since in this case µ is not a regularization coefficient, but
just a constant of strong convexity, we do not need to subsitute µ with ε2/(32∆0) in
(36) and with ε/(4R) in (45). Thus, we get the following complexity estimations:

Õ





Mp∆
p−1

2

0

µ
p+1

2





2

3p+1

and Õ

(

MpR
p−1

µ

)
2

3p+1

. (47)

The main difference between Algorithms 2 and 3 is that in both cases, we use (19)
to estimate the number of inner iterations of Algorithm 1, but in the first case we
additionally use strong convexity to be able to upper bound argument residual with
functional residual in (19): Rk ≤

√

(2/µ)∆k.

Remark 2. Let us now derive a complexity estimation for finding approximate solu-
tion to (1), using Algorithm 3. The idea is to apply Algorithm 3 to the dual problem
and then use Proposition 2.1. To that end, we set the following equivalence between
the notation of Section 2 and the notation of this section λ ≡ z, ϕ(λ) ≡ f(z). We
start by estimating the number of iterations of Algorithm 1 to fulfill the first condition
of Proposition 2.1

−〈λk,∇ϕ(λk)〉 ≤ εf . (48)

Assume that after applying Algorithm 3, we obtain a point λk such
that ‖∇ϕ(λk)‖2 ≤ ε. Then,

−〈λk,∇ϕ(λk)〉 ≤ ‖λk‖2‖∇ϕ(λk)‖2 ≤ ε‖λk‖2 (49)

From the triangle inequality, (38), and (39), we have

‖λk‖2 ≤ ‖λ0‖2 + ‖λ0 − λ∗µ‖2 + ‖λk − λ∗µ‖2
(38),(39)

≤ ‖λ0‖2 + 2R,

where we also used that from (39) ‖λk − λ∗µ‖2 ≤ Rk ≤ R. Since λ0 is our choice (in
particular, we can start our algorithm from λ0 = 0), we can use this inequality to
estimate ‖λk‖2. From the above and (49), we get

−〈λk,∇ϕ(λk)〉 ≤ ε(2R + ‖λ0‖2) = εf .

Thus, if we set ε = εf
2R+‖λ0‖2

, we obtain that the first condition of Proposition 2.1

holds. If we set ε = εeq, we also obtain the second condition of this proposition.
Setting λ0 = 0 and ε = min{ εf

2R , εeq}, and applying the bound (46), we finally obtain
the following complexity bound for finding an approximate solution to problem (8) in
the sense of (10)

Õ

(

max

{

(

MpR
p+1

εf

)
2

3p+1

,

(

MpR
p

εeq

)
2

3p+1

})

.

While Algorithms 2 and 3 are shown to be near-optimal, the price of optimality of
the algorithm is high. We believe that pointing out this price of optimality can lead to
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future research in computationally tractable approaches. Specifically, the algorithms
require a line search process, which adds logarithmic terms to the complexity. More-
over, they depend on restart techniques and regularization, whose parameters depend
on the desired accuracy ε and other parameters such as R, which are assumed to be
known.

5. Primal-dual accelerated tensor method

In Section 4, we considered methods, which search for an approximate stationary
point of the dual problem, and then reconstruct an approximate solution to the pri-
mal problem. Another approach to tackle (8) is via primal-dual methods. The main
idea of these methods is to solve both dual and primal problems until both duality
gap |f(x(λk))+ϕ(λk)| and equality constraint residual of primal variable ‖Ax(λk)−b‖2
are lower than some accuracy ε.

In this section, we compare these two approaches theoretically and numerically.
Hence, in this section, we propose an accelerated primal-dual tensor method (Algo-
rithm 4) and provide its theoretical comparison with Algorithms 2 and 3 in Remark 3.
Our proposed method uses the framework of estimating sequences [34], where in each
step it solves high-order optimization Problem (5) for the dual function ϕ.

First, recall formulation of the dual problem for (8)

min
λ∈H∗

{

ϕ(λ) := 〈λ, b〉+max
x∈Q

(−f(x)− 〈A⊺λ, x〉)
}

. (50)

We have already mentioned it in Section 2. We assume the dual function ϕ has Mp-
Lipschitz p-th order derivative (see, e.g., Section 2). From the weak duality, the fol-
lowing inequality follows

f(x∗) ≥ −ϕ(λ∗), (51)

where f(x∗) and ϕ(λ∗) are the optimal function values in (8) and (9) respectively.
Assume the dual problem (50) has a solution λ∗ (which holds, e.g., when the strong

duality holds), and there exists some R > 0 such that

‖λ∗‖2 ≤ R < +∞. (52)

It is worth noting that the quantity R will be used only in the convergence analysis
but not in the algorithm itself.

To solve the dual Problem (50), we introduce the Primal-Dual Accelerated Tensor
Method (Algorithm 4). To prove the main result about the convergence of Algorithm 4,
we need the following auxiliary lemmas.

Lemma 5.1 (Corollary 1 in [37]). For any λ ∈ H∗ and M ≥Mp we have

〈∇ϕ(Tϕ
p,M (λ)), λ − Tϕ

p,M(λ)〉 ≥ c(p)
M [M2 −M2

p ]
p−1

2p ‖∇ϕ(Tϕ
p,M (λ))‖

p+1

p

2 , (53)

where c(p) = p
p−1

[

p−1
p+1

]
1−p

2p

[(p + 1)!]
1

p .
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Algorithm 4 Primal-Dual Accelerated Tensor Method
Require: εf , εeq, M >Mp.

1: Set k = 0, λ0 = 0, ψ0(λ) =
C

(p+1)! ‖λ− λ0‖p+1
2 , where C = p

2

√

p+1
p−1 (M

2 −M2
p ).

2: repeat
3: Compute vk = argminλ ψk(λ).

4: Ak =
[

(p−1)(M2
−M2

p )

4(p+1)p2M2

]

p
2
(

k
p+1

)p+1

, ak = Ak+1 −Ak.

5: yk = Ak

Ak+1
λk +

ak

Ak+1
vk.

6: Compute λk+1 = Tϕ
p,M (yk).

7:

ψk+1(λ) = ψk(λ) + (Ak+1 −Ak) [ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉] .
8:

x̂k+1 =
1

Ak+1

k
∑

i=0

aix(λi+1) =
akx(λk+1) +Akx̂k

Ak+1

9: Set k = k + 1.
10: until |f(x̂k) + ϕ(λk)| ≤ εf , ‖Ax̂k − b‖2 ≤ εeq.
11: return x̂k, λk.

Lemma 5.2 (Lemma 2 in [33]). Let σ > 0 be some constant. Then, for any h ∈ E
and s ∈ E, we have

〈s, h〉 + 1

p
σ‖h‖p2 ≥ −p− 1

p

(

1

σ

)
1

p−1

‖s‖
p

p−1

2 . (54)

Let us introduce the following estimating functions, which are recursively updated
as

∀k ≥ 0 ⇒ ψk+1(λ) = ψk(λ) + ak [ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉] (55)

with ψ0(λ) =
C

(p+1)! ‖λ− λ0‖p+1
2 , where C = p

2

√

p+1
p−1(M

2 −M2
p ).

Theorem 5.3. If sequence {λk}∞k=0 is generated by Algorithm 4, then for all k ≥ 0
we have

Akϕ(λk) ≤ min
λ∈H∗

ψk(λ). (56)

Proof. Let us prove the relation (56) by induction over k. Since A0 = 0, for k = 0 we
obtain:

0 = A0ϕ(λ0) ≤ min
λ∈H∗

C

(p + 1)!
‖λ− λ0‖p+1

2 = 0.

Assume that (56) is true for some k > 0. Denote

ψk(λ) ≡ lk(λ) +
C

(p+ 1)!
‖λ− λ0‖p+1

2 k ≥ 0,

where l0(λ) ≡ 0.
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Using Lemma 4 in [33] we obtain that

ψk(λ) ≥ min
λ∈H∗

ψk(λ) +
C

(p+1)! ·
(

1
2

)p−1 ‖λ− vk‖p+1
2

≥ Akϕ(λk) +
C

(p+1)! ·
(

1
2

)p−1 ‖λ− vk‖p+1
2 .

Denote σp+1 = C
p!

(

1
2

)p−1
. Then, from this inequality and ϕ(λk) − ϕ(λk+1) ≥

〈∇ϕ(λk+1, λk − λk+1〉, we get

ψ∗
k+1 = min

λ∈H∗

{ψk(λ) + ak[ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉]}

≥ min
λ∈H∗

{

Akϕ(λk) +
σp+1

(p+1) ‖λ− vk‖p+1
2 + ak[ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉]

}

≥ min
λ∈H∗

{

Ak+1ϕ(λk+1) +Ak〈∇ϕ(λk+1), λk − λk+1〉

+ ak〈∇ϕ(λk+1), λ− λk+1〉+ σp+1

(p+1) ‖λ− vk‖p+1
2

}

(57)

Note, that yk = Ak

Ak+1
λk +

ak

Ak+1
vk. Hence, Akλk = Ak+1yk − akvk, and

Ak 〈∇ϕ(λk+1), λk − λk+1〉 = 〈∇ϕ(λk+1), Ak+1yk − akvk −Akλk+1〉 .

Thus, we can rewrite (57) as follows

ψ∗
k+1 ≥ min

λ∈H∗

{

Ak+1ϕ(λk+1) + 〈∇ϕ(λk+1), Ak+1yk − akvk −Akλk+1〉

+ ak〈∇ϕ(λk+1), λ− λk+1〉+ σp+1

(p+1) ‖λ− vk‖p+1
2

}

= min
λ∈H∗

{

Ak+1ϕ(λk+1) +Ak+1 〈∇ϕ(λk+1), yk − λk+1〉

+ ak〈∇ϕ(λk+1), λ− vk〉+ σp+1

(p+1) ‖λ− vk‖p+1
2

}

(58)

Further, if we choose M ≥Mp, then by inequality (53) we have

〈∇ϕ(λk+1), λ− λk+1〉 ≥ c(p)
M [M2 −M2

p ]
p−1

2p ‖∇ϕ(λk+1)‖
p+1

p

2 . (59)

If we apply (59) to (58), we get

ψ∗
k+1 ≥ min

λ∈H∗

{

Ak+1ϕ(λk+1) +Ak+1
c(p)
M [M2 −M2

p ]
p−1

2p ‖∇ϕ(λk+1)‖
p+1

p

2

+ ak〈∇ϕ(λk+1), λ− vk〉+ σp+1

(p+1) ‖λ− vk‖p+1
2

}

.

Now, denote everything on the right-hand side except Ak+1ϕ(λk+1) as ζ(λ):

ζ(λ) ≡ Ak+1
c(p)
M [M2−M2

p ]
p−1

2p ‖∇ϕ(λk+1)‖
p+1

p

2 +ak〈∇ϕ(λk+1), λ−vk〉+
σp+1

p+ 1
‖λ−vk‖p+1

2 .
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Thus,

ψ∗
k+1 ≥ min

λ∈H∗

{

Ak+1ϕ(λk+1) + ζ(λ)
}

.

To prove (56), we need to have ζ(λ) ≥ 0. Using (54), we get

ζ(λ) ≥ Ak+1
c(p)
M [M2 −M2

p ]
p−1

2p ‖∇ϕ(λk+1)‖
p+1

p

2 − p

p+ 1

(

1

σp+1

) 1

p

a
p+1

p

k ‖∇ϕ(λk+1)‖
p+1

p

2 .

Therefore, to have ζ(λ) ≥ 0 we need

Ak+1
c(p)
M [M2 −M2

p ]
p−1

2p ≥ p

p+ 1

(

1

σp+1

) 1

p

a
p+1

p

k .

Next we substitute in this inequality the values of c(p) and σp+1 and after all the
constellations we get

Ak+1

√

1−
M2

p

M2

(

C2

M2 −M2
p

)
1

2p

≥ 2a
p+1

p

k

(

p

2

√

p+ 1

p− 1

)

1

p
√

p+ 1

p− 1
.

Finally, from our choice of C, we get

Ak+1 ≥ 2

√

(p+1)M2

(p−1)(M2−M2
p )
a

p+1

p

k . (60)

And since for k ≥ 0

Ak =
[

(p−1)(M2−M2
p )

4(p+1)M2

]
p

2
(

k
p+1

)p+1
, ak = Ak+1 −Ak.

inequality (60) holds. It is described in more detail in [37] (everything from eq. (3.8)
to eq. (3.11)). Eventually,

ψ∗
k+1 ≥ min

λ∈H∗

{

Ak+1ϕ(λk+1) + ζ(λ)
}

≥ Ak+1ϕ(λk+1),

that completes the induction argument

We can now estimate the proposed algorithm’s complexity. Consider the set ΛR =
{λ : ‖λ‖2 ≤ 2R} where R is given in (52). From the Theorem 5.3 and since λ0 = 0 we
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obtain

Akϕ(λk) ≤ min
λ

{

k−1
∑

i=0

ai [ϕ(λi+1) + 〈∇ϕ(λi+1), λ− λi+1〉] +
C

(p+ 1)!
‖λ‖p+1

2

}

≤ min
λ∈ΛR

{

k−1
∑

i=0

ai [ϕ(λi+1) + 〈∇ϕ(λi+1), λ− λi+1〉] +
C

(p+ 1)!
‖λ‖p+1

2

}

≤ min
λ∈ΛR

{

k−1
∑

i=0

ai [ϕ(λi+1) + 〈∇ϕ(λi+1), λ− λi+1〉]
}

+
C(2R)p+1

(p+ 1)!
. (61)

On the other hand, from the definition (50) of ϕ(λ), we have

ϕ(λi) = 〈λi, b〉+max
x∈Q

(−f(x)− 〈A⊺λi, x〉)

= 〈λi, b〉 − f(x(λi))− 〈A⊺λi, x(λi)〉.

And since ∇ϕ(λ) = b−Ax(λ), we obtain

ϕ(λi)− 〈∇ϕ(λi), λi〉 = 〈λi, b〉 − f(x(λi))− 〈A⊺λi, x(λi)〉
− 〈b−Ax(λi), λi〉 = −f(x(λi)).

Summing these inequalities from i = 0 to i = k− 1 with the weights {αi}i=0,...k−1, we
get, using the convexity of f

k−1
∑

i=0

αi (ϕ(λi+1) + 〈∇ϕ(λi+1), λ− λi+1〉)

= −
k−1
∑

i=0

αif(x(λi+1)) +

k−1
∑

i=0

αi〈b−Ax(λi+1), λ〉

≤ −Akf(x̂k) +Ak〈b−Ax̂k, λ〉,

where x̂k = 1
Ak

k−1
∑

i=0
aix(λi+1). Substituting this inequality to (61), we obtain

Akϕ(λk) ≤−Akf(x̂k) +Ak min
λ∈ΛR

{〈b−Ax̂k, λ〉}+
C(2R)p+1

(p + 1)!
.

Finally, since

max
λ∈ΛR

{〈Ax̂k − b, λ〉} = 2R‖Ax̂k − b‖2,

we obtain

ϕ(λk) + f(x̂k) + 2R‖Ax̂k − b‖2 ≤
C(2R)p+1

Ak(p+ 1)!
. (62)
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Since λ∗ is an optimal solution of dual problem (50), we have, for any x ∈ Q

f(x∗) ≤ f(x) + 〈λ∗, Ax− b〉.

Using the assumption (52) we get

f(x̂k) ≥ f(x∗)−R‖Ax̂k − b‖2. (63)

Hence,

ϕ(λk) + f(x̂k) = ϕ(λk)− ϕ(λ∗) + ϕ(λ∗) + f(x∗)− f(x∗) + f(x̂k)

(51)

≥ −f(x∗) + f(x̂k)
(63)

≥ −R‖Ax̂k − b‖2. (64)

This and (62) give

R‖Ax̂k − b‖2 ≤
C(2R)p+1

Ak(p+ 1)!
. (65)

Hence, we obtain

− C(2R)p+1

Ak(p+ 1)!

(64),(65)

≤ ϕ(λk) + f(x̂k)
(62)

≤ C(2R)p+1

Ak(p+ 1)!
. (66)

Combining (65) and (66), we conclude

R‖Ax̂k − b‖2 ≤
C(2R)p+1

Ak(p+ 1)!
, |ϕ(λk) + f(x̂k)| ≤

C(2R)p+1

Ak(p + 1)!
.

Finally, if we put the value of Ak, defined in Algorithm 4, we will get the total com-
plexity of the Algorithm 4. Therefore, we have just proved the following theorem.

Theorem 5.4. Assume the function ϕ from (50) is convex, p times differentiable
on R

m with Mp-Lipschitz p-th derivative. Additionally, if λ∗ = argminλ∈H∗ ϕ(λ), as-
sume ∃R > 0 : ‖λ∗‖2 ≤ R ≤ ∞. Let Algorithm 4 be run for k steps with starting

point λ0 = v0 = z0 = 0. Denote x̂k = 1
Ak

k−1
∑

i=0
aix(λi+1). Then

‖Ax̂k − b‖2 ≤
C1R

p

kp+1
,

|ϕ(λk) + f(x̂k)| ≤
C1R

p+1

kp+1
.

Here C1 =
4pMp

(p−1)!

√

(p+1)3p+3

(M2−M2
p )

p−1(p−1)p+1 .

The result of the above Theorem can be written in terms of complexity in the
following way. Assume that the goal is to find an approximate solution that satisfies
inequalities (10). Then, Theorem 5.4 states that such a point can be found in a number
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of iterations not exceeding

O

(

max

{

(

MpR
p+1

εf

)
1

p+1

,

(

MpR
p

εeq

)
1

p+1

})

.

It is an open question whether it is possible to obtain a primal-dual tensor method
with complexity bounds that depend on ε−2/(3p+1) rather than ε−1/(p+1).

Remark 3. Let us now discuss Algorithm 4 compared to Algorithms 2 and 3. On the
one hand, complexity O(ε−1/(p+1)) of the former has asymptotically worse dependence
on ε than the complexity bound Õ(ε−2/(3p+1)) of the latter. On the other hand, the
difference in the power of ε is quite small, and the second bound has an additional
logarithmic multiplier. Thus, the bound for Algorithms 2 and 3 may be only slightly
better than the bound for Algorithm 4. Further, Algorithm 4 is a direct algorithm
that does not use regularizations and restarts. Unlike it, Algorithms 2 and 3 use a
regularization that may be so small that it will cause some numerical instabilities. In
Section 6, we compare both approaches numerically. At the same time, Algorithms 2
and 3 are interesting not only in application to problem (8). These methods achieve
nearly-optimal complexity bounds for finding approximate stationary points of convex
functions, nearly closing the theoretical gap. Some other motivations for developing
efficient methods for finding stationary points can be found in [22]. In particular, the
norm of the gradient is a natural and computable measure of optimality.

Remark 4. Let us discuss a possible extension of the proposed methods. One straight-
forward generalization is a near-optimal method for minimizing the norm of objective
with Hölder-continuous gradient, i.e., for some ν ∈ [0, 1] satisfying

‖∇pf(x)−∇pf(y)‖2 ≤Mp,ν‖x− y‖ν2 , x, y ∈ R
n.

The idea is to combine the near-optimal tensor method for minimization of functions
with Hölder-continuous p-th derivatives [42] with Lemma 5.2 in [22] for general ν. This
approach allows obtaining complexity bounds which, up to logarithmic and constant
factors, coincide with the lower bounds in [22].

Another possible extension is an inexact solution of the auxiliary subproblems and
adaptation to the constant Mp,ν [22]. Importantly, the basic Algorithm 1 is adaptive
to Mp. Nevertheless, to apply the regularization technique with parameter µ, we need
to know Mp. Thus, it is desirable to overcome this drawback.

Finally, in our Algorithm 4 we use Nesterov acceleration based on the estimating
sequence technique (see [34, 37]). It is still an open question whether we can obtain a
better high-order primal-dual method using the Monteiro-Svaiter acceleration [32] or
optimal tensor method [28].

6. Numerical analysis

This section presents several simulations for proposed methods. Particularly, we imple-
ment Algorithm 2 for the logistic regression problem on both synthetic and real data
sets. Also, we show the performance of Algorithm 2 on a family of functions recently
described as difficult for all tensor methods [37]. We focus on the case where p = 3
for which we have efficient methods for solving the auxiliary subproblem [37, Section
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5]. Finally, we present the performance results for the entropy regularized optimal
transport and minimal mutual information problems.

6.1. Logistic Regression

For the logistic regression problem, we are given a set of d data pairs {yi, wi} for 1 ≤
i ≤ d, where yi ∈ {1,−1} is the class label of object i, and wi ∈ R

n is the set of features
of object i. After the dimension and number of data points are set. The optimal point
is generated as x∗ composed in each dimension as samples from a uniform distribution
in the range [−1, 1]. Each dimension per data sample is also generated as samples
from a uniform distribution in the range [−1, 1] with the last feature set to 1 for all
data points. The label is generated as the sign of the products of the features and x∗.
Finally, labels are flipped with a probability of 0.01. We are interested in finding a
vector x that solves the following optimization problem

min
x∈Rn

1

d

d
∑

i=1

ln
(

1 + exp
(

−yi〈wi, x〉
)

)

. (67)

Figure 1 shows the gradient norm of the logistic regression function at the points
generated by Algorithm 2. Initially, we show the results for synthetic data where d =
100 and n = 10. We focus on showing the results for different values of ε. Here by
Iterations we mean the number of iterations of Algorithm 1 inside Algorithm 2, line
3. For implementation simplicity, in addition to stopping criterion ANk

≥ 2
µ , if the

gradient is no longer decreasing, we apply the restarting of Algorithm 1 after 500
iterations.
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Figure 1. Gradient norm at the iterations generated by Algorithm 2 on synthetic data for various values of ε.

Figure 2 shows the gradient norm of the logistic regression function at the points
generated by Algorithm 2. In this case, we use the Mushroom, A9A, Covertype and
IJCNN1 datasets from [16] with a fixed value of ε = 1 · 10−5.
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Figure 2. Gradient norm at the iterations generated by Algorithm 2 on real data sets from [16] with ε =
1 · 10−5.

6.2. A family of difficult functions

Next, we analyze the performance of the proposed algorithm on a universal parametric
family of objective functions, which are difficult for all tensor methods [22, 37] defined
as

fm(x) = ηp+1 (Amx)− x1, (68)

where, for integer parameter p ≥ 1, ηp+1(x) =
1

p+1

n
∑

i=1
|xi|p+1, 2 ≤ m ≤ n, x ∈ R

n,

Am is the n× n block diagonal matrix:

Am =

(

Um 0
0 In−m

)

, with Um =















1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . .

...
0 0 . . . 1 −1
0 0 . . . 0 1















, (69)

and In is the identity n×n-matrix. For a detailed description of the high-order deriva-
tives of this class of functions and its optimality properties, see [37].

Finally, Figure 3 shows the performance results of Algorithm 2 on the family of
functions in (68) with p = 3 and various values of parameters m = n with ε = 1 ·10−5.

6.3. The entropy regularized optimal transport problem

We now go back to the entropy-regularized optimal transport problem in (11) and
present some numerical experiments of the proposed method applied to its dual prob-
lem in (12).

φ(λ) = smaxγ(A
⊺λ−M) + 〈λ, b〉,
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Figure 3. Gradient norm at the iterations generated by Algorithm 1 on the family of functions in (68)
with p = 3 and various values of parameters m = n with ε = 1 · 10−5.

Initially, we recall some properties of the Softmax function, which will be useful for
the implementation; for a complete analysis of such properties, see [9].

Proposition 6.1. Consider the softmax function in (16), and define the func-
tion f(x) = smaxγ(Ax− b)− 〈λ, b〉. Then the following properties hold:

∇smaxµ(x)i = exp

(

xi
µ

)

/

(

∑

i

exp

(

xi
µ

)

)

∇2smaxµ(x) =
1

µ

(

diag
(

∇smaxµ(x)
)

−∇smaxµ(x)∇smaxµ(x)
⊺
)

∇3smaxµ(x)[h, h] =
1

µ

(

∇2smaxµ(x)[h
2]− 2〈∇smaxµ(x), h〉∇2smaxµ(x)[h]

)

,

and

∇f(x) = A⊺∇smaxµ(Ax− b)

∇2f(x) = A⊺∇2smaxµ(Ax− b)A

∇3f(x)[h, h] = A⊺∇3smaxµ(Ax− b)[Ah,Ah].

6.3.1. Discrete probability distributions

Next, we present the numerical results for the computation of the optimal (entropy-
regularized) transport plan between two discrete probability distributions using the
near-optimal third-order method in Algorithm 2. We construct two discrete distri-
butions as the mixture of three randomly generated Gaussian distributions, each
on bounded support [−5, 5] with n = 100. We select the regularization parameter
to γ = 0.1, which is common for these applications. Figure 4 shows three examples
of the resulting transport plan obtained by Algorithm 2 for three different pairs of
distributions, and the corresponding distributions are shown as the marginals of the
transport plan. Figure 5 shows the corresponding norms of the gradients, evaluated at
each iteration of Algorithm 2 for the three problems shown in Figure 4.
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(a) (b) (c)

Figure 4. Three separate examples of the resulting transport plan obtained by Algorithm 2. The two distri-
butions are shown on the left and top of the transport plan.
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Figure 5. Norm of the gradient at each iteration of Algorithm 2 for the three problems shown in Figure 4.

6.3.2. MNIST

Finally, we provide the results of experiments for transportation plan computation
between two MNIST images of handwritten digits. Here we compare the results of Al-
gorithm 3 (GN) and Algorithm 4 (PDATM). These methods represent two approaches
to tackle this problem: gradient norm minimization of dual function and primal-dual
method. As we mentioned earlier, comparing these two approaches is our main moti-
vation in this paper. Additionally, we provide the results of the Algorithm 1 (ATD)
applied to dual function. In detail, we use it to minimize dual function until we achieve
the prescribed ε-approximate solution for constraint and duality gap. In other words,
we use it as a primal-dual method.

In this experiment, we take the images presented in Figure 6 as initial histograms.
The size of each picture is 28 × 28 pixels. We reshape these images to vectors of
size n = 282 = 784.

To perform the inner “tensor” step (5) inside each of the considered algorithms, we
use the method developed in [37]. We use its inexact modification from [40] and look
for the points from the following neighborhood:

Nα
p,M(x) ≡ {T ∈ R

n : ‖∇Ωx,p,M(T )‖2 ≤ α‖∇f(T )‖2} , (70)

where we choose the same size of the neighborhood as in [40]: α = 1
2p = 1

6 . Thus, we
run our inner-problem method until we reach the point T ∈ R

n, inside the set defined
in (70).
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Figure 6. Initial and target images for optimal transport problem
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Figure 7. Duality gap and equality constraint convergence for Algorithms 3, 4 and 1.

We select the regularization parameter γ = 0.5 and Lipschitz constantMp = 0.5. We
want to emphasize that we do not use theoretical estimation ofMp from Proposition 2.2
because it gives too pessimistic upper bound, which results in too slow convergence. We
start from zero and stop the optimization process for Algorithms 4 and 1 when both
constraint and duality gap become smaller or equal than ε = 0.001. For Algorithm 3,
we stop when the norm of the gradient of dual function is less or equal than min{ε; ε

2R}.
To choose R, we use the following lemma.

Lemma 6.2 (Lemma 11 in [24]). Let M ∈ R
n×n
+ be a transportation matrix, p, q ∈ Σn

be two histograms. Then, there exists a solution (ξ∗, η∗) of (12) such that

‖(ξ∗, η∗)‖2 ≤ R :=
√

N/2

(

‖M‖∞ − γ

2
lnmin

i,j
{pi, qj}

)

.

In Figure 7a, we show the duality gap convergence, and in Figure 7b, we show the
convergence results for equality constraints. Additionally, we provide the results for
values of f(x) and ϕ(λ) on Figure 8. In Figure 8a, we show a negative value of f(x)
since otherwise, we could not plot it in a log scale.
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Figure 8. Negative primal and dual function values for Algorithms 3 and 4

At first, we compare the results of Algorithm 3 and Algorithm 4, and then we discuss
the performance of Algorithm 1. All these figures show that Algorithm 3 outperforms
Algorithm 4 in convergence speed. The little spikes on Figures 7a and 7b at the end
of the blue line are the result of restarts of Algorithm 1 inside Algorithm 3. The sharp
drop at the end of the blue line is due to the final tensor step in Line 6 of Algorithm 3.

We mentioned earlier, and it is noticeable from pseudocode, that Algorithm 4 is
a direct method, which means that it does not use restarts, regularization, or binary
search. These modifications introduce difficulties in implementing the method and may
slow it down. For example, restarts usually give a too-pessimistic upper bound for the
number of iterations of the inner method. Nevertheless, the Primal-Dual method needs
only Lipschitz constant and estimation accuracy. Despite all these facts, it still loses
to Algorithm 3 both in practice and theory (see Remark 3). Both Algorithms 3 and
Algorithm 4 have a single hyperparameter – Lipschitz constant estimation Mp. But
since it is more a characteristic of the problem than a particular algorithm hyper-
parameter, both algorithms should be the same. We conducted several experiments
where we compare Algorithm 3 and Algorithm 4 with the same parameterMp from the
set {0.01, 0.1, 0.5, 1, 5}. The overall picture is the same, and Algorithm 3 outperforms
Algorithm 4. Figure 7 shows that Algorithm 3 restarts only in the end, which does
not affect the overall result. Since the theoretical estimate for the number of itera-
tions, after which we should restart our algorithm, is usually too pessimistic, we tried
to perform restarts manually after every 25 or 50 iterations of the inner algorithm.
However, it only worsened the convergence of the whole Algorithm 3.

Finally, algorithm 1 behaves the same way as Algorithm 3, and in the end, it con-
verges even faster. The reason it covers in the restart condition ANk

≥ 4
µ : Algorithm

3 chooses to restart when it has almost achieved the solution. Again, one can see it
as little spikes at the end of the blue line. Since, in our case, µ = ε

4R , we can not just
directly change the value of µ. We can do this only through ε because R is theoretically
estimated and specific to chosen objective problem. However, both the increase and
decrease of ε in our experiments showed similar results. Thus, to address this issue, we
conduct additional experiments on a strongly convex objective in the next subsection,
where we can directly specify the constant of strong convexity µ.
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6.4. Minimal Mutual Information

The experiments for entropy regularized optimal transport were not representative
of the performance of Algorithm 3 compared to Algorithm 1; in this subsection, we look
at the Minimal Mutual Information problem, which is strongly convex. This problem
is defined as follows:

min
x∈Σn

{

f(x) :=
L

2
‖Ax− b‖22 + µ

n
∑

k=1

xk lnxk

}

, (71)

where Σn is n-dimensional standard simplex.
If we consider this problem in different space {(x, z)|z = Ax, x ∈ Σn}, then it

becomes optimization problem with linear equality constraints

min
x∈Σn

z=Ax

{

f(x, z) :=
L

2
‖z − b‖22 + µ

n
∑

k=1

xk lnxk

}

. (72)

The dual problem to (72) looks as follows

min
λ∈Rm

{

ϕ(λ) := µ ln

(

n
∑

i=1

exp

(
[

−ATλ
]

i

µ

))

+
1

2L

(

‖λ+ b‖22 − ‖b‖22
)

}

. (73)

Since, in this case, dual objective (73) is initially strongly convex with constant 1
L ,

we do not need additional regularization in Algorithm 3, and we use fµ ≡ ϕ(λ), µ = 1
L .

We do not provide any additional analysis for the case when the objective of Algorithm
3 is initially strongly convex because the differences with proofs of Theorem 4.2 are
minor. The resulting convergence rates can be seen in Remark 1.

In our experiments we used dataset ”housing” from [11], scaled to [−1, 1], which we
then transfered to [0, 1]. We tested several values of Mp. The overall picture was the
same, but the convergence of all the algorithms was faster for smaller values of Mp,
and the resulting picture was not so evident. Thus, we decided to choose Mp = 100.
Additionally, we have tested several values of L and µ. Again, the overall picture was
the same, but it took too long for some values to converge for all the methods. Thus,
we chose µ = 1, L = 10. We start from zeros and stop the optimization process when
the approximation error achieves ε = εf = εeq = 0.01. We derive an estimate of R
from strong convexity:

‖λ∗‖2 ≤
‖∇ϕ(0) −∇ϕ(λ∗)‖2

µ
=

‖∇ϕ(0)‖2
µ

= R.

We show the comparison of Algorithms 3, 4 and 1 in Figure 9, and then take a closer
look at Algorithms 3 and 1 in Figure 10. Here Algorithm 1 minimizes dual function
(73) and recalculates the value of the primal function and equality constraint on every
iteration until it reaches approximation error of ε both for duality gap and constraint.

Again, like in MNIST experiments, we can see that Algorithm 3 for gradient norm
minimization (GN) outperforms Algorithm 4, that is, primal-dual accelerated tensor
method (PDATM). We limit the maximal number of steps for Algorithm 4 to 20000, so
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Figure 9. Duality gap and constraint convergence for Algorithms 3, 4 and 1
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Figure 10. Duality gap and constraint convergence for Algorithms 3 and 1

it stops when it reaches this limit and does not converge to the area of approximation
error neither for dual gap (Figure 9a) nor for constraint (Figure 9b). Thus, Algorithm
3 converges more than 100 times faster.

Figure 10 shows that Algorithm 1 (ATD) performs the same way as Algorithm 3
until the first restart. Then they both start jumping: Algorithm 3 due to restarts, and
Algorithm 1 – due to the nature of used acceleration. But, our proposed Algorithm 3
converges almost 2.5 times faster. This result shows that our proposed gradient norm
minimization framework makes sense when it restarts early.
Remark 5. The above results show that Monteiro-Svaiter acceleration [32], which we
used in Algorithm 3, covers all the implementational drawbacks of Algorithm 3, which
results in better numerical convergence compared to Algorithm 4. As we mentioned at
the end of Remark 4, in Algorithm 4, we use Nesterov acceleration, which gives a worse
convergence rate than Monteiro-Svaiter acceleration. Future work should consider a
primal-dual method with Monteiro-Svaiter acceleration and compare its performance
numerically with Algorithms 3 and 4. This will make the Primal-Dual method not
that straightforward because at least it will introduce additional linear search, which
comes with Monteiro-Svaiter acceleration.
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Remark 6. Comparison of results of Algorithms 3 and 1 on convex entropy-
regularized optimal transport (Section 6.3.2) and on strongly convex MMI problem
(Section 6.4) showed that it is beneficial to use Algorithm 3, when µ is not too small.
Otherwise, the first restart would be done when the method almost achieved the so-
lution or would not be done at all. For example, in Section 6.3.2 we had ε = 0.001,
R ≃ 100 ⇒ µ = ε/(4R) ∼ 10−5, and in Section 6.4 µ = 1/L = 10−1. That is why the
second case method restarts much earlier than it achieves its solution.

7. Conclusions

This paper considers minimization problems with linear equality constraints. There
are two ways to solve this type of problem: find a stationary point of dual function
and reconstruct the primal solution or use the primal-dual method, which optimizes
both primal and dual function simultaneously. We consider both approaches. Firstly,
we propose two high-order methods for gradient norm minimization. These methods
have optimal convergence rates up to multiplicative logarithmic factors. Secondly,
we propose a high-order primal-dual accelerated tensor method that uses Nesterov’s
acceleration. Finally, we compare these two approaches with each other both in theory
and in practice. Additionally, we numerically compare the proposed methods with the
primal-dual version of the near-optimal tensor method for convex optimization.
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