
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly
Time-Varying Networks?

Dmitriy Metelev 1 Alexander Rogozin 1 2 Dmitry Kovalev 3 Alexander Gasnikov 1 4 5

Abstract
We consider decentralized optimization prob-
lems where one aims to minimize a sum of con-
vex smooth objective functions distributed be-
tween nodes in the network. The links in the
network can change from time to time. For the
setting when the amount of changes is arbitrary,
lower complexity bounds and corresponding op-
timal algorithms are known, and the consensus
acceleration is not possible. However, in prac-
tice the magnitude of network changes may be
limited. We derive lower communication com-
plexity bounds for several regimes of velocity of
networks changes. Moreover, we show how to
obtain accelerated communication rates for a cer-
tain class of time-varying graphs using a specific
consensus algorithm.

1. Introduction
In this paper we consider a decentralized optimization
problem

min
x∈Rm

f(x) =
1

n

n∑
i=1

fi(x), (1)

where each function fi is convex, has a Lipschitz gradient
and is stored at a separate computational node. Nodes are
connected by a communication network (that may change
over time). Each node is an independent computational
agent that can perform local computations based only on
the information in its local memory. At each communica-
tion step, nodes can only exchange information with their
neighbours.

Sum-type problems of type (1) have applications in prac-

1Moscow Institute of Physics and Technology, Moscow, Rus-
sia 2HSE University, Moscow, Russia 3Université Catholique de
Louvain, Ottignies-Louvain-la-Neuve, Belgium 4ISP RAS Re-
search Center for Trusted Artificial Intelligence, Moscow, Rus-
sia 5Institute of Information Transmission Problems, Moscow,
Russia. Correspondence to: Alexander Rogozin <alek-
sandr.rogozin@phystech.edu>.

tical scenarios where centralized coordination is not possi-
ble. Communication constraints may appear due to large
amounts of data or due to privacy constraints (Konečný
et al., 2016) and are determined by the structure of the net-
work. Decentralized optimization is widely used in dis-
tributed machine learning (Rabbat & Nowak, 2004; Forero
et al., 2010; Nedić, 2020; Gorbunov et al., 2022), dis-
tributed control (Ram et al., 2009; Gan et al., 2012) and
distributed sensing (Bazerque & Giannakis, 2009).

1.1. Time-Varying Networks

We study the setting when the network is time-varying.
That means that the links between the nodes may appear
and disappear from time to time. In practice, the changes
in the links may occur due to loss of wireless connection
between the agents or other technical malfunctions. Note
that while the set of edges may change, the set of vertices
stays the same.

1.2. Related work

In this paper, we assume the objective f(x) in (1) to be
L-smooth and µ-strongly convex. Complexity bounds for
decentralized optimization include two quantities: objec-
tive condition number κg = L/µ and network condition
number χ. In case of the time-varying network, χ denotes
the worst-case condition number over time steps.

Lower complexity bounds for optimization over static
graphs were proposed in (Scaman et al., 2017).
The lower communication complexity bound is
Ω(κ

1/2
g χ1/2 log(1/ε)). The corresponding optimal

algorithms are MSDA (Scaman et al., 2017) (using dual
oracle) and OPAPC (Kovalev et al., 2020) (using primal
oracle).

For time-varying networks, the lower communication
complexity bound is Ω(κ

1/2
g χ log(1/ε)) (Kovalev et al.,

2021a). The corresponding optimal algorithms with primal
oracle are ADOM+ (Kovalev et al., 2021a) and Acc-GT (Li
& Lin, 2021) with multi-step communication. An optimal
dual algorithm is ADOM (Kovalev et al., 2021b). Prior to
optimal algorithms, several non-accelerated schemes like
DIGing (Nedic et al., 2017) and sub-optimal methods with

ar
X

iv
:2

30
1.

11
81

7v
1

 [
m

at
h.

O
C

]
 2

7
Ja

n
20

23

Slowly Time-Varying Networks

additional logarithmic factor, i.e. APM-C (Li et al., 2020;
Dvinskikh & Gasnikov, 2021; Rogozin et al., 2021) and
Mudag (Ye et al., 2020) were proposed.

Optimal algorithms both for static and time-varying scenar-
ios use a multi-step consensus scheme. In the time-static
case, the communication matrix is replaced by a Cheby-
shev polynomial of it (Scaman et al., 2017). The degree of
polynomial is dχ1/2e and its condition number is O(1). In
the time-varying case, after each oracle call multiplication
is performed by χ matrices in a row instead of only one
matrix (Kovalev et al., 2021a).

1.3. Contributions

The case when arbitrarily many edges can change at each
time step is well-studied. However, we think that such
a setting is not realistic and in practice the magnitude of
graph changes may be limited. We investigate several types
of such restrictions and derive lower complexity bounds for
each case. This constitutes the first part of our work (see
Table 1). We show that it is sufficient to change a poly-
nomial number of vertices (i.e. O(nα) for some α > 0)
at each iteration in order to slow consensus speed down to
factor χ. Moreover, if a logarithmic number of edges is
changed (i.e. O(log n)), the consensus is slowed down to
χ/ logχ. Finally, our results suggest that a partial consen-
sus acceleration (i.e. dependency on χ in power between
1/2 and 1) is possible if the number of changes is bounded
by a constant.

Table 1. Known lower communication complexity bounds for de-
centralized optimization and our results. Here α > 0 is a scalar
and d ∈ N is a constant. The complexity depends on the maxi-
mum number of changes in links allowed at each iteration.

Number of Lower bound Referencechanges
no
changes Ω

(
χ1/2κ

1/2
g log 1

ε

)
(Scaman et al., 2017)

O(n) Ω
(
χκ

1/2
g log 1

ε

)
(Kovalev et al., 2021a)

O(nα) Ω
(
χκ

1/2
g log 1

ε

)
This paper, Th. 3.1

O(logn) Ω
(

χ
logχ

κ
1/2
g log 1

ε

)
This paper, Th. 3.3

12(d− 1) Ω
(
χd/(d+1)κ

1/2
g log 1

ε

)
This paper, Th. 3.5

In the setting where a constant number of edges changes
at each iteration, our results allow to establish the known
lower bounds for static graphs and time-varying graphs
with arbitrary changes. The corresponding results are pre-
sented in the last line of Table 1. Putting d = 1 leads to the
static case and the lower bound coincides with the one in
(Scaman et al., 2017). In the opposite case, taking d→∞
leads to the scenario with arbitrary changes, and the corre-
sponding lower bound approaches the results in (Kovalev

et al., 2021a). In other words, our results suggest an inter-
polation between two edge cases: static graphs and time-
varying graphs with arbitrary changes.

In the second part of our paper, we address a multi-step
consensus technique for time-varying graphs. More pre-
cisely, we apply Nesterov acceleration technique to time-
varying consensus. The acceleration is attained under an
additional assumption: we assume that all graphs have a
common connected subgraph that we call a skeleton. On
the one hand, this assumption is more strict then requiring
the network to stay connected all the time. On the other
hand, we think that such an assumption may be realistic in
practical scenarios.

The consensus procedure for graphs with connected skele-
ton is slightly modified: the two nodes stop communicating
to each other if the connection between them has been lost
at least once. In other words, the active links in the com-
munication graph are not restored after they have failed at
least once, and therefore the network is ”monotonically de-
creasing”.

Summing up, this paper makes a step in the direction of op-
timization over special classes of time-varying networks.
Our lower bounds show that acceleration communication
protocol is hard to be designed even over slowly time-
varying graphs. On the other hand, we show a specific class
of networks over which accelerated consensus is reachable.

The paper is organized as follows. In Section 2 we intro-
duce notation, definitions and assumptions. In Section 3,
we present our main results on lower bounds. After that, in
Section 4 we describe the accelerated gossip protocol over
time-varying networks with connected skeleton.

2. Definitions and Assumptions
We denote Kronecker product by ⊗. The nullspace of
matrix A is denoted kerA and the range of A is de-
noted rangeA. Moreover, if A is symmetric and positive
semi-definite, we denote its largest eigenvalue λmax(A),
its minimal nonzero eigenvalue λ+min(A) and its condi-
tion number χ(A) = λmax(A)/λ+min(A). For vectors
x1, . . . , xn ∈ Rd, we introduce a column stacked vector
x = col[x1, . . . , xn] = (x>1 . . . x

>
n)> ∈ Rnd. We also

denote N = {1, 2, . . .} to be the set of positive integers.

2.1. Objective Functions

Let H be an arbitrary Hilbert space, let ‖·‖ be the norm on
H and let ‖·‖∗ denote the conjugate norm.

Definition 2.1. Function h(x) : H → R is called L-
smooth if for any x, y ∈ H it holds

‖∇h(y)−∇h(x)‖∗ ≤ L ‖y − x‖ .

Slowly Time-Varying Networks

Definition 2.2. Function h(x) : H → R is called µ-
strongly convex if for any x, y ∈ H it holds

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
µ

2
‖y − x‖2 .

Throughout the paper we only work with H = l2. Al-
though the lower bounds are meat for optimization in a fi-
nite dimension, they are derived for l2, as it is typically
done in optimization of strongly convex smooth functions
(Nesterov, 2004).

2.2. Decentralized Communication

We assume that distributed communication is performed
via a series of communication rounds. In each of the
rounds, the nodes interact through a network represented
by an undirected communication graph Gk = (V, Ek),
where k ∈ N is the current iteration number. The nodes
can only communicate to their immediate neighbors in the
corresponding network.

Note that the set of nodes V does not change over time.
Throughout the paper we only consider the case when all
graphs Gk are connected.

In the literature, analysis of optimization algorithms in the
decentralized setting as well as the lower bounds are usu-
ally based on the condition number of gossip matrices.

Assumption 2.3. Matrix Wk ∈ Rn×n is called a gossip
matrix of undirected graph Gk = (V, Ek) if the following
properties are satisfied:

1. Wk is symmetric positive semi-definite,

2. [Wk]i,j = 0 if i 6= j and (i, j) 6∈ Ek,

3. kerWk = {(x1, . . . , xn) ∈ Rn : x1 = · · · = xn}.

Given a gossip matrixWk, we define Wk = Wk⊗Id. Then
Wk is also symmetric and positive semi-definite, multi-
plication by Wk represents one communication round and
kerWk = {x = col[x1, . . . , xn] ∈ Rnd : x1 + . . .+xn =
0}.

For a given gossip matrix W , introduce its condition num-
ber χ(W) = λmax(W)/λ+min(W).

A common example of a communication matrix is the
graph Laplacian L(Gk) = D(Gk) − A(Gk), where
A(Gk) denotes the adjacency matrix of Gk and D(Gk) =
diag(

∑
iAij) is a diagonal matrix with degrees of the

nodes at diagonal. Laplacian matrix L(Gk) satisfies As-
sumption 2.3.

Further in the paper we will use only Laplacian matrices,
therefore by slight abuse of notation we denote χ(G) =
χ(L(G)).

2.3. Decentralized Problem and Slowly-Changing
Setup

The main results of our work are lower bounds for decen-
tralized optimization problems. We formalize the definition
of decentralized problem and its characteristics.

Definition 2.4. Let us define DP (decentralized time-
varying problem) as a pair ({Gk}∞k=1, {fi}ni=1). Firstly,
DP includes a sequence of undirected connected graphs
{Gk}∞k=1 with a common set of vertices V = {1, 2, . . . , n}
and edge sets {Ek}∞k=1. Let n(DP) = n, χ(DP) =
supk∈N χ(Gk). Secondly, DP includes a set of objective
functions {fi}ni=1. We refer to f(x) = 1

n

∑n
i=1 fi(x) as a

global function.

Definition 2.5. Decentralized time-varying problemDP is
called L-smooth if global function f is L-smooth.

Definition 2.6. Decentralized time-varying problem DP
is called convex (µ-strongly convex) if global function f is
convex (µ-strongly convex).

Definition 2.7. Let ∆(DP) denote the maximum
amount of edges that change between consequent
communication rounds. Particularly, ∆(DP) =

maxk∈N

{∑
i<j Iij(Ek, Ek+1)

}
, where

Iij(E , E ′) =

{
1, if (i, j) ∈ (E \ E ′) ∪ (E ′ \ E),

0, otherwise.

The introduced quantity ∆(DP) expresses the maximum
change in edges between two consequent time steps. Later
in the paper we show that the value of ∆(DP) regulates the
magnitude of network changes and determines the depen-
dence of the lower bounds on condition number χ.

Example 1. Consider a static graph and denote its corre-
sponding problem DPstatic. All of the graphs in DPstatic
are the same, therefore, we have ∆(DPstatic) = 0.

Example 2. Consider the example used in lower bounds
in (Kovalev et al., 2021a). The authors proposed a star
graph which center changes at each iteration (denote the
corresponding problem DPstar). In such a setting, at ev-
ery iteration every edge in the graph changes. We have
∆(DPstar) = 2(n− 1).

Figure 1. Example of a time-varying network with all edges
changing at each iteration (Kovalev et al., 2021a)

Slowly Time-Varying Networks

3. Lower Bounds
This section presents three results corresponding to differ-
ent constraints on the rate of change of the communica-
tion graph: a polynomial constraint on the change of edges
per iteration, a logarithmic constraint, and a constant con-
straint. We show that each of these regimes leads to a dif-
ferent complexity dependency on the condition number of
the gossip matrix.

3.1. First-order Decentralized Algorithms

Let us first formalize the procedure for which we derive the
lower bounds. Following the definitions of (Kovalev et al.,
2021a) and (Scaman et al., 2017), we consider time steps
k ∈ N and introduce local memory Hi(k) for each of the
agents at time step k. At each time step, the agents can ei-
ther communicate or perform local computations. For each
time step k, denote the last preceding communication time
as q(k).

1. If nodes perform a local computation at step k, local
information is updated as

Hi(k + 1) ⊆ span ({x,∇fi(x),∇f∗i (x) : x ∈ Hi(k)})

for all i = 1, . . . , n.

2. If the nodes perform a communication round at time step
k, local information is updated as

Hi(k + 1) ⊆ span

 ⋃
j∈N q(k)i ∪{i}

Hj(k)


for all i = 1, . . . , n. Here N q(k)

i is a set of neighbors of
agent i at time step q(k), i.e. at the time of last communi-
cation.

3.2. Main Results

The following theorem discusses the polynomial constraint
on the change of edges per iteration; it turns out that such
a constraint leads to the same lower bound as in the uncon-
strained mode studied in (Kovalev et al., 2021a).
Theorem 3.1. For any L ≥ µ > 0, L > 24, α > 0, c >
0,M > 0 there exists a constant K(α, c) > 0 and L-
smooth µ-strongly convex decentralized problem DP with
n(DP) = n > M,χ(DP) = χ > M , ∆(DP) ≤ cnα,
such that for any first-order decentralized algorithm for all
p ∈ N we have

‖xp − x∗‖2 ≥
(

1− 2
√

6

√
µ

L

)K(α,c)p
χ +2

‖x0 − x∗‖2 .

Corollary 3.2. For any L ≥ µ > 0, L > 24, α >
0, c > 0 there exists L-smooth µ-strongly convex decen-
tralized problem DP with sufficiently large χ(DP) =

χ, n(DP) = n, such that ∆(DP) ≤ cnα, and for any
first-order decentralized algorithm the number of commu-
nication rounds to find an ε-accurate solution of the prob-
lem 1 is lower bounded by

Ω

(
χ
√
L/µ log

1

ε

)
.

The following theorem corresponds to the case where the
number of edges that can change per iteration is at most
logarithmic in the number of nodes.
Theorem 3.3. For any L ≥ µ > 0, L > 10, M > 0 there
exists L-smooth µ-strongly convex decentralized problem
DP with n(DP) = n > M, χ(DP) = χ > M , such that
∆(DP) ≤ 12 log2(n) and for any first-order decentralized
algorithm for all p ∈ N we have

‖xp − x∗‖2 ≥
(

1−
√

10

√
µ

L

) 12 log2(χ/2)p
χ

+2

‖x0 − x∗‖2 .

Corollary 3.4. For any L ≥ µ > 0, L > 10 there exists L
smooth and µ-strongly convex decentralized problem DP
with sufficiently large χ(DP) = χ, n(DP) = n, such that
∆(DP) ≤ 12 log2 n, and for any first-order decentralized
algorithm the number of communication rounds to find an
ε-accurate solution of the problem 1 is lower bounded by

Ω

(
χ

logχ

√
L/µ log

1

ε

)
.

As we can see, although the logarithmic constraints are
tighter than the polynomial ones, the problem cannot be
solved much faster. The benefit we get from logarithmic
constraints is only the logarithmic factor logχ, which is
typically small compared to the main term χ.

The following theorem describes the case when the con-
straints on changes for sequential iteration are constant.
Theorem 3.5. For any L ≥ µ > 0, L > 24, M > 0,
d ∈ N there exists a constant K(d) > 0 and L-smooth µ-
strongly convex decentralized problem DP with n(DP) =
n > M, χ(DP) = χ > M , ∆(DP) ≤ 12(d − 1), such
that for any first-order decentralized algorithm for all p ∈
N we have

‖xp − x∗‖2 ≥
(

1− 2
√

6

√
µ

L

)K(d)pχ
− d
d+1 +2

‖x0 − x∗‖2 .

Corollary 3.6. For any L ≥ µ > 0, L > 24, d ∈ N there
exists L-smooth µ-strongly convex decentralized problem
DP with sufficiently large χ(DP) = χ and n(DP) = n,
such that ∆(DP) ≤ 12(d− 1), and for any first-order de-
centralized algorithm the number of communication rounds
to find an ε-accurate solution of the problem 1 is lower
bounded by

Ω

(
χ

d
d+1

√
L/µ log

1

ε

)
.

Slowly Time-Varying Networks

This result shows that even with constant constraints, the
lower estimates approach the estimates without constraints.
This indicates that the criterion based on the Laplacian ma-
trix condition number is very sensitive to the degree of
graph variability.

3.3. Discussion

In summary, lower bounds on the number of communica-
tions have been obtained for the decentralized optimization
of smooth strongly convex functions with restrictions on
network change rate. In particular, three modes were con-
sidered, which differ in the speed of changing of the com-
munication graph.

Polynomial change. The first mode assumes a polynomial
maximum change in the number of edges in the graph; as
it turned out, such a setting gives the lower bounds in this
case coincide with lower bounds when no additional con-
ditions are imposed on the change of the graph.

The second mode considers a maximum logarithmic
change in the number of edges in the graph. In this case,
the lower bounds turned out to be close to the estimates in
the case of time-varying networks without restrictions.

The third mode considers a constant change in the num-
ber of edges; here, for each value of the constant d, an
individual estimate is obtained. When d = 1, we restore
the lower bound for static graphs (Scaman et al., 2017) and
when d→∞, we approach a lower bound for time-varying
networks with no restrictions on the speed of changes (Ko-
valev et al., 2021a). In other words, the lower bounds for
the last mode can be seen as an interpolation between static
and time-varying networks without restrictions.

Meaning of lower bounds. It is worth noting that the inter-
pretation of our lower complexity bounds is different from
previous results in (Kovalev et al., 2021a) and (Scaman
et al., 2017). The mentioned papers build an example of a
optimization problem for any χ > 0, while our results sug-
gest that a counterexample exists only if χ is sufficiently
large. Let us illustrate how to interpret the lower bounds in
the regime of polynomial change. Theorem 3.1 means that

A decentralized optimization method that solves any de-
centralized problem with polynomial bound on changes in
O(χp

√
L/µ log(1/ε)), p < 1 communication rounds does

not exist.

In other words, our results are asymptotic, but they are suf-
ficient to restrict the area for future research.

4. Accelerated Gossip for Time-Varying
Graphs with Connected Skeleton

4.1. Time-Varying Graphs with Connected Skeleton

It is known that the number of communications cannot be
enhanced on the class of time-varying graphs that are al-
lowed to change arbitrarily but stay connected at each it-
eration. The corresponding lower complexity bounds have
been proposed in (Kovalev et al., 2021a). However, the
lower bounds in (Kovalev et al., 2021b) are built using a
graph whereO(n) edges change at each time step. Namely,
a ”bad” graph is a star graph where the center of a star
changes at each iteration (see Figure 1).

In practice, a situation where O(n) edges change at every
iteration may not always occur. The amplitude of network
malfunctions may be not so large. We let all of the graphs
in the sequence have a common subgraph (a skeleton) that
remains connected through time.

Assumption 4.1. Graph sequence {Gk = (V, Ek)}∞k=0 has
a connected skeleton: there exists a connected graph Ĝ =
(V, Ê) such that for all k = 0, 1, . . . we have Ê ⊆ Ek.

Assumption 4.2. For each k = 0, 1, . . . we have
λmax(L(Gk)) ≤ λmax. Moreover, we have λ+min ≤
λ+min(Ĝ).

Assumption 4.1 is more strict then the assumption on the
graph staying connected at each iteration. However, under
Assumption 4.1 we propose an accelerated consensus pro-
cedure over time-varying graphs.

4.2. Accelerated Gossip with Non-Recoverable Links

A common approach to accelerated consensus over static
graphs is Chebyshev acceleration proposed in (Scaman
et al., 2017). A gossip matrix W with condition number
χ(W) can be replaced by a matrix polynomial PK(W)
of degree K = d(χ(W))1/2e with condition number
χ(PK(W)) = O(1). The construction of PK(W) is based
on Chebyshev polynomials of first type. Then, the con-
dition number of communication matrix is reduced from
χ(W) to O(1) at the cost of performing d(χ(W))1/2e
communication rounds instead of one.

However, Chebyshev method is only known to be applied
to consensus over static networks. In our work, we propose
an accelerated gossip scheme over time varying graphs
based on Nesterov acceleration. The acceleration is possi-
ble because of assumption on connected skeleton (Assump-
tion 4.1) and due to a specific consensus strategy.

We use the following approach to tackle with time-varying
graphs that have a connected skeleton. Let agent i in the
network stop exchanging information to agent j once the
connection between i and j has been lost at any commu-

Slowly Time-Varying Networks

nication round. In other words, if a link fails once, the
communication through it is not recovered afterwards. This
procedure is referred to as accelerated gossip with non-
recoverable links.

Algorithm 1 Accelerated Gossip with Non-Recoverable
Links
Require: Initial guess x ∈ Rnd, stepsizes η, β > 0. Set

y0 = x0 = x.
1: Every node i = 1, . . . , n initializes set of neighbors
Ni = N 0

i .
2: for t = 0, 1, . . . , T − 1 do
3: Every node i does
4: Update the set of nodes to which the node commu-

nicates: Ni = Ni ∩N k
i

5: yk+1
i = xki − η(|Ni|xki −

∑
j∈Ni x

k
j)

6: xk+1
i = (1 + β) yk+1

i − βyki
7: end for
8: return CT (x) = x− xT

Note that the output of Algorithm 1 is CT (x). We claim
that CT (x) is a linear operator that is a time-varying ana-
logue of PK(W)x.

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. Denote
χ = λmax/λ

+
min and set the parameters of Algorithm 1 to

η = 1/λmax, β = (
√
χ − 1)/(

√
χ + 1). Then operator

CT (x) defined in Algorithm 1 has the following properties.

1. CT (x) is linear.

2. rangeCT (x) = L> = {x ∈ Rmd : x1+. . .+xm = 0}.

3. For T =
√
χ log(4χ) we have that for any x ∈ L> it

holds (1− 1/
√

2) ‖x‖2 ≤ ‖CT (x)‖2 ≤ (1 + 1/
√

2) ‖x‖2.

The meaning of Theorem 4.3 is the following: for ”mono-
tone” graphs we can replace Wk with condition number χ
by CT (·) with condition number O(1). The payment for
reduction of condition number is

√
χ log(4χ) communica-

tion rounds.

4.3. Accelerated Gossip as Accelerated Method over
Time-Varying Function

Algorithm 1 can be viewed as a gossip algorithm over
a ”monotonic” network where the edges only vanish
and do not appear. Namely, introduce a sequence of
graphs {Ĝk = (V,∩kj=0Ej)}∞k=0, corresponding Laplacians
{Ŵ k = L(Ĝk)}∞k=0 and denote Ŵk = Ŵ k⊗ Id. Then Al-
gorithm 1 writes as{

yt+1 = xk − ηŴkxk,

xk+1 = (1 + β)yk+1 − βyk.
(2)

As can be seen from (2), on each time step a multiplication
by Ŵk is performed, which corresponds to one commu-
nication over Ĝk. The edges in sequence {Ĝk}∞k=0 only
vanish and do not appear.

Algorithm 1 can also be interpreted as minimization of
a time-varying functional with an accelerated gradient
method. Consider problem

min
x∈Rnm

hk(x) =
1

2
x>Ŵkx. (3)

Algorithm 1 is accelerated Nesterov method with step-size
η and momentum term β applied a time-varying prob-
lem (3).
Remark 4.4. Returning to the case of static networks, it is
worth mentioning that Chebyshev polynomials and accel-
erated gradient methods for quadratic minimization have
a strong connection, see i.e. Chapter 2 of (d’Aspremont
et al., 2021). In fact, Polyak’s momentum can be de-
rived through application of Chebyshev polynomials to a
quadratic minimization problem.

The analysis of accelerated method over a uniformly non-
increasing time-varying function is based on the Lyapunov
function technique.
Lemma 4.5. Let Assumptions 4.1 and 4.2 hold. Denote
τ = 1/(

√
χ + 1), zk = 1/τ xk − (1 − τ)/τ yk, γ =

1/(
√
χ− 1) and introduce potential

Ψk = (1 + γ)k
(
hk(yk) +

λ+min

2

∥∥zk − x∗
∥∥2
2

)
,

where x∗ is a solution of (3). Then Ψk+1 −Ψk ≤ 0.

The proof of Lemma 4.5 is based on standard analysis
proposed in (Bansal & Gupta, 2019) and on the observa-
tion that the objective function in (3) is uniformly non-
increasing, i.e. for any x ∈ Rnd and for any k = 0, 1, . . .
we have hk+1(x) ≤ hk(x). Indeed, we have Ŵ k =∑

(i,j)∈Êk(ei − ej)(ei − ej)
>, where ei denotes the i-th

coordinate vector of Rm. Therefore, it holds

W k −W k+1 =
∑

(i,j)∈Êk\Êk+1

(ei − ej)(ei − ej)> � 0.

In other words, for any x ∈ Rnm it holds

hk+1(x)− hk(x) =
1

2
x>Ŵk+1x− 1

2
x>Ŵkx ≤ 0.

The analysis of accelerated gradient method over time-
varying uniformly non-increasing functions is presented in
Appendix D.

5. Conclusion
In this paper, we study new classes of time-varying net-
works that may be more practical then the scenarios previ-
ously studied in the literature. We propose to look into a

Slowly Time-Varying Networks

new direction of research – slowly time-varying graphs. In
the work, we formalize several regimes covering the veloc-
ity of graph changes and provide the corresponding lower
bounds for each case. Our results outline the limits of what
communication rates can be achieved over slowly time-
varying graphs. Moreover, we propose a slightly modified
consensus technique that leads to acceleration over time-
varying networks with connected skeleton. Our technique
may be seen as an analogue of Chebyshev acceleration that
is used for time-static graphs.

References
Bansal, N. and Gupta, A. Potential-function proofs for gra-

dient methods. Theory of Computing, 15(1):1–32, 2019.

Bazerque, J. A. and Giannakis, G. B. Distributed spec-
trum sensing for cognitive radio networks by exploiting
sparsity. IEEE Transactions on Signal Processing, 58
(3):1847–1862, 2009.

Das, K. The laplacian spectrum of a graph. Com-
puters & Mathematics with Applications, 48
(5):715–724, 2004. ISSN 0898-1221. doi:
https://doi.org/10.1016/j.camwa.2004.05.005.
URL https://www.sciencedirect.com/
science/article/pii/S0898122104003074.

d’Aspremont, A., Scieur, D., Taylor, A., et al. Acceleration
methods. Foundations and Trends® in Optimization, 5
(1-2):1–245, 2021.

Dvinskikh, D. and Gasnikov, A. Decentralized and par-
allel primal and dual accelerated methods for stochastic
convex programming problems. Journal of Inverse and
Ill-posed Problems, 29(3):385–405, 2021.

Forero, P. A., Cano, A., and Giannakis, G. B. Consensus-
based distributed support vector machines. Journal of
Machine Learning Research, 11(5), 2010.

Gan, L., Topcu, U., and Low, S. H. Optimal decentralized
protocol for electric vehicle charging. IEEE Transac-
tions on Power Systems, 28(2):940–951, 2012.

Gorbunov, E., Rogozin, A., Beznosikov, A., Dvinskikh, D.,
and Gasnikov, A. Recent theoretical advances in de-
centralized distributed convex optimization. In High-
Dimensional Optimization and Probability, pp. 253–
325. Springer, 2022.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Kovalev, D., Salim, A., and Richtárik, P. Optimal and prac-
tical algorithms for smooth and strongly convex decen-
tralized optimization. Advances in Neural Information
Processing Systems, 33, 2020.

Kovalev, D., Gasanov, E., Gasnikov, A., and Richtarik, P.
Lower bounds and optimal algorithms for smooth and
strongly convex decentralized optimization over time-
varying networks. Advances in Neural Information Pro-
cessing Systems, 34, 2021a.

Kovalev, D., Shulgin, E., Richtárik, P., Rogozin, A., and
Gasnikov, A. Adom: Accelerated decentralized op-
timization method for time-varying networks. arXiv
preprint arXiv:2102.09234, 2021b.

Li, H. and Lin, Z. Accelerated gradient tracking over time-
varying graphs for decentralized optimization. arXiv
preprint arXiv:2104.02596, 2021.

Li, H., Fang, C., Yin, W., and Lin, Z. Decentralized ac-
celerated gradient methods with increasing penalty pa-
rameters. IEEE Transactions on Signal Processing, 68:
4855–4870, 2020.

Molitierno, J., Neumann, M., and Shader, B. Tight bounds
on the algebraic connectivity of a balanced binary tree.
ELA. The Electronic Journal of Linear Algebra [elec-
tronic only], 6, 03 2000. doi: 10.13001/1081-3810.1040.

Nedić, A. Distributed gradient methods for convex ma-
chine learning problems in networks: Distributed opti-
mization. IEEE Signal Processing Magazine, 37(3):92–
101, 2020.

Nedic, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017.

Nesterov, Y. Introductory Lectures on Convex Optimiza-
tion: a basic course. Kluwer Academic Publishers, Mas-
sachusetts, 2004.

Rabbat, M. and Nowak, R. Distributed optimization in
sensor networks. In Proceedings of the 3rd interna-
tional symposium on Information processing in sensor
networks, pp. 20–27, 2004.

Ram, S. S., Veeravalli, V. V., and Nedic, A. Distributed
non-autonomous power control through distributed con-
vex optimization. In IEEE INFOCOM 2009, pp. 3001–
3005. IEEE, 2009.

Rogozin, A., Uribe, C. A., Gasnikov, A. V., Malkovsky, N.,
and Nedić, A. Optimal distributed convex optimization
on slowly time-varying graphs. IEEE Transactions on
Control of Network Systems, 7(2):829–841, 2019.

https://www.sciencedirect.com/science/article/pii/S0898122104003074
https://www.sciencedirect.com/science/article/pii/S0898122104003074

Slowly Time-Varying Networks

Rogozin, A., Lukoshkin, V., Gasnikov, A., Kovalev, D., and
Shulgin, E. Towards accelerated rates for distributed op-
timization over time-varying networks. In International
Conference on Optimization and Applications, pp. 258–
272. Springer, 2021.

Rojo, O. and Medina, L. Tight bounds on the al-
gebraic connectivity of bethe trees. Linear Algebra
and its Applications, 418(2):840–853, 2006. ISSN
0024-3795. doi: https://doi.org/10.1016/j.laa.2006.03.
016. URL https://www.sciencedirect.com/
science/article/pii/S0024379506001649.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Mas-
soulié, L. Optimal algorithms for smooth and strongly
convex distributed optimization in networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 3027–3036. JMLR. org, 2017.

Stevanović, D. Bounding the largest eigenvalue of trees in
terms of the largest vertex degree. Linear Algebra and
its Applications, 360:35–42, 2003. ISSN 0024-3795.
URL https://www.sciencedirect.com/
science/article/pii/S0024379502004421.

Ye, H., Luo, L., Zhou, Z., and Zhang, T. Multi-
consensus decentralized accelerated gradient descent.
arXiv preprint arXiv:2005.00797, 2020.

https://www.sciencedirect.com/science/article/pii/S0024379506001649
https://www.sciencedirect.com/science/article/pii/S0024379506001649
https://www.sciencedirect.com/science/article/pii/S0024379502004421
https://www.sciencedirect.com/science/article/pii/S0024379502004421

Slowly Time-Varying Networks

Supplementary material

A. Proof of the Theorem 3.1
Proof. Denote as Bd,k a Bethe tree of degree d and depth k, where the root has a degree of d, vertices at levels from 2 to
k − 1 have a degree of d+ 1, and vertices at the k’th level have a degree of 1. Let n = n(d, k) be a number of vertices of
Bd,k. Consider a Bethe tree Bd,k. By simple calculations we get n = dk−1

d−1 . Suppose k ≥ 2, d ≥ 3, thus using Theorem 2
and Theorem 3 from (Rojo & Medina, 2006) and considering the asymptotic behavior, we obtain that ∃d0 : ∀d ≥ d0

(d− 1)2

dk − 1
≤ λn−1(L(Bd,k)) ≤ 2

(d− 1)2

dk − 1
.

Figure 2. Example of B3,4

Using results from (Stevanović, 2003) we get d + 2 ≤ λ1(L(Bd,k)) ≤ (
√
d + 1)2, thus we conclude that ∃d1 : ∀d ≥

d1, k ≥ 2

n(Bd,k)

2
≤ χ(Bd,k) ≤ 2n(Bd,k). (4)

Denote as V1 the set of vertices of type 1, V2 the set of vertices of type 2 (V1 ∩ V2 = ∅), and W the set of remaining
vertices. Let d ≥ t > 2. V1 consists of [dt] subtrees with roots adjacent to the root of Bd,k, and V2 is defined in the same
way. Therefore |V1| = |V2| = [dt]

dk−1−1
d−1 .

Figure 3. Example of splitting a graph into three sets. The vertices of V1 (”Bad” vertices) are indicated in red. The vertices of V2
(”Good” vertices) are indicated in green.

Denote the vertex functions fv : `2 → R depending on vertex type:

fv(x) =


µ
2n ‖x‖

2
+ L−µ

4|V1|
[
(x1 − 1)2 +

∑∞
k=1(x2k − x2k+1)2

]
, v ∈ V1

µ
2n ‖x‖

2
+ L−µ

4|V2|
∑∞
k=1(x2k−1 − x2k)2, v ∈ V2

µ
2n ‖x‖

2
, v ∈W

. (5)

Estimate V1 and V2 through n, using that d ≥ t, k ≥ 2, d ≥ 3 we get

|V1| = |V2| ≥
d

2t

dk−1 − 1

d− 1
≥ n

4t
. (6)

Estimate the network’s global characteristic number using the local one

κl =

L−µ
2|V1| + µ

n
µ
n

≤
2t(L−µ)

n + µ
n

µ
n

=
2t(L− µ) + µ

µ
= 2(κg − 1)t+ 1,

Slowly Time-Varying Networks

thus we have
κg ≥

κl − 1

2t
+ 1. (7)

Let us now start describing the sequence of edges {Ei}∞i=1. Firstly, we introduce the swap(v1, v2) operation. When
applied to the graph G = (V, E), it changes the edges between v1 and v2. Note that this operation changes no more than
2(deg(v1) + deg(v2)) edges (∆ ≤ 2(deg(v1) + deg(v2))).

Next, introduce the following scheme: A graph consists of ”good” and ”bad” vertices. At each iteration, each good vertex
adjacent to at least one bad vertex becomes a bad vertex. After that, we somehow change the edges in the graph, and the
scheme continues. In our case, we call V1 vertices ”bad” and G \ V1 vertices ”good”. Our goal is to make the V2 vertices
remain ”good” as long as possible. The algorithm returns a graph sequence of decentralized problems {DPi}∞i=1. The
individual steps of the algorithm work as follows:

Algorithm 2 Inner loop of graph changing scheme with polynomial restrictions
Input: G, V1, V2, i
B = V1
while NoBadVertices(V2, B) do
U = PotentialBadVertices(B)
for j = 0, 1, . . . , |U | − 1 do
u = U [j]
v = FindCandidate(u)
B = B ∪ {v}
G = swap(G, u, v)

end for
Gi = G
i = i+ 1

end while

We make a few assumptions:

• Each level of the Bethe tree has a natural order of vertices, particularly each vertex has an ordered set of its children.
The root children in V1 are the most minimal, while the root children in V2 are the most maximal.

• B is the set of ”bad” vertices. At moment i, Gi is a graph in the sequence {DP}∞i=1.

• i is the state number of the {DP}∞i=1 sequence on which we run Algorithm 2.

Each iteration works as follows:

• NoBadVertices checks if the set consists only of ”good” vertices.

• PotentialBadVertices computes the set of ”good” vertices which would become ”bad” ones after an iteration.

• FindCandidate finds a vertex, which would be swapped with the input vertex. The step works as follows: we start
with root vertex and move to the leftmost (lowest numbered) ”good” vertex (not in B), if there is no such vertex, we
stop. Return the vertex where we stopped.

• swap operation swaps the edges of two input vertices, but not the vertices themselves.

Note that V1 is the set of ”bad” vertices, which can be obtained through several While iterations of Algorithm 2, starting
from a graph with no ”bad” vertices.

Lemma A.1. Consider an Algorithm 2, applied to Bd,k. At any moment of this algorithm, the number of new bad vertices
is bounded as follows:

|U | ≤ k − 1. (8)

Slowly Time-Varying Networks

Figure 4. Example of a graph change scheme. Potentially ”bad” vertices, i.e. those that will become ”bad” in one move, are indicated in
yellow.

Proof. Note that such iterations support the following invariant: if vertex p is ”bad”, then all its ancestors are ”bad” too
(those that can be reached from p by going from the root). Consider the set of new ”bad” vertices. On the last level, there
are no such vertices, as it would be a contradiction with the first sentence. At other levels, there are at most two. Suppose
the contradiction, let them be vertices v and u. These vertices are adjacent to ”bad” vertices v′ and u′ at the level below.
Consider their common ancestor p. It is ”good” and has two ”good” children v and u, which have ”bad” vertices v′ and u′

in their subtrees. But then the algorithm would have to ”fill” one of the subtrees on v or u (the one with the lowest number)
with ”bad” vertices, a contradiction.

As a result, at each iteration, we get the upper bound on the change of edges:

∆i ≤ 4|U |dmax = 4(k − 1)(d+ 1). (9)

Using that n = dk−1
d−1 and assuming d ≥ k we get

∆i ≤ 4(k − 1)(d+ 1) ≤ 4kd ≤ 4kn1/(k−1). (10)

Let T be the number of iterations needed for one of the vertices in V2 to become ”bad” (it equals the number of iterations
of Algorithm 2), we will refer to this value as the ”information flow”. At each iteration, there are at most k − 1 new ”bad”
vertices. Therefore, we get:

T ≥
[
|W|
k − 1

]
+ 1 ≥ |W|

k − 1
. (11)

Estimate the size of the neutral vertex setW using n = dk−1
d−1 and the definitions of V1,V2

|W| = n− |V1| − |V2| ≥
1

d− 1

(
dk − 1− 2

dk − d
t

)
≥
(

1− 2

t

)
n.

Therefore using 4 we get lower bound on the information flow:

T ≥ 1− 2/t

2(k − 1)
χ. (12)

Now, we are going to define the whole sequence of graphs in DPj for every j ∈ N. Algorithm 2 only defines the graphs
for i = i0, i0+1, . . . , i0+T −1, where i0 is the input state number for the Inner algorithm. We run Algorithm 2 iteratively.

Slowly Time-Varying Networks

After each iteration, at least one vertex of V2 becomes ”bad”, then we rearrange the sets V1 and V2, reverse the order of
children for each vertex in G, and run the algorithm again.

Algorithm 3 Outer loop of graph changing scheme with polynomial restrictions
Input: G, V1, V2
i = 1
while True do

InnerLoop(G,V1,V2, i)
Rearrange(V1,V2)
ReverseOrders(G)

end while

InnerLoop is Algorithm 2. Rearrange changes the pointers for variables V1 and V2. ReverseOrders reverses the order of
children for each vertex.

We have found a sequence of graphs in which information flows slowly. Specifically, to get from V1 to V2, it takes T
iterations. To get back (from V2 to V1) it takes T iterations as well and so on.

Let x0 = 0 be the initial point for the first-order decentralized algorithm. For every m ≥ 1, we define lm =
min p ≥ 1|∃v : ∃x ∈ Hv(p) : xm 6= 0 as the first moment when we can get a non-zero element at the m-th place at any
node.

Considering the types of functions on vertices of the graph 26, we can conclude that functions on vertices from V1 can
”transfer” (by calculating the gradient) information (non-zero element) from the even positions (2, 4, 6, . . .) to the next
ones, and functions on vertices from V2 can transfer information from the odd positions (1, 3, 5, . . .) to the next ones.
Therefore, for the network to get a new non-zero element at the next position, a complete iteration of Algorithm 2 is
required, that is T communication iterations.

One of the main ideas is that this ”information” cannot spread faster than ”bad” vertices.

To reach the m-th non-zero element, we need to make at least m local steps and (m−1)T communication steps to transfer
information from gradients between V1 and V2 sets. Therefore, we can estimate lm:

lm ≥ (m− 1)T +m. (13)

The solution of the global optimization problem is x∗p =
(√

κg−1√
κg+1

)p
.

For any m, p such that lm > p

‖xp − x∗‖2 ≥ (x∗)
2
m + (x∗)

2
m+1 + . . . =

(√
κg − 1
√
κg + 1

)m
‖x0 − x∗‖2 .

Using 13 we can take m = d p
T+1e+ 1. From 7 we conclude that

√
κg−1√
κg+1 ≥ 1− 2

√
6√
κl

Therefore using 7, 12 and assign t = 3 we get

‖xp − x∗‖2 ≥
(√

κg − 1
√
κg + 1

)dp/(1
6(k−1)

χ+1)e+1

‖x0 − x∗‖2 .

Rearranging it, we get

‖xp − x∗‖2 ≥
(

max

{
1− 2

√
6

√
µ

L

}) 6(k−1)p
χ +2

‖x0 − x∗‖2 . (14)

Slowly Time-Varying Networks

B. Proof of the Theorem 3.3
Proof. The proof is very similar to the proof of the Theorem 3.1, but here we fix d = 2 and k →∞.

Let Bk be a binary tree B2,k. Using the lower and upper bounds on algebraic connectivity (λn−1) of such trees from
(Molitierno et al., 2000) and following the same logic as in 4, we can conclude that there exists a k0 such that for all
k > k0 the following is true

2n(Bk) ≤ χ(Bk) ≤ 6n(Bk). (15)

Denote the set of vertices of type 1 as V1, the set of vertices of type 2 as V2 (V1 ∩ V2 = ∅), and the set of remaining
vertices asW . Suppose that every non-leaf vertex has a ”left” and ”right” child. Let V1 be a subtree with a ”left-left” root
vertex (it can be reached from the graph’s root by going to the left child and then back to the left child). V2 is defined in
the same way. Therefore |V1| = |V2| = 2k−2 − 1.

Denote the vertex functions fv : `2 → R similarly as in 26.

Estimate V1 and V2 through n, using that k ≥ 4 we get

n

5
≤ |V1| = |V2| ≤

n

4
. (16)

Estimate global characteristic number of the network through local one

κl =

L−µ
2|V1| + µ

n
µ
n

≤
5(L−µ)

2n + µ
n

µ
n

=
5(L− µ) + µ

2µ
=

5

2
(κg − 1) + 1,

thus we have
κg ≥

2

5
(κl − 1) + 1. (17)

Next, we will use exactly the same technique to construct a sequence of communication graphs as in the proof of the
Theorem 3.1 (Algorithm 2 and Algorithm 3). As a result, we get something resembling 11 inequality on ”information
flow” defined in previous proof

T ≥ |W|
k − 1

. (18)

Using n = 2k − 1 and the definitions of V1,V2, we can estimate the size of the neutral vertex setW .

|W| = n− |V1| − |V2| = 2k − 1− 2(2k−2 − 1) ≥ n

2
.

By using 15 and inequality k − 1 ≤ log2 n we derive a lower bound on T :

T ≥ χ

12(k − 1)
≥ χ

12log2(χ/2)
. (19)

Also we similarly take an upper bound on edge change ∆i in graph sequence

∆i ≤ 4|U |dmax = 12(k − 1) ≤ 12 log2 n. (20)

Do the same reasoning with lm (defined in the last section).

In order to reach the m-th non-zero element, at least m local steps and (m − 1)T communication steps are required to
transfer information from gradients between V1 and V2 sets. Based on this, we can estimate lm:

lm ≥ (m− 1)T +m. (21)

The solution of the global optimization problem is x∗p =
(√

κg−1√
κg+1

)p
.

For any m, p such that lm > p

‖xp − x∗‖2 ≥ (x∗)
2
m + (x∗)

2
m+1 + . . . =

(√
κg − 1
√
κg + 1

)m
‖x0 − x∗‖2 .

Slowly Time-Varying Networks

Using 21 we can take m = d p
T+1e+ 1. From 17 we conclude that

√
κg−1√
κg+1 ≥ 1−

√
10√
κl

Therefore using 17, 19 we get

‖xp − x∗‖2 ≥
(

max

{
0, 1−

√
10

√
µ

L

})dp/(χ
12 log2(χ/2)

+1
)
e+1

‖x0 − x∗‖2 .

Rearranging it, we get

‖xp − x∗‖2 ≥
(

max

{
0, 1−

√
10

√
µ

L

}) 12 log2(χ/2)p
χ +2

‖x0 − x∗‖2 . (22)

C. Proof of the Theorem 3.5
Firstly, let’s define the structure of the graph that will serve as a counter-example in the case under consideration and study
its properties.

We will define the graph Hd,k through induction. Let H1,k be a path of length k, and call any of its leaf vertices the root.
Then, assuming we have defined Hd,k for all k, we define Hd+1,k as follows: take a path of length k (and call the leaf
vertex of the path the root of the graph), and attach a copy of Hd,k to the root of each vertex in the path.

It can be seen that each tree Hd,k consists of paths of length k with fixed vertices, which we will refer to as roots. Consider
one such path, with a start vertex and an end vertex, where the end vertex is a root and the start vertex is the other leaf
vertex. We will also assign a number from 1 to k to each vertex in the path, corresponding to the distance from the start
vertex, increased by 1. That is, the start and root vertices have numbers 1 and k respectively.

We will divide the tree Hd,k into levels. As the graph was constructed through induction, the first level will consist of
the vertices added in the first iteration of the induction, the second level will consist of the vertices added in the second
iteration of induction, and so on, up to level d.

To move forward, let’s assign coordinates to these vertices as follows: consider the vertex v at level g, then its coordinates
will be the tuple x = (x1, . . . , xg), where xi is the number corresponding to the vertex closest to v at level i.

To proceed, let’s introduce a linear order relation on these vertices as follows: if they have different lengths and the
coordinates of the first vertex is a prefix of the second one, then the second one is considered smaller. Otherwise, the
one with the smallest element that has the first difference from left to right is considered smaller. This way, the vertex
(x1, . . . , xg) will be adjacent to the vertices (x1, . . . , xg − 1), (x1, . . . , xg + 1), (x1, . . . , xg, d) if notations is correct and
to vertex (x1, . . . , xg−1) if xg = d.”

Let us introduce a linear order relation on these vertices: if the coordinate of the first vertex is the prefix of the second one,
then the second one is smaller, otherwise the one with the smallest element, which has the first difference from left to right,
is smaller. Then the vertex (x1, . . . , xg) will be adjacent to the vertices (x1, . . . , xg − 1), (x1, . . . , xg + 1), (x1, . . . , xg, d)
if notations is correct and to vertex (x1, . . . , xg−1) if xg = d.

Consider a graph Hd,k.

For this graph n = k + k2 + . . . + kd. Let D be the diameter of this graph, it can be easily seen that D = (2d − 1)k.
According to Theorem 4.1.1 in (Das, 2004), we can obtain an estimation of λn−1(L(Hd,k))

λn−1(L(Hd,k)) ≥ 1

nD
≥ 1

d(2d− 1)kd+1
. (23)

Using results from (Stevanović, 2003) we get

4 ≤ λ1(L(Hd,k)) ≤ 3 + 2
√

2 ≤ 6. (24)

As a result, by using 23 and 24 we can obtain an upper bound for χ(Hd,k).

χ(Hd,k) ≤ 6d(2d− 1)kd+1 ≤ 6d(2d− 1)n
d+1
d . (25)

Slowly Time-Varying Networks

Let V1 and V2 be disjoint sets of vertices of type 1 and type 2, respectively, and letW be the set of remaining vertices. V1
consists of vertices that have a coordinate of at most (

[
k
3

]
), and V2 consists of vertices that have a coordinate of at least

(k −
[
k
3

]
). Therefore, |V1| = |V2| =

[
k
3

]
(k + k2 + . . .+ kd−1).

Denote the vertex functions fv : `2 → R depending on vertex type:

fv(x) =


µ
2n ‖x‖

2
+ L−µ

4|V1|
[
(x1 − 1)2 +

∑∞
k=1(x2k − x2k+1)2

]
, v ∈ V1

µ
2n ‖x‖

2
+ L−µ

4|V2|
∑∞
k=1(x2k−1 − x2k)2, v ∈ V2

µ
2n ‖x‖

2
, v ∈W

. (26)

Estimate V1 and V2 through n, let k ≥ 3

|V1| = |V2| ≥
k

6
(k + k2 + . . .+ kd−1) =

n

12
. (27)

Estimate the network’s global characteristic number using the local one

κl =

L−µ
2|V1| + µ

n
µ
n

≤
6(L−µ)

n + µ
n

µ
n

=
6(L− µ) + µ

µ
= 6(κg − 1) + 1,

thus we have
κg ≥

κl − 1

6
+ 1. (28)

Let us now describe the sequence of edges {Ei}∞i=1. Similar to the proof of Theorem 3.1, we will construct an algorithm
that generates a sequence of graphs that works under the same conditions as Algorithm 2 and Algorithm 3. In this scheme,
we will refer to vertices in V1 as ”bad” and the remaining vertices as ”good”. After each iteration, a ”good” vertex that is
adjacent to a ”bad” vertex becomes ”bad”, and the graph is modified in some way. The goal is to keep the vertices in V2
”good” for as long as possible. Additionally, we will maintain the invariant that after each graph change, a ”good” vertex
cannot be less than a ”bad” vertex.

Algorithm 4 Inner loop of graph changing scheme with constant restrictions
Input: G, V1, V2, i
B = V1
while NoBadVertices(V2, B) do
U = PotentialBadVertices(B)
AtLastLevel(U,B)
for j = 0, 1, . . . , |U | − 1 do
u = U [j]
v = FindCandidate(u,B)
B = B ∪ {v}
G = swap(G, u, v)

end for
Gi = G
i = i+ 1

end while

Every function works in the same way as in the Algorithm 2, except for FindCandidate and AtLastLevel.
FindCandidate finds a vertex that would be swapped with the input vertex. It finds the smallest ”good” vertex in the
graph. It is simple to check that the invariant is preserved. AtLastLevel checks if there is a vertex at the last level, makes
it ”bad”, and removes it from U .

Then we apply Algorithm 3, but using Algorithm 4 as the inner algorithm, thus obtaining a sequence of graphs.
Lemma C.1. Consider an Algorithm 4, applied to Hd,k. At any moment of this algorithm, the number of new bad vertices
is bounded as follows:

|U | ≤ d. (29)

Slowly Time-Varying Networks

Proof. We consider the set U and show that it can contain at most one element from each level. Suppose the converse,
let the vertices v, u ∈ U and belong to level g. Let vertex v have coordinates (x1, . . . , xg) and vertex u have coordinates
(y1, . . . , yg) and v < u. The vertex u is adjacent to the ”bad” vertex b, and b < u, so it can be (y1, . . . , yg − 1)
or (y1, . . . , yg, d). The second case is impossible because the ”bad” vertex (y1, . . . , yg, d) is greater than v, and this
contradicts the invariant. Consider the first case when b has coordinates (y1, . . . , yg − 1). v < u, so v ≤ b, but they cannot
be equal, since at the given iteration, v is only potentially ”bad” (i.e. ”good”) so far, so we are led to the same contradiction
when the ”bad” vertex is greater than the ”good” one.

Note that either U contains no vertices on the last level, in which case |U | ≤ d − 1 (as can be proved similarly to
Lemma C.1), or there is a vertex on the last level, but it need not be swapped. Therefore, we can obtain an upper bound on
the number of edges changed at each iteration.

∆i ≤ 12(d− 1). (30)

Let T be the number of iterations, needed for one of the vertex in V2 to become bad (it equals to the number of iterations
of Algorithm 4), we wil refer to this value as ”information flow”. According to Lemma C.1 at each While iteration there
are not more than d new bad vertices, therefore we get

T ≥
[
|W|
d

]
+ 1 ≥ |W|

d
. (31)

Using |V1| = |V2| ≤ n
3 to estimate the size of the neutral vertex set cW , we get

|W| = n− |V1| − |V2| ≥
n

3
.

Therefore using 25 we get lower bound on the information flow:

T ≥ n

3d
≥ χ

d
d+1

3d(6d(2d− 1))
d
d+1

. (32)

To proceed further, we apply a similar approach to determine lm (defined in the the proof of the Theorem 3.1).

To reach the m-th non-zero element, we need to make at least m local steps and (m−1)T communication steps to transfer
information from gradients between V1 and V2 sets. Therefore, we can estimate lm:

lm ≥ (m− 1)T +m. (33)

The solution of the global optimization problem is x∗p =
(√

κg−1√
κg+1

)p
.

For any m, p such that lm > p

‖xp − x∗‖2 ≥ (x∗)
2
m + (x∗)

2
m+1 + . . . =

(√
κg − 1
√
κg + 1

)m
‖x0 − x∗‖2 .

Using 33 we can take m = d p
T+1e+ 1. From 28 we conclude that

√
κg−1√
κg+1 ≥ 1− 2

√
6√
κl

Let C(d) = 3d(6d(2d− 1))
d
d+1 . Therefore using 28, 32 we get

‖xp − x∗‖2 ≥
(

max

{
0, 1− 2

√
6

√
µ

L

})dp/(C(d)−1χ
d
d+1 +1

)
e+1

‖x0 − x∗‖2 .

Rearranging it, we get

‖xp − x∗‖2 ≥
(

max

{
0, 1− 2

√
6

√
µ

L

})C(d)pχ
− d
d+1 +2

‖x0 − x∗‖2 . (34)

Slowly Time-Varying Networks

D. Accelerated Method over Time-Varying Function
In this section, we show the convergence of accelerated Nesterov method over a uniformly non-increasing time-varying
function. The proof is based on potential analysis in (Bansal & Gupta, 2019), and a similar proof technique was used in
(Rogozin et al., 2019).

Consider a sequence of functions {fk(x)}∞k=0 such that the following assumptions hold.

Assumption D.1. For every k = 0, 1, 2, . . ., function fk(x) is L-smooth and µ-strongly convex, that is, for any x, y ∈ Rd
we have

µ

2
‖y − x‖22 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖22 .

Assumption D.2. Sequence {fk(x)}∞k=0 is uniformly non-increasing: for each x ∈ Rd and for any k = 0, 1, 2, . . . we
have

fk+1(x) ≤ fk(x).

Assumption D.3. Functions of sequence {fk(x)}∞k=0 have a common minimizer x∗.

Let an accelerated method be run over {fk(x)}∞k=0.

yk+1 = xk −
1

L
∇fk(xk), (35a)

xk+1 =

(
1 +

√
κ− 1√
κ+ 1

)
yk+1 −

√
κ− 1√
κ+ 1

yk, (35b)

where κ = L/µ. Then we have the following convergence result.

Theorem D.4. Let accelerated Nesterov method be run over sequence {fk}∞k=0 and let Assumptions D.1 and D.2 hold. We
have

fN (yN)− f∗ ≤ (L+ µ)R2

2
(1− 1/

√
κ)N ,

‖yN − y∗‖22 ≤
(L+ µ)R2

µ
(1− 1/

√
κ)N .

Before passing to proof of Theorem D.4, we need the following auxiliary lemma.

Lemma D.5. Consider updates in (35) and define

τ =
1√
κ+ 1

, and zk+1 =
1

τ
xk+1 −

1− τ
τ

yk+1.

Then, zk+1 = 1
1+γ zk + γ

1+γxk −
γ

µ(1+γ)∇fk(xk), where γ = 1√
κ−1 .

Proof. By the update rule for xk+1 given in (35) and the definition of τ , we have that

xk+1 =

(
1 +

√
κ− 1√
κ+ 1

)
yk+1 −

√
κ− 1√
κ+ 1

yk

= (2− 2τ)yk+1 − (1− 2τ)yk.

Moreover, by the definition of zk+1, it follows that

zk+1 =
1

τ
xk+1 −

1− τ
τ

yk+1

=
1

τ
((2− 2τ)yk+1 − (1− 2τ)yk)− 1− τ

τ
yk+1

=
1

τ
((1− τ)yk+1 − (1− 2τ)yk) .

Slowly Time-Varying Networks

Now we use the update rule for yk+1 given in (35) and also note that xk = (1− τ)yk + τzk:

zk+1 =
1

τ

[
(1− τ)(xk −

1

L
∇fk(xk))− 1− 2τ

1− τ
(xk − τzk)

]
=

1− 2τ

1− τ
zk +

τ

1− τ
xk −

1− τ
Lτ
∇fk(xk)

¬
=

√
κ− 1√
κ

zk +
1√
κ
xk −

1

µ
√
κ

­
=

1

1 + γ
zk +

γ

1 + γ
xk −

γ

µ(1 + γ)
∇fk(xk),

where ¬ is obtained by using the definitions of τ and κ, and ­ is obtained by using the definition of γ.

Lemma D.6. Let {fk(x)}∞k=0 be a sequence of functions for which Assumptions D.1 and D.2 hold. Introduce potential
function

Ψk = (1 + γ)k ·
(
fk(yk)− f∗ +

µ

2
‖zk − x∗‖22

)
, (36)

Then, it holds that
∆Ψk = Ψk+1 −Ψk ≤ 0. (37)

Proof. The proof is analogous to the proof in Section 5.4 in (?). We use the definitions of τ, zk given in Lemma D.5. We
have

∆Ψk · (1 + γ)−k = (1 + γ)
(
f(yk+1)− f∗ +

µ

2
‖zk+1 − x∗‖22

)
−
(
f(yk)− f∗ +

µ

2
‖zk − x∗‖22

)
= (1 + γ)

(
fk+1(yk+1)− fk+1(x∗)

)
−
(
fk(yk)− fk(x∗)

)
+
µ

2

[
(1 + γ)‖zk+1 − x∗‖22 − ‖zk − x∗‖22

]
. (38)

Note that from Assumption D.2 and from basic gradient step inequality we have

fk(yk) ≤ fk(yk+1) ≤ fk(xk)− 1

2L
‖∇fk(xk)‖22,

We bound th first term in (38) as follows:

(1 + γ)
(
fk+1(yk+1)− fk+1(x∗)

)
−
(
fk(yk)− fk(x∗)

)
≤ (1 + γ)

(
fk(xk)− 1

2L
‖∇fk(xk)‖22 − f∗

)
−
(
fk(yk)− f∗

)
= fk(xk)− fk(yk) + γ(fk(xk)− f∗)− (1 + γ)

‖∇fk(xk)‖22
2L

≤ 〈∇fk(xk), xk − yk〉+ γ
(
〈∇fk(xk), xk − x∗〉 −

µ

2
‖xk − x∗‖22

)
− 1 + γ

2L
‖∇fk(xk)‖22. (39)

Let us employ Lemma D.5 to get rid of references to yk. We have

zk =
(1

τ
− 1
)
(xk − yk) + xk =

√
κ(xk − yk) + xk

γ(zk − x∗) =
√
κγ(xk − yk) + γ(xk − x∗).

Slowly Time-Varying Networks

Note that
√
κγ = 1 + γ. We have

(xk − yk) + γ(xk − x∗) =
1

1 + γ
·
[
γ(zk − x∗) + γ2(xk − x∗)

]
.

After that, we rewrite the expression on the right hand side of (39) as follows:

1

1 + γ
〈∇fk(xk), γ(zk − x∗) + γ2(xk − x∗)〉−

µγ

2
‖xk − x∗‖22 −

1 + γ

2L
‖∇fk(xk)‖22. (40)

We bound the second term in (38) similarly to (Bansal & Gupta, 2019). By Lemma D.5:

µ

2

[
(1 + γ)‖zk+1 − x∗‖22 − ‖zk − x∗‖22

]
=
µ

2
(1 + γ)

∥∥∥ 1

1 + γ
(zk − x∗) +

γ

1 + γ
(xk − x∗)−

γ

µ(1 + γ)
∇fk(xk)

∥∥∥2
2
− µ

2
‖zk − x∗‖22

=
µ

2

1

1 + γ

[
‖zk − x∗‖22 + γ2‖xk − x∗‖22 +

γ2

µ2
‖∇fk(xk)‖22

+ 2γ〈zk − x∗, xk − x∗〉 −
2γ

µ
〈zk − x∗,∇fk(xk)〉

− 2γ2

µ
〈xk − x∗,∇fk(xk)〉

]
− µ

2
‖zk − x∗‖22. (41)

Adding (40) yields a bound on ∆Ψk. Moreover, note that terms involving 〈∇fk(xk), xk − x∗〉 and 〈∇fk(xk), zk − x∗〉
cancel out.

∆Ψk(1 + γ)−k

≤
(
−1 + γ

2L
+

γ2

2µ(1 + γ)

)
‖∇fk(xk)‖22

+
µγ

2

(
γ

1 + γ
− 1

)
‖xk − x∗‖22 +

µ

2

(
1

1 + γ
− 1

)
‖zk − x∗‖22

+
µγ

1 + γ
〈zk − x∗, xk − x∗〉

≤ − µγ

2(1 + γ)

(
‖xk − x∗‖22 + ‖zk − x∗‖22 − 2〈zk − x∗, xk − x∗〉

)
= − µγ

2(1 + γ)
‖(xk − x∗)− (zk − x∗)‖22 ≤ 0,

and the proof is complete.

Now we can prove Theorem D.4 using the potentials technique.

Proof of Theorem D.4. Following the definition of Ψk and using the Lemma D.6, we obtain

(1 + γ)N (fN (yN)− f∗) ≤ ΨN ≤ Ψ0 ≤
(L+ µ)R2

2
,

fN (yN)− f∗ ≤ (L+ µ)R2

2(1 + γ)N
=

(L+ µ)R2

2
(1− 1/

√
κ)N .

Slowly Time-Varying Networks

E. Missing Proofs from Section 4
E.1. Proof of Theorem 4.3

Statement 1 follows directly from Algorithm 1. To see why statement 2 holds it is sufficient to note that rangeWk = L>.

For statement 3, denote x = 1
m11> ⊗ I let us apply Theorem D.4 to see that∥∥xT − x

∥∥2
2
≤ 2χ

∥∥x0 − x
∥∥2
2

(1− 1/
√
χ)T .

Taking T =
√
χ log(4χ) we obtain

∥∥xT − x
∥∥2
2
≤ 1/2

∥∥x0 − x
∥∥2
2
. If x ∈ L>, then x = 0 and following the definition

CT (x) = x− xT , we write

‖CT (x)‖2 =
∥∥x− xT

∥∥
2
≤ ‖x− x‖2 +

∥∥xT − x
∥∥
2

≤ (1 + 1/
√

2) ‖x− x‖2 ,
‖CT (x)‖2 =

∥∥x− xT
∥∥
2
≥ ‖x− x‖2 −

∥∥xT − x
∥∥
2

≥ (1− 1/
√

2) ‖x− x‖2

E.2. Proof of Lemma 4.5

The proof directly follows from Lemma D.6 applied to problem (3).

