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Abstract. Decentralized optimization is a common paradigm used in
distributed signal processing and sensing as well as privacy-preserving
and large-scale machine learning. It is assumed that several computa-
tional entities locally hold objective functions and are connected by a
network. The agents aim to commonly minimize the sum of the local ob-
jectives subject by making gradient updates and exchanging information
with their immediate neighbors. Theory of decentralized optimization
is pretty well-developed in the literature. In particular, it includes lower
bounds and optimal algorithms. In this paper, we assume that along with
an objective, each node also holds affine constraints. We discuss several
primal and dual approaches to decentralized optimization problem with
affine constraints.

Keywords: distributed optimization, convex optimization, constrained
optimization

1 Introduction

Many distributed systems such as distributed sensor networks, systems for power
flow control and large-scale architectures for machine learning use decentralized
optimization as a basic mathematical tool. Several applications such as power
systems control [11,17] lead to problems where the agents locally hold optimiza-
tion objectives and aim to cooperatively minimize the sum of the objectives.
Moreover, every node locally holds affine constraints for its decision variable.

Decentralized optimization without affine constraints can be called a well-
examined area of research. It is known that the performance of optimization
algorithms executed over strongly-convex smooth objectives is lower bounded by
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Gasnikov in Sections 2–5 was supported by Russian Science Foundation (project No.
21-71- 30005).

http://arxiv.org/abs/2207.04555v2


2 Rogozin et al.

a multiple of the graph condition number and objective condition number (up to
a logarithmic factor) [19]. Both primal [8] and dual [19] algorithms that reach the
lower bounds have been proposed. The algorithms are based on reformulating
network communication constraints as affine constraints via a communication
matrix associated with the network (i.e. Laplacian matrix). Introduction of affine
constraints at the nodes leads to new classes of algorithms that can be divided
into two main types. The first type are consensus-based methods that can be
either primal or dual [2,10,23,9,12,13,14]. The second type are ADMM-based
methods [1,18,3,21]. Let us briefly review some of the closely related papers.

The paper [12] is dedicated to constrained distributed optimization and con-
sider only separable objective functions (each agent has its own independent
variable). Moreover, affine constraints are supposed to be network-compatiable
(constraint matrix can have a non-zero element on position (i, j) only if there
is an edge in communication graph between agents i and j). We do not impose
such limitations: in our case each term in the objective functions depends on the
same shared variable (formulation in [12] is obviously a special case of this) and
matrix of constraints can have arbitrary structure.

In [14] the authors present various formulations of distributed optimization
problems with different types of interconnections between constraints and ob-
jectives, including the case, when the objective (cost) cannot be represented as
sum of cost functions of each agent. However, their algorithms for problems with
coupled affine constraints require to solve a “master problem” on central node
at each iteration and thus are not decentralized.

The authors of [20] consider multi-cluster distributed problem formulation
which is a generalization of multi-agent approach. In multi-cluster case agents
within one cluster have the same decision variable while different clusters cor-
responds to different decision variables. All variables are subject to a coupled
affine constraint. By incorporating consensus constraints into dual problem with
Lagrangian multipliers the author comes to solving a saddle point problem and
prove asymptotic O(1/N) ergodic convergence rate for their method. Depen-
dency of convergence rate on problem parameters in saddle point approach was
studied in [22].

Our paper studies the application of different techniques to decentralized
problems with affine constraints. We obtain linear convergence rates with (ex-
plicitly specified) accelerated dependencies on function properties, constraint
matrix spectrum and communication graph properties.

The paper outline is as follows. In Section 4 we discuss a primal approach,
that is based on reformulation the initial distributed problem as a saddle-point
problem and applying algorithm of paper [7] afterwards. In Section 5, we describe
a method that allows to incorporate both affine and communication constraints
to the dual function. We refer the approach in Section 5 as a globally dual
approach. Finally, in Section 6 we describe a slightly different dual approach
that firstly takes dual functions locally at the nodes and incorporates consensus
constraints afterwards. We refer to the latter method as a locally dual approach.
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2 Preliminaries

Let col(x1, . . . , xm) define a column vector of x1, . . . , xm ∈ R
d, i.e. col(x1, . . . , xm) =

[x⊤
1 . . . x⊤

m]⊤. For matrices P and Q, their Kronecker product is defined as P ⊗Q.
Identity matrix of size p× p is denoted Ip. Moreover, given a symmetric positive
semi-definite matrix, we denote λmax(·), λmin(·), λ+

min(·) its maximal, minimal
and minimal nonzero eigenvalues, respectively. We also let σmax(·), σmin(·) and
σ+
min(·) be the maximal, minimal and minimal nonzero singular values of a ma-

trix, respectively.
In the forthcoming analysis, we will need the following basic lemma concern-

ing Kronecker product properties.

Lemma 1. Given two matrices P and Q such that σmin(P ) = σmin(Q) = 0, we
have

σmax(P ⊗ I+ I⊗Q) = σmax(P ) + σmax(Q),

σ+
min(P ⊗ I+ I⊗Q) = min

{

σ+
min(P ), σ+

min(Q)
}

Proof. Consider decompositions P = UPΣPV
⊤
P and Q = UQΣQV

⊤
Q , where

UP , VP , UQ, VQ are orthogonal matrices and ΣP and ΣQ are diagonal matrices
with corresponding eigenvalues at the diagonal. We have

(U⊤
P ⊗ U⊤

Q )(P ⊗ I+ I⊗Q)(VP ⊗ VQ) = ΣP ⊗ I+ I⊗ΣQ.

Denote singular values of P as α1, . . . , αn and the singular values of Q as
β1, . . . , βm. Singular values of P ⊗ I+ I⊗Q have form

λ(αi, βj) = αi + βj , i = 1, . . . , n, j = 1, . . . ,m.

Therefore, σmax(P ⊗ I+ I⊗Q) = σmax(P ) + σmax(Q). For the minimal nonzero
singular values we obtain

σ+
min(P ⊗ I+ I⊗Q) = min

{

σ+
min(P ), σ+

min(Q)
}

.

3 Problem Statement

Consider minimization problem with affine constraints.

min
x∈Rd

m
∑

i=1

fi(x) s.t. Bx = 0. (1)

We assume that each fi is held by a separate agent, and the agents can exchange
information through some communication network. Each agent also locally holds
affine optimization constraints Bx = 0, where B ∈ R

p×d. Further we assume that
KerB 6= {0}, because otherwise the constraints Bx = 0 define a set consisting
of only {0}, which is not an interesting case.

We make assumptions on the optimization objectives that are standard for
optimization literature [16].
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Assumption 1 Each fi (i = 1, . . . ,m) is differentiable, µ-strongly convex and
L-smooth, i.e.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖

2
2 ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖

2
2 .

The communication network is represented by an undirected connected graph
G = (V , E). The communication constraints are represented by a specific matrix
W associated with the graph G.

Assumption 2

1. W is a symmetric positive semi-definite matrix.

2. (Network compatibility) For all i, j = 1, . . . ,m it holds [W ]ij = 0 if (i, j) /∈ E
and i 6= j.

3. (Kernel property) For any v = [v1, . . . , vm]⊤ ∈ R
m, Wv = 0 if and only if

v1 = . . . = vm, i.e. KerW = span {1}.

An explicit example of a matrix that satisfies Assumption 2 is the Graph Lapla-
cian W ∈ R

m×m:

[W ]ij ,











−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise.

(2)

Let us introduce x = col (x1 . . . xm) and W = W ⊗ I. According to Assump-
tion 2, communication constraints x1 = . . . = xm can be equivalently rewritten
as Wx = 0. Also introduce B = I⊗B and F (x) =

∑m
i=1 fi(xi). That allows to

rewrite problem (1) in the following way.

min
x∈Rmd

F (x) (3)

s.t. Wx = 0, Bx = 0.

Reformulation 3 admits implementation of optimization methods for affinely
constrained minimization. The iterations of such methods become automatically
decentralized in the following sense. Let the optimization algorithm use primal
or dual oracle calls of the objective function and use multiplications by the
matrices representing affine constraints. In the case of problem (3) the gradi-
ent ∇F (x) = col [∇f1(x1) . . .∇fm(xm)] is computed locally on the nodes and
stored in a distributed manner across the network. Multiplication by B is also
performed locally due to its definition (i.e. the i-th node computes Bxi), and the
multiplication by W is performed in a decentralized manner due to the network
compatibility property of W (see Assumption 2).
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4 Primal Approach

In this section, we discuss the solution of problem (3) by an algorithm APDG
[7] that only uses primal oracle calls. The algorithm is designed for saddle-point
problems, so we reformulate (3) as a saddle-point problem.

We add dual multipliers for the constraints and get a saddle-point problem

min
x∈Rmd

max
u∈Rmp,v∈Rmd

F (x) + 〈u,Bx〉+ γ 〈v,Wx〉 = F (x) +

〈(

u

v

)

,

(

B

γW

)

x

〉

.

(4)

Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

1: Input: x0
∈ RangeA⊤,y0

∈ RangeA, ηx, ηy , αx, βx, βy > 0, τx, τy, σx, σy ∈ (0, 1],
θ ∈ (0, 1)

2: x0
f = x0

3: y0
f = y−1 = y0

4: for k = 0, 1, 2, . . . do
5: yk

m = yk + θ(yk
− yk−1)

6: xk
g = τxx

k + (1− τx)x
k
f

7: yk
g = τyy

k + (1− τy)y
k
f

8: xk+1 = xk + ηxαx(x
k
g − xk)− ηxβxA

⊤Axk
− ηx

(

∇F (xk
g) +A⊤yk

m

)

9: yk+1 = yk
− ηyβyA(A⊤yk +∇F (xk

g)) + ηyAxk+1

10: xk+1

f = xk
g + σx(x

k+1
− xk)

11: yk+1

f = yk
g + σy(y

k+1
− yk)

12: end for

Denote A =

(

B

γW

)

. In order to get complexity bounds for APDG applied

to problem (4), we need to bound the spectrum of A. Note that A⊤A = B⊤B+
γ2W2 = Im ⊗ (B⊤B) + γ2W 2 ⊗ Id. By Lemma 1 we have

λmax(A
⊤A) = λmax(B

⊤B) + γ2λ2
max(W ),

λ+
min(A

⊤A) = min
{

λ+
min(B

⊤B), γ2(λ+
min(W ))2

}

.

We can also compute the condition number of A⊤A:

χ(A⊤A) =
λmax(A

⊤A)

λ+
min(A

⊤A)
=

λmax(B
⊤B) + γ2λ2

max(W )

min
{

λ+
min(B

⊤B), γ2(λ+
min(W ))2

} .

By accurately choosing factor γ, we can control the condition number χ(A⊤A).

The minimal value of χ(A⊤A) is attained at γ2 =
λ
+
min(B

⊤B)

(λ+
min(W ))2

and equals χ(A⊤A) =

χ(B⊤B) + χ2(W ). Therefore, if we apply APDG directly to problem (3), the
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complexity would be

O

(

max

(

√

χ2(W ) + χ(B⊤B)

√

L

µ
, χ2(W ) + χ(B⊤B)

)

log
1

εx

)

calls of∇fi(·) at each node and communication rounds, with εx being the desired
distance to the solution: ‖xN − x∗‖ ≤ εx. In the smooth, strongly convex case
it is also the complexity for satisfying F (xN )− F (x) ≤ εF or ‖AxN‖ ≤ εA (up
to logarithmic dependencies on the problem parameters). Indeed, from Lipschitz
smoothness we have F (xN ) − F (x) ≤ Lε2x/2 and ‖AxN‖ = ‖AxN − Ax∗‖ ≤
σmax(A)εx. By that means, in the following inequalities ε can be replaced by
any of εx, εf , εA.

The dependence on network parametersW and affine constraints parameters
B can be enhanced by using Chebyshev acceleration [19]. Let us replace W by

a Chebyshev polynomial PK(W ) such that it has degree K = O
(

√

χ(W )
)

and

condition number χ(PK(W )) = O(1). Multiplication by PK(W ) is equivalent to
making K communication rounds. Analogically, let us replace B⊤B by a Cheby-

shev polynomial PM (B⊤B) with degree M = O
(

√

χ(B⊤B)
)

and condition

number χ
(

PM (B⊤B)
)

= O(1). As a result, we obtain

N = O

(
√

L

µ
log

1

ε

)

oracle calls at each node,

O
(

N
√

χ(W )
)

communications,

O

(

N
√

χ(B⊤B)

)

multiplications by B, B⊤ at each node.

5 Globally Dual Approach

In this section, we describe an approach to solving (3) that is based on passing
to the dual problem. We call this approach “global” since both constraints, that
is, affine constraints Bx = 0 and communication constraints Wx = 0 are used
in the dual reformulation.

Let γ be a positive scalar and A⊤ = [B⊤ γW] and introduce dual function

Φ(y) = max
x∈Rmd

[−F (x) + 〈y,Ax〉] = F ∗(A⊤y).

We have ∇Φ(y) = A∇F ∗(A⊤y) = A · argmin
x∈Rmd

[−F (x) + 〈y,Ax〉]. Note that

multiplication by A is performed in a distributed manner: indeed, it includes
local multiplications by B and a consensus round, which is a multiplication by
W. Moreover, the argmin operation is computed locally, which is standard for

decentralized optimization [19]. Finally, dual function Φ is λmax(A
⊤A)

µ
-smooth
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on R
m(p+d) and LΦ =

λ
+
min(A

⊤A)

L
-strongly convex on (KerA⊤)⊥. Solving dual

problem

min
y∈Rm(p+d)

Φ(y)

by a fast gradient method (see i.e. accelerated Nesterov method in Section 2.2 of

[16]) until accuracy Φ(yN )−Φ(y) ≤ εΦ requires N = O
(√

L
µ

√

χ(A⊤A) log 1
εΦ

)

iterations.
Following the same arguments as in Section 4, we compute the condition

number χ(A⊤A):

χ(A⊤A) =
λmax(B

⊤B) + γ2λ2
max(W )

min
{

λ+
min(B

⊤B), γ2(λ+
min(W )2)

} .

The minimal value of χ(A⊤A) is attained at γ2 =
λ
+
min(B

⊤B)

(λ+
min(W ))2

and equals χ(A⊤A) =

χ(B⊤B) + χ2(W ). Communication and computation complexities of fast dual
method equal

O

(
√

L

µ

(

χ(B⊤B) + χ2(W )
)

1
2 log

1

εΦ

)

.

To obtain desired complexity estimates for the algorithm to find the approx-
imate solution xN satisfying F (xN )−F (x) ≤ ε and ‖AxN‖ ≤ ε, we refer to the
following properties of dual function (see, e.g. Theorem 5.2 from [4]):

‖∇Φ(y)‖ ≤ ǫ/Ry ⇒ F (x(y)) − F (x∗) ≤ ǫ,

‖∇Φ(y)‖ ≤ ǫ ⇒ ‖Ax(y)‖ ≤ ǫ,

where ‖y‖ ≤ 2Ry, and x(y) = argminx∈Rmd [−F (x) + 〈y,Ax〉]. Combining it
with Φ(yN )−Φ(y) ≥ ‖Φ(yN )‖2/2LΦ, which is true for a smooth convex function,
we justify substitution of εΦ by ε in the complexity estimate. This transition will
only change the constant hidden by big-O notation (by the factor of two), and
affect omitted logarithmic dependencies on the problem parameters.

To employ Chebyshev acceleration in this case we do substitution A⊤y → p.
In this variables accelerated Nesterov method turns into Algorithm 2, where
x(q) = ∇F ∗(q) = argmin [−F (x) + 〈q, x〉]:

Algorithm 2 Globally Dual Method

1: Input: p0
∈ RangeA⊤, η > 0, β ∈ (0, 1)

2: p−1 = p0

3: for k = 0, 1, 2, . . . do
4: q = pk + β

(

pk
− pk−1

)

5: pk+1 = q− ηA⊤Ax(q)
6: end for
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For the algorithm in this form we can replace A⊤A with Chebyshev polyno-
mial of it, as we did in Section 4, and obtain the same complexity estimates as
for APDG:

N = O

(
√

L

µ
log

1

ε

)

oracle calls at each node,

O
(

N
√

χ(W )
)

communications,

O

(

N
√

χ(B⊤B)

)

multiplications by B, B⊤ at each node.

6 Locally Dual approach

In Section 5 we discussed a dual reformulation of (3) where both constraints
Bx = 0 and Wx = 0 are used simultaneously. This section describes a dual
approach, as well, but the difference is that we firstly pass to dual functions
locally at the nodes and impose the communication constraints only afterwards.

6.1 Utilizing locality on u

One can note that in the above approaches optimization over u could be done
locally at each node. This is equivalent to including affine constraints into the
objective (as an indicator function) instead of handling them with Lagrangian
multipliers. In settings there the “cost” of communication is limiting or compa-
rable to that of local computations, we can find the solution faster by going this
way. It may be the case when x has a small dimension and decentralization is
desirable due to privacy constraints.

Dual problem in this approach will be

max
v

min
Bx=0

{F (x) + 〈v,Wx〉} = −min
v

F ∗

[Bx=0](W
⊤v),

where F ∗

[Bx=0](v) = max
Bx=0

{〈v,x〉 − F (x)} denotes a convex conjugate under

affine constraints.

We can reduce the problem of computing the gradient of such a modified
conjugate function to calling conventional dual oracle. Let E be a matrix, the
rows of which constitute an orthogonal basis in the null space of B (matrix E
can be computed at the preprocessing stage of an optimization algorithm). Then
instead of working with functions fi(x) we can optimize the sum of functions
hi(t) = fi(Et).

Denote t = col(t1, . . . , tm), H(t) =
∑m

i=1 hi(ti). Then problem (1) could be
written in decentralized way as follows
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min
t

m
∑

i=1

hi(ti)

s.t. Wtt = 0.

Its dual form is

max
t

{〈z,Wtt〉 −H(t)} = −min
z

H∗(W⊤
t z),

and the gradient of the objective can be computed using Demyanov–Danskin’s
theorem:

∇H∗(z) = argmax
t

{〈z, t〉 − F (Et)}.

From smaller dimension of t comparing to x we can expect that computation
of ∇H∗(z) is easier than calling conventional first-order dual oracle, the only
drawback is the necessity of storing matrix E and performing multiplications by
E.

Let µt and Lt be the constants of strong convexity and Lipschitz smoothness
of hi respectively for all i = 1, . . . ,m. Then, obviously, µt ≥ µ and Lt ≤ L. For
example, if fi(x) is twice continuously differentiable, then its smoothness con-
stant can be computed as Lx,i = sup

x∈Rn

λmax(∇
2fi(x)). The smoothness constant

of hi(t) is given by Lt,i = sup
t∈Rdt

λmax(E
⊤∇2fi(Et)E). Note that the dimension

of t can be computed as dt = d − rank(B). In the latter variant the maximum
is taken over a smaller set of points, and multiplication by E is likely to further
reduce the smoothness constant (and increase strong convexity constant).

Since H(t) is Lt-smooth and µt-strongly convex, we have that F ∗

[Bx=0](z) =

H∗(z) is 1
µt
-smooth and 1

Lt
-strongly convex [6].

Thus, the fast gradient method [15] applied to the dual problem requires

O

(
√

Lt

µt

χ(W ) log
1

ε

)

,

dual-oracle calls and communication rounds to ensure F (xN ) − F (x) ≤ ε and
‖AxN‖ ≤ ε (see Section 5 for details). And using Chebyshev acceleration as
described in Section 4 we can reduce the complexities to

N = O

(
√

Lt

µt

log
1

ε

)

oracle calls at each node,

O
(

N
√

χ(W )
)

communications.



10 Rogozin et al.

7 Numerical Experiments

In the simulation we consider the following smooth, strongly convex objective
function:

fi(x) =
1

2
‖Cix− di‖

2
2 +

θ

2
‖x‖22,

F (x) =
1

2
‖Cx− d‖22 +

θ

2
‖x‖22,

C = diag(C1, . . . , Cm), d = col (d1, . . . , dm).

We consider different parameters of the problem such as the dimension of x, the
rank of B ∈ R

dim(x)×dim(x) and the number of nodes. For each case we plot func-
tion error and constraints violation norm at each iteration for all our algorithms:
APDG, Locally and Globally Dual approaches. The Chebyshev acceleration is
not applied in the experiments, so each iteration corresponds to one gradient
computation (gradient of primal function in case of APDG, and gradient of dual
function is case of dual approaches). We also provide tables with comparison
of time and number of iterations required to achieve given accuracy. Time is
measured with our Python/NumPy [5] implementation of the algorithms, which
is available on GitHub5.

1. For the first case we consider the ring network with m = 5 nodes, x ∈ R
40

and rankB = 1. Typical convergence plot is shown on Fig. 1. One can see
that all algorithms converge linearly, with the fastest one in terms of itera-
tions number being Locally Dual, and the slowest one being APDG. However,
computing the gradient of a dual function might be an arithmetically more
expensive operation than computing primal gradient in the black-box sce-
nario. In our implementation we compute the gradient of dual function by
numerically solving the system of linear equations with its right-hand part
being changed between iterations. It means that one iteration of the Dual
methods is more time-consuming than one iteration of APDG. In the Ta-
ble 1, we compare computational time and number of iterations required to
achieve given accuracy. The results are averaged for 100 randomly generated
problems.

Table 1: Time and iterations for achieving ‖Axk‖ < 10−2. Averaged over 100
experiments. Problem parameters: 5 nodes, dim(x) = 40, rankB = 1.

APDG Globally Dual Locally Dual

Iterations 875.3 502.7 276.7
Time (s) 0.193 0.510 0.233

5 Source code: https://github.com/niquepolice/decentr constr dual

https://github.com/niquepolice/decentr_constr_dual
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0 200 400 600 800 1000
Iteration number

10−13

10−10

10−7

10−4

10−1

102
|F (xk)− F

∗|

APDG

Globally Dual

Locally Dual

0 200 400 600 800 1000
Iteration number

10−10

10−8

10−6

10−4

10−2

100

102

104
||Ax

k||

APDG

Globally Dual

Locally Dual

Fig. 1: 5 nodes, dim(x) = 40, rankB = 1.

2. Next we use the same number of nodes and the dimension of x, but increase
the rank of B. Even for rankB = 3 the condition number of the locally dual
problem usually is about two orders of magnitude smaller than the condition
number of the globally dual problem, therefore the globally dual approach
has a significant advantage in that case. Typical convergence plots are shown
in Figure 2, averaged iteration and time complexities for satisfying stopping
criteria are shown in Table 2.

0 200 400 600 800 1000
Iteration number

10−13

10−10

10−7

10−4

10−1

102
|F (xk)− F

∗|

APDG

Globally Dual

Locally Dual

0 200 400 600 800 1000
Iteration number

10−11

10−9

10−7

10−5

10−3

10−1

101

103

||Ax
k||

APDG

Globally Dual

Locally Dual

Fig. 2: 5 nodes, dim(x) = 40, rankB = 3.

3. In the case of higher dimension (10 nodes, dim(x) = 100, rankB = 1) we
used Erdős-Rényi random communication graphs with edge probability =
0.3. APDG seems to converge much faster by constraints violation norm
at first iterations then other methods (Fig. 3), and its convergence rate is
close to other methods. See also Table 3 for averaged results of multiple
experiments.
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Table 2: Time and iterations for achieving ‖Axk‖ < 10−1. Averaged over 100
experiments. Problem parameters: 5 nodes, dim(x) = 40, rankB = 3.

APDG Globally Dual Locally Dual

Iterations 1555.5 1551.7 123.1
Time (s) 0.337 1.577 0.127

0 200 400 600 800 1000
Iteration number

10−5

10−3

10−1

101

|F (xk)− F
∗|

APDG

Globally Dual

Locally Dual

0 200 400 600 800 1000
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Fig. 3: Erdős-Rényi graph on 10 nodes, average degree = 3.6. dim(x) = 100,
rankB = 1.

Table 3: Time and iterations for achieving accuracy ‖Axk‖ < 101. Averaged
over 10 experiments. Problem parameters: 10 nodes, edge probability = 0.3,
dim(x) = 100, rankB = 1.

APDG Globally Dual Locally Dual

Iterations 404.3 2227.9 1425.5
Time (s) 2.561 54.024 16.544
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