
Acceleration in Distributed Optimization under Similarity

Ye Tian∗ Gesualdo Scutari∗ Tianyu Cao∗ Alexander Gasnikov†
∗Purdue University

† MIPT, ISP RAS Research Center for Trusted Artificial Intelligence

Abstract
We study distributed (strongly convex)
optimization problems over a network of
agents, with no centralized nodes. The loss
functions of the agents are assumed to be
similar, due to statistical data similarity or
otherwise. In order to reduce the number of
communications to reach a solution accu-
racy, we proposed a preconditioned, accel-
erated distributed method. An ε-solution
is achieved in Õ

(√ β/µ
1−ρ log 1/ε

)
number

of communications steps, where β/µ is
the relative condition number between the
global and local loss functions, and ρ char-
acterizes the connectivity of the network.
This rate matches (up to poly-log factors)
lower complexity communication bounds
of distributed gossip-algorithms applied to
the class of problems of interest. Numeri-
cal results show significant communication
savings with respect to existing accelerated
distributed schemes, especially when solv-
ing ill-conditioned problems.

1 INTRODUCTION

We study distributed optimization over a network of
m agents, in the form

min
x∈Rd

u(x) , f(x) + r(x), f(x) , 1
m

m∑
i=1

fi(x),

(P)
where fi : Rd → R is the loss function of agent i,
known only to that agent; and r : Rd → [−∞,∞]
is an extended-value function (known to all agents),
which is instrumental to enforce further conditions
on the solution, such as sparsity or constraints. The

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

network of agents is modelled as undirected, fixed
graph, with no centralized node; we refer to such
architectures as mesh networks.
An instance of (P) of particular interest to this
work is the distributed Empirical Risk Minimiza-
tion (ERM) whereby the goal is to minimize the
average loss over some dataset, distributed across
the nodes of the network. Specifically, denoting by
Di = {z(1)

i , . . . , z
(n)
i } the set of n samples owned by

agent i, the empirical risk fi in (P) reads

fi(x) = 1
n

n∑
j=1

`
(
x; zji

)
, (1)

where `(x; zji) measures the mismatch between the
parameter x and the sample zji .

The lack of global knowledge of f from the agents
and of a centralized node in the network calls for the
design of distributed algorithms, whereby agents al-
ternate a computation procedure based on local in-
formation and communication round(s) with neigh-
boring nodes. Since the cost of communications
is often the bottleneck in distributed computing, if
compared with local (parallel) computations (e.g.,
Bekkerman et al. (2011); Lian et al. (2017)), a lot of
research has been devoted to designing distributed
algorithms that are communication efficient.
Communication-saving via acceleration: Ac-
celeration (in the sense of Nesterov) has been ex-
tensively investigated as a procedure to reduce the
communication burden of distributed algorithms–
Table 1 summarizes the communication complex-
ity of existing first-order methods over mesh net-
works (see Sec. 1.2 for a discussion of these works).
For L-smooth and µ-strongly convex functions f in
(P), linear convergence rate is certified, with a con-
stant factor scaling with

√
κ (κ , L/µ is the con-

dition number of f). This dependence is not im-
provable, meaning that it matches lower communi-
cation complexity bounds for the class of L-smooth
and µ-strongly convex function fi’s (Scaman et al.,
2017). However, for ill-conditioned problems–e.g.,

ar
X

iv
:2

11
0.

12
34

7v
2

 [
m

at
h.

O
C

]
 1

0
A

pr
 2

02
2

Acceleration in Distributed Optimization under Similarity

the typical setting of many ERM problems wherein
the optimal regularization parameter for test predic-
tive performance is very small–κ can be extremely
large; hence the aforementioned scaling of the num-
ber of communications with

√
κ is unsatisfactory.

Exploiting function similarity: Further im-
provements can be obtained if extra structure is pos-
tulated for the fi’s. This is, e.g., the case of ERM
problems wherein each fi [see (1)] has an additional
finite-sum structure. This is an instance of the prop-
erty known as function similarity (see, e.g., Shamir
et al. (2014); Arjevani and Shamir (2015); Zhang and
Lin (2015); Hendrikx et al. (2020b)):∥∥∇2fi(x)−∇2f(x)

∥∥ ≤ β, (2)

for all x in a proper domain of interest and all
i = 1, . . . ,m, where β > 0 measures the degree
of similarity between the Hessian matrices of local
and global losses. For instance, in the aforemen-
tioned ERM setting, when data are i.i.d. among
machines, the fi’s in (1) reflect statistical similari-
ties in the data residing at different nodes, resulting
in β = Õ(1/

√
n) w.h.p., where n is the local sample

size (Õ hides log-factors and dependence on d).

The situation 1 + β/µ � κ, happens in several sce-
narios. For instance, consider some ill-conditioned
functions. Another example are ERMs with opti-
mal regularization µ = O(1/

√
mn) and L = O(1)

(e.g., see (Zhang and Lin, 2015, Table 1) for ridge
regression), we have: κ = O(

√
m · n) while β/µ =

O(
√
m)–the former grows with the local sample size

n, while the latter is independent. This motivated a
surge of studies aiming at exploiting function simi-
larity coupled with acceleration to boost communi-
cation efficiency (see Sec. 1.2): linear convergence is
certified with a number of communication steps scal-
ing (asymptotically (Hendrikx et al., 2020b)) with
1 +

√
β/µ (Zhang and Lin, 2015), which can be sig-

nificantly smaller than
√
κ, and matches lower com-

plexity bounds (Arjevani and Shamir, 2015) up to
log-factors. These algorithms however are central-
ized and cannot be implemented overmesh networks.
This suggests the following open question:

Is linear convergence with a number of communi-
cations scaling with 1 +

√
β/µ achievable by any

distributed algorithm over mesh networks?

1.1 Contributions
We provide a positive answer to the above question.
(i) Algorithm design: We proposed Accelerated-
SONATA (ACC-SONATA), an inexact accelerated

proximal method (outer loop) for (P), embedded
with the distributed algorithm known as SONATA
(Sun et al., 2022) (inner loop), which approxima-
tively solves the proximal subproblem over mesh net-
works, according to a properly designed notion of in-
exactness. SONATA couples local preconditioning via
surrogation of fi with a gradient tracking mechanism
(Di Lorenzo and Scutari, 2016; Xu et al., 2017), es-
timating locally the gradient of the global loss f . At
high level, the outer loop ensures acceleration while
SONATA exploits function similarity to boost the con-
vergence rate of the inner loop. A direct acceleration
of the mirror method, achieving Õ(β/µ) over star-
networks (Lu et al., 2020), does not seem possible in
general (Dragomir et al., 2019).
(ii) New analysis: While ACC-SONATA is inspired
by proximal acceleration for centralized optimiza-
tion (d’Aspremont et al., 2021), such as Catalyst
(Hongzhou et al., 2015), formally it is not an in-
stance of any of existing methods. It is also different
from distributed algorithms accelerated á la Catalyst
(Li and Lin, 2020; Hendrikx et al., 2020a), which
neither exploit function similarity nor use gradient-
tracking, and deal with smooth optimization (r ≡
0). Hence, a new convergence analysis is needed
for ACC-SONATA, which represents the technical con-
tribution of this work. We hinge on new potential
functions (for the inner and outer loop) that in-
corporate consensus errors, extrapolation variables,
and gradient-tracking variables. Such potentials also
shed light on the appropriate warm-restart strategy
and termination criterion of the inner-loop SONATA,
which are implementable in a distributed setting
(this is not the case if using criteria in Hongzhou
et al. (2018), in particular when r 6= 0). We remark
that the proposed analysis, although developed for
ACC-SONATA, is fairly general and potentially appli-
cable to a variety of other distributed algorithms re-
placing SONATA in the inner loop. This will be the
subject of future investigation.

(iii) Guarantees: By a proper choice of local sur-
rogations (mirror-prox-like), ACC-SONATA provably
achieves an ε-solution (on the objective value) of
(P) in Õ

(√ β/µ
1−ρ log 1/ε

)
number of communications

steps, where ρ characterizes the connectivity of the
network. This matches for the first time lower com-
munication complexity bounds, up to poly-log fac-
tors. On the other hand, when 1 +

√
β/µ >

√
κ

a different choice of surrogate (linearization of each
fi) is possible, which guarantees linear convergence
with communication scaling of

√
κ–this compares fa-

vorable with existing first-order accelerated methods
(see Table 1), with ACC-SONATA being applicable on

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Table 1: Distributed Accelerated Algorithms over Mesh Networks: SSDA/MSDA (Scaman et al., 2017), OPAPC
(Kovalev et al., 2020), Accelerated Dual Ascent (Uribe et al., 2020, Alg. 3), APM-C (Li et al., 2018), Mudag (Ye
et al., 2020a), Accelerated EXTRA (Li and Lin, 2020), DAccGD (Rogozin et al., 2020), and DPAG (Ye et al., 2020b).
L (resp. µ) denotes the smoothness (resp. strong convexity) constant of F while Lmx (resp. µmn) is the largest
smoothness (smallest strong convexity) constant of the fi’s; ρ is the network connectivity; Õ hides poly-log factors.

Algorithm Problem Similarity Gossip Matrix Rate (# comm.)

SSDA/MSDA, OPAPC, Accelerated Dual Ascent fi scv, r ≡ 0 % O
(√

Lmx
µmn

√
1

1−ρ log(1
ε
)
)

APM-C fi scv, r ≡ 0 % PSD O
(√

Lmx
µmn

√
1

1−ρ log2(1
ε
)
)

Mudag f scv, r ≡ 0 % PSD Õ
(√

L
µ

√
1

1−ρ log(1
ε
)
)

Accelerated EXTRA fi scv, r ≡ 0 % Õ
(√

Lmx
µmn

√
1

1−ρ log(1
ε
)
)

DAccGD fi scv, r ≡ 0 % Õ
(√

L
µ

1
1−ρ log2(1

ε
)
)

DPAG f scv, r 6≡ 0 % PSD Õ
(√

L
µ

√
1

1−ρ log(1
ε
)
)

ACC-SONATA (this work) f scv, r 6≡ 0 ! Õ
(√

β
µ

√
1

1−ρ log(1
ε
)
)

general (P) with r 6≡ 0 and with no restrictions on
gossip matrices. Our numerical results on synthetic
and real data supports the competitive performance
of our method over the state of the art.

1.2 Related Works

Acceleration under function similarity (2) has been
extensively investigated over master/workers archi-
tectures while it remains unexplored over mesh net-
works, as inferred by the following discussion.

• Master/workers systems: Several papers em-
ployed acceleration (in the sense of Nesterov) to
solve (P) over such architectures; see, e.g., Gorbunov
et al. (2020); d’Aspremont et al. (2021); Hongzhou
et al. (2015); Wang et al. (2020); Li et al. (2020b) and
references therein for a comprehensive description of
state-of-the-art methods, including their application
to federated learning systems and stochastic opti-
mization. Given the focus on the paper, next we
comment in details works exploring the idea of sta-
tistical preconditioning to further decrease the com-
munication complexity of solving (P).

DANE Shamir et al. (2014) is a mirror-descent type
algorithm for (P) with r = 0 whereby workers
perform a local data preconditioning via a suit-
ably chosen Bregman divergence, and the mas-
ter averages the solutions of the workers. For
quadratic losses, DANE achieves communication com-
plexity Õ((β/µ)2 log 1/ε). More recently, Fan et al.
(2019) proposed CEASE, which achieves DANE’s com-
plexity but for nonquadratic losses and r 6= 0. Ap-
plying the convergence analysis of mirror descent

in Lu et al. (2020) to CEASE enhances its rate to
Õ((β/µ) log 1/ε).

Further improvements are achievable employing ac-
celeration. Efforts include: DiSCO (Zhang and Lin,
2015), an inexact damped Newton method coupled
with a preconditioned conjugate gradient (to com-
pute the Newton direction), which achieves com-
munication complexity Õ((1 +

√
β/µ) log 1/ε) for

self-concordant losses (and r 6= 0); AIDE (Reddi
et al., 2016), which uses the Catalyst framework
(Hongzhou et al., 2015), matching the rate of DiSCO
for quadratic losses (and r = 0); DANE-HB (Yuan and
Li, 2020), a variant of DANE equipped with Heavy
Ball momentum and matching for quadratic func-
tions the communication complexity of DiSCO and
AIDE; and SPAG(Hendrikx et al., 2020b), a precondi-
tioned direct accelerated method, achieving for non-
quadradic losses asymptotically the convergence rate
O((1− 1/

√
β/µ)k) (k is the iteration index).

None of above methods are implementable over mesh
networks, because they all rely on the presence
of a master node. Notice also that, although de-
signed for mesh networks, our proposed method,
ACC-SONATA compares favorably also with the afore-
mentioned schemes (specifically designed for star
networks) by achieving communication complexity
O(
√
β/µ log(β/µ) log 1/ε) for nonquadratic losses.

• Acceleration over mesh networks: Given the
focus of this work, we discuss next only (provably
convergent) distributed algorithms over mesh net-
works employing some form of acceleration–they are
summarized in Table 1. Although substantially

Acceleration in Distributed Optimization under Similarity

different–some are primal (Ye et al., 2020a,b; Li and
Lin, 2020; Kovalev et al., 2020; Rogozin et al., 2020)
others are dual or penalty-based (Scaman et al.,
2017; Uribe et al., 2020; Li et al., 2018) methods, and
applicable to special instances of (P) (mainly with
r = 0) and subject to special design constraints (e.g.,
positive semidefinite gossip matrix)–they all achieve
linear convergence rate, with communication com-
plexity scaling some with √κ` (κ` = Lmx/µmn is
the “local” condition number) and others with

√
κ

(κ = L/µ is the condition number of f). Note
that in general κ � κ`; hence the latter group is
preferable to the former. By using only gradient
information of the local fi’s, none of these meth-
ods can take advantage of function similarity. This
means that their rates still scale as

√
κ no matter

how small β is (even β = 0, i.e., all fi’s identical),
which is highly sub-optimal when considering, e.g.,
ill-conditioned losses, and contrasts with the lower
complexity bound O(

√
β/µ) (cf. Sec. 2.1).

To our knowledge, Network-DANE (Li et al., 2020a)
and SONATA (Sun et al., 2022) are the only two meth-
ods that leverage statistical similarity to enhance
convergence over mesh networks, with the latter
achieving communication complexity scaling with
Õ(β/µ) for nonquadratic losses and r 6= 0. These
methods however are not accelerated, missing thus
the more favorable scaling

√
β/µ. The proposed ac-

celerated method, ACC-SONATA, fills exactly this gap.

2 SETUP AND BACKGROUND

We study (P) under the following assumptions.
Assumption 1. Given problem (P),
(i) r : Rd → R is a proper, closed, convex function;

let dom r denote its domain;
(ii) Each fi is convex and twice differentiable over

(an open set containing) domg;
(iii) f is µ-strongly convex and L-smooth on domg,

with 0 < µ ≤ L <∞. Define κ = L/µ.

Note that (i)-(ii) implies that each fi is µi-strongly
convex and Li-smooth, with 0 ≤ µi ≤ Li < ∞ (not
each fi need to be strongly convex); let Lmax =
maxi∈[m] Li,, were we denoted [m] , {1, . . . ,m}.

Function similarity is captured by the following.
Definition 2. Under Assumption 1, let β ≥ 0 the
smallest number such that

max
i∈[m]

sup
x∈dom r

∥∥∇2fi(x)−∇2f(x)
∥∥ ≤ β.

The smaller β, the more similar fi’s are. Note that
the following bound holds for β:

β ≤ max
i∈[m]

max
{
|Li − µ|, |µ− Li|

}
.

The case of interest is of course when 1+β/µ < L/µ,
which is the typical situation of ill-conditioned f ’s.

Network model: The network of agents is an undi-
rected, graph G = (E ,V), where V = [m] denotes the
vertex set (the set of agents) while E is the set of
edges; {i, j} ∈ E if there is a communication link be-
tween agent i and agent j. For the sake of notation,
we assume {i, i} ∈ E for any i ∈ [m]. We make the
blanket assumption that the graph G is connected.

The distributed algorithms of interest employ gossip
communications–each node averages the values of its
neighbors’ variables. The weights of this averaging
process (collected into a matrix W ∈ Rm×m) satisfy
the following standard assumptions.
Assumption 3. The matrix W ∈ Rm×m belongs
to the class W = PM (W), for some M ∈ N++ and
W ∈ Rm×m+ , where PM is a polynomial with degree
at most M with PM (1) = 1, and W satisfies the
following conditions:
(i) W is compliant with G, that is its (i, j)-entries

w̄ij satisfies: w̄ii > 0, for all i ∈ [m]; w̄ij > 0,
if (i, j) ∈ E; and w̄ij = 0 otherwise;

(ii) 1>W = 1> and W1 = 1 (doubly stochasticity).
Define ρ ,

∥∥W − 11>/m
∥∥ < 1.

The above class of weight matrices captures single
(M = 1) and multiple (M > 1) rounds of communi-
cations per optimization step (notice that PM (1) = 1
is to ensure the doubly stochasticity of W when W
is so). Several rules have been proposed in the liter-
ature fulfilling Assumption 3, including the Lapla-
cian, the Metropolis-Hasting, and the maximum-
degree weights rules as well as Chebyshev (Wien,
2011; Scaman et al., 2017) or Jacobi (Berthier et al.,
2020) polynomials-based accelerations.

2.1 Lower Complexity Bounds over Mesh
Networks under Similarity

We informally state here lower communication com-
plexity bounds over mesh networks for the class of
problems (P) satisfying Assumptions 1 and 3, and
certain distributed gossip algorithms of interest (see
Definition 6 in Appendix A):

Ω
(√

β/µ

1− ρ log
(
µ ‖x?‖2

ε

))
. (3)

The formal statement of this result can be found
in the supplementary material (cf. Theorem 7, Ap-
pendix A). The next section is devoted to the design

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

of the first distributed algorithm matching such a
lower complexity bound (up to poly-log factors). As
anticipated, our scheme hinges on the SONATA algo-
rithm (Sun et al., 2022), which we recall next.

2.2 A Building Block: SONATA Algorithm

The instance of SONATA used in this work is summa-
rized in Algorithm 1 (assumed to be applied to (P)).
Each agent i owns local copies xi of the shared op-
timization variable x along with the auxiliary vari-
able yi that is a local proxy of ∇f , which is not
available at the agents’ sides. In parallel and iter-
atively, agents update their x-variables, first solv-
ing in (S.1) a local approximation of (P) wherein
f̃i(x;xki) is a surrogate of fi at xki and the linear
term yki −∇fi(xki) is an estimate of

∑
j 6=i∇fj(xki).

This is followed by a communication step, (S.2), in-
strumental to enforce asymptotic consensus among
the x-variables and track ∇f via the y-ones.

Several surrogate functions are feasible, see Sun
et al. (2022). Here, we focus on the following two:

f̃i(x;xki) = fi(x) + β

2 ‖x− x
k
i ‖2; (4)

f̃i(x;xki) = fi(xki) +
〈
∇fi(xki), x− xki

〉
+ L

2 ‖x− x
k
i ‖2.

(5)

Note that the use of the linearization (5) corresponds
to perform at each agent’s side a proximal gradient
step; this is the typical update of the majority of ex-
isting distributed algorithms (as those in Table 1).
Such a choice does not permit to take advantage of
function similarity, if any. In fact, when (5) is em-
ployed and a weight matrix W satisfying Assump-
tion 3 is used for the consensus and tracking steps,
SONATA applied to (P) achieves an ε-solution (in
terms of objective value) in Õ

(
κ 1

1−ρ log 1/ε
)
num-

ber of communications. Communication saving un-
der function similarity is provably achievable instead
using surrogate (4), resulting in a communication
complexity of Õ

(
β
µ ·

1
1−ρ log 1/ε

)
. This motivated us

to use SONATA as building block of our accelerated
method aiming at exploiting function similarity.

3 ACCELERATED SONATA
We are ready to introduce our main algorithm, Algo-
rithm 2. At high level, the scheme can be interpreted
as a successive application of SONATA for the inexact
minimization of the function

uk(x) , 1
m

m∑
i=1

fki (x) + r(x), (6)

Algorithm 1 SONATA({fi}i∈[m] , x
0, y0, T)

Input: {fi(x)}i∈[m] , r(x) [cf. (P)];
x0 = (x0

i)i∈[m] [init. points],
y0 = (y0

i)i∈[m] [grad.-tracking init.],
T > 0 [# iterations];

Output: xT =
(
xTi
)
i∈[m], y

T =
(
yTi
)
i∈[m];

for k = 0, 1, 2, . . . , T − 1 do
(S.1) Local computations: for all i ∈ [m],

x
k+1/2
i = argmin

x∈Rd

f̃i(x;xki)

+
〈
yki −∇fi(xki), x− xki

〉
+ r(x);

(S.2) Communications: for all i ∈ [m],

xk+1
i =

m∑
j=1

wijx
k+1/2
j ,

yk+1
j =

m∑
j=1

wij
(
ykj +∇fj(xk+1

j)−∇fj(xkj)
)
.

end for

with fki (x) = fi(x) + (δ/2)‖x − zki ‖2, wherein the
z-variable in the quadratic term plays the role of
the extrapolation à la Nesterov, to gain acceleration.
The use of SONATA in the inner loop allows us to take
advantage of function similarity, if any, by choosing
surrogates as in (4) and a suitable value for δ > 0
(see Theorem 4). Notice the warm restart of SONATA
every T iterations, with in particular the gradient
tracking initialization unconventionally chosen, as
recommended by our convergence analysis.

Algorithm 2 Accelerated SONATA

Input: β, µ, δ > 0, α =
√
µ/(µ+ δ);

x0
i = z0

i = z−1
i = 0, y0

i = ∇fi(x0
i)

Output: xK = (xKi)i∈[m]
for k = 0, 1, 2, . . . ,K − 1 do
Set: fki (x) = fi(x) + δ

2
∥∥x− zki ∥∥2 ;

(S.1) Inner loop via SONATA:(
xk+1, yk+1) =

SONATA
({

fki
}
i∈[m] , x

k, yk + δ
(
zk−1 − zk

)
, T
)

;

(S.2) Extrapolation step:

zk+1
i = xk+1

i + 1− α
1 + α

(xk+1
i − xki), ∀i ∈ [m].

end for

Algorithm rationale: The genesis of the algorith-

Acceleration in Distributed Optimization under Similarity

mic design can be traced back to the idea of accelera-
tion of a centralized inexact proximal method (outer
loop) (see, e.g., d’Aspremont et al. (2021)), whose
proximal subproblems are approximately solved in
a distributed fashion via the SONATA algorithm (in-
ner loop), satisfying a suitable notion of inexactness
(defined in this paper) for proximal operations. In
fact, assuming one can absorb consensus errors on
the agents’ variables xi’s and momentum vectors zi’s
into such a criterion of solution approximation, we
can approximate (S.1) and (S.2) as

xki ≈ xk ,
1
m

m∑
i=1

xki and zki ≈ z̄k ,
1
m

m∑
i=1

zki ,

(S.1)′: x̄k+1 ≈ argmin
x∈Rd

u(x) + δ

2
∥∥x− z̄k∥∥2

,

(S.2)′: z̄k+1 = x̄k+1 + 1− α
1 + α

(x̄k+1 − x̄k),

where we used the fact that the minimization of uk in
(6) and that of the function in (S.1)′ have the same
solution. The dynamics above are a resemble of an
inexact proximal acceleration (d’Aspremont et al.,
2021; Hongzhou et al., 2015, 2018).

Challenges: Despite the above connection, exist-
ing convergence analyses of centralized accelerated
methods break down when applied to ACC-SONATA.
Specifically, (i) the notions of approximate solu-
tions for proximal problems as in d’Aspremont et al.
(2021); Hongzhou et al. (2018) cannot be satisfied
here, because of the aforementioned consensus er-
rors, let alone their practical verification in a dis-
tributed setting and in the presence of the nons-
mooth function r; and (ii) the potential functions
used therein are not adequate to certify linear con-
vergence of the outer loop of ACC-SONATA at the de-
sired accelerated rate, they do not capture unavoid-
able consensus and gradient tracking errors coming
out of the inexact, distributed minimization of uk in
(6) via SONATA. Furthermore, the convergence proof
of SONATA as in Sun et al. (2022) is not directly ap-
plicable to study the inner loop, due to the uncon-
ventional restart of the gradient tracking variables.
Also, R-linear convergence of the objective-value
gap and consensus/tracking errors therein seems no
longer sufficient to provably obtain acceleration of
the outer loop. Our convergence analysis addresses
these challenges–we refer to Appendix C for the com-
plete proof (and Appendix C.1 for a sketch).
3.1 Convergence Analysis

Communication complexity of Acc-SONATA is estab-
lished in Theorem 4 and Theorem 5 below, pertain-
ing to the use in the inner algorithm SONATA of the

surrogates (4) and (5), respectively. The explicit
expression of the constants hidden in the big-O no-
tation can be found in the supplementary material.
Theorem 4. Consider problem (P) under Assump-
tion 1, with optimal value function u? and β > µ
w.l.o.g.. Let {xk , (xki)i∈[m]} be the sequence gen-
erated by ACC-SONATA under Assumption 3, with

ρ ≤ O

((
1 + κ− 1

β/µ

)−2
)
, (7)

and the following tuning:

δ = β − µ, T = O (log β/µ) ,

and agents’ surrogate functions (4) in SONATA. De-
fine x̄k , 1

m

∑m
i=1 x

k
i and the optimality gap

∆(xk) , max
(

1
m

m∑
i=1

u(xki)− u?, 1
m

m∑
i=1

∥∥xki − x̄k∥∥2
)
.

(8)

Then, there holds

∆(xk) = O
((

1− c
√
µ/β

)k)
,

where c ∈ (0, 1) is some universal constant. There-
fore, ∆(xK) ≤ ε, ε > 0, in

O

(√
β

µ
· T · log 1

ε

)
(9)

total (inner plus outer loop) communication steps.

Note that (9) states linear convergence with opti-
mal dependence on β/µ, up to the log-factor T =
log(β/µ). This is achieved under (7), which re-
quires the network to be sufficiently connected. If
the network is not part of the design, (7) might
not be satisfied by the topology under considera-
tion. Still, (7) can be enforced by running multi-
ple communication rounds per iteration (computa-
tion steps) in the inner loop SONATA. Specifically,
let ρ̄ = ‖W − 11>/m‖ be the connectivity of the
graph associated with a given weight matrixW (sat-
isfying Assumption 3); suppose we run M steps
of communications per iteration (computation) in
Step (S.2) of the SONATA algorithm, each time us-
ing the weight matrix W . This yields an effective
network with matrix W = W

M (PM (x) = xM)
and improved connectivity ρ = ρ̄M . One can
then choose M so that ρ̄M satisfies (7), resulting
in M = O

(
log(1 + (κ − 1)/(β/µ))/ log(1/ρ̄)

)
=

O
(

log(1 + (κ − 1)/(β/µ))/(1 − ρ̄)
)
rounds of com-

munications. The dependence on ρ̄ can be improved

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

leveraging Chebyshev polynomials of the gossip ma-
trix W (further assumed to be symmetric) of order
at most M , that is, W = PM (W), where PM are
Chebyshev polynomials. At the agents’ side, the up-
dates PM (W) are implemented via a shift-register
gossip protocol, resulting in time-varying weights
wij ’s in (S.2) of the SONATA algorithm–see Berthier
et al. (2020) for details. It is not difficult to show
that M = O

(
log(1 + (κ− 1)/(β/µ))/(

√
1− ρ̄)

)
suf-

fices to satisfy (7), yielding an overall communica-
tion complexity

O

(√
β/µ

1− ρ̄ log
(

1 + κ− 1
β/µ

)
log
(
β

µ

)
log 1

ε

)
.

(10)
This matches the lower complexity bound in (3) (cf.
Theorem 7 in Appendix A) up to poly-log factors.

Consistently with the behaviour of SONATA, if surro-
gates in the form (5) are used by the agents, acceler-
ation is still achieved, but with a linear rate scaling
with

√
κ rather than

√
β/µ. This is formalized next.

Theorem 5. Consider problem (P) under Assump-
tion 1, with optimal value function u? and κ > 1
w.l.o.g.. Let {xk , (xki)i∈[m]} be the sequence gen-
erated by ACC-SONATA under Assumption 3, with

ρ ≤ O

((
2 + β/µ− 1

κ

)−2
)
, (11)

and the following tuning:

δ = L− µ, T = O (log κ) ,

and agents’ surrogate functions (5) in SONATA.
Then, there holds

∆(xk) = O
((

1− c 1√
κ

)k)
, (12)

where c ∈ (0, 1) is some universal constant. There-
fore, ∆(xK) ≤ ε, ε > 0, in

O
(√

κT log 1
ε

)
(13)

total (inner plus outer loop) communication steps.

Enforcing (11) via multiple rounds of communica-
tions based on Chebyshev polynomials (applied to a
symmetric matrix W , with ρ̄ = ‖W − 11>/m‖), the
communication complexity in Theorem 5 becomes

O
(√

κ

1− ρ̄ log
(

2 + β/µ− 1
κ

)
log (κ) log 1

ε

)
.

(14)

Comparing (10) with (14) shows that, if properly
exploited, function similarity provably leads to com-
munication saving. This calls for the use of the sur-
rogate (4) over (5); and thus it comes generally at
the cost of solving computationally more demand-
ing subproblems at agents’ sides. This is common
to all the methods (including centralized) exploiting
similarity and discussed in Sec. 1.2, and seems an
unavoidable tradeoff. These methods are in fact de-
signed with the goal of saving communications, at
the cost of more computations.

Inexact ACC-SONATA: To alleviate the computation
cost of solving agent’s subproblems with surrogate
(4) when a closed form solution is not available, in
Appendix E, we discuss how to modify ACC-SONATA
to accommodate inexact solutions of agents’ sub-
problems in Step (S.1) of SONATA. We defer to the
appendix for details; here we only point out that,
by carefully choosing the inexact criterion for solv-
ing approximately the local optimization subprob-
lems, the communication complexity of the resulting
inexact ACC-SONATA, termed Inexact ACC-SONATA
(Algorithm 5), matches that of ACC-SONATA as in
(9) (see Theorem 12). We also study the computa-
tional complexity of Inexact-ACC-SONATA (see The-
orem 13). For instance, if each agent’s subprob-
lem with surrogate (4) is solved (up to a suitably
chosen accuracy) via accelerated proximal gradient,
Inexact ACC-SONATA reaches an ε-solution of (P)
after

Õ

(√
1 + κ+ β/µ

2β/µ− 1 ·
β

µ
·
(

log 1
ε

)2
)

(15)

total gradient evaluations/agent, where Õ hides log-
factors. On the other hand, if surrogates (5) are used
in the agents’ subproblem, the total computation
complexity of Inexact ACC-SONATA is still given by
Theorem 5, and thus reads Õ(

√
κ log(1/ε)), which

might be more favorable than (15).

Quite interestingly, the proposed accelerated frame-
work offers the flexibility, within the same algorithm,
to privilege computation or communication savings,
based upon the choice of the right surrogate func-
tion, achieving (up to poly-log factors) either opti-
mal computation or communication complexity (un-
der similarity).

ACC-SONATA on star-networks: Although ACC-
SONATA has been designed specifically for mesh net-
works, it readily applies to master/workers archi-
tectures; details can be found in the supplementary
material. Here we only remark that a direct appli-
cation of Theorem 4 and Theorem 5 leads to the fol-

Acceleration in Distributed Optimization under Similarity

lowing communication complexity to solve (P) over
master/workers architectures

O

(√
β

µ
log
(
β

µ

)
log 1

ε

)
and O

(√
κ log(κ) log 1

ε

)
,

respectively. Quite interestingly, these rates com-
pare favorably with those of the centralized methods
discussed in Sec. 1.2.

4 NUMERICAL RESULTS
We present numerical results on synthetic and real
data, corroborating our complexity analysis (Theo-
rems 4 and 5). Additional experiments on different
problem classes and data sets as well as including
more algorithms are reported in the supplementary
material.

1) Ridge regression: Our first experiment con-
cerns a ridge regression problem over a network of
agents, modeled as a Erdos-Renyi graph with m =
30 nodes and edge probability p = 0.5. The prob-
lem is an instance of (P) with fi(x) = 1/(2n)‖Aix−
bi‖2 +λ‖x‖2 [agent i owns data Ai ∈ Rn×d, bi ∈ Rn]
and r = 0. Data are generated as follows (Sun
et al., 2022): Each row of Ai is i.i.d, drawn from
N (0,Σ), where Σ =

∑d
j=1 λjujuj

>. The λj ’s are
uniformly distributed in [µ0, L0], with µ0 = 1 and
L0 = 1000, and u1, . . . ,ud are obtained via the QR
decomposition of a d× d random matrix with stan-
dard Gaussian i.i.d elements. We set bi = Aix

?+wi,
where x? ∼ N (5 · 1d, I) is the ground truth and
wi ∼ N (0, 0.1 · I) is the additive noise (1d is the
d-dimensional vector of all ones).

Algorithms: We simulated two instances of ACC-
SONATA, corresponding to the choices of the sur-
rogates (4) and (5) in SONATA (inner-loop); we
termed them as ACC-SONATA-F and ACC-SONATA-L,
respectively (F stands for “full local function”
while L for “linearization”). The solution of the
agents’ subproblems solved in ACC-SONATA-F and
ACC-SONATA-L is computed in closed form. Ac-
cording to Theorems 4 and 5, ACC-SONATA-F is
expected to outperform first-order methods, in-
cluding ACC-SONATA-L, whenever 1 + β/µ < κ,
while ACC-SONATA-L should be competitive other-
wise. The free parameters of these two instances
are tuned as suggested by the theory, with T =
dlog(β/µ)e for ACC-SONATA-F and T = dlog(κ)e
for ACC-SONATA-L, where L and µ are estimated
by the data (quadratic function) and so β using
Definition 2. The weight matrix W according to
the Metropolis-Hasting rule. We compare our algo-
rithms with the following, widely tested in the lit-

erature (Table 1): APM-C, Mudag, and ACC-EXTRA.
The tuning of these schemes follows the recommen-
dations as in their respective papers. In particular,
Mudag and APM-C require the gossip matrix to be
positive definite, so we set (W + I)/2, with W being
the matrix used in the other algorithms.

In Fig. 2(left-panel), we fix β/µ < κ, and plot the
optimality gap 1

m

∑m
i=1 ‖xki − xrg‖2 versus the to-

tal number of communications, for each of the algo-
rithms, where xrg is the solution of the ridge re-
gression problem (computed in closed form). All
the schemes achieve linear convergence. As pre-
dicted, ACC-SONATA-F outperforms the other accel-
erate methods that do not take advantage of func-
tion similarity. Quite interestingly, ACC-SONATA-L
compares quite favorably also with directed accel-
eration methods, such as Mudag and AMP-C, while
sharing similar computational costs.

To investigate the impact of κ and β/µ on the con-
vergence rate of the algorithms, in the next experi-
ment we consider the following two scenarios:

(i) Changing β/µ with (almost) fixed κ: We
generate instances of ridge regression with decreas-
ing β and (almost) fixed κ, setting λ = 0 and in-
creasing the local sample size n (20 values) within
[100, 40000]; the empirical κ remains approximately
constant close to the nominal value L0/µ0 = 1000.
Fig. 2(mid-panel) captures this scenario, we plot
the number of communications to drive the optimal-
ity gap below 10−4 versus β/µ, and κ ≈ 930.

(ii) Changing κ with fixed β/µ: We generate a
sequence of instances of ridge regression with vary-
ing κ (acting on λ) while keeping β/µ constant by
changing the local sample size n to compensate for
the variations of µ (due to λ). Fig. 2(right-panel)
plots the number of communications to drive the op-
timality gap below 10−4 versus κ, for β/µ ≈ 232.

The following comments are in order. First, the
mid-panel confirms what predicted by Theorem 4:
the number of communications of ACC-SONATA-F
scales roughly with

√
β/µ while that of first-order

distributed schemes is fairly invariant with β/µ.
This is because methods using only gradient in-
formation (including ACC-SONATA-L) cannot bene-
fit from statistical similarity. On the other hand,
the right-panel shows that communication com-
plexity of accelerated first-order methods (including
ACC-SONATA-L, as stated in Theorem 5) deteriorates
when κ grows whereas that of ACC-SONATA-F is (al-
most) invariant. It is interesting to remark that
ACC-SONATA-F remains competitive, outperforming

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

0 600 1200 1800 2400 3000
Number of communications

10-4

10-2

100

102
O

pt
im

al
ity

 g
ap

 = 919.8747, / = 273.5258
APM-C
Mudag
ACC-EXTRA
ACC-SONATA-L
ACC-SONATA-F

0 200 400 600 800 1000
/

103

104

105

Nu
m

be
r o

f c
om

m
un

ica
tio

ns

 929.6223

APM-C
Mudag
ACC-EXTRA
ACC-SONATA-L
ACC-SONATA-F

400 600 800 1000
103

104

105

Nu
m

be
r o

f c
om

m
un

ica
tio

ns

/ 231.8883
APM-C
Mudag
ACC-EXTRA
ACC-SONATA-L
ACC-SONATA-F

Figure 1: Comparison of distributed accelerated algorithms on ridge regression (synthetic data). (left panel):
optimality gap versus total number of communications, for given β/µ and κ; (mid panel): number of communications
to reach a precision of 10−4 versus β/µ, for fixed κ; (right panel): same quantity versus κ, for fixed β/µ.

0 600 1200 1800 2400 3000
Number of communications

10-4

10-2

100

O
pt

im
al

ity
 g

ap

N = 9000 = 0.01
APM-C
Mudag
ACC-EXTRA
ACC-SONATA-L
ACC-SONATA-F

0 5 10 15
Total data size 104

102

103

104

Nu
m

be
r o

f c
om

m
un

ica
tio

ns

 = 0.01

APM-C
Mudag
ACC-EXTRA
ACC-SONATA-L
ACC-SONATA-F

Figure 2: Comparison of distributed accelerated algorithms on hinge loss minimization (COV1 dataset). (left panel):
optimality gap versus total number of communications; (right panel): number of communications to reach a precision
of 10−4 versus (total) sample.

the other schemes, even when β/µ ≈ κ.

2) Hinge loss minimization on real
data: We consider the minimization problem
minx∈Rd

1
N

∑N
i=1 l(yi〈x, zi〉) + λ

2 ‖x‖
2 over the same

network of agents considered in the previous exam-
ple, where ` is the smooth hinge loss as in Shamir
et al. (2014). We experimented on the data set
COV1 (see, e.g., Shalev-Shwartz and Zhang (2013)).
The tuning of the algorithm is the same a described
in the previous experiment, based upon estimation
of the quantities µ, L, Lmx, µmn, and β from the
data–see supplementary material for details. We
notice that µ ≈ µmn ≈ λ. The solution of the
agents’ subproblems in ACC-SONATA-F is estimated
up to the accuracy 10−10 by running the gradient
algorithm with step-size equal to 0.03.

Fig. 2 (left-panel) plots the optimality gap
1
m

∑m
i=1 ‖xki −xop‖2 versus the total number of com-

munications, for each of the algorithms, where xop
is an estimate of the solution of the problem (ob-
tained running the centralized gradient algorithm).
The results show that the proposed methods are
competitive also on real data, with ACC-SONATA-F

outperforming the others, when enough samples are
present at the agents’ sides. The right-panel plots
the number of communications to reach an accuracy
of 10−4 versus the total sample size (sincem is fixed,
the local samples size varies). This corresponds to
decrease β while keeping µ (roughly) constant. As
predicted, we observe that the communication sav-
ing experienced by ACC-SONATA-F improves with the
local sample size, as the method takes advantage of
the local function structure, a feature that first-order
methods are lacking.

Acknowledgments

We are grateful to the five anonymous Referees for
their thoughtful and constructive comments, which
helped improve the quality of the paper.

The work of Tian, Scutari, and Cao has been sup-
ported by the Army Research Office (ARO) under
the grant No. W911NF1810238, and the Office of
Naval Research (ONR) under the grant No. N00014-
21-1-2673. The work of Gasnikov was supported
by a grant for research centers in the field of arti-
ficial intelligence, provided by the Analytical Cen-

Acceleration in Distributed Optimization under Similarity

ter for the Government of the Russian Federation in
accordance with the subsidy agreement (agreement
identifier 000000D730321P5Q0002) and the agree-
ment with the Ivannikov Institute for System Pro-
gramming of the Russian Academy of Sciences dated
November 2, 2021, No. 70-2021-00142.

References
Arjevani, Y. and Shamir, O. (2015). Communica-
tion complexity of distributed convex learning and
optimization. In Advances in neural information
processing systems, pages 1756–1764.

Bekkerman, R., Bilenko, M., and Langford, J.
(2011). Scaling up Machine Learning: Parallel
and Distributed Approaches. Cambridge Univer-
sity Press.

Berthier, R., Bach, F., and Gaillard, P. (2020). Ac-
celerated gossip in networks of given dimension
using jacobi polynomial iterations. SIAM J. on
Mathematics of Data Science, 1:24–47.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm:
a library for support vector machines. ACM
transactions on intelligent systems and technology
(TIST), 2(3):1–27.

d’Aspremont, A., Scieur, D., and Taylor, A. B.
(2021). Acceleration methods. ArXiv preprint,
arXiv:2101.09545.

Deng, L. (2012). The mnist database of handwritten
digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142.

Di Lorenzo, P. and Scutari, G. (2016). Next: In-
network nonconvex optimization. IEEE Trans.
Signal Inf. Process. Netw., 2(2):120–136.

Dragomir, R.-A., Taylor, A., d’Aspremont, A., and
Bolt, J. (2019). Optimal complexity and certi-
fication of bregman first-order methods. arXiv
preprint, arXiv:1911.08510.

Fan, J., Guo, Y., and Wang, K. (2019).
Communication-efficient accurate statistical esti-
mation. arXiv:1906.04870.

Gorbunov, E., Rogozin, A., Beznosikov, A., Dvin-
skikh, D., and Gasnikov, A. (2020). Recent theo-
retical advances in decentralized distributed con-
vex optimization. arXiv:2011.13259.

Hendrikx, H., Bach, F., and Massoulié, L. (2020a).
Dual-free stochastic decentralized optimization
with variance reduction. In Advances in Neural
Information Processing Systems.

Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., and
Massoulie, L. (2020b). Statistically precondi-
tioned accelerated gradient method for distributed
optimization. In International Conference on Ma-
chine Learning, pages 4203–4227. PMLR.

Hongzhou, L., Mairal, J., and Harchaoui, Z. (2015).
A universal catalyst for first-order optimization.
In Advances in Neural Information Processing
Systems, pages 3384–3392.

Hongzhou, L., Mairal, J., and Harchaoui, Z. (2018).
Catalyst acceleration for first-order convex opti-
mization: from theory to practice. J. of Machine
Learning Research, pages 1–54.

Kovalev, D., Salim, A., and Richtárik, P. (2020).
Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. Ad-
vances in Neural Information Processing Systems,
33.

Li, B., Cen, S., Chen, Y., and Chi, Y. (2020a).
Communication-efficient distributed optimization
in networks with gradient tracking and variance
reduction. J. of Machine Learning Research,
(180):1–51.

Li, H., Fang, C., Yin, W., and Lin, Z. (2018). A
sharp convergence rate analysis for distributed
accelerated gradient methods. arXiv preprint
arXiv:1810.01053.

Li, H. and Lin, Z. (2020). Revisiting extra for
smooth distributed optimization. SIAM Journal
on Optimization, 30(3):1795–1821.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V.
(2020b). Federated learning: challenges, meth-
ods, and future directions. IEEE Signal Process-
ing Magazine, 37(3):50–60.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang,
W., and Liu., J. (2017). Can decentralized algo-
rithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradi-
ent descent. In Advances in Neural Information
Processing Systems, pages 5330–5340.

Lu, H., Freund, R. M., and Nesterov, Y. (2020). Rel-
atively smooth convex optimization by first-order
methods, and applications. SIAM J. on Optimiza-
tion, 28(1):333–354.

Reddi, S. J., Konecny, J., Richtarik, P., Poczos, B.,
and Smola, A. (2016). Aide: Fast and commu-
nication efficient distributed optimization. arXiv
preprint arXiv:1608.06879.

Rockafellar, R. T. (1970). Convex Analysis. Prince-
ton University Press.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Rogozin, A., Lukoshkin, V., Gasnikov, A., Ko-
valev, D., and Shulgin, E. (2020). Towards
accelerated rates for distributed optimization
over time-varying networks. arXiv preprint
arXiv:2009.11069.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T.,
and Massoulié, L. (2017). Optimal algorithms for
smooth and strongly convex distributed optimiza-
tion in networks. In International conference on
machine learning, pages 3027–3036. PMLR.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochas-
tic dual coordinate ascent methods for regularized
loss. J. of Machine Learning Research, (14):567–
599.

Shamir, O., Srebro, N., and Zhang, T. (2014).
Communication-efficient distributed optimization
using an approximate newton-type method. In In-
ternational conference on machine learning, pages
1000–1008. PMLR.

Sun, Y., Daneshmand, A., and Scutari, G. (2022).
Distributed optimization based on gradient-
tracking revisited: Enhancing convergence rate
via surrogation. SIAM J. on Optimization, pages
1–31.

Uribe, C. A., Lee, S., Gasnikov, A., and Nedić, A.
(2020). A dual approach for optimal algorithms in
distributed optimization over networks. In 2020
Information Theory and Applications Workshop
(ITA), pages 1–37. IEEE.

Wang, J., Tantia, V., Ballas, N., and Rabbat, M.
(2020). Improving communication-efficient dis-
tributed sgd with slow momentum. In The Inter-
national Conference on Learning Representations
(ICLR).

Wien, A. (2011). Iterative solution of large linear
systems. Lecture Notes, TU Wien.

Xu, J., Zhu, S., Soh, Y. C., and Xie, L. (2017).
Convergence of asynchronous distributed gradient
methods over stochastic networks. IEEE Trans.
Automat. Contr., 63(2):434–448.

Ye, H., Luo, L., Zhou, Z., and Zhang, T. (2020a).
Multi-consensus decentralized accelerated gradi-
ent descent. arXiv preprint arXiv:2005.00797.

Ye, H., Zhou, Z., Luo, L., and Zhang, T. (2020b).
Decentralized accelerated proximal gradient de-
scent. Advances in Neural Information Processing
Systems, 2020.

Yuan, X.-T. and Li, P. (2020). On convergence of
distributed approximate newton methods: Glob-
alization, sharper bounds and beyond. J. Mach.
Learn. Res., 21:206–1.

Zhang, Y. and Lin, X. (2015). Disco: Distributed
optimization for self-concordant empirical loss.
In International conference on machine learning,
pages 362–370. PMLR.

Supplementary Material:
Acceleration in Distributed Optimization under Similarity

This document serves as supplementary material of the paper entitled “Acceleration in Distributed Opti-
mization under Similarity”. It contains additional theoretical and numerical results, along with all the proofs
of the theorems presented in the main paper. Specifically

Sec. A contains the lower complexity bounds for the class of problems and oracle algorithms of interest;

Sec. B presents additional numerical results for different classes of problems on synthetic and real data;

Sec. C provides the proof of Theorem 4 and Theorem 5;

Sec. D customizes ACC-SONATA to star-topologies (master/workers architectures);

Sec. E discusses Inexact SONATA and Inexact Accelerated SONATA.

A LOWER COMPLEXITY BOUNDS OVER MESH NETWORKS UNDER
SIMILARITY

Given (P) over a mesh network G, we consider the following general class of distributed algorithms, which
generalize the oracle model (Arjevani and Shamir, 2015) for centralized schemes (star architectures) and
smooth (r = 0) instances of (P).
Definition 6 (Distributed oracle). Each agent i has its own local memoryMi = {0}, updated as follows:

• Local computation: Between communication rounds, each agent i iteratively computes and adds to Mi

some finite number of points x, each satisfying

τ1 x+ τ2∇fi(x) + τ3 g ∈ span
{
x′, ∇fi(x′), (∇2fi(x′) +D)x′′, (∇2fi(x′) +D)−1x′′

}
,

for given x′, x′′ ∈ Mi, g ∈ ∂r(x), τ1, τ2, τ3 ≥ 0 such that τ1 + τ2 + τ3 > 0; and D is a diagonal matrix such
that the inverse matrices above exist;
• Communications: After every communication round, each agent i updatesMi according to

Mi = span
{
∪

(i,j)∈E
Mj

}
;

• Output: xi ∈Mi, for all i ∈ [m].

The above procedure models a fairly general class of distributed algorithms over graphs. Computations at
each node are based on linear operations involving current or past iterates, local gradients, and vector
products with local Hessians and their inverses; exact optimization of local subproblem involving such
quantities or proximal solutions are also incorporated. During communications, the agents can share with
their neighbors any of the vectors they have computed up until that time.

The following result provides lower complexity bounds for solving Problem (P) by any distributed algorithm
in A–this is an extension of (Arjevani and Shamir, 2015, Th. 1) to the decentralized setting.
Theorem 7. For any µ ∈ [0, 1), β ∈ (0, 1), and ρ ∈ [0, 1), there exist (i) an instance of (P) (with sufficiently
large d and solution x?) satisfying Assumption 1, with r = 0, fi’s being β-similar and f(x) = 1

m

∑m
i=1 fi(x)

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

being 1-smooth and µ-strongly convex; and (ii) a gossip matrix W satisfying Assumption 3 over the graph G
with parameter ρ such that for any distributed algorithm in A using the matrix W in the communications,
the number of communication rounds N required for obtaining the solution xi’s such that u(xi)− u(x?) ≤ ε,
for all i ∈ [m], is

N = Ω
(√

β/µ

1− ρ log
(
µ ‖x?‖2

ε

))
.

Proof. The case of fully connected networks (ρ = 0) has been already studied in (Arjevani and Shamir, 2015,
Th. 1). Therefore, here we assumed ρ > 0. Our proof is inspired by (Scaman et al., 2017, Th. 2), with some
key differences due to the different setting of our problem.

We first introduce the local cost functions of agents numbered as 1, 2, . . . ,m. With ζ = 1
32 , define the

following two subsets of agents:

Al =
{
i
∣∣ 1 ≤ i ≤ dζme} and Ar =

{
i
∣∣ b(1− ζ)mc+ 1 ≤ i ≤ m

}
.

We then define for each agent i the cost function fi : `2 → R as

fi(x) =


β(1−µ)

8
m
dζmex

>A1x− β(1−µ)
4

m
dζmee

>
1 x+ µ

2 ‖x‖
2
, 1 ≤ i ≤ dζme

µ
2 ‖x‖

2
, dζme+ 1 ≤ i ≤ b(1− ζ)mc

β(1−µ)
8

m
dζmex

>A2x+ µ
2 ‖x‖

2
, b(1− ζ)mc+ 1 ≤ i ≤ m

with

A1 ,



1 0 0 0 0 · · ·

0 1 −1 0 0 · · ·

0 −1 1 0 0 · · ·

0 0 0 1 −1 · · ·

0 0 0 −1 1 · · ·
...

...
...

...
... . . .


, A2 ,



1 −1 0 0 0 · · ·

−1 1 0 0 0 · · ·

0 0 1 −1 0 · · ·

0 0 −1 1 0 · · ·

0 0 0 0 1 · · ·
...

...
...

...
... . . .


.

We define the distance between the two subsets Al and Ar as dc. It follows that, to have at least one non-zero
element in the kth entry of the local copies of agents in both of the above two subsets, one must perform at
least k local computation steps and (k − 1)dc communication steps. The number of communication rounds
required to obtain f(x̂)− f(x?) ≤ ε is thus

Ω
(
dc

√
β

µ
log
(
µ ‖x?‖2

ε

))
.

We then describe the communication graph for the given ρ. For m ≥ 2, we define

ρm = ρ

2 + ρ
+ 2

2 + ρ
cos π

m
.

Since ρ2 = ρ
2+ρ < ρ and limk→∞ ρk = 1, we know that there exist m such that ρm < ρ ≤ ρm+1. We discuss

the cases of m ≥ 3 and m = 2 separately:

i) m ≥ 3. We begin defining a Laplacian matrix Lm,a for a line graph composed of m nodes; specifically:

Lm,a = L>m,a, Lm,a 1 = 0, and Lm,a(i, i+ 1) = a1{i = 1} − 1,

Acceleration in Distributed Optimization under Similarity

with a ∈ [0, 1), where 1{•} is the indicator function. We then define

Wm,a = I − 1
2 + ρ

Lm,a.

It is not difficult to check thatWm,a satisfies Assumption 3, with
∥∥Wm,0 − 1 1>/m

∥∥ = ρm. Furthermore, since∥∥Wm,1 − 1 1>/m
∥∥ = 1, by continuity, we know that there exists an a ∈ (0, 1) such that

∥∥Wm,a − 1 1>/m
∥∥ =

ρ. In addition, we have

1− ρ ≥ 1− ρm+1 = 2
2 + ρ

(
1− cos π

m+ 1

)
≥ 2

3

(
1− cos π

m+ 1

)
(∗)
≥ 8

3
1

(m+ 1)2 .

Note that (∗) is due to that cos πn ≤ 1− 4
n2 for n ≥ 4. Equivalently,

m ≥

√
8

3(1− ρ) − 1.

The distance between the two subsets is thus

dc = b(1− ζ)mc+ 1− dζme ≥ 15
16m− 1 ≥ 15

16

(√
8

3(1− ρ) − 1
)
− 1

(∗)
≥ 4

25

√
1

1− ρ .

Note that (∗) is due to that ρ > ρ3 >
1
2 .

ii) m = 2. In this case, we have ρ ≤ ρ3 = 1+ρ
2+ρ and equivalently, ρ ∈ (0,

√
5−1
2]. We define the Laplacian

matrix for a complete graph of 3 nodes as: La = L>a , La 1 = 0, and for i < j, La(i, j) = a1{i = 1, j = 2}−1.
We then set Wa = I − 1

3La. Due to
∥∥W1 − 1 1>/3

∥∥ = 2
3 >

√
5−1
2 and

∥∥W0 − 1 1>/3
∥∥ = 0, there exists an

a ∈ (0, 1) such that
∥∥Wa − 1 1>/3

∥∥ = ρ. In this case, we have

dc = 1 ≥

√
3−
√

5
2

1√
1− ρ .

Therefore, for any ρ ∈ (0, 1), there exists a communication matrix W satisfying Assumption 3, with∥∥W − 1 1>/m
∥∥ = ρ, such that the number of communication rounds required to obtain f(x̂)− f(x?) ≤ ε is

Ω
(√

β

µ (1− ρ) log
(
µ ‖x?‖2

ε

))
.

B ADDITIONAL NUMERICAL RESULTS

This section complements Sec. 4 of the main paper, providing additional numerical results and details on
the experiments presented therein. Specifically, we consider the following problems and data sets:

• Sec. B.2 studies hinge-loss minimization on MNIST (Deng, 2012) and HIGGS (Chang and Lin, 2011, from
LIBSVM) datasets;

• Sec. B.3 considers logistic regression problems on the SUSY dataset (Chang and Lin, 2011, from LIBSVM).

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

B.1 Setting and Algorithm Tuning

The setting of the experiments is the same as the one described in Sec. 4, expect of course for the instance
of (P).

The tuning of the simulated algorithms follows the instructions as in the associated papers. To set the free
parameters, an estimate of the smoothness constants Li’s and strong-convexity constants µi’s is needed. We
use the following bounds for the hinge and logistic losses. In both cases, the local losses have the following
structure:

fi(x) = 1
n

n∑
j=1

`
(
bji ·
〈
x, aji

〉)
+ λ

2 ‖x‖
2
,

where aji ∈ Rd are the feature vectors and bji ∈ {−1, 1} are the associated labels. The Hessian matrix of fi is

∇2fi(x) = 1
n

n∑
j=1

`′′
(
bji

〈
x, aji

〉)
(bji)2aji (a

j
i)> + λI,

where `′′ denotes the second derivative of the loss ` : R→ R. Under the assumption that `′′ ≤ C`,

λI � ∇2fi(x) � 1
n

n∑
j=1

C`(bji)2aji (a
j
i)T + λI , Hi.

In particular, C` = 1 for the smooth hinge loss and C` = 1/4 for the logistic loss.

Based on Hi above, we use λ as estimate of µi and the largest eigenvalue of Hi as that of Li. Furthermore,
for the smooth constant L of the average loss f we use the overestimate L̂ , 1

m

∑m
i=1 Li ≥ L; and for β we

use β̂ , maxi∈[m]
∥∥Hi − 1

m

∑m
i=1 Hi

∥∥.
The other tuning of the algorithms is as follows:

• ACC-SONATA-F: The inner iterations T of SONATA-F and SONATA-L are set to
⌈

7
5 · log L̂

µ

⌉
and

⌈
log β̂

µ

⌉
,

respectively;

• Mudag: the number of inner loops is set to
⌈

1
5
√

1−ρ log Lmx
µ

⌉
;

• ACC-EXTRA: the number inner loops is set to
⌈

1
5(1−ρ) log Lmx

µ(1−ρ)

⌉
;

• APM-C: the number of inner loops is set to Tk =
⌈
k
√
µ/Lmx

100(
√

1−ρ)

⌉
;

• OPAPC: This is a single-loop distributed algorithm and all parameters are set according to the instructions
in Kovalev et al. (2020).

Whenever the subproblems of the agents do not have a closed form solution, the gradient algorithm is
employed, and terminated when an accuracy of 10−10 is reached on the Euclidean distance between variables
of two consecutive iterations.

We are now ready to describe our experiments.

B.2 Hinge Loss Minimization

Consider the following instance of (P):

min
x∈Rd

1
m

m∑
i=1

1
n

n∑
j=1

`s(bji ·
〈
x, aji

〉
) + λ

2 ‖x‖
2
,

Acceleration in Distributed Optimization under Similarity

where `s is the smooth hinge loss, defined as:

`s(t) =


0 t > 1,
1
2(t− 1)2 t ∈ [0, 1],
1
2 − t t < 0.

We consider two datasets for the above problem, namely the MNIST and the HIGGS. We use the label 1 for
images of digit 4 and −1 for the others. Results are summarized in Fig. 3 (MNIST) and Fig. 4 (HIGGS).

Specifically, Fig. 3 (resp. Fig. 4)-left-panel plots the optimality gap 1
m

∑m
i=1 ‖xki − xop‖2 versus the total

number of communications, achieved by the different algorithms, where xop is the optimal solution of the
problem (estimated running the gradient algorithm up to a precision of 10−8 on the norm gradient). In the
mid-panel, we plot the number of communications to drive the optimality gap below 10−4 versus the total
sample size; we consider four sizes, namely: 1.8× 104, 3× 104, 4.8× 104 and 6× 104 for the MNIST dataset
and 1.2×105, 2.4×105, 4.8×105 and 9×105 for the HIGGS dataset. The righ-panel shows the same results
for ACC-SONATA and OPAPC on a re-scaled y-axes, to highlight the decreasing number of communications with
the local sample size. These results confirm that ACC-SONATA-F and OPAPC consistently outperform the other
methods. Notice that, differently ACC-SONATA, OPAPC is applicable only to smooth, unconstrained instances
of (P) (i.e., with r ≡ 0).

0 1000 2000 3000
Communication cost

10-4

10-2

100

Op
tim

ali
ty

ga
p

N = 18000 = 0.1
OPAPC
APMC
Mudag
AccEXTRA
Acc-SONATA-L
Acc-SONATA-F

2 3 4 5 6
Total data size 104

0

0.5

1

1.5

2

Nu
mb

er
 of

 co
mm

un
ica

tio
ns

104 = 0.1

2 3 4 5 6
Total data size 104

250

300

350

400

450

500

N
um

be
r o

f c
om

m
un

ic
at

io
ns

 = 0.1
OPAPC
ACC-SONATA-F

Figure 3: Hinge loss minimization, MNIST dataset. (left panel): optimality gap versus total number of communica-
tions; (mid panel): number of communications to reach a precision of 10−4 versus (total) sample; (right panel):
the mid panel on a different scale of the y-axes.

0 1000 2000 3000
Communication cost

10-4

10-3

10-2

10-1

Op
tim

ali
ty

ga
p

N = 120000 = 0.05
OPAPC
APMC
Mudag
AccEXTRA
Acc-SONATA-L
Acc-SONATA-F

0 2 4 6 8 10
Total data size 105

0

2000

4000

6000

8000

10000

Nu
mb

er
 of

 co
mm

un
ica

tio
ns

 = 0.05

0 2 4 6 8 10
Total data size 105

30

40

50

60

70

80

90

N
um

be
r o

f c
om

m
un

ic
at

io
ns

 = 0.05
ACC-SONATA-F

Figure 4: Hinge loss minimization, HIGGS dataset. (left panel): optimality gap versus total number of communica-
tions; (mid panel): number of communications to reach a precision of 10−4 versus (total) sample; (right panel):
the mid panel on a different scale of the y-axes.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

0 1000 2000 3000
Communication cost

10-4

10-2

100

Op
tim

ali
ty

ga
p

N = 90000 = 0.01

OPAPC
APMC
Mudag
AccEXTRA
Acc-SONATA-L
Acc-SONATA-F

0 2 4 6
Total data size 105

0

2000

4000

6000

8000

10000

12000

Nu
mb

er
 of

 co
mm

un
ica

tio
ns

 = 0.01

0 2 4 6
Total data size 105

0

50

100

150

200

N
um

be
r o

f c
om

m
un

ic
at

io
ns

 = 0.01

OPAPC
ACC-SONATA-F

Figure 5: Logistic regression, SUSY dataset. (left panel): optimality gap versus total number of communications;
(mid panel): number of communications to reach a precision of 10−4 versus (total) sample; (right panel): the mid
panel on a different scale of the y-axes.

B.3 Logistic Regression

We consider here a logistic regression problem on SUSY dataset:

min
x∈Rd

1
m

m∑
i=1

1
n

n∑
j=1

`r

(
bji ·
〈
x, aji

〉)
+ λ

2 ‖x‖
2
, (16)

where `r = log(1 + e−t).

Fig. 5 (left-panel) is a plot of optimality gap 1
m

∑m
i=1 ‖xki −xop‖2 versus total number of communications.

In the mid-panel, we plot the number of communications to obtain optimality gap 10−4 versus the size of
total data samples, namely: 9×104, 1.5×105, 2.4×105 and 6×105. The righ-panel shows the same results
for ACC-SONATA and OPAPC on a re-scaled y-axes. Consistently with the other results, also for this class of
(nonquadratic) problems, ACC-SONATA and OPAPC exhibit favorable performance.

C PROOF OF THEOREM 4 AND THEOREM 5

C.1 Sketch of the Proof

As discussed in Sec. 3 [see (S.1)′ and (S.2)′], ACC-SONATA can be interpreted as an accelerated version of
the inexact proximal point algorithm. The challenge here is finding a suitable notion of inexactness for
proximal operations that captures all consensus errors (on x, y, z-variables) while being implementable in
the distributed setting and, at the same time, retains (for the outer loop) the convergence rate, α, of the
exact accelerated proximal method. Our path towards this goal consists in the following two steps:

• Step 1 (inexactness and outer-loop convergence): We introduce an inner termination condition
for the SONATA algorithm [see (21), Sec. C.2], serving as inexact notion of approximate proximal solution.
This criterion hinges on a proper potential function controlling the decrease of the optimality gap up to
consensus/tracking errors. Roughly speaking, this quantifies the amount of errors in the minimization
of uk [see (6)] that can be tolerated to preserve the convergence of the outer loop at the desired rate
α =

√
µ
µ+δ . Convergence of the outer loop at such a rate is established by introducing a proper potential

function [see (22), Sec. C.2]. Such a potential function certifies linear convergence of the optimality gap

∆(xk) = max
(

1
m

m∑
i=1

u(xki)− u?, 1
m

m∑
i=1

∥∥xki − x̄k∥∥2
)

at rate α. In the setting of Theorem 4 (i.e., δ = β − µ) and Theorem 5 (i.e., δ = L− µ), α reads

α =
√
µ

β
and α =

√
1
κ
, (17)

Acceleration in Distributed Optimization under Similarity

respectively.

• Step 2 (inner-loop convergence): We introduce a refined analysis of the SONATA algorithm based
on a new potential function certifying that the inner termination criterion defined in Step 1 is met in
T = Õ(1) number of iterations.

Combining Step 1 and Step 2, we can then conclude that ACC-SONATA achieves an ε-solution of Problem (P)
in

O
(
T

1
α

log 1
ε

)
= Õ

(
1
α

log 1
ε

)
=


Õ
(√

β

µ
log 1

ε

)
, if δ = β − µ (Theorem 4),

Õ
(
√
κ log 1

ε

)
, if δ = L− µ (Theorem 5),

total number of communications. The formal proof of Step 1 and Step 2 is given in Sec. C.2 and Sec. C.3,
respectively.

Notation: Before detailing the two steps, we introduce some notation used throughout the proofs. For each
i ∈ [m], we denote by xk,ti and yk,ti the decision variable and tracking variable of agent i after t = 0, . . . , T −1
inner iterations in the k-th outer iteration, respectively. Clearly, it must be

xk,0i = xki , yk,0 = yki + δ
(
zk−1
i − zki

)
, xk,Ti = xk+1

i , and yk,T = yk+1
i .

Furthermore, we define

x? , argmin
x∈Rd

u(x), xk+1,? = argmin
x∈Rd

uk(x), u?k = min
x∈Rd

uk(x).

For any vector x = [x>1 , . . . , x>m]>, we use x̄ to denote the average of its d-dimensional blocks xi’s, that is,
x̄ = 1

m

∑m
i=1 xi.

Consensus and tracking errors associated with the iterates xk,ti and yk,ti are defined as∥∥∥xk,t⊥ ∥∥∥2
= 1
m

∑
i∈[m]

∥∥∥xk,ti − x̄k,t∥∥∥2
and

∥∥∥yk,t⊥ ∥∥∥2
= 1
m

∑
i∈[m]

∥∥∥yk,ti − x̄y,t∥∥∥2
, (18)

respectively.

C.2 Step 1: Inexactness and Outer Loop Convergence

Our inexact notion of approximate proximal solution of the minimization of uk [see (6)] is defined in terms
of the (average) optimality gap,

gk,t ,
1
m

m∑
i=1

(
uk(xk,ti)− u?k

)
, k = 0, 1, . . . , t = 0, . . . , T, (19)

and the consensus and tracking errors (18), captured by

ek,t , cx
∥∥∥xk,t⊥ ∥∥∥2

+ cy

∥∥∥yk,t⊥ ∥∥∥2
, k = 0, 1, . . . , t = 0, . . . , T, (20)

where cx, cy > 0 are suitably defined universal constants. Specifically, under the following event

gk,T + ek,T ≤ εk+1, k = 0, 1, . . . , (21)

with {εk} being a suitably defined geometrically-vanishing positive sequence, we establish linear decay of the
following potential function along the outer-loop iterates of ACC-SONATA:

P k ,
1
m

m∑
j=1

(
u(xkj)− u?

)
+ 1
m

m∑
j=1

µ

2

∥∥∥∥xk−1
j + 1

α
(xkj − xk−1

j)− x?
∥∥∥∥2

+ ek−1,T , k = 0, 1, . . . , (22)

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

where we set e−1,T = cy
∥∥y0
⊥
∥∥2 and x−1

i = 0, ∀i.

In Step 2 we will show that (21) can be met by running SONATA for T = Õ(1) iterations.

Proposition 8. Consider problem (P) under Assumption 1, with optimal objective value u?. Let
{(xki , zki)i∈[m]} be the sequence generated by ACC-SONATA under (21), with error sequence εk = P 0 (1− cα)k,
k = 1, . . ., where c is any given constant in (0, 1). Then, the potential function P k in (22) satisfies:

P k ≤ c2 P
0 (1− c · α)k, (23)

with

c2 = (2 +√c1)2(√
1−c·α
1−α − 1

)2
(1− α)

and c1 = 1 + δ

cx

3
2 (1− cα)2 + 5− 4c α

(1− cα)2 . (24)

Therefore,

max
(

1
m

m∑
i=1

u(xki)− u?, 1
m

m∑
i=1

∥∥xki − x̄k∥∥2
)

= O
(
(1− c · α)k

)
.

Proof. We provide a constructive proof for the choice of the error sequence εk in (21) and potential function
(22), yielding (23).

Using the definition of uk, we have: for all xj ∈ dom r,

1
m

m∑
j=1

u(xk+1
j) = 1

m

m∑
j=1

uk(xk+1
j)− δ

2m2

∑
i,j

∥∥xk+1
j − zki

∥∥2 (21)
≤ u?k + εk+1 − ek,T − δ

2m2

∑
i,j

∥∥xk+1
j − zki

∥∥2

≤ 1
m

m∑
j=1

(
uk(xj)−

µ+ δ

2
∥∥xj − xk+1,?∥∥2

)
+ εk+1 − ek,T − δ

2m2

∑
i,j

∥∥xk+1
j − zki

∥∥2

= 1
m

m∑
j=1

uk(xj)−
1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1

j

∥∥2 + 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1

j

∥∥2 − 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1,?∥∥2

+ εk+1 − ek,T − δ

2m2

∑
i,j

∥∥xk+1
j − zki

∥∥2

= 1
m

m∑
j=1

u(xj) + 1
m2

∑
i,j

δ

2
∥∥xj − zki ∥∥2 − 1

m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1

j

∥∥2 + 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1

j

∥∥2

− 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1,?∥∥2 + εk+1 − ek,T − δ

2m2

∑
i,j

∥∥xk+1
j − zki

∥∥2

= 1
m

m∑
j=1

u(xj)−
µ

2m

m∑
j=1

∥∥xj − xk+1
j

∥∥2 + δ

2m

m∑
j=1

(
1
m

m∑
i=1

∥∥xj − zki ∥∥2 −
∥∥xj − xk+1

j

∥∥2 − 1
m

m∑
i=1

∥∥xk+1
j − zki

∥∥2
)

+ 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1

j

∥∥2 − 1
m

m∑
j=1

µ+ δ

2
∥∥xj − xk+1,?∥∥2 + εk+1 − ek,T

≤ 1
m

m∑
j=1

u(xj)−
µ

2m

m∑
j=1

∥∥xj − xk+1
j

∥∥2 + δ

m

m∑
j=1

〈
xj − xk+1

j , xk+1
j − z̄k

〉
− 1
m

m∑
j=1

(µ+ δ)
〈
xj − xk+1

j , xk+1
j − xk+1,?〉+ εk+1 − ek,T .

Acceleration in Distributed Optimization under Similarity

Setting xj = x?, j ∈ [m], leads to

1
m

m∑
j=1

u(xk+1
j) ≤ u? − µ

2m

m∑
j=1

∥∥x? − xk+1
j

∥∥2 + δ

m

m∑
j=1

〈
x? − xk+1

j , xk+1
j − z̄k

〉
− 1
m

m∑
j=1

(µ+ δ)
〈
x? − xk+1

j , xk+1
j − xk+1,?〉+ εk+1 − ek,T .

(25)

Similarly, setting xj = xkj , we have

1
m

m∑
j=1

u(xk+1
j) ≤ 1

m

m∑
j=1

u(xkj)− µ

2m

m∑
j=1

∥∥xkj − xk+1
j

∥∥2 + δ

m

m∑
j=1

〈
xkj − xk+1

j , xk+1
j − z̄k

〉
− 1
m

m∑
j=1

(µ+ δ)
〈
xkj − xk+1

j , xk+1
j − xk+1,?〉+ εk+1 − ek,T .

(26)

Define the optimality gap at the beginning of the k-th outer iteration, pertaining to the minimization of the
original objective function u(x) as:

pk ,
1
m

m∑
j=1

u(xkj)− u?.

Then, multiplying (25) by α and (26) by (1− α), and suming the obtained equations, yields

pk+1 ≤ (1− α)pk − αµ

2m

m∑
j=1

∥∥x? − xk+1
j

∥∥2 − (1− α)µ
2m

m∑
j=1

∥∥xkj − xk+1
j

∥∥2

+ δ

m

m∑
j=1

〈
αx? + (1− α)xkj − xk+1

j , xk+1
j − z̄k

〉
− µ+ δ

m

m∑
j=1

〈
αx? + (1− α)xkj − xk+1

j , xk+1
j − xk+1,?〉+ εk+1 − ek,T

= (1− α)pk − αµ

2m

m∑
j=1

∥∥x? − xk+1
j

∥∥2 − (1− α)µ
2m

m∑
j=1

∥∥xkj − xk+1
j

∥∥2 − δ

m

m∑
j=1

∥∥xk+1
j − z̄k

∥∥2

+ δ

m

m∑
j=1

〈
αx? + (1− α)xkj − z̄k, xk+1

j − z̄k
〉

− µ+ δ

m

m∑
j=1

〈
αx? + (1− α)xkj − xk+1

j , xk+1
j − xk+1,?〉+ εk+1 − ek,T .

(27)

The above is an approximate descent on pk, up to the error term εk+1 − ek,T and the two inner-product
terms. We proceed working first on the term

〈
αx? + (1− α)xkj − z̄k, xk+1

j − z̄k
〉
. Define

vkj , x
k−1
j + 1

α
(xkj − xk−1

j).

We have

vk+1
j = xkj + 1

α
(xk+1
j − xkj) =

(
1− 1

α

)
xkj + 1

α
zkj + 1

α
(xk+1
j − zkj)

= αzkj + 1 + α

α
(zkj − xkj)− (1 + α)zkj + 2xkj + 1

α
(xk+1
j − zkj)

= αzkj + 1 + α

α
(zkj − xkj) + (1− α)xk−1

j + 1
α

(xk+1
j − zkj)

= αzkj + (1− α)vkj + 1
α

(xk+1
j − zkj) = αxk+1

j + (1− α)vkj +
(

1
α
− α

)(
xk+1
j − zkj

)
.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

As byproduct of the above derivation, we also have

αzkj + (1− α)vkj = 1
α

(
zkj − (1− α)xkj

)
.

Therefore,

µ

2
∥∥vk+1
j − x?

∥∥2 = µ

2
∥∥αxk+1

j + (1− α)vkj − x?
∥∥2 + µ

2

(
1
α
− α

)2 ∥∥xk+1
j − zkj

∥∥2

+ µ

(
1
α
− α

)〈
αxk+1

j + (1− α)vkj − x?, xk+1
j − zkj

〉
= µ

2
∥∥αxk+1

j + (1− α)vkj − x?
∥∥2 + µ

2

(
1
α
− α

)2 ∥∥xk+1
j − zkj

∥∥2 + µ

(
1
α
− α

)
α
∥∥xk+1

j − zkj
∥∥2

+ µ

(
1
α
− α

)〈
αzkj + (1− α)vkj − x?, xk+1

j − zkj
〉

≤ (1− α)µ
2

∥∥vkj − x?∥∥2 + αµ

2
∥∥xk+1

j − x?
∥∥2 + δ2 + 2µδ

2(µ+ δ)
∥∥xk+1

j − zkj
∥∥2

+ µ

α

(
1
α
− α

)〈
zkj − (1− α)xkj − αx?, xk+1

j − zkj
〉
.

(28)

Acceleration in Distributed Optimization under Similarity

Combining (27) and (28), we obtain the decay of the potential function P k defined in (22):

P k+1 = pk+1 + 1
m

m∑
j=1

µ

2
∥∥vk+1
j − x?

∥∥2 + ek,T

≤ (1− α)

pk + 1
m

m∑
j=1

µ

2
∥∥vkj − x?∥∥2

+ δ

m

m∑
j=1

(∥∥zkj − z̄k∥∥2 + 2
〈
xk+1
j − x̄k+1, z̄k − zkj

〉)

+
(
µ− µ+ δ

2 − µ2

2(µ+ δ)

)
︸ ︷︷ ︸

≤0

1
m

m∑
j=1

∥∥xk+1
j − zkj

∥∥2

+ δ

m

m∑
j=1

(〈
zkj − z̄k, xk+1

j − x̄k+1〉+ (1− α)
〈
zkj − z̄k, xkj − x̄k

〉
−
∥∥zkj − z̄k∥∥2)

− µ+ δ

m

m∑
j=1

〈
αx? + (1− α)xkj − xk+1

j , xk+1
j − xk+1,?〉+ εk+1

≤(1− α)

pk + 1
m

m∑
j=1

µ

2
∥∥vkj − x?∥∥2

+ δ

m

m∑
j=1

(
(1− α)

〈
zkj − z̄k, xkj − x̄k

〉
−
〈
zkj − z̄k, xk+1

j − x̄k+1〉)
− µ+ δ

m

m∑
j=1

〈
αx? − αvk+1

j , xk+1
j − xk+1,?〉+ εk+1

≤ (1− α)

pk + 1
m

m∑
j=1

µ

2
∥∥vkj − x?∥∥2 + ek−1,T


︸ ︷︷ ︸

=Pk

+δα

m

∥∥vk⊥∥∥ ∥∥zk⊥∥∥

+ α
µ+ δ

m

m∑
j=1

∥∥x? − vk+1
j

∥∥∥∥xk+1
j − xk+1,?∥∥+ εk+1

≤ (1− α)P k + δ

1 + α

1
m

(∥∥xk+1
⊥
∥∥+ (1− α)

∥∥xk⊥∥∥) (2∥∥xk⊥∥∥+ (1− α)
∥∥xk−1
⊥
∥∥)

+ α(µ+ δ)

√√√√ 1
m

m∑
j=1

∥∥x? − vk+1
j

∥∥2

√√√√ 1
m

m∑
j=1

∥∥xk+1
j − xk+1,?

∥∥2 + εk+1

≤ (1− α)P k + δ

1 + α

1
m

(
3
2
∥∥xk+1
⊥
∥∥2 +

(
7
2 − 3α+ α2

2

)∥∥xk⊥∥∥2 + (1− α)2 ∥∥xk−1
⊥
∥∥2
)

+
√

2α
√
µ+ δ

√√√√ 1
m

m∑
j=1

∥∥x? − vk+1
j

∥∥2 ·
√
gk,T + εk+1.

We proceed now to bound gk,T and the consensus error terms by εk+1. For the former we readily have
gk,T ≤ εk+1, due to (21). For the latter, we choose {εk} as

εk+1 , εk (1− cα) , k = 0, 1, . . . , (29)

where c is any constant in (0, 1) and ε0 is to be determined; and use ek,T ≤ εk+1, for any k = 0, 1 . . . (still
due to (21)). We can write

P k+1 ≤ (1− α)P k +
√

2µ

√√√√ 1
m

m∑
j=1

∥∥x? − vk+1
j

∥∥2 ·
√
εk+1 + c1ε

k+1,

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

where
c1 = 1 + δ

cx

3
2 (1− cα)2 + 5− 4c α

(1− cα)2 .

Define λk , (1− α)k; we have

P k+1

λk+1 ≤
P k

λk
+
√

2µ

√√√√ 1
m

m∑
j=1

∥∥x? − vk+1
j

∥∥2 ·
√
εk+1

λk+1 + c1
εk+1

λk+1

≤ P 0 + c1

k+1∑
t=1

εt

λt
+
k+1∑
t=1

√
2µεt
λt

√√√√ 1
m

m∑
j=1

∥∥x? − vk+1
j

∥∥2
. (30)

Introducing the following quantities:

v̂k ,

√
µ

2λk ·

√√√√ 1
m

m∑
j=1

∥∥vkj − x?∥∥2
, ak , 2

√
εk

λk
, and Sk , P 0 + c1

k∑
t=1

εt

λt
, (31)

(30) can be rewritten as

(v̂k)2 ≤ Sk +
k∑
t=1

atv̂t. (32)

Using (32) we can invoke (Hongzhou et al., 2015, Lemma A.10) and conclude

Sk +
k∑
t=1

atv̂t ≤

(
√
Sk +

k∑
t=1

at

)2

. (33)

This, together with (30), yields

P k ≤ λk
(
√
Sk +

k∑
t=1

at

)2
(31)
≤ λk

(
√
L0 + (2 +√c1)

k∑
t=1

√
εt

λt

)2

.

Choosing ε0 = P 0, resulting in εk = P 0 · (1− c · α)k [cf. (29)], leads to the desired result:

P k ≤ c2 P
0 (1− c · α)k+1,

with
c2 = (2 +√c1)2(√

1−c·α
1−α − 1

)2
(1− α)

.

C.3 Step 2: SONATA and Inner-Loop Convergence

Given Proposition 8, to complete the proof of Theorem 4 and Theorem 5, we need to show that the error
condition (21) is satisfied if SONATA runs for T = Õ(1) iterations; the explicit expression of T depends on
the specific setting considered for the algorithm, and it is different for the one specified in Theorem 4 and in
Theorem 5–the two cases are studied separately in Sec. C.3.1 and Sec. C.3.2, respectively.

To control the number of calls of SONATA we need to bound gk,0 +ek,0, which is done in the following lemma.
Lemma 9. Instate the setting of Proposition 8. For k ≥ 1, if gk−1,T +ek−1,T ≤ εk, then the following holds:

gk,0 + ek,0 ≤ P 0
(

2(1− c · α)k + max
(

1
µ+ δ

, 2 cy
)

72 δ2

µ
c2 (1− c · α)k−1

)
. (34)

Acceleration in Distributed Optimization under Similarity

Proof. Since

gk,0 + ek,0 = 1
m

m∑
i=1

(
uk(xki)− u?k

)
+ cx

∥∥∥xk,0⊥ ∥∥∥2
+ cy

∥∥∥yk,0⊥ ∥∥∥2
,

we begin bounding 1
m

∑m
i=1
(
uk(xki)− u?k

)
. Postponing the proof to the end of this section, we show that

the following holds

1
m

∑m

i=1
uk(xki)− u?k ≤ 2εk − 2ek−1,T + δ2

µ+ δ

∥∥z̄k − z̄k−1∥∥2
. (35)

Therefore, we can write

gk,0 + ek,0
(35)
≤ 2εk − 2ek−1,T + δ2

µ+ δ

∥∥z̄k − z̄k−1∥∥2 + cx
∥∥xk⊥∥∥2 + 2 cy

∥∥yk⊥∥∥2 + 2 cy δ2 ∥∥(zk−1 − zk)⊥
∥∥2

≤ 2εk + max
(

1
µ+ δ

, 2 cy
)
δ2 1
m

∑
i∈[m]

∥∥zki − zk−1
i

∥∥2

≤ 2εk + max
(

1
µ+ δ

, 2 cy
)

72 δ2

µ

P k

(1− c · α)2

= P 0
(

2(1− c · α)k + max
(

1
µ+ δ

, 2 cy
)

72 δ2

µ
c2 (1− c · α)k−1

)
.

It remains to show that (35) holds. We prove it following similar ideas as in (Hongzhou et al., 2015,
Lemma B.1), with differences due to the distributed setting. Writing

uk(x)− uk−1(x)− (uk(z)− uk−1(z)) = δ

2m

m∑
i=1

(∥∥x− zki ∥∥2 −
∥∥x− zk−1

i

∥∥2 −
∥∥z − zki ∥∥2 +

∥∥z − zk−1
i

∥∥2)
= δ

〈
z̄k−1 − z̄k, x− z

〉
,

we have

uk(xki)− uk(xk+1,?)
= uk−1(xki)− uk−1(xk+1,?) + δ

〈
z̄k−1 − z̄k, xki − xk+1,?〉

= uk−1(xki)− uk−1(xk,?) + uk−1(xk,?)− uk−1(xk+1,?) + δ
〈
z̄k−1 − z̄k, xki − xk+1,?〉

≤ uk−1(xki)− uk−1(xk,?)− µ+ δ

2
∥∥xk,? − xk+1,?∥∥2 + δ

〈
z̄k−1 − z̄k, xki − xk+1,?〉 .

Therefore,

1
m

m∑
i=1

(
uk(xki)− uk(xk+1,?)

)
≤ εk − ek−1,T − µ+ δ

2
∥∥xk,? − xk+1,?∥∥2 + δ

〈
z̄k−1 − z̄k, x̄k − xk+1,?〉 . (36)

At the same time, it holds

δ
〈
z̄k−1 − z̄k, xk,? − xk+1,?〉 ≤ µ+ δ

2
∥∥xk,? − xk+1,?∥∥2 + δ2

2(µ+ δ)
∥∥z̄k−1 − z̄k

∥∥2
,

δ
〈
z̄k−1 − z̄k, x̄k − xk,?

〉
≤ µ+ δ

2
∥∥x̄k − xk,?∥∥2 + δ2

2(µ+ δ)
∥∥z̄k−1 − z̄k

∥∥2
.

(37)

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Combining (36) and (37), leads to

1
m

m∑
i=1

(
uk(xki)− uk(xk+1,?)

)
≤ εk − ek−1,T + δ2

µ+ δ

∥∥z̄k−1 − z̄k
∥∥2 + µ+ δ

2
∥∥x̄k − xk,?∥∥2

≤ εk − ek−1,T + δ2

µ+ δ

∥∥z̄k−1 − z̄k
∥∥2 + 1

m

m∑
i=1

(
uk−1(xki)− uk−1(xk,?)

)
≤ 2εk − 2ek−1,T + δ2

µ+ δ

∥∥z̄k−1 − z̄k
∥∥2
, for k ≥ 1.

C.3.1 Proof of Theorem 4

We begin proving convergence of SONATA in the setting of Theorem 4–we refer to such an instance of SONATA
as SONATA-F. Note that convergence established in Sun et al. (2022) is not directly applicable here. First,
there is a mismatch between the gradient tracking initialization therein and the one used in our setting.
Second, R-linear convergence of the optimality gap as in Sun et al. (2022) is not enough to certify that the
termination criterion (21) is satisfied after a finite number of iterations T = Õ(1). Our refined convergence
analysis of SONATA-F is stated in Lemma 10 below.

Notice that, with δ = β−µ, we have that: (i) the objective function uk(x) is µuk
= β-similar and β-strongly

convex; and (ii) every fki (x) is Lmx = L + 2β − µ smooth. By using the surrogates (4), SONATA-F takes
advantage of similarity and achieves linear convergence rate, scaling with O(β/µuk

) = O(1).
Lemma 10. Consider the minimization of uk(x) wherein δ = β − µ, running SONATA-F (initialized as in
ACC-SONATA). With

cx = 8(L+ 2β − µ)2

β
, cy = 4

β
,

and the network connectivity ρ satisfying

ρ ≤ 1
4
√

1785
β(2β − µ)

(L+ 2β − µ)(L+ 4β − µ) , (38)

SONATA-F converges Q-linearly, that is,

gk,t+1 + ek,t+1 ≤ 33
34
(
gk,t + ek,t

)
. (39)

Proof. The proof builds on some intermediate results in Sun et al. (2022); when recalled here, we use the
same notation as defined therein.

Consider (Sun et al., 2022, Proposition 3.4), and set therein εopt = 1
2 (2β − µ); we get

σ(1) ≤ 16
17 and η(1) ≤ 18

17β .

Therefore,

gk,t+1 ≤ 16
17 g

k,t + 9
17e

k,t. (40)

According to (Sun et al., 2022, Proposition 3.5), we have∥∥∥xk,t+1
⊥

∥∥∥2
≤ 2ρ2

∥∥∥xk,t⊥ ∥∥∥2
+ 2ρ2 1

m

∥∥dk,t∥∥2
,∥∥∥yk,t+1

⊥

∥∥∥2
≤ 3ρ2

∥∥∥yk,t⊥ ∥∥∥2
+ 12L2

mxρ
2
∥∥∥xk,t⊥ ∥∥∥2

+ 3L2
mxρ

2 1
m

∥∥dk,t∥∥2 ;

Acceleration in Distributed Optimization under Similarity

which leads to

4L2
mx

∥∥∥xk,t+1
⊥

∥∥∥2
+ 2

∥∥∥yk,t+1
⊥

∥∥∥2
≤ ρ2

(
32L2

mx

∥∥∥xk,t⊥ ∥∥∥2
+ 6

∥∥∥yk,t⊥ ∥∥∥2
+ 14L2

mx
1
m

∥∥dk,t∥∥2
)
. (41)

(Sun et al., 2022, Proposition 3.6) becomes

1
m

∥∥dk,t∥∥2 ≤ 6
β

(4β − µ)2 + 4L2
mx

(2β − µ)2 gk,t + 3
(2β − µ)2

∥∥∥yk,t⊥ ∥∥∥2
. (42)

Combining (40), (41) and (42) leads to

gk,t+1 + ek,t+1 ≤
(

16
17 + ρ2 168L2

mx
β2

(4β − µ)2 + 4L2
mx

(2β − µ)2

)
gk,t

+
(

9
17 + ρ2 max

(
8, 3 + 21 L2

mx
(2β − µ)2

))
ek,t.

It is not difficult to check that contraction of gk,t + ek,t as in (39) holds when ρ satisfies

ρ ≤ min

√ 15
272 ,

√√√√ 15
34
(

3 + 21L2
mx

(2β−µ)2

) , √ β2

5712L2
mx

(2β − µ)2

(4β − µ)2 + 4L2
mx

 .

A sufficient condition for that is (38).

Invoking Lemma 9, the number of inner iterations needed for (21) to hold, for any k = 1, 2, . . . , can be
bounded as

T ≤
⌈

34 log g
k,0 + ek,0

εk+1

⌉
(34)
≤

34 log
P 0
(

2(1− c · α)k + 576(β−µ)2

µβ c2 (1− c · α)k−1
)

P 0 (1− c · α)k+1


=

34 log
2(1− c · α) + 576(β−µ)2

µβ c2

(1− c · α)2


=

34 log

 2
1− c ·

√
µ/β

+ 576(β − µ)2

µβ(1− c ·
√
µ/β)2

(
2 +

√
1 + (β−µ)β

8(L+2β−µ)2

3
2 (1−c

√
µ/β)2+5−4c

√
µ/β

(1−c
√
µ/β)2

)2

(√
1−c·
√
µ/β

1−
√
µ/β

− 1
)2

(1−
√
µ/β)




= O
(

log β
µ

)
.

(43)

For k = 0, due to g0,0 + e0,0 ≤ P 0, we have T =
⌈
34 log 1

1−c·α

⌉
, which is smaller than the RHS in (43).

This, together with Proposition 8 completes the proof of Theorem 4. �

C.3.2 Proof of Theorem 5

We study now convergence of SONATA in the setting of Theorem 5–we refer to such an instance as SONATA-L.

We begin noticing that, with δ = L− µ, we have the following properties for uk(x) and fki (x)’s: (i) uk(x) is
(2L−µ)-smooth, β-similar and L-strongly convex; and (ii) every fki (x) is Lmx = 2L+β−µ smooth. Hence,
when using the linearization surrogates (5), SONATA-L achieves linear rate, scaling as O((2L−µ)/L) = O(1).
We establish such a result below, following the same path as in the proof of Lemma 10.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Lemma 11. Consider the minimization of uk(x) wherein δ = L − µ, running SONATA-L (initialized as in
ACC-SONATA). With

cx = 56(2L+ β − µ)2

L
, cy = 28

L
,

and the network connectivity ρ satisfying

ρ ≤ 1
70
√

15
L2

(2L− µ+ β)2 , (44)

SONATA-L converges Q-linearly, that is,

gk,t+1 + ek,t+1 ≤ 9
10
(
gk,t + ek,t

)
.

Proof. We set εopt in (Sun et al., 2022, Proposition 3.4) as εopt = L
2 ; one gets therein σ(1) ≤ 4

5 and
η(1) ≤ 7

L . Therefore,

gk,t+1 ≤ 4
5g

k,t + 1
2e

k,t. (45)

In addition, (Sun et al., 2022, Proposition 3.6) becomes

1
m

∥∥dk,t∥∥2 ≤ 6
L

(
9
4 + 4L2

mx
(2L− µ)2

)
gk,t + 3

(2L− µ)2

∥∥∥yk,t⊥ ∥∥∥2
. (46)

Combining (41), (45) and (46), leads to

gk,t+1 + ek,t+1 ≤
(

4
5 + 1176 ρ2L

2
mx
L2

(
9
4 + 4L2

mx
(2L− µ)2

))
gk,t +

(
1
2 + ρ2 max

(
8, 3 + 21 L2

mx
(2L− µ)2

))
ek,t

A contraction on gk,t + ek,t is ensured choosing

ρ ≤ min

 1
2
√

5
,

√√√√ 2
5
(

3 + 21 L2
mx

(2L−µ)2

) , 1
28

√√√√ 1
15L

2
mx
L2

(
9
4 + 4L2

mx
(2L−µ)2

)
 .

The above is satisfied if ρ satisfies (44).

We can conclude the proof of Theorem 4, using Lemma 9 to determine the number of inner iterations needed
for (21) to hold: for any k = 1, 2, . . . , we have

T ≤
⌈

10 log g
k,0 + ek,0

εk+1

⌉
≤

10 log
2(1− c · α) + 4032(L−µ)2

Lµ c2

(1− c · α)2

 = O (log κ) . (47)

For k = 0, due to g0,0 + e0,0 ≤ P 0, we have T =
⌈
10 log 1

1−c·α

⌉
, which is smaller than the value of T in (47)

for k ≥ 1.

D ACC-SONATA OVER STAR-NETWORKS

In this section we customize ACC-SSONATA to the special setting of master/workers architectures. Specifically,
consider Problem (P) over a star (unidirected) graph with m nodes, where one of them (the master node)
connects with all the others (workers). The workers still own only one function fi of the sum-cost f in (P).
The application of ACC-SSONATA to such a setting boils down to customize the inner algorithm SONATA–we
use the instance in (Sun et al., 2022, Algorithm 3), which is reported in Algorithm 3 below (applied to
(P)) for convenience. Note that the consensus step is now replaced by the exact average performed by

Acceleration in Distributed Optimization under Similarity

the master node (see (S.4)), based upon reception of the local optimization variables from the workers.
Also, there is no need of the gradient-tracking mechanism, as the master node can directly broadcast to the
workers the aggregate gradient ∇f(xk). Notice that SONATA-star can be interpreted as a special instance
of SONATA described in Algorithm 1 (up to a proper initialization) if the weight matrix W therein is set to
W = [1, 0m,m−1][1/m, 0m,m−1]>, whose associated ρ = ‖W − 11>/m‖ = 0.

Equipped with SONATA-star, ACC-SONATA-star reduces to Algorithm 4 below. Convergence as discussed
in the main text is a consequence of Theorem 4 and Theorem 5. Note that the condition of ρ is trivially
satisfied as ρ = 0.

Algorithm 3 SONATA-star({fi}i∈[m] , (x0
i)i∈[m], T)

Input: {fi(x)}i∈[m] , r(x) [cf. (P)];
(x0
i)i∈[m] [initialization points],

T > 0 [# iterations];
Output: xT ;
for k = 0, 1, 2, . . . , T − 1 do

(S.1): Each worker i evaluates ∇fi(xk) and sends it to the master node;

(S.2): The master broadcasts ∇f(xk) = 1/m
∑m
i=1∇fi(xk) to the workers;

(S.3): Each worker i computes

x
k+1/2
i , argmin

xi∈Rd

f̃i(xi;xk) +
(
∇f(xk)−∇fi(xk)

)>(xi − xk) + r(xi),

and sends xk+1/2
i to the master;

(S.4): The master computes the average

xk+1 = 1
m

m∑
i=1

x
k+1/2
i ,

and sends it back to the workers.
end for

Algorithm 4 Accelerated SONATA-star

Input: β, µ, δ > 0, α =
√
µ/(µ+ δ);

x0 = z0 = 0;
Output: xK
for k = 0, 1, 2, . . . ,K − 1 do

Set: fki (x) = fi(x) + δ
2
∥∥x− zk∥∥2

,

(S.1) Inner loop via SONATA-star:

xk+1 = SONATA-star
({

fki
}
i∈[m] , x

k, T
)

;

(S.2) Extrapolation step:

zk+1 = xk+1 + 1− α
1 + α

(xk+1 − xk).

end for

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

E SOLVING AGENTS’ SUBPROBLEMS INEXACTLY

There are applications wherein the local optimization problems in the Algorithm 1

x
k+1/2
i = argmin

x∈Rd

f̃i(x;xki) +
〈
yki −∇fi(xki), x− xki

〉
+ r(x),

do not have a closed-form solution or cannot be solved efficiently to arbitrary precision, especially when the
surrogate function (4) is adopted. In this section, we discuss how to modify ACC-SONATA-F (and by-product
ACC-SONATA-L) to accommodate computations of inexact solutions of agents’ subproblems. We prove that,
by carefully choosing the inexact criterion for solving approximately the local optimization subproblems,
the communication complexity of the resulting inexact ACC-SONATA-F, termed Inexact ACC-SONATA-F (Al-
gorithm 5), matches that of ACC-SONATA-F as in (9) (see Theorem 12). We also study the computational
complexity of Inexact-ACC-SONATA-F (see Theorem 13).

We begin introducing the inexact instance of the SONATA algorithm, termed Inexact-SONATA, and
described in Algorithm 5. Notice the presence therein of an additional input sequence

{
ξk
}T−1
k=0 ={

(ξki)i∈[m]
}T−1
k=0 (to be properly chosen), determining the accuracy the solution of the agents’ subproblems

(48) in (S.1) is estimated.

Algorithm 5 Inexact-SONATA({fi}i∈[m] , x
0, y0, T,

{
ξk
}T−1
k=0)

Input: {fi(x)}i∈[m] , r(x) [cf. (P)];
x0 = (x0

i)i∈[m] [initialization points],
y0 = (y0

i)i∈[m] [gradient-tracking initialization],
T > 0 [# iterations],{
ξk
}T−1
k=0 =

{
(ξki)i∈[m]

}T−1
k=0 [inexactness parameters];

Output: xT =
(
xTi
)
i∈[m], y

T =
(
yTi
)
i∈[m];

for k = 0, 1, 2, . . . , T − 1 do
(S.1) Local computations: for all i ∈ [m],

x̃
k+1/2
i ≈ argmin

x∈Rd

uki (x) , f̃i(x;xki) +
〈
yki −∇fi(xki), x− xki

〉
+ r(x),

s.t. uki (x̃k+1/2
i)− min

x∈Rd
uki (x) ≤ ξki ;

(48)

(S.2) Communications: for all i ∈ [m],

xk+1
i =

m∑
j=1

wij x̃
k+1/2
j ,

yk+1
j =

m∑
j=1

wij
(
ykj +∇fj(xk+1

j)−∇fj(xkj)
)
.

end for

Equipped with Inexact-SONATA Algorithm, the inexact version of Acc-SONATA is presented in Algorithm 6,
where in the inner loop is now invoked Inexact-SONATA.

The next theorem studies convergence of Inexact ACC-SONATA; we focus on Inexact ACC-SONATA-F, i.e., the
instance of Inexact ACC-SONATA using (4) as surrogate functions in the step (S.1) of Inexact SONATA. With
a properly chosen accuracy sequence, we show that Inexact ACC-SONATA-F inherits the same communication
complexity of its exact counterpart, ACC-SONATA-F.
Theorem 12. Consider problem (P) under Assumption 1, with optimal value function u? and β > µ w.l.o.g..
Let {xk , (xki)i∈[m]} be the sequence generated by the Algorithm 6 under Assumption 3, with

ρ ≤ O

((
1 + κ− 1

β/µ

)−2
)
, (49)

Acceleration in Distributed Optimization under Similarity

Algorithm 6 Inexact Accelerated SONATA

Input: β, µ, δ > 0, α =
√
µ/(µ+ δ),

{
ξk,t
}
;

x0
i = z0

i = z−1
i = 0, y0

i = ∇fi(x0
i)

Output: xK = (xKi)i∈[m]
for k = 0, 1, 2, . . . ,K − 1 do
Set: fki (x) = fi(x) + δ

2
∥∥x− zki ∥∥2 ;

(S.1) Inner loop via SONATA:(
xk+1, yk+1) = Inexact-SONATA

({
fki
}
i∈[m] , x

k, yk + δ
(
zk−1 − zk

)
, T,

{
ξk,t
}T−1
t=0

)
;

(S.2) Extrapolation step:

zk+1
i = xk+1

i + 1− α
1 + α

(xk+1
i − xki), ∀i ∈ [m].

end for

and the following tuning:

δ = β − µ, T = O (log β/µ) , ξk,ti = O
((

1− c
√
µ/β

)k
(16/17)t

)
, ∀ i ∈ [m], (50)

and agents’ surrogate functions (4) in Inexact-SONATA. Recall the optimality gap ∆(xk) defined in (8); then,
there holds

∆(xk) = O
((

1− c
√
µ

β

)k)
,

where c ∈ (0, 1) is some universal constant. Therefore, ∆(xK) ≤ ε, ε > 0, in

O

(√
β

µ
· T · log 1

ε

)
(51)

total (inner plus outer) communication steps.

Proof. See Appendix E.1.

As anticipated, the above result shows that if the subproblems (48) are solved with increasing accuracy, as
specified by the decay of {ξk,t} in (50), the total number of communication steps (as in (51)) for Inexact
ACC-SONATA-F to reach an ε-solution of (P) matches that of ACC-SONATA-F, despite the presence of compu-
tation errors. We discuss next the computation complexity of Inexact ACC-SONATA-F.

Suppose we use a solution method M to solve the local optimization (48); and let T k,t be the number of
iterations required byM to solve (48) within the precision ξk,t (at the inner iteration t of the outer step k
of Inexact ACC-SONATA-F). Then, in the setting of Theorem 12, the total number of steps taken byM for
∆(xK) ≤ ε reads

∑K−1
k=0

∑T−1
t=0 T k,t. We provide next an explicit expression of such a number whenM is a

linearly convergent method.
Theorem 13. Let {xk , (xki)i∈[m]} be the sequence generated by the Algorithm 6 under Assumption 3, in
the same setting of Theorem 12. Suppose thatM is such that

T k,t = O
(
κM log 1/ξk,ti

)
,

for some κM ≥ 1. Then, to reach ∆(xK) ≤ ε, ε > 0, the total number of iterations taken byM reads

O

(
κM

β

µ
log β

µ

(
log 1

ε

)2
)
. (52)

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Proof. See Appendix E.1.

We can make (52) a bit more explicit depending on the choice of M. Note that the condition number of
uki (x) in (48) (based on the surrogate (4)) is

L̃mx

µ̃mn
= 1 + L+ β

2β − µ.

Therefore, ifM is the proximal gradient algorithm with stepsize 2/(L̃mx + µ̃mn), we have

κM = 1 + L+ β

2β − µ,

and thus (52) becomes

Õ

((
1 + κ+ β/µ

2β/µ− 1

)
· β
µ
·
(

log 1
ε

)2
)

(53)

number of total gradient evaluations/agent, while for M being the accelerated proximal gradient (with
nominal tuning), (52) reads

Õ

(√
1 + κ+ β/µ

2β/µ− 1 ·
β

µ
·
(

log 1
ε

)2
)

(54)

number of total gradient evaluations, where Õ hides log-factors.

E.1 Proof of Theorem 12 and Theorem 13

E.1.1 Sketch of the Proof

The proof for Theorem 12 and Theorem 13 is organized in the following three steps:

Step 1: We first establish convergence for Inexact-SONATA. Specifically, we prove the connections among
the optimality measures and the consensus/tracking error in (68), (70) and (71), in the presence of the
inexactness parameter ξki ’s;

Step 2: we show that by carefully choosing the inexactness parameters for every inner iteration of every
outer loop, the number of inner iterations can still be a constant as T = O

(
log β

µ

)
; and finally

Step 3: combines the results in Step 1 and Step 2 to determine the overall communication and computa-
tional complexity of Inexact ACC-SONATA-F.

Basic definitions and notation. We begin introducing some definitions and basic facts that will be used
throughout the proof.

We denote by µ̃i and L̃i the strong convexity and smoothness constants of the surrogate function f̃i(• ;xki),
respectively. We define:

gk ,
1
m

∑
i

u(xki)− u?, dki , x̃
k+1/2
i − xki , τki , ∇f(xki)− yki , µ̃mn , min

i∈[m]
µ̃i, L̃mx , max

i∈[m]
L̃i, (55)

and the concatenation of local variables dk ,
[
dk1
>
, · · · , dkm

>
]>

, τk ,
[
τk1
>
, · · · , τkm

>
]>

. By Sun et al.
(2022), we know that there exist {D`

i , D
u
i }i∈[m] such that

D`
i I � ∇2f̃i(x; y)−∇2f(x) � Du

i I, ∀x, y ∈ Rd.

We denote Di , max
{∣∣D`

i

∣∣ , |Du
i |
}
, Dmx = maxi∈[m] Di, and D`

mn , mini∈[m] D
`
i .

Acceleration in Distributed Optimization under Similarity

We will leverage the following basic facts on subdifferential calculus; see, e.g., Rockafellar (1970). The
ε-subdifferential of a convex function f , whit ε > 0, is defined as

∂εf(x) ,
{
g
∣∣ f(y) ≥ (f(x)− ε) + g>(y − x), ∀ y ∈ Rd

}
.

A direct consequence of this definition is the following fact about ε-minimizers, xε, of f (assumed to be
convex and proper), i.e.,

xε : f(xε)− min
x∈Rd

f(x) ≤ ε ⇔ 0 ∈ ∂εf(xε). (56)

If, in addition, f is also L-smooth, we have the following.
Lemma 14. Let f : Rd → R be convex and L-smooth. Then,

∂εf(x) ⊆
{
∇f(x) + χ

∣∣∣ ‖χ‖2 ≤ 2L ε
}
. (57)

E.1.2 Step 1: Convergence Results of Inexact-SONATA

we present the convergence results of Inexact-SONATA to solve a general convex optimization problem

min
x∈Rd

u(x) , f(x) + r(x), f(x) , 1
m

m∑
i=1

fi(x), (58)

with f(x) being Υ-strongly convex and L-smooth. We use single time index (•)k to denote any variable (•)
at the iteration k of the Algorithm 5. To facilitate the discussion, we denote the smooth part of uki (x) in
(48) as

ski (x) , f̃i(x;xki) +
〈
yki −∇fi(xki), x− xki

〉
,

and thus write
uki (x) = ski (x) + r(x).

Our first step is to establish an inexact descent property of u at each x̃
k+1/2
i , as stated in the following

lemma, which can be deemed as a counterpart of (Sun et al., 2022, Lemma 3.1), in the presence of inexact
computations of the solutions of the subproblems in (S.1).
Lemma 15. Let {xki } be the sequence generated by the Algorithm 5; there holds

u(x̃k+1/2
i) ≤ u(xki)− 1

2
(
µ̃mn +D`

mn − ε1 − ε2
) ∥∥dki ∥∥2 + 1

2ε1
∥∥τki ∥∥2 +

(
L̃mx

ε2
+ 1
)
ξki . (59)

ε1, ε2 with ε1 + ε2 < µ̃mn +Dl
mn are parameters to be determined.

Proof. At step (S.1), x̃k+1/2
i is a ξki -optimal solution of minx∈Rd uki (x). Using (56), this implies that x̃k+1/2

i

satisfies

0 ∈ ∂ξk
i
uki (x̃k+1/2

i) ⊂ ∂ξk
i
ski (x̃k+1/2

i) + ∂ξk
i
r(x̃k+1/2

i). (60)

Using (60), (57) and the fact that ski (x) is L̃i-smooth, we infer that there exists a χki ∈ Rd with∥∥χki ∥∥2 ≤ 2L̃iξki , (61)

such that,
hki , ∇ski (x̃k+1/2

i) + χki ∈ ∂ξk
i
ski (x̃k+1/2

i) and− hki ∈ ∂ξk
i
r(x̃k+1/2

i).

Therefore, for any x ∈ Rd, we have

r(x)− r(x̃k+1/2
i) + ξki ≥

〈
x− x̃k+1/2

i ,−hki
〉

=
〈
x̃
k+1/2
i − x,∇f̃i(x̃k+1/2

i , xki) + yki −∇fi(xki) + χki

〉
. (62)

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Using (62) with x = xki leads to

r(xki)− r(x̃k+1/2
i) + ξki ≥

〈
dki , ∇f̃i(x̃

k+1/2
i ;xki) + yki −∇fi(xki) + χki

〉
=
〈
dki , y

k
i + H̃k

i d
k
i + χki

〉
(63)

with H̃k
i ,

∫ 1
0 ∇

2f̃i(θx̃k+1/2
i + (1− θ)xki ;xki)dθ. Then, we get

f(x̃k+1/2
i) (a)= f(xki) +

〈
∇f(xki), dki

〉
+
〈
Hk
i d

k
i , d

k
i

〉
= f(xki) +

〈
τki , d

k
i

〉
+
〈
yki , d

k
i

〉
+
〈
Hk
i d

k
i , d

k
i

〉
(b)
≤ f(xki) +

〈
τki , d

k
i

〉
+
〈
Hk
i d

k
i , d

k
i

〉
+ r(xki)− r(x̃k+1/2

i)−
〈
H̃k
i d

k
i , d

k
i

〉
−
〈
dki , χ

k
i

〉
+ ξki

(c)
≤ f(xki) +

〈
τki , d

k
i

〉
− 1

2
(
D`

mn + µ̃mn
) ∥∥dki ∥∥2 + r(xki)− r(x̃k+1/2

i)−
〈
dki , χ

k
i

〉
+ ξki

≤ f(xki)− 1
2(D`

mn + µ̃mn)
∥∥dki ∥∥2 + r(xki)− r(x̃k+1/2

i) + 1
2

(
ε1
∥∥dki ∥∥2 + ε−1

1
∥∥τki ∥∥2)

+ 1
2

(
ε2
∥∥dki ∥∥2 + ε−1

2
∥∥χki ∥∥2)+ ξki ,

where in (a) we used the Taylor’s formula with Hk
i ,

∫ 1
0 (1− θ)∇2f(θx̃k+1/2

i + (1− θ)xki)dθ; in (b), we upper
bound

〈
yki , d

k
i

〉
through (63); and in (c), Hk

i − H̃k
i � − 1

2
(
D`

mn + µ̃mn
)

I, obtained by setting α = 1 in (Sun
et al., 2022, (32)). We obtain (59) using (61).

Recalling the definition of the optimality gap gk as in (55) and using (59) and the convexity of u, we get

gk+1 ≤ gk − 1
2m

(
µ̃mn +D`

mn − ε1 − ε2
) ∥∥dk∥∥2 + 1

2mε1
∥∥τk∥∥2 +

(
L̃mx

ε2
+ 1
)

1
m

m∑
i=1

ξki . (64)

As second step, we derive below the lower bound of
∥∥dk∥∥, which is the counterpart of (Sun et al., 2022,

Lemma 3.2) when inexact solutions are allowed in agents’ subproblems.
Lemma 16. The following lower bound holds for

∥∥dk∥∥2:

1
m

∥∥dk∥∥2 ≥ Υ
D2

mx

gk+1 − 2
mµ

∥∥τk∥∥2 − 1
m

(
1 + 4L̃mx

Υ

) m∑
j=1

ξkj

 . (65)

Proof. Applying (62) with x = x? leads to

r(x?)− r(x̃k+1/2
i) + ξki ≥

〈
x̃
k+1/2
i − x?,∇f̃i(x̃k+1/2

i ;xki) + yki −∇fi(xki) + χki

〉
(66)

By the Υ-strongly convexity of f , we have

u(x?) ≥ u(x̃k+1/2
i) + r(x?)− r(x̃k+1/2

i) +
〈
∇f(x̃k+1/2

i), x? − x̃k+1/2
i

〉
+ Υ

2

∥∥∥x? − x̃k+1/2
i

∥∥∥2

(66)
≥ u(x̃k+1/2

i) +
〈
x? − x̃k+1/2

i ,∇f(x̃k+1/2
i)−∇f̃i(x̃k+1/2

i ;xki)− yki +∇fi(xki)− χki
〉

+ Υ
2

∥∥∥x? − x̃k+1/2
i

∥∥∥2
− ξki

≥ u(x̃k+1/2
i)− 1

2Υ

∥∥∥∇f(x̃k+1/2
i)−∇f(xki) +∇fi(xki)−∇f̃i(x̃k+1/2

i ;xki) + τki − χki
∥∥∥2
− ξki

≥ u(x̃k+1/2
i)− D2

i

Υ
∥∥dki ∥∥2 − 2

Υ
∥∥τki ∥∥2 − 2

Υ
∥∥χki ∥∥2 − ξki

(61)
≥ u(x̃k+1/2

i)− D2
i

Υ
∥∥dki ∥∥2 − 2

Υ
∥∥τki ∥∥2 −

(
1 + 4L̃i

Υ

)
ξki

(67)
Summing the inequalities over i, and using the convexity of u(x) lead to the conclusion.

Combining (64) and (65) to cancel out
∥∥dk∥∥2, and noticing that

1
m

∥∥τk∥∥2 ≤ 4L2
mx
∥∥xk⊥∥∥2 + 2

∥∥yk⊥∥∥2
,

Acceleration in Distributed Optimization under Similarity

we obtain

gk+1 ≤ σ0g
k + η0

(
4L2

mx
∥∥xk⊥∥∥2 + 2

∥∥yk⊥∥∥2)+ η1
1
m

m∑
j=1

ξkj , (68)

with

σ0 ,
2D2

mx
2D2

mx + Υ (µ̃mn +D`
mn − ε1 − ε2) , η0 , σ0

(
1

2ε1
+ µ̃mn +D`

mn − ε1 − ε2
D2

mx

)
,

η1 , σ0

(
L̃mx

ε2
+ 1 +

Υ
(
µ̃mn +D`

mn − ε1 − ε2
)

2D2
mx

(
1 + 4L2

mx
Υ

))
.

(69)

On the other hand, we recall the following result on the consensus and tracking error from (41):

4L2
mx
∥∥xk+1
⊥
∥∥2 + 2

∥∥yk+1
⊥
∥∥2 ≤ ρ2

(
32L2

mx
∥∥xk⊥∥∥2 + 6

∥∥yk⊥∥∥2 + 14L2
mx

1
m

∥∥dk∥∥2
)
. (70)

Equipped with (68) and (70), we proceed to bound
∥∥dk∥∥2 as a function of the optimality gap gk and the

consensus/tracking error to close the loop. To this end, we give the following result, which is the counterpart
of (Sun et al., 2022, Proposition 3.6) in the presence of inexact solutions.

Proposition 17. The following upper bound hold for
∥∥dk∥∥2:

1
m

∥∥dk∥∥2 ≤ σ1g
k + η2

∥∥yk⊥∥∥2 + η3

m

m∑
j=1

ξkj , (71)

with

σ1 ,
2
Υ

(
2 + 8D2

mx
µ̃2

mn
+ 32L2

mx
µ̃2

mn

)
, η2 ,

8
µ̃2

mn
, η3 ,

(
16Lmx

µ̃2
mn

+ 4
µ̃mn

)
.

Proof. Applying (62) with x = x? and invoking the optimality condition of x?, we get

r(x?)− r(x̃k+1/2
i)−

〈
x̃
k+1/2
i − x?,∇f̃i(x̃k+1/2

i ;xki) + yki −∇fi(xki) + χki

〉
+ ξki ≥ 0,〈

∇f(x?), x̃k+1/2
i − x?

〉
+ r(x̃k+1/2

i)− r(x?) ≥ 0.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

Combining the above two, we get

0 ≤
〈
∇f(x?)− yki +∇fi(xki)−∇f̃i(x̃k+1/2

i ;xki)− χki ± ȳk, x̃
k+1/2
i − x?

〉
+ ξki

≤

〈
∇f(x?)− 1

m

m∑
j=1
∇fj(xkj) +∇fi(xki)−∇f̃i(x̃k+1/2

i ;xki), x̃k+1/2
i − x?

〉

+
∥∥ȳk − yki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥+

∥∥χki ∥∥∥∥∥x̃k+1/2
i − x?

∥∥∥+ ξki

≤
〈
∇f(x?)−∇f(xki) +∇fi(xki)±∇f̃i(x?;xki)−∇f̃i(x̃k+1/2

i ;xki), x̃k+1/2
i − x?

〉
+
∥∥ȳk − yki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥+

∥∥χki ∥∥∥∥∥x̃k+1/2
i − x?

∥∥∥+

∥∥∥∥∥∥∇f(xki)− 1
m

m∑
j=1
∇fj(xkj)

∥∥∥∥∥∥
∥∥∥x̃k+1/2

i − x?
∥∥∥+ ξki

=
〈∫ 1

0

(
∇2f(θx? + (1− θ)xki)−∇2f̃i(θx? + (1− θ)xki ;xki)

) (
x? − xki

)
dθ, x̃k+1/2

i − x?
〉

+
〈
∇f̃i(x?;xki)−∇f̃i(x̃k+1/2

i ;xki), x̃k+1/2
i − x?

〉
+
∥∥ȳk − yki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥

+

 1
m

m∑
j=1

Lj
∥∥xkj − xki ∥∥

∥∥∥x̃k+1/2
i − x?

∥∥∥+
∥∥χki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥+ ξki

≤ Di

∥∥x? − xki ∥∥ ∥∥∥x̃k+1/2
i − x?

∥∥∥− µ̃i ∥∥∥x̃k+1/2
i − x?

∥∥∥2
+
∥∥ȳk − yki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥

+

 1
m

m∑
j=1

Lj
∥∥xkj − xki ∥∥

∥∥∥x̃k+1/2
i − x?

∥∥∥+
∥∥χki ∥∥∥∥∥x̃k+1/2

i − x?
∥∥∥+ ξki

≤ Di

2q1

∥∥xki − x?∥∥2 + 1
2q2

∥∥ȳk − yki ∥∥2 + 1
2q3

 1
m

m∑
j=1

Lj
∥∥xkj − xki ∥∥

2

+ 1
2q4

∥∥χki ∥∥2

+
(

1
2 (Diq1 + q2 + q3 + q4)− µ̃i

)∥∥∥x̃k+1/2
i − x?

∥∥∥2
+ ξki

Setting q1 = µ̃i

4Di
, q2 = q3 = q4 = µ̃i

4 in the above and plugging in the following inequalities,∥∥∥x̃k+1/2
i − x?

∥∥∥2
≥ −

∥∥x? − xki ∥∥2 + 1
2
∥∥dki ∥∥2

,∥∥x? − xki ∥∥2 ≤ 2
Υ
(
u(xki)− u(x?)

)
,∥∥xkj − xki ∥∥2 ≤ 2

∥∥xkj − x?∥∥2 + 2
∥∥xki − x?∥∥2

,

we get

∥∥dki ∥∥2 ≤
(

2 + 8D2
i

µ̃2
i

+ 16L2
mx

µ̃2
i

)∥∥x? − xki ∥∥2 + 8
µ̃2
i

∥∥ȳk − yki ∥∥2 + 16
µ̃2
i

L2
mx
m

m∑
j=1

∥∥xkj − x?∥∥2 + 8
µ̃2
i

∥∥χki ∥∥2 + 4
µ̃i
ξki .

Using (61) and summing the above over i ∈ [m], we get

1
m

∥∥dk∥∥2 ≤ 2
Υ

(
2 + 8D2

mx
µ̃2

mn
+ 32L2

mx
µ̃2

mn

)
gk + 8

µ̃2
mn

∥∥yk⊥∥∥2 +
(

16Lmx

µ̃2
mn

+ 4
µ̃mn

)
1
m

m∑
j=1

ξkj .

Now we are ready to combine (68), (70) and (71) to obtain the contraction results for the Inexact-SONATA.
Beforehand, we notice that when Inexact-SONATA is adopted inside Algorithm 6 with δ = β − µ, the

Acceleration in Distributed Optimization under Similarity

aforementioned parameters can be set as

Υ = β, D`
mn = 0, Dmx = 2β, µ̃mn = 2β − µ, Lmx = L+ 2β − µ, L̃mx = L+ 3β − µ.

In addition, we choose
ε1 = ε2 = 2β − µ

4 .

One can then easily check in (68), σ0 ≤ 16
17 , η0 ≤ 36

17β . Multiplying (70) by 72
17β and (71) by 1008L2

mxρ
2

17β , and
combining the obtained inequalities with (68) yield

gk+1 + 288L2
mx

17β
∥∥xk+1
⊥
∥∥2 + 144

17β
∥∥yk+1
⊥
∥∥2

≤
(

16
17 + 1008L2

mx ρ
2

17β σ1

)
gk + 144L2

mx
17β

(
1 + 16ρ2) ∥∥xk⊥∥∥2 + 72

17β
(
1 + 6ρ2 + 14L2

mxρ
2η2
) ∥∥yk⊥∥∥2

+
(
η1 + 1008L2

mx ρ
2

17β η3

)
1
m

m∑
j=1

ξkj .

(72)

Thus, with

ρ2 ≤ min
(

β

2016L2
mx σ1

,
8

17 (3 + 7L2
mx η2)

)
, (73)

we have

gk+1 + 288L2
mx

17β
∥∥xk+1
⊥
∥∥2 + 144

17β
∥∥yk+1
⊥
∥∥2 ≤ 33

34

(
gk + 288L2

mx
17β

∥∥xk⊥∥∥2 + 144
17β

∥∥yk⊥∥∥2
)

+ η4
1
m

m∑
j=1

ξkj , (74)

where
η4 , η1 + 1008L2

mx ρ
2

17β η3.

E.1.3 Step 2: Inexact-SONATA as an Inner Algorithm in Inexact ACC-SONATA-F

In this section, we use double time index (•)k,t to denote any variable (•) of Inexact SONATA in the t-th
inner iteration of the k-th outer iteration of the Algorithm 6. Recalling the definition of P k in (22), we define

ξk,ti ,
P 0

η4

(
1− c

√
µ

β

)k (16
17

)t
, for ∀ i ∈ [m], k ≥ 0, t ≥ 0. (75)

To comply with the notations in (20), we define

ek,t , cx
∥∥∥xk,t⊥ ∥∥∥2

+ cy

∥∥∥yk,t⊥ ∥∥∥2
, with cx ,

288L2
mx

17β and cy ,
144
17β . (76)

According to the discussion in Section C.2, if one can guarantee

gk,T + ek,T ≤ εk+1, k = 0, 1, . . . , (77)

with εk , P 0 · (1− c · α)k, then P k = O
(

(1− c · α)k
)
. By (74), we have

gk,t+1 + ek,t+1 ≤ 33
34
(
gk,t + ek,t

)
+ P 0

(
1− c

√
µ

β

)k (16
17

)t
, ∀ k ≥ 0, t ≥ 0.

Ye Tian∗, Gesualdo Scutari∗, Tianyu Cao∗, Alexander Gasnikov†

In particular, for a fixed k, applying the above telescopically on t yields

gk,T + ek,T ≤
(

33
34

)T (
gk,0 + ek,0

)
+ P 0

(
1− c

√
µ

β

)k T∑
t=0

(
33
34

)T−t(16
17

)t

=
(

33
34

)T (
gk,0 + ek,0 + P 0

(
1− c

√
µ

β

)k T∑
t=0

(
32
33

)t)
≤
(

33
34

)T (
gk,0 + ek,0 + 33P 0

(
1− c

√
µ

β

)k)
.

Therefore, according to Lemma 9, for k ≥ 1, the number of inner loops needed for (77) can be bounded as

T ≤

34 log
gk,0 + ek,0 + 33P 0

(
1− c

√
µ
β

)k
εk+1


(34)
≤

34 log
P 0
(

2(1− c · α)k + 576(β−µ)2

µβ c2 (1− c · α)k−1 + 33(1− c · α)k
)

P 0 (1− c · α)k+1


=

34 log
35(1− c · α) + 576(β−µ)2

µβ c2

(1− c · α)2

 = O
(

log β
µ

)
.

For k = 0, due to g0,0 + e0,0 ≤ P 0, we have T =
⌈
34 log 34

1−c·α

⌉
, which is smaller than the RHS of the above.

E.1.4 Step 3: Complexity of Inexact ACC-SONATA-F

The total number of computation steps taken byM as in Theorem 13 can be readily obtained as follows:

K−1∑
k=0

T−1∑
t=0

T k,t = κM

K−1∑
k=0

T−1∑
t=0

log 1
ξk,t1

(75)
≤ κM

K−1∑
k=0

T−1∑
t=0

(
log
(η4

P 0

)
+ k log

(
1

1− c

)
+ t log 17

16

)
≤ κM

(
KT log

(η4

P 0

)
+ T

K(K − 1)
2 log

(
1

1− c

)
+K

T (T − 1)
2 log 17

16

)
.

Since K = O
(√

β
µ log 1

ε

)
and T = O

(
log β

µ

)
, we have

K−1∑
k=0

T−1∑
t=0

T k,t = O
(
κMK2 T

)
= O

(
κM

β

µ
log β

µ

(
log 1

ε

)2
)
.

In addition, the total communication complexity is K · T = O
(√

β
µ · T · log 1

ε

)
.

	1 INTRODUCTION
	1.1 Contributions
	1.2 Related Works

	2 SETUP AND BACKGROUND
	2.1 Lower Complexity Bounds over Mesh Networks under Similarity
	2.2 A Building Block: SONATA Algorithm

	3 ACCELERATED SONATA
	3.1 Convergence Analysis

	4 NUMERICAL RESULTS
	A LOWER COMPLEXITY BOUNDS OVER MESH NETWORKS UNDER SIMILARITY
	B ADDITIONAL NUMERICAL RESULTS
	B.1 Setting and Algorithm Tuning
	B.2 Hinge Loss Minimization
	B.3 Logistic Regression

	C PROOF OF THEOREM 4 AND THEOREM 5
	C.1 Sketch of the Proof
	C.2 Step 1: Inexactness and Outer Loop Convergence
	C.3 Step 2: SONATA and Inner-Loop Convergence
	C.3.1 Proof of Theorem 4
	C.3.2 Proof of Theorem 5

	D ACC-SONATA OVER STAR-NETWORKS
	E SOLVING AGENTS' SUBPROBLEMS INEXACTLY
	E.1 Proof of Theorem 12 and Theorem 13
	E.1.1 Sketch of the Proof
	E.1.2 Step 1: Convergence Results of Inexact-SONATA
	E.1.3 Step 2: Inexact-SONATA as an Inner Algorithm in Inexact ACC-SONATA-F
	E.1.4 Step 3: Complexity of Inexact ACC-SONATA-F

