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Mirror Descent and Convex Optimization
Problems With Non-Smooth Inequality

Constraints

Anastasia Bayandina, Pavel Dvurechensky, Alexander Gasnikov, Fedor Stonyakin,

and Alexander Titov

Abstract We consider the problem of minimization of a convex function on a sim-

ple set with convex non-smooth inequality constraint and describe first-order meth-

ods to solve such problems in different situations: smooth or non-smooth objec-

tive function; convex or strongly convex objective and constraint; deterministic or

randomized information about the objective and constraint. Described methods are

based on Mirror Descent algorithm and switching subgradient scheme. One of our

focus is to propose, for the listed different settings, a Mirror Descent with adaptive

stepsizes and adaptive stopping rule. We also construct Mirror Descent for problems

with objective function, which is not Lipschitz, e.g. is a quadratic function. Besides

that, we address the question of recovering the dual solution in the considered prob-

lem.
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1 Introduction

We consider the problem of minimization of a convex function on a simple set with

convex non-smooth inequality constraint and describe first-order methods to solve

such problems in different situations: smooth or non-smooth objective function;

convex or strongly convex objective and constraint; deterministic or randomized in-

formation about the objective and constraint. The reason for considering first-order

methods is potential large (more than 105) number of decision variables.

Because of the non-smoothness presented in the problem, we consider subgra-

dient methods. These methods have a long history starting with the method for

deterministic unconstrained problems and Euclidean setting in [28] and the gen-

eralization for constrained problems in [26], where the idea of steps switching be-

tween the direction of subgradient of the objective and the direction of subgradient

of the constraint was suggested. Non-Euclidean extension, usually referred to as

Mirror Descent, originated in [17, 19] and later analyzed in [6]. An extension for

constrained problems was proposed in [19], see also recent version in [5]. Mirror

Descent for unconstrained stochastic optimization problems was introduced in [16],

see also [12, 15], and extended for stochastic optimization problems with expec-

tation constraints in [14]. To prove faster convergence rate of Mirror Descent for

strongly convex objective in unconstrained case, the restart technique [18, 19, 20]

was used in [12]. An alternative approach for strongly convex stochastic optimiza-

tion problems with strongly convex expectation constraints is used in [14].

Usually, the stepsize and stopping rule for Mirror Descent requires to know the

Lipschitz constant of the objective function and constraint, if any. Adaptive step-

sizes, which do not require this information, are considered in [7] for problems

without inequality constraints, and in [5] for constrained problems. Nevertheless,

the stopping criterion, expressed in the number of steps, still requires knowledge of

Lipschitz constants. One of our focus in this chapter is to propose, for constrained

problems, a Mirror Descent with adaptive stepsizes and adaptive stopping rule. We

also adopt the ideas of [21, 24] to construct Mirror Descent for problems with ob-

jective function, which is not Lipschitz, e.g. a quadratic function. Another important

issue, we address, is recovering the dual solution of the considered problem, which

was considered in different contexts in [1, 4, 23].

Formally speaking, we consider the following convex constrained minimization

problem

min{ f (x) : x ∈ X ⊂ E, g(x)≤ 0}, (1)

where X is a convex closed subset of a finite-dimensional real vector space E , f :

X →R, g : E →R are convex functions.

We assume g to be a non-smooth Lipschitz-continuous function and the problem

(1) to be regular. The last means that there exists a point x̄ in relative interior of the

set X , such that g(x̄)< 0.

Note that, despite problem (1) contains only one inequality constraint, consid-

ered algorithms allow to solve more general problems with a number of constraints
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given as {gi(x) ≤ 0, i = 1, ...,m}. The reason is that these constraints can be ag-

gregated and represented as an equivalent constraint given by {g(x) ≤ 0}, where

g(x) = maxi=1,...,m gi(x).
The the rest of the chapter is divided in three parts. In Section 2, we describe

some basic facts about Mirror Descent, namely, we define the notion of proximal

setup, the Mirror Descent step, and provide the main lemma about the progress

on each iteration of this method. Section 3 is devoted to deterministic constrained

problems, among which we consider convex non-smooth problems, strongly con-

vex non-smooth problems and convex problems with smooth objective. The last,

Section 4, considers randomized setting with available stochastic subgradients for

the objective and constraint and possibility to calculate the constraint function. We

consider methods for convex and strongly convex problems and provide complexity

guarantees in terms of expectation of the objective residual and constraint infeasi-

bility, as long as in terms of large deviation probability for these two quantities.

Notation: Given a subset I of natural numbers, we denote |I| the number of its

elements.

2 Mirror Descent Basics

We consider algorithms, which are based on Mirror Descent method. Thus, we start

with the description of proximal setup and basic properties of Mirror Descent step.

Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the

value of a linear function g ∈ E∗ at x ∈ E by 〈g,x〉. Let ‖ · ‖E be some norm on E ,

‖ · ‖E,∗ be its dual, defined by ‖g‖E,∗ = max
x

{
〈g,x〉,‖x‖E ≤ 1

}
. We use ∇ f (x) to

denote any subgradient of a function f at a point x ∈ dom f .

We choose a prox-function d(x), which is continuous, convex on X and

1. admits a continuous in x ∈ X0 selection of subgradients ∇d(x), where X0 ⊆ X is

the set of all x, where ∇d(x) exists;

2. d(x) is 1-strongly convex on X with respect to ‖ · ‖E , i.e., for any x ∈ X0,y ∈ X

d(y)− d(x)−〈∇d(x),y− x〉 ≥ 1
2
‖y− x‖2

E .

Without loss of generality, we assume that min
x∈X

d(x) = 0.

We define also the corresponding Bregman divergence V [z](x) = d(x)− d(z)−
〈∇d(z),x− z〉, x ∈ X ,z ∈ X0. Standard proximal setups, i.e. Euclidean, entropy,

ℓ1/ℓ2, simplex, nuclear norm, spectahedron can be found in [8].

Given a vector x ∈ X0, and a vector p ∈ E∗, the Mirror Descent step is defined as

x+ =Mirr[x](p) := argmin
u∈X

{
〈p,u〉+V [x](u)

}
= argmin

u∈X

{
〈p,u〉+d(u)−〈∇d(x),u〉

}
.

(2)

We make the simplicity assumption, which means that Mirr[x](p) is easily com-

putable. The following lemma [7] describes the main property of the Mirror De-
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scent step. We prove it here for the reader convenience and to make the chapter

self-contained.

Lemma 1. Let f be some convex function over a set X, h > 0 be a stepsize, x ∈ X0.

Let the point x+ be defined by x+ = Mirr[x](h · (∇ f (x)+∆)), where ∆ ∈ E∗. Then,

for any u ∈ X,

h ·
(

f (x)− f (u)+ 〈∆ ,x− u〉
)
≤ h · 〈∇ f (x)+∆ ,x− u〉

≤ h2

2
‖∇ f (x)+∆‖2

E,∗+V [x](u)−V [x+](u). (3)

Proof. By optimality condition in (2), we have that there exists a subgradient

∇d(x+), such that, for all u ∈ X ,

〈h · (∇ f (x)+∆)+∇d(x+)−∇d(x),u− x+〉 ≥ 0.

Hence, for all u ∈ X ,

〈h · (∇ f (x)+∆),x− u〉 ≤ 〈h · (∇ f (x)+∆),x− x+〉+ 〈∇d(x+)−∇d(x),u− x+〉
= 〈h · (∇ f (x)+∆),x− x+〉+(d(u)− d(x)−〈∇d(x),u− x〉)
− (d(u)− d(x+)−〈∇d(x+),u− x+〉)
− (d(x+)− d(x)−〈∇d(x),x+− x〉)

≤ 〈h · (∇ f (x)+∆),x− x+〉+V [x](u)−V [x+](u)−
1

2
‖x+− x‖2

E

≤V [x](u)−V [x+](u)+
h2

2
‖(∇ f (x)+∆)‖2

E,∗,

where we used the fact that, for any g ∈ E∗,

max
y∈E
〈g,y〉− 1

2
‖y‖2

E =
1

2
‖g‖2

E,∗.

By convexity of f , we obtain the left inequality in (3). ⊓⊔

3 Deterministic Constrained Problems

In this section, we consider problem (1) in two different settings, namely, non-

smooth Lipschitz-continuous objective function f and general objective function

f , which is not necessarily Lipschitz-continuous, e.g. a quadratic function. In both

cases, we assume that g is non-smooth and is Lipschitz-continuous

|g(x)− g(y)| ≤Mg‖x− y‖E, x,y ∈ X . (4)

Let x∗ be a solution to (1). We say that a point x̃ ∈ X is an ε-solution to (1) if
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f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε. (5)

The methods we describe are based on the of Polyak’s switching subgradient

method [26] for constrained convex problems, also analyzed in [21], and Mirror

Descent method originated in [19]; see also [7].

3.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

| f (x)− f (y)| ≤M f ‖x− y‖E, x,y ∈ X . (6)

Let x∗ be a solution to (1) and assume that we know a constant Θ0 > 0 such that

d(x∗)≤Θ 2
0 . (7)

For example, if X is a compact set, one can choose Θ 2
0 = maxx∈X d(x). We further

develop line of research [1, 4], but we should also mention close works [5, 23]. In

comparison to known algorithms in the literature, the main advantage of our method

for solving (1) is that the stopping criterion does not require the knowledge of con-

stants M f ,Mg, and, in this sense, the method is adaptive. Mirror Descent with step-

sizes not requiring knowledge of Lipschitz constants can be found, e.g., in [7] for

problems without inequality constraints, and, for constrained problems, in [5].The

algorithm is similar to the one in [2], but, for the sake of consistency with other parts

of the chapter, we use slightly different proof.

Theorem 1. Assume that inequalities (4) and (6) hold and a known constant Θ0 > 0

is such that d(x∗)≤Θ 2
0 . Then, Algorithm 1 stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
(8)

iterations and x̄k is an ε-solution to (1) in the sense of (5).

Proof. First, let us prove that the inequality in the stopping criterion holds for

k defined in (8). By (4) and (6), we have that, for any i ∈ {0, ...,k− 1}, Mi ≤
max{M f ,Mg}. Hence, by (8),

k−1

∑
j=0

1

M2
j

≥ k

max{M2
f ,M

2
g}
≥ 2Θ 2

0

ε2 .

Denote [k] = {i∈ {0, ...,k−1}}, J = [k]\ I. From Lemma 1 with ∆ = 0, we have,

for all i ∈ I and all u ∈ X ,

hi ·
(

f (xi)− f (u)
)
≤ h2

i

2
‖∇ f (xi)‖2

E,∗+V [xi](u)−V [xi+1](u)

and, for all i ∈ J and all u ∈ X ,
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Algorithm 1 Adaptive Mirror Descent (Non-Smooth Objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε then

6: Mk = ‖∇ f (xk)‖E,∗,
7: hk =

ε
M2

k

8: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)

9: Add k to I.

10: else

11: Mk = ‖∇g(xk)‖E,∗
12: hk =

ε
M2

k

13: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)

14: end if

15: Set k = k+1.

16: until
k−1

∑
j=0

1

M2
j

≥ 2Θ 2
0

ε2

Output: x̄k :=
∑
i∈I

hix
i

∑
i∈I

hi

hi ·
(
g(xi)− g(u)

)
≤ h2

i

2
‖∇g(xi)‖2

E,∗+V [xi](u)−V [xi+1](u).

Summing up these inequalities for i from 0 to k− 1, using the definition of hi, i ∈
{0, ...,k− 1}, and taking u = x∗, we obtain

∑
i∈I

hi

(
f (xi)− f (x∗)

)
+∑

i∈J

hi

(
g(xi)− g(x∗)

)

≤∑
i∈I

h2
i M2

i

2
+∑

i∈J

h2
i M2

i

2
+ ∑

i∈[k]

(
V [xi](x∗)−V [xi+1](x∗)

)

≤ ε

2
∑

i∈[k]
hi +Θ 2

0 . (9)

We also used that, by definition of x0 and (7),

V [x0](x∗) = d(x∗)− d(x0)−〈∇d(x0),x∗− x0〉 ≤ d(x∗)≤Θ 2
0 .

Since, for i ∈ J, g(xi)− g(x∗) ≥ g(xi) > ε , by convexity of f and the definition of

x̄k, we have



Mirror Descent for Convex Constrained Problems 7

(

∑
i∈I

hi

)
(

f (x̄k)− f (x∗)
)
≤∑

i∈I

hi

(
f (xi)− f (x∗)

)
<

ε

2
∑

i∈[k]
hi− ε ∑

i∈J

hi +Θ 2
0

= ε ∑
i∈I

hi−
ε2

2
∑

i∈[k]

1

M2
i

+Θ 2
0 ≤ ε ∑

i∈I

hi, (10)

where in the last inequality, the stopping criterion is used. As long as the inequality

is strict, the case of the empty I is impossible. Thus, the point x̄k is correctly defined.

Dividing both parts of the inequality by ∑
i∈I

hi, we obtain the left inequality in (5).

For i ∈ I, it holds that g(xi) ≤ ε . Then, by the definition of x̄k and the convexity

of g,

g(x̄k)≤
(

∑
i∈I

hi

)−1

∑
i∈I

hig(x
i)≤ ε.

⊓⊔

Let us now show that Algorithm 1 allows to reconstruct an approximate solution

to the problem, which is dual to (1). We consider a special type of problem (1) with

g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (11)

Then, the dual problem to (1) is

ϕ(λ ) = min
x∈X

{
f (x)+

m

∑
i=1

λigi(x)
}
→ max

λi≥0,i=1,...,m
ϕ(λ ), (12)

where λi ≥ 0, i = 1, ...,m are Lagrange multipliers.

We slightly modify the assumption (7) and assume that the set X is bounded and

that we know a constant Θ0 > 0 such that

max
x∈X

d(x)≤Θ 2
0 .

As before, denote [k] = { j ∈ {0, ...,k−1}}, J = [k]\ I. Let j ∈ J. Then a subgra-

dient of g(x) is used to make the j-th step of Algorithm 1. To find this subgradient,

it is natural to find an active constraint i ∈ 1, ...,m such that g(x j) = gi(x
j) and use

∇g(x j) = ∇gi(x
j) to make a step. Denote i( j) ∈ 1, ...,m the number of active con-

straint, whose subgradient is used to make a non-productive step at iteration j ∈ J.

In other words, g(x j) = gi( j)(x
j) and ∇g(x j) =∇gi( j)(x

j). We define an approximate

dual solution on a step k ≥ 0 as

λ̄ k
i =

1

∑
j∈I

h j
∑

j∈J,i( j)=i

h j, i ∈ {1, ...,m}. (13)

and modify Algorithm 1 to return a pair (x̄k, λ̄ k).
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Theorem 2. Assume that the set X is bounded, the inequalities (4) and (6) hold and

a known constant Θ0 > 0 is such that d(x∗)≤Θ 2
0 . Then, modified Algorithm 1 stops

after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉

iterations and the pair (x̄k, λ̄ k) returned by this algorithm satisfies

f (x̄k)−ϕ(λ̄ k)≤ ε, g(x̄k)≤ ε. (14)

Proof. From Lemma 1 with ∆ = 0, we have, for all j ∈ I and all u ∈ X ,

h j

(
f (x j)− f (u)

)
≤

h2
j

2
‖∇ f (x j)‖2

E,∗+V [x j](u)−V [x j+1](u)

and, for all j ∈ J and all u ∈ X ,

h j

(
gi( j)(x

j)− gi( j)(u)
)
≤ h j〈∇gi( j)(x

j),x j− u〉
= h j〈∇g(x j),x j− u〉

≤
h2

j

2
‖∇g(x j)‖2

E,∗+V [x j](u)−V [x j+1](u).

Summing up these inequalities for j from 0 to k− 1, using the definition of h j,

j ∈ {0, ...,k− 1}, we obtain, for all u ∈ X ,

∑
j∈I

h j

(
f (x j)− f (u)

)
+ ∑

j∈J

h j

(
gi( j)(x

j)− gi( j)(u)
)

≤∑
i∈I

h2
jM

2
j

2
+ ∑

j∈J

h2
jM

2
j

2
+ ∑

j∈[k]

(
V [x j](u)−V [x j+1](u)

)

≤ ε

2
∑
j∈[k]

h j +Θ 2
0 .

Since, for j ∈ J, gi( j)(x
j) = g(x j)> ε , by convexity of f and the definition of x̄k, we

have, for all u ∈ X ,
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(

∑
j∈I

h j

)
(

f (x̄k)− f (u)
)
≤∑

j∈I

h j

(
f (x j)− f (u)

)

≤ ε

2
∑
j∈[k]

h j +Θ 2
0 −∑

j∈J

h j

(
gi( j)(x

j)− gi( j)(u)
)

<
ε

2
∑
j∈[k]

hi +Θ 2
0 − ε ∑

j∈J

hi + ∑
j∈J

h jgi( j)(u)

= ε ∑
j∈I

h j−
ε2

2
∑
j∈[k]

1

M2
j

+Θ 2
0 + ∑

j∈J

h jgi( j)(u)

≤ ε ∑
j∈I

h j + ∑
j∈J

h jgi( j)(u), (15)

where in the last inequality, the stopping criterion is used. At the same time, by (13),

for all u ∈ X ,

∑
j∈J

h jgi( j)(u) =
m

∑
i=1

∑
j∈J,i( j)=i

h jgi( j)(u) =

(

∑
j∈I

h j

)
m

∑
i=1

λ̄ k
i gi(u).

This and (15) give, for all u ∈ X ,

(

∑
j∈I

h j

)
f (x̄k)<

(

∑
j∈I

h j

)(
f (u)+ ε +

m

∑
i=1

λ̄ k
i gi(u)

)
.

Since the inequality is strict and holds for all u ∈ X , we have

(
∑
j∈I

h j

)
6= 0 and

f (x̄k)< ε +min
u∈X

{
f (u)+

m

∑
i=1

λ̄ k
i gi(u)

}

= ε +ϕ(λ̄ k). (16)

Second inequality in (14) follows from Theorem 1. ⊓⊔

3.2 Strongly Convex Non-smooth Objective Function

In this subsection, we consider problem (1) with assumption (6) and additional as-

sumption of strong convexity of f and g with the same parameter µ , i.e.,

f (y)≥ f (x)+ 〈∇ f (x),y− x〉+ µ

2
‖y− x‖2

E, x,y ∈ X

and the same holds for g. For example, f (x) = x2+ |x| is a Lipschitz-continuous and

strongly convex function on X = [−1;1]⊂ R. We also slightly modify assumptions
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on prox-function d(x). Namely, we assume that 0 = argminx∈X d(x) and that d is

bounded on the unit ball in the chosen norm ‖ · ‖E , that is

d(x)≤ Ω

2
, ∀x ∈ X : ‖x‖E ≤ 1, (17)

where Ω is some known number. Finally, we assume that we are given a starting

point x0 ∈ X and a number R0 > 0 such that ‖x0− x∗‖2
E ≤ R2

0.

To construct a method for solving problem (1) under stated assumptions, we

use the idea of restarting Algorithm 1. The idea of restarting a method for convex

problems to obtain faster rate of convergence for strongly convex problems dates

back to 1980’s, see [19, 20]. The algorithm is similar to the one in [2], but, for

the sake of consistency with other parts of the chapter, we use slightly different

proof. To show that restarting algorithm is also possible for problems with inequality

constraints, we rely on the following lemma.

Lemma 2. Let f and g be strongly convex functions with the same parameter µ and

x∗ be a solution of the problem (1). If, for some x̃ ∈ X,

f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε,

then
µ

2
‖x̃− x∗‖2

E ≤ ε.

Proof. Since problem (1) is regular, by necessary optimality condition [9] at the

point x∗, there exist λ0,λ ≥ 0 not equal to 0 simultaneously, and subgradients

∇ f (x∗), ∇g(x∗), such that

〈λ0∇ f (x∗)+λ ∇g(x∗),x− x∗〉 ≥ 0, ∀x ∈ X , λ g(x∗) = 0.

Since λ0 and λ are not equal to 0 simultaneously, three cases are possible.

1. λ0 = 0 and λ > 0. Then, by optimality conditions, g(x∗) = 0 and 〈λ ∇g(x∗), x̃−
x∗〉 ≥ 0. Thus, by the Lemma assumption and strong convexity,

ε ≥ g(x̃)≥ g(x∗)+ 〈∇g(x∗), x̃− x∗〉+
µ

2
‖x̃− x∗‖2

E ≥
µ

2
‖x̃− x∗‖2

E .

2. λ0 > 0 and λ = 0. Then, by optimality conditions, 〈λ0∇ f (x∗), x̃− x∗〉 ≥ 0.

Thus, by the Lemma assumption and strong convexity,

f (x∗)+ ε ≥ f (x̃)≥ f (x∗)+ 〈∇ f (x∗), x̃− x∗〉+
µ

2
‖x̃− x∗‖2

E ≥ f (x∗)+
µ

2
‖x̃− x∗‖2

E .

3. λ0 > 0, λ > 0. Then, by optimality conditions, g(x∗) = 0 and 〈λ0∇ f (x∗)+
λ ∇g(x∗), x̃− x∗〉 ≥ 0. Thus, either 〈∇g(x∗), x̃− x∗〉 ≥ 0 and the proof is the same as

in the item 1, or 〈∇ f (x∗), x̃− x∗〉 ≥ 0 and the proof is the same as in the item 2. ⊓⊔

Theorem 3. Assume that inequalities (4) and (6) hold and f , g are strongly convex

with the same parameter µ . Also assume that the prox function d(x) satisfies (17)
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Algorithm 2 Adaptive Mirror Descent (Non-Smooth Strongly Convex Objective)

Input: accuracy ε > 0; strong convexity parameter µ ; Ω s.t. d(x) ≤ Ω
2
∀x ∈ X : ‖x‖E ≤ 1;

starting point x0 and number R0 s.t. ‖x0− x∗‖2
E ≤ R2

0.

1: Set d0(x) = d
(

x−x0
R0

)
.

2: Set p = 1.

3: repeat

4: Set R2
p = R2

0 ·2−p.

5: Set εp =
µR2

p

2
.

6: Set xp as the output of Algorithm 1 with accuracy εp, prox-function dp−1(·) and Ω
2

as Θ 2
0 .

7: dp(x)← d

(
x−xp

Rp

)
.

8: Set p = p+1.

9: until p > log2
µR2

0
2ε .

Output: xp.

and the starting point x0 ∈ X and a number R0 > 0 are such that ‖x0− x∗‖2
E ≤ R2

0.

Then, the point xp returned by Algorithm 2 is an ε-solution to (1) in the sense of (5)

and ‖xp− x∗‖2
E ≤ 2ε

µ . At the same time, the total number of iterations of Algorithm

1 does not exceed ⌈
log2

µR2
0

2ε

⌉
+

32Ω max{M2
f ,M

2
g}

µε
. (18)

Proof. Observe that, for all p ≥ 0, the function dp(x) defined in Algorithm 2 is 1-

strongly convex w.r.t. the norm ‖ · ‖E/Rp. The conjugate of this norm is Rp‖ · ‖E,∗.
This means that, at each step k of inner Algorithm 1, Mk changes to MkRp−1, where

p≥ 1 is the number of outer iteration.

We show, by induction, that, for all p ≥ 0, ‖xp− x∗‖2
E ≤ R2

p. For p = 0 it holds

by the assumption on x0 and R0. Let us assume that this inequality holds for some

p and show that it holds for p+1. By (17), we have dp(x∗)≤ Ω
2

. Thus, on the outer

iteration p+ 1, by Theorem 1 and (5), after at most

kp+1 =

⌈
Ω max{M2

f ,M
2
g}R2

p

ε2
p+1

⌉
(19)

inner iterations, xp+1 = x̄kp+1 satisfies

f (xp+1)− f (x∗)≤ εp+1, g(xp+1)≤ εp+1,

where εp+1 =
µR2

p+1

2
. Then, by Lemma 2,

‖xp+1− x∗‖2
E ≤

2εp+1

µ
= R2

p+1.

Thus, we proved that, for all p ≥ 0, ‖xp− x∗‖2
E ≤ R2

p = R2
0 ·2−p. At the same time,

we have, for all p≥ 1,
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f (xp)− f (x∗)≤
µR2

0

2
·2−p, g(xp)≤

µR2
0

2
·2−p.

Thus, if p > log2
µR2

0
2ε , xp is an ε-solution to (1) in the sense of (5) and

‖xp− x∗‖2
E ≤ R2

0 ·2−p ≤ 2ε

µ
.

Let us now estimate the total number N of inner iterations, i.e. the iterations of

Algorithm 1. Let us denote p̂ =
⌈

log2
µR2

0
2ε

⌉
. According to (19), we have

N =
p̂

∑
p=1

kp ≤
p̂

∑
p=1

(
1+

Ω max{M2
f ,M

2
g}R2

p

ε2
p+1

)
=

p̂

∑
p=1

(
1+

16Ω max{M2
f ,M

2
g}2p

µ2R2
0

)

≤ p̂+
32Ω max{M2

f ,M
2
g}2 p̂

µ2R2
0

≤ p̂+
32Ω max{M2

f ,M
2
g}

µε
.

⊓⊔

Similarly to Section 3.1, let us consider a special type of problem (1) with

strongly convex g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (20)

and corresponding dual problem

ϕ(λ ) = min
x∈X

{
f (x)+

m

∑
i=1

λigi(x)
}
→ max

λi≥0,i∈{1,...,m}
ϕ(λ ).

On each outer iteration p of Algorithm 2, there is the last inner iteration kp of Algo-

rithm 1. We define approximate dual solution as λp = λ̄ kp , where λ̄ kp is defined in

(13). We modify Algorithm 2 to return a pair (xp,λp).
Combining Theorem 2 and Theorem 3, we obtain the following result.

Theorem 4. Assume that g is given by (20), inequalities (4) and (6) hold and f , g

are strongly convex with the same parameter µ . Also assume that the prox function

d(x) satisfies (17) and the starting point x0 ∈ X and a number R0 > 0 are such that

‖x0− x∗‖2
E ≤ R2

0. Then, the pair (xp,λp) returned by Algorithm 2 satisfies

f (xp)−ϕ(λp)≤ ε, g(xp)≤ ε.

and ‖xp−x∗‖2
E ≤ 2ε

µ . At the same time, the total number of inner iterations of Algo-

rithm 1 does not exceed

⌈
log2

µR2
0

2ε

⌉
+

32Ω max{M2
f ,M

2
g}

µε
.
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3.3 General Convex Objective Function

In this subsection, we assume that the objective function f in (1) might not sat-

isfy (6) and, hence, its subgradients could be unbounded. One of the examples is a

quadratic function. We also assume that inequality (7) holds.

We further develop ideas in [21, 24] and adapt them for problem (1), in a way that

our algorithm allows to use non-Euclidean proximal setup, as does Mirror Descent,

and does not require to know the constant Mg. Following [21], given a function f

for each subgradient ∇ f (x) at a point y ∈ X , we define

v f [y](x) =






〈
∇ f (x)

‖∇ f (x)‖E,∗
,x− y

〉
, ∇ f (x) 6= 0

0 ∇ f (x) = 0

, x ∈ X . (21)

Algorithm 3 Adaptive Mirror Descent (General Convex Objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε then

6: hk =
ε

‖∇ f (xk)‖E,∗
7: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)

8: Add k to I.

9: else

10: hk =
ε

‖∇g(xk )‖2E,∗
11: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)

12: end if

13: Set k = k+1.

14: until |I|+ ∑
j∈J

1

‖∇g(x j )‖2E,∗
≥ 2Θ 2

0

ε2

Output: x̄k := argminx j , j∈I f (x j)

The following result gives complexity estimate for Algorithm 3 in terms of

v f [x∗](x). Below we use this theorem to establish complexity result for smooth ob-

jective f .

Theorem 5. Assume that inequality (4) holds and a known constant Θ0 > 0 is such

that d(x∗)≤Θ 2
0 . Then, Algorithm 3 stops after not more than

k =

⌈
2max{1,M2

g}Θ 2
0

ε2

⌉
(22)

iterations and it holds that mini∈I v f [x∗](xi)≤ ε and g(x̄k)≤ ε .



14 A. Bayandina, P. Dvurechensky, A. Gasnikov, F. Stonyakin, A. Titov

Proof. First, let us prove that the inequality in the stopping criterion holds for k

defined in (22). Denote [k] = {i ∈ {0, ...,k− 1}}, J = [k] \ I. By (4), we have that,

for any j ∈ J, ‖∇g(x j)‖E,∗ ≤Mg. Hence, since |I|+ |J|= k, by (22), we obtain

|I|+∑
j∈J

1

‖∇g(x j)‖2
E,∗
≥ |I|+ |J|

M2
g

≥ k

max{1,M2
g}
≥ 2Θ 2

0

ε2
.

From Lemma 1 with u = x∗ and ∆ = 0, by the definition of hi, i ∈ I, we have, for

all i ∈ I,

εv f [x∗](x
i) = ε

〈
∇ f (xi)

‖∇ f (xi)‖E,∗
,xi− x∗

〉
= hi〈∇ f (xi),xi− x∗〉

≤ h2
i

2
‖∇ f (xi)‖2

E,∗+V [xi](x∗)−V [xi+1](x∗)

=
ε2

2
+V [xi](x∗)−V [xi+1](x∗). (23)

Similarly, by the definition of hi, i ∈ J, we have, for all i ∈ J,

ε(g(xi)− g(x∗))

‖∇g(xi)‖2
E,∗

= hi

(
g(xi)− g(x∗)

)
≤ h2

i

2
‖∇g(xi)‖2

E,∗+V [xi](x∗)−V [xi+1](x∗)

=
ε2

2‖∇g(xi)‖2
E,∗

+V [xi](x∗)−V [xi+1](x∗).

Whence, using that, for all i ∈ J, g(xi)− g(x∗)≥ g(xi)> ε , we have

− ε2

2‖∇g(xi)‖2
E,∗

+V [xi](x∗)−V [xi+1](x∗)> 0. (24)

Summing up inequalities (23) for i ∈ I and applying (24) for i ∈ J, we obtain

ε|I|min
i∈I

v f [x∗](x
i)≤ ε ∑

i∈I

v f [x∗](x
i)<

ε2

2
· |I|+Θ 2

0 −∑
i∈J

ε2

2‖∇g(xi)‖2
E,∗

,

where we also used that, by definition of x0 and (7),

V [x0](x∗) = d(x∗)− d(x0)−〈∇d(x0),x∗− x0〉 ≤ d(x∗)≤Θ 2
0 .

If the stopping criterion in Algorithm 3 is fulfilled, we get

ε|I|min
i∈I

v f [x∗](x
i)< ε2|I|.

Since the inequality is strict, the set I is not empty and the output point x̄k is cor-

rectly defined. Dividing both sides of the last inequality by ε|I|, we obtain the first

statement of the Theorem. By definition of x̄k, it is obvious that g(x̄k)≤ ε . ⊓⊔
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To obtain the complexity of our algorithm in terms of the values of the objective

function f , we define non-decreasing function

ω(τ) =

{
max
x∈X
{ f (x)− f (x∗) : ‖x− x∗‖E ≤ τ} τ ≥ 0,

0 τ < 0.
(25)

and use the following lemma from [21].

Lemma 3. Assume that f is a convex function. Then, for any x ∈ X,

f (x)− f (x∗)6 ω(v f [x∗](x)). (26)

Corollary 1. Assume that the objective function f in (1) is given as f (x)=maxi∈{1,...,m} fi(x),
where fi(x), i = 1, ...,m are differentiable with Lipschitz-continuous gradient

‖∇ fi(x)−∇ fi(y)‖E,∗ ≤ Li‖x− y‖E ∀x,y ∈ X , i ∈ {1, ...,m}. (27)

Then x̄k is ε̃-solution to (1) in the sense of (5), where

ε̃ = max{ε,ε max
i=1,...,m

‖∇ fi(x∗)‖E,∗+ ε2 max
i=1,...,m

Li/2}.

Proof. As it was shown in Theorem 5, g(x̄k)≤ ε . It follows from (27) that

fi(x)≤ fi(x∗)+ 〈∇ fi(x∗),x− x∗〉+
1

2
Li||x− x∗||2E

≤ fi(x∗)+ ‖∇ fi(x∗)‖E,∗‖x− x∗‖E +
1

2
Li||x− x∗||2E , i = 1, ...,m.

Whence, ω(τ) ≤ τ maxi=1,...,m ‖∇ fi(x∗)‖E,∗ +
τ2 maxi=1,...,m Li

2
. By Lemma 3, non-

decreasing property of ω and Theorem 5, we obtain

f (x̄k)− f (x∗) = min
i∈I

f (xi)− f (x∗)≤min
i∈I

ω(v f [x∗](x
i))

≤ ω(min
i∈I

v f [x∗](x
i))≤ ω(ε)

≤ ε max
i=1,...,m

‖∇ fi(x∗)‖E,∗+
ε2 maxi=1,...,m Li

2
.

⊓⊔

4 Randomization for Constrained Problems

In this section, we consider randomized version of problem (1). This means that

we still can use the value of the function g(x) in an algorithm, but, instead of sub-

gradients of f and g, we use their stochastic approximations. We combine the idea
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of switching subgradient method [26] and Stochastic Mirror Descent method intro-

duced in [16]. More general case of stochastic optimization problems with expecta-

tion constraints is studied in [14]. We consider convex problems as long as strongly

convex and, for each case, we have two types of algorithms. The first one allows to

control expectation of the objective residual f (x̃)− f (x∗) and inequality infeasibil-

ity g(x̃), where x̃ is the output of the algorithm. The second one allows to control

probability of large deviation for these two quantities.

We introduce the following new assumptions. Given a point x ∈ X , we can cal-

culate stochastic subgradients ∇ f (x,ξ ),∇g(x,ζ ), where ξ ,ζ are random vectors.

These stochastic subgradients satisfy

E
[
∇ f (x,ξ )

]
= ∇ f (x) ∈ ∂ f (x), E

[
∇g(x,ζ )

]
= ∇g(x) ∈ ∂g(x), (28)

and

‖∇ f (x,ξ )‖E,∗ ≤M f , ‖∇g(x,ζ )‖E,∗ ≤Mg, a.s. in ξ ,ζ . (29)

To motivate these assumptions, we consider the following example.

Example 1. [3] Consider Problem (1) with

f (x) =
1

2
〈Ax,x〉,

where A is given n× n matrix, X = S(1) being standard unit simplex, i.e.

X = {x ∈ R
n
+ : ∑n

i=1 xi = 1}, and

g(x) = max
i∈{1,...,m}

{
〈ci,x〉

}
,

where
{

ci

}m

i=1
are given vectors in R

n.

Even if the matrix A is sparse, the gradient ∇ f (x) = Ax is usually not. The exact

computation of the gradient takes O(n2) arithmetic operations, which is expensive

when n is large. In this setting, it is natural to use randomization to construct a

stochastic approximation for ∇ f (x). Let ξ be a random variable taking its values in

{1, . . . ,n}with probabilities (x1, . . . ,xn) respectively. Let A〈i〉 denote the i-th column

of the matrix A. Since x ∈ Sn(1),

E
[
A〈ξ 〉

]
= A〈1〉P

(
ξ = 1

)
︸ ︷︷ ︸

x1

+ · · ·+A〈n〉P
(
ξ = n

)
︸ ︷︷ ︸

xn

= A〈1〉x1 + · · ·+A〈n〉xn = Ax.

Thus, we can use A〈ξ 〉 as stochastic subgradient, which can be calculated in O(n)
arithmetic operations.
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4.1 Convex Objective Function, Control of Expectation

In this subsection, we consider convex optimization problem (1) in randomized set-

ting described above. In this setting the output of the algorithm is random. Thus, we

need to change the notion of approximate solution. Let x∗ be a solution to (1). We

say that a (random) point x̃ ∈ X is an expected ε-solution to (1) if

E f (x̃)− f (x∗)≤ ε, and g(x̃) ≤ ε a.s. (30)

We also introduce a stronger assumption than (7). Namely, we assume that we

know a constant Θ0 > 0 such that

sup
x,y∈X

V [x](y)≤Θ 2
0 . (31)

The main difference between the method, which we describe below, and the method

in [14] is the adaptivity of our method both in terms of stepsize and stopping rule,

which means that we do not need to know the constants M f ,Mg in advance. We

assume that on each iteration of the algorithm independent realizations of ξ and

ζ are generated. The algorithm is similar to the one in [3], but, for the sake of

consistency with other parts of the chapter, we use slightly different proof.

Algorithm 4 Adaptive Stochastic Mirror Descent

Input: accuracy ε > 0; Θ0 s.t. V [x](y)≤Θ 2
0 , ∀x,y ∈ X .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε . then

6: Mk = ‖∇ f (xk,ξ k)‖E,∗.

7: hk =Θ0

( k

∑
i=0

M2
i

)−1/2

.

8: xk+1 = Mirr[xk](hk∇ f (xk,ξ k)) (”productive step”).

9: Add k to I.

10: else

11: Mk = ‖∇g(xk ,ζ k)‖E,∗.

12: hk =Θ0

( k

∑
i=0

M2
i

)−1/2

.

13: xk+1 = Mirr[xk](hk∇g(xk ,ζ k)) (”non-productive step”).

14: end if

15: Set k = k+1.

16: until k ≥ 2Θ0
ε

(k−1

∑
i=0

M2
i

)1/2

.

Output: x̄k = 1
|I| ∑

k∈I

xk .
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Theorem 6. Let equalities (28) and inequalities (29) hold. Assume that a known

constant Θ0 > 0 is such that V [x](y) ≤ Θ 2
0 , ∀x,y ∈ X. Then, Algorithm 4 stops

after not more than

k =

⌈
4max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
(32)

iterations and x̄k is an expected ε-solution to (1) in the sense of (30).

Proof. First, let us prove that the inequality in the stopping criterion holds for k

defined in (32). By (29), we have that, for any i∈ {0, ...,k−1}, Mi ≤max{M f ,Mg}.

Hence, by (32),
2Θ0

ε

(
k−1

∑
j=0

M2
j

)1/2

≤ 2Θ0
ε max{M f ,Mg}

√
k ≤ k.

Denote [k] = {i ∈ {0, ...,k− 1}}, J = [k]\ I and

δi =

{
〈∇ f (xi,ξ i)−∇ f (xi),x∗− xi〉, if i ∈ I,

〈∇g(xi,ζ i)−∇g(xi),x∗− xi〉, if i ∈ J.
(33)

From Lemma 1 with u = x∗ and ∆ = ∇ f (xi,ξ i)−∇ f (xi), we have, for all i ∈ I,

hi

(
f (xi)− f (x∗)

)
≤ h2

i

2
‖∇ f (xi,ξ i)‖2

E,∗+V [xi](x∗)−V [xi+1](x∗)+ hiδi

and, from Lemma 1 with u = x∗ and ∆ = ∇g(xi,ζ i)−∇g(xi), for all i ∈ J,

hi

(
g(xi)− g(x∗)

)
≤ h2

i

2
‖∇g(xi,ζ i)‖2

E,∗+V [xi](x∗)−V [xi+1](x∗)+ hiδi.

Dividing each inequality by hi and summing up these inequalities for i from 0 to

k− 1, using the definition of hi, i ∈ {0, ...,k− 1}, we obtain

∑
i∈I

(
f (xi)− f (x∗)

)
+∑

i∈J

(
g(xi)− g(x∗)

)

≤ ∑
i∈[k]

hiM
2
i

2
+ ∑

i∈[k]

1

hi

(
V [xi](x∗)−V [xi+1](x∗)

)
+ ∑

i∈[k]
δi (34)

Using (31), we get

k−1

∑
i=0

1

hi

(
V [xi](x∗)−V [xi+1](x∗)

)

=
1

h0

V [x0](x∗)+
k−2

∑
i=0

( 1

hi+1

− 1

hi

)
V [xi+1](x∗)−

1

hk−1

V [xk](x∗)

≤ Θ 2
0

h0

+Θ 2
0

k−2

∑
k=0

( 1

hi+1

− 1

hi

)
=

Θ 2
0

hk−1

.
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Whence, by the definition of stepsizes hi,

∑
i∈I

(
f (xi)− f (x∗)

)
+∑

i∈J

(
g(xi)− g(x∗)

)
≤ ∑

i∈[k]

hiM
2
i

2
+

Θ 2
0

hk−1

+ ∑
i∈[k]

δi

≤
k−1

∑
i=0

Θ0

2

M2
i(

∑i
j=0 M2

j

)1/2
+Θ0

(
k−1

∑
i=0

M2
i

)1/2

+ ∑
i∈[k]

δi

≤ 2Θ0

(
k−1

∑
i=0

M2
i

)1/2

+ ∑
i∈[k]

δi,

where we used inequality
k−1

∑
i=0

M2
i(

∑i
j=0 M2

j

)1/2 ≤ 2
(
∑k−1

i=0 M2
i

)1/2
, which can be proved

by induction. Since, for i ∈ J, g(xi)− g(x∗) ≥ g(xi) > ε , by convexity of f , the

definition of x̄k, and the stopping criterion, we get

|I|
(

f (x̄k)− f (x∗)
)
< ε|I|− εk+ 2Θ0

( k−1

∑
i=0

M2
i

)1/2

+
k−1

∑
i=0

δi ≤ ε|I|+
k−1

∑
i=0

δi. (35)

Taking the expectation and using (28), as long as the inequality is strict and the case

of I = /0 is impossible, we obtain

E f (x̄k)− f (x∗)≤ ε. (36)

At the same time, for i ∈ I it holds that g(xi) ≤ ε . Then, by the definition of x̄k and

the convexity of g,

g(x̄k)≤ 1

|I|∑
i∈I

g(xi)≤ ε.

⊓⊔

4.2 Convex Objective Function, Control of Large Deviation

In this subsection, we consider the same setting as in previous subsection, but

change the notion of approximate solution. Let x∗ be a solution to (1). Given ε > 0

and σ ∈ (0,1), we say that a point x̃ ∈ X is an (ε,σ)-solution to (1) if

P{ f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε} ≥ 1−σ . (37)

As in the previous subsection, we use an assumption expressed by inequality (31).

We assume additionally to (29) that inequalities (4) and (6) hold. Unfortunately, it is

not clear, how to obtain large deviation guarantee for an adaptive method. Thus, in

this section, we assume that the constants M f , Mg are known and use a simplified al-
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gorithm. We assume that on each iteration of the algorithm independent realizations

of ξ and ζ are generated.

Algorithm 5 Stochastic Mirror Descent

Input: accuracy ε > 0; maximum number of iterations N; M f , Mg s.t. (4), (6), (29) hold.

1: x0 = argmin
x∈X

d(x).

2: Set h = ε
max{M2

f
,M2

g}
.

3: Set k = 0.

4: repeat

5: if g(xk)≤ ε . then

6: xk+1 = Mirr[xk](h∇ f (xk,ξ k)) (”productive step”).

7: Add k to I.

8: else

9: xk+1 = Mirr[xk](h∇g(xk ,ζ k)) (”non-productive step”).

10: end if

11: Set k = k+1.

12: until k ≥ N.

Output: If I 6= /0, then x̄k = 1
|I| ∑

k∈I

xk. Otherwise x̄k = NULL.

To analyze Algorithm 5 in terms of large deviation bound, we need the following

known result, see, e.g. [10].

Lemma 4 (Azuma-Hoeffding Inequality). Let η1, . . . ,ηn be a sequence of inde-

pendent random variables taking their values in some set Ξ , and let Z = φ(η1, . . . ,ηn)
for some function φ : Ξ n→R. Suppose that a. s.

∣∣E[Z|η1, . . . ,η i]−E[Z|η1, . . . ,η i−1]
∣∣≤ ci, i = 1, . . . ,n,

where ci, i ∈ {1, ...,n} are deterministic. Then, for each t ≥ 0

P
(
Z−EZ ≥ t

)
≤ exp

{
− t2

2
n

∑
i=1

c2
i

}
.

Theorem 7. Let equalities (28) and inequalities (4), (6), (29) hold. Assume that a

known constant Θ0 > 0 is such that V [x](y) ≤ Θ 2
0 , ∀x,y ∈ X, and the confidence

level satisfies σ ∈ (0,0.5). Then, if in Algorithm 5

N =

⌈
70

max{M2
f ,M

2
g}Θ 2

0

ε2
ln

1

σ

⌉
, (38)

x̄k is an (ε,σ)-solution to (1) in the sense of (37).

Proof. Let us denote M = max{M f ,Mg}. In the same way as we obtained (34) in

the proof of Theorem 6, we obtain
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h∑
i∈I

(
f (xi)− f (x∗)

)
+ h∑

i∈J

(
g(xi)− g(x∗)

)

≤ h2M2k

2
+V [x0](x∗)+ h

k−1

∑
i=0

δi,

where δi, i = 0, ...,k−1 are defined in (33). Since, for i ∈ J, g(xi)−g(x∗)≥ g(xi)>
ε , by convexity of f , the definition of x̄k and h, we get

h|I|
(

f (x̄k)− f (x∗)
)
< εh|I|− ε2k

2M2
+Θ 2

0 + h
k−1

∑
i=0

δi. (39)

Using Cauchy-Schwarz inequality, (4), (6), (29), (31), we have

h
∣∣δi

∣∣≤ 2hM‖xi− x∗‖

≤ 2hM

√
2V [xi](x∗)≤ 2

√
2hMΘ0 = 2

√
2

εΘ0

M
.

Now we use Lemma 4 with Z =
k−1

∑
i=0

hδi. Clearly, EZ = E

[ k−1

∑
i=0

hδi

]
= 0 and we can

take ci = 2
√

2
εΘ0
M

. Then, by Lemma 4, for each t ≥ 0,

P

{
k−1

∑
i=0

hδi ≥ t

}
≤ exp


−

t2

2
k−1

∑
i=0

c2
i


= exp

(
− t2M2

16ε2Θ 2
0 k

)
.

In other words, for each σ ∈ (0,1)

P

{
k−1

∑
i=0

hδi ≥
4εΘ0

M

√
k ln
( 1

σ

)}
≤ σ .

Applying this inequality to (39), we obtain, for any σ ∈ (0,1),

P

{
h|I|
(

f (x̄k)− f (x∗)
)
< εh|I|− ε2k

2M2
+Θ 2

0 +
4εΘ0

M

√
k ln
( 1

σ

)}
≥ 1−σ .

Then, by (38) , we have

− ε2k

2M2
+Θ 2

0 +
4εΘ0

M

√
k ln
( 1

σ

)
<Θ 2

0

(
−71

2
ln
( 1

σ

)
+ 1+ 4ln

( 1

σ

)√
71

)

<Θ 2
0

(
−3

2
ln
( 1

σ

)
+ 1

)
. (40)

Since σ ≤ 0.5 < exp(−2/3), we have − 3
2

ln
(

1
σ

)
+ 1 < 0 and
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P

{
h|I|
(

f (x̄k)− f (x∗)
)
< h|I|ε

}
≥ 1−σ .

Thus, with probability at least 1−σ , the inequality is strict, the case of I = /0 is

impossible, and x̄k is correctly defined. Dividing the both sides of it by h · |I|, we

obtain that P
{

f (x̄k)− f (x∗)≤ ε
}
≥ 1−σ . At the same time, for i ∈ I it holds that

g(xi)≤ ε . Then, by the definition of x̄k and the convexity of g, again with probability

at least 1−σ

g(x̄k)≤ 1

|I|∑i∈I

g(xi)≤ ε.

Thus, x̄k is an (ε,σ)-solution to (1) in the sense of (37). ⊓⊔

4.3 Strongly Convex Objective Function, Control of Expectation

In this subsection, we consider the setting of Subsection 4.1, but, as in Subsection

3.2, make the following additional assumptions. First, we assume that functions

f and g are strongly convex. Second, without loss of generality, we assume that

0 = argminx∈X d(x). Third, we assume that we are given a starting point x0 ∈ X

and a number R0 > 0 such that ‖x0− x∗‖2
E ≤ R2

0. Finally, we make the following

assumption (cf. (17)) that d is bounded in the following sense. Assume that x∗ is

some fixed point and x is a random point such that Ex

[
‖x− x∗‖2

E

]
≤ R2, then

Ex

[
d
(x− x∗

R

)]
≤ Ω

2
, (41)

where Ω is some known number and Ex denotes the expectation with respect to

random vector x. For example, this assumption holds for Euclidean proximal setup.

Unlike the method introduced in [14] for strongly convex problems, we present a

method, which is based on the restart of Algorithm 5. Unfortunately, it is not clear,

whether the restart technique can be combined with adaptivity to constants M f , Mg.

Thus, we assume that these constants are known.

The following lemma can be proved in the same way as Lemma 2.

Lemma 5. Let f and g be strongly convex functions with the same parameter µ and

x∗ be a solution of problem (1). Assume that, for some random x̃ ∈ X,

E f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε.

Then
µ

2
E‖x̃− x∗‖2

E ≤ ε.

Theorem 8. Let equalities (28) and inequalities (29) hold and f , g be strongly con-

vex with the same parameter µ . Also assume that the prox function d(x) satisfies (41)

and the starting point x0 ∈ X and a number R0 > 0 are such that ‖x0− x∗‖2
E ≤ R2

0.

Then, the point xp returned by Algorithm 6 is an expected ε-solution to (1) in the
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Algorithm 6 Stochastic Mirror Descent (Strongly Convex Objective, Expectation

Control)

Input: accuracy ε > 0; strong convexity parameter µ ; Ω s.t. Ex

[
d

(
x−x∗

R

)]
≤ Ω

2
if

Ex

[
‖x− x∗‖2

E

]
≤ R2; starting point x0 and number R0 s.t. ‖x0− x∗‖2

E ≤ R2
0.

1: Set d0(x) = d

(
x−x0

R0

)
.

2: Set p = 1.

3: repeat

4: Set R2
p = R2

0 ·2−p.

5: Set εp =
µR2

p

2
.

6: Set Np =

⌈
max{M2

f ,M
2
g}ΩR2

p−1

ε2
p

⌉

7: Set xp as the output of Algorithm 5 with accuracy εp, number of iterations Np, prox-function

dp−1(·) and Ω
2

as Θ 2
0 .

8: dp(x)← d

(
x−xp

Rp

)
.

9: Set p = p+1.

10: until p > log2
µR2

0
2ε .

Output: xp.

sense of (30) and E‖xp− x∗‖2
E ≤ 2ε

µ . At the same time, the total number of inner

iterations of Algorithm 5 does not exceed

⌈
log2

µR2
0

2ε

⌉
+

32Ω max{M2
f ,M

2
g}

µε
. (42)

Proof. Let us denote M = max{M f ,Mg}. Observe that, for all p ≥ 0, the function

dp(x) defined in Algorithm 6 is 1-strongly convex w.r.t. the norm ‖ · ‖E/Rp. The

conjugate of this norm is Rp‖ · ‖E,∗. This means that, at each outer iteration p, M

changes to MRp−1, where p is the number of outer iteration. We show by induction

that, for all p ≥ 0, E‖xp− x∗‖2
E ≤ R2

p. For p = 0 it holds by the definition of x0 and

R0.

Let us assume that this inequality holds for some p− 1 and show that it holds

for p. At iteration p, we start Algorithm 5 with starting point xp−1 and stepsize

hp =
εp

M2R2
p−1

. Using the same steps as in the proof of Theorem 7, after Np iterations

of Algorithm 5 (see (39)), we obtain

hp|Ip|
(

f (x̄k
p)− f (x∗)

)
< εphp|Ip|−

ε2
pNp

2M2R2
p−1

+Vp−1[xp−1](x∗)+ hp

Np−1

∑
i=0

δi, (43)

where Vp−1[z](x) is the Bregman divergence corresponding to dp−1(x) and Ip is the

set of ”productive steps”. Using the definition of dp−1, we have

Vp−1[xp−1](x∗) = dp−1(x∗)− dp−1(xp−1)−〈∇dp−1(xp−1),x∗− xp−1〉 ≤ dp−1(x∗).
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Taking expectation with respect to xp−1 in (43) and using inductive assumption

E‖xp−1− x∗‖2
E ≤ R2

p−1 and (41), we obtain, substituting Np,

hp|Ip|
(

f (x̄k
p)− f (x∗)

)
< εphp|Ip|−

ε2
pNp

2M2R2
p−1

+
Ω

2
+ hp

Np−1

∑
i=0

δi ≤ εphp|Ip|+ hp

Np−1

∑
i=0

δi,

(44)

Taking the expectation and using (28), as long as the inequality is strict and the case

of Ip = /0 is impossible, we obtain

E f (x̄k
p)− f (x∗)≤ εp. (45)

At the same time, for i∈ Ip it holds that g(xi)≤ εp. Then, by the definition of x̄k
p and

the convexity of g,

g(x̄k
p)≤

1

|Ip| ∑i∈Ip

g(xi)≤ εp.

Thus, we can apply Lemma 5 and obtain

E‖xp− x∗‖2
E ≤

2εp

µ
= R2

p.

Thus, we proved that, for all p≥ 0, E‖xp−x∗‖2
E ≤ R2

p = R2
0 ·2−p. At the same time,

we have, for all p≥ 1,

E f (xp)− f (x∗)≤
µR2

0

2
·2−p, g(xp)≤

µR2
0

2
·2−p.

Thus, if p > log2
µR2

0
2ε , xp is an ε-solution to (1) in the sense of (30) and

E‖xp− x∗‖2
E ≤ R2

0 ·2−p ≤ 2ε

µ
.

Let us now estimate the total number N of inner iterations, i.e. the iterations of

Algorithm 1. Let us denote p̂ =
⌈

log2
µR2

0
2ε

⌉
. We have

N =
p̂

∑
p=1

Np ≤
p̂

∑
p=1

(
1+

Ω max{M2
f ,M

2
g}R2

p−1

ε2
p

)
=

p̂

∑
p=1

(
1+

16Ω max{M2
f ,M

2
g}2p

µ2R2
0

)

≤ p̂+
32Ω max{M2

f ,M
2
g}2 p̂

µ2R2
0

≤ p̂+
32Ω max{M2

f ,M
2
g}

µε
.

⊓⊔



Mirror Descent for Convex Constrained Problems 25

4.4 Strongly Convex Objective Function, Control of Large

Deviation

In this subsection, we consider the setting of Subsection 4.2, but make the following

additional assumptions. First, we assume that functions f and g are strongly convex.

Second, without loss of generality, we assume that 0 = argminx∈X d(x). Third, we

assume that we are given a starting point x0 ∈ X and a number R0 > 0 such that

‖x0− x∗‖2
E ≤ R2

0. Finally, instead of (31), we assume that the Bregman divergence

satisfies quadratic growth condition

V [z](x)≤ Ω

2
‖x− z‖2

E, x,z ∈ X . (46)

where Ω is some known number. For example, this assumption holds for Euclidean

proximal setup. Unlike the method introduced in [14] for strongly convex problems,

we present a method, which is based on the restart of Algorithm 5. Unfortunately,

it is not clear, whether the restart technique can be combined with adaptivity to

constants M f , Mg. Thus, we assume that these constants are known.

Algorithm 7 Stochastic Mirror Descent (Strongly Convex Objective, Control of

Large Deviation)

Input: accuracy ε > 0; strong convexity parameter µ ; Ω s.t. V [x](y) ≤ Ω
2
‖x− y‖2

E , x,y ∈ X;

starting point x0 and number R0 s.t. ‖x0− x∗‖2
E ≤ R2

0.

1: Set d0(x) = d

(
x−x0

R0

)
.

2: Set p = 1.

3: repeat

4: Set R2
p = R2

0 ·2−p.

5: Set εp =
µR2

p

2
.

6: Set Np =

⌈
70

max{M2
f ,M

2
g}ΩR2

p−1

ε2
p

ln
(

1
σ log2

µR2
0

2ε

)⌉
.

7: Set Xp = {x ∈ X : ‖x− xp−1‖2
E ≤ R2

p−1}.
8: Set xp as the output of Algorithm 5 with accuracy εp, number of iteration Np, prox-function

dp−1(·), Ω as Θ 2
0 and Xp as the feasible set.

9: dp(x)← d
(

x−xp

Rp

)
.

10: Set p = p+1.

11: until p > log2
µR2

0
2ε .

Output: xp.

Theorem 9. Let equalities (28) and inequalities (4), (6), (29) hold. Let f , g be

strongly convex with the same parameter µ . Also assume that the Bregman diver-

gence V [z](x) satisfies (46) and the starting point x0 ∈ X and a number R0 > 0 are

such that ‖x0− x∗‖2
E ≤ R2

0. Then, the point xp returned by Algorithm 7 is an (ε,σ)-
solution to (1) in the sense of (37) and ‖xp− x∗‖2

E ≤ 2ε
µ with probability at least
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1−σ . At the same time, the total number of inner iterations of Algorithm 5 does not

exceed

⌈
log2

µR2
0

2ε

⌉
+

2240Ω max{M2
f ,M

2
g}

µε

(
ln

1

σ
+ ln log2

µR2
0

2ε

)
.

Proof. Let us denote M = max{M f ,Mg}. Observe that, for all p ≥ 0, the function

dp(x) defined in Algorithm 7 is 1-strongly convex w.r.t. the norm ‖ · ‖E/Rp. The

conjugate of this norm is Rp‖ · ‖E,∗. This means that, at each outer iteration p, M

changes to MRp−1, where p is the number of outer iteration.

Let Ap, p ≥ 0 be the event Ap = {‖xp− x∗‖2
E ≤ R2

p} and Āp be its complement.

Note that, by the definition of x0 and R0, A0 holds with probability 1. Denote p̂ =⌈
log2

µR2
0

2ε

⌉
.

We now show by induction that, for all p ≥ 1, P{Ap|Ap−1} ≥ 1− σ
p̂

. By induc-

tive assumption, Ap−1 holds and we have ‖xp−1− x∗‖2
E ≤ R2

p−1. At iteration p, we

start Algorithm 5 with starting point xp−1, feasible set Xp and Bregman divergence

Vp−1[z](x) corresponding to dp−1(x). Thus, by (46), we have

max
x,z∈Xp

Vp−1[z](x) = max
x,z∈Xp

d

(
x− xp−1

Rp−1

)
− d

(
z− xp−1

Rp−1

)

−
〈

∇d

(
z− xp−1

Rp−1

)
,

x− xp−1

Rp−1

− z− xp−1

Rp−1

〉

= max
x,z∈Xp

V

[
z− xp−1

Rp−1

](
x− xp−1

Rp−1

)

≤ max
x,z∈Xp

Ω‖x− z‖2
E

2R2
p−1

≤Ω .

Hence, by Theorem 7 with σp =
σ
p̂

, after Np iterations of Algorithm 5, we have

P
{

f (xp)− f (x∗)≤ εp, g(xp)≤ εp|Ap−1

}
≥ 1− σ

p̂
.

Whence, by Lemma 2,

P
{

Ap|Ap−1

}
= P

{
‖xp− x∗‖2

E ≤ R2
p|Ap−1

}
≥ 1− σ

p̂
,

which finishes the induction proof.

At the same time,
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P
{

f (x p̂)− f (x∗)> εp̂ or g(x p̂)> εp̂

}

= P
{

f (x p̂)− f (x∗)> εp̂ or g(x p̂)> εp̂

∣∣A p̂−1∪ Ā p̂−1

}

= P
{

f (x p̂)− f (x∗)> εp̂ or g(x p̂)> εp̂

∣∣A p̂−1

}
P{A p̂−1}

+P
{

f (x p̂)− f (x∗)> εp̂ or g(x p̂)> εp̂

∣∣ Ā p̂−1

}
P{Ā p̂−1}

≤ σ

p̂
+P{Ā p̂−1}

(∗)
≤ σ

p̂
+P

{
f (x p̂−1)− f (x∗)> εp̂−1 or g(x p̂−1)> εp̂−1

}

≤ 2 · σ
p̂
+P{Ā p̂−2} ≤ ...≤ p̂− 1

p̂
·σ +P{Ā1}, (47)

where (∗) follows from Lemma 2. Using that P{A1} = P{A1|A0} ≥ 1− σ
p̂

and,

hence, P{Ā1} ≤ σ
p̂

, we obtain

P
{

f (x p̂)− f (x∗)≤ ε, g(x p̂)≤ ε
}
≥ 1−σ .

Hence,

P

{
‖x p̂− x∗‖2

E ≤
2ε

µ

}
≥ 1−σ .

Let us now estimate the total number N of inner iterations, i.e. the iterations of

Algorithm 5. We have

N =
p̂

∑
p=1

Np ≤
p̂

∑
p=1

(
1+ 70

Ω max{M2
f ,M

2
g}R2

p−1

ε2
p

ln

(
1

σ
log2

µR2
0

2ε

))

=
p̂

∑
p=1

(
1+ 1120

Ω max{M2
f ,M

2
g}2p

µ2R2
0

ln

(
1

σ
log2

µR2
0

2ε

))

≤ p̂+ 2240
Ω max{M2

f ,M
2
g}2 p̂

µ2R2
0

ln

(
1

σ
log2

µR2
0

2ε

)

≤ p̂+ 2240
Ω max{M2

f ,M
2
g}

µε

(
ln

1

σ
+ ln log2

µR2
0

2ε

)
.

⊓⊔

5 Discussion

We conclude with several remarks concerning possible extensions of the described

results.

Obtained results can be easily extended for composite optimization problems of

the form

min{ f (x)+ c(x) : x ∈ X ⊂ E,g(x)+ c(x)≤ 0}, (48)
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where X is a convex closed subset of finite-dimensional real vector space E , f : X→
R, g : E → R, c : X → R are convex functions. Mirror Descent for unconstrained

composite problems was proposed in [11], see also [29] for corresponding version

of Dual Averaging [22]. To deal with composite problems (48), the Mirror Descent

step should be changed to

x+ = Mirr[x](p) = argmin
u∈X

{
〈p,u〉+ d(u)+ c(u)−〈∇d(x),u〉

}
∀x ∈ X0,

where X0 is defined in Section 2. The counterpart of Lemma 1 is as follows.

Lemma 6. Let f be some convex function over a convex closed set X, h > 0 be a

stepsize, x∈ X0. Let the point x+ be defined by x+ =Mirr[x](h ·(∇ f (x)+∆)), where

∆ ∈ E∗. Then, for any u ∈ X,

h ·
(

f (x)− f (u)+ c(x+)− c(u)+ 〈∆ ,x− u〉
)

≤ h · 〈∇ f (x)+∆ ,x− u〉− h · 〈∇c(x+),u− x+〉

≤ h2

2
‖∇ f (x)+∆‖2

E,∗+V [x](u)−V [x+](u).

We considered restarting Mirror Descent only in the case of strongly convex

functions. A possible extension can be in applying the restart technique to the case

of uniformly convex functions f and g introduced in [25] and satisfying

f (y)≥ f (x)+ 〈∇ f (x),y− x〉+ µ

2
‖y− x‖ρ

E, x,y ∈ X ,

where ρ ≥ 2, and the same holds for g. Restarting Dual Averaging [22] to obtain

subgradient methods for minimizing such functions without functional constraints,

both in deterministic and stochastic setting, was suggested in [13]. Another option

is, as it was done in [27] for deterministic unconstrained problems, to use sharpness

condition of f and g

µ

(
min

x∗∈X∗
‖x− x∗‖E

)ρ

≤ f (x)− f∗, ∀x ∈ X ,

where f∗ is the minimum value of f , X∗ is the set of minimizers of f in Problem (1),

and the same holds for g.

In stochastic setting, motivated by randomization for deterministic problems, we

considered only problems with available values of g. As it was done in [14], one

can consider more general problems of minimizing an expectation of a function

under inequality constraint given by EG(x,η)≤ 0, where η is random vector. In this

setting one can deal only with stochastic approximation of this inequality constraint.
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