
An Accelerated Method For Decentralized Distributed Stochastic
Optimization Over Time-Varying Graphs

Alexander Rogozin, Mikhail Bochko, Pavel Dvurechensky, Alexander Gasnikov, Vladislav Lukoshkin

Abstract— We consider a distributed stochastic optimization
problem that is solved by a decentralized network of agents with
only local communication between neighboring agents. The goal
of the whole system is to minimize a global objective function
given as a sum of local objectives held by each agent. Each
local objective is defined as an expectation of a convex smooth
random function and the agent is allowed to sample stochastic
gradients for this function. For this setting we propose the first
accelerated (in the sense of Nesterov’s acceleration) method that
simultaneously attains optimal up to a logarithmic factor com-
munication and oracle complexity bounds for smooth strongly
convex distributed stochastic optimization. We also consider the
case when the communication graph is allowed to vary with
time and obtain complexity bounds for our algorithm, which
are the first upper complexity bounds for this setting in the
literature.

Index Terms— stochastic optimization, decentralized dis-
tributed optimization, time-varying network

I. INTRODUCTION

Distributed algorithms have already about half a cen-
tury history [1], [2], [3] with many applications including
robotics, resource allocation, power system control, control
of drone or satellite networks, distributed statistical inference
and optimal transport, multiagent reinforcement learning [4],
[5], [6], [7], [8], [9], [10], [11], [12]. Recently, development
of such algorithms has become one of the main topics
in optimization and machine learning motivated by large-
scale learning problems with privacy constraints and other
challenges such as data being produced or stored distribut-
edly [13], [14], [15], [16], [17]. An important part of this
research studies decentralized distributed optimization algo-
rithms over arbitrary networks. In this setting a network of
computing agents, e.g. sensors or computers, is represented
by a connected graph in which two agents can communicate
with each other if there is an edge between them. This
imposes communication constraints and the goal of the whole
system [18], [19], [20] is to cooperatively minimize a global
objective using only local communications between agents,
each of which has access only to a local piece of the global

A.R. and M.B. are with the Moscow Institute of Physics
and Technology and HSE University, Russian Federation
([aleksandr.rogozin,bochko.mg]@phystech.edu).
P.D. is with the Weierstrass Institute for Applied Analysis and Stochastics,
Germany, Institute for Information Transmission Problems RAS, HSE
University, Russian Federation (pavel.dvurechensky@wias-
berlin.de). A.G. is with Moscow Institute of Physics and
Technology, Institute for Information Transmission Problems RAS,
HSE University, Russian Federation (gasnikov@yandex.ru).
V.L. is with the Skolkovo Institute of Science and Technology, Russia
(lukoshkin@phystech.edu). The research was supported by
the Ministry of Science and Higher Education of the Russian Federation
(Goszadaniye) No. 075-00337-20-03, project No. 0714-2020-0005.

objective. Due to random nature of the optimized process or
randomness and noise in the used data, a particular important
setting is distributed stochastic optimization. Moreover, the
topology of the network can vary in time, which may prevent
fast convergence of an algorithm.

More precisely, we consider the following optimization
problem

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, fi(x) := Eξi∼Difi(x, ξi),

(1)

where ξi’s are random variables with probability distributions
Di. For each i = 1, ..., n we make the following assumptions:
fi(x) is a convex function and that almost sure w.r.t. distribu-
tion Di, the function fi(x, ξi) has gradient ∇fi(x, ξi), which
is Li(ξi)-Lipschitz continuous with respect to the Euclidean
norm. Further, for each i = 1, ..., n, we assume that we know
a constant Li > 0 such that

√
EξiLi(ξi)2 ≤ Li < +∞.

Under these assumptions, Eξi∇fi(x, ξi) = ∇fi(x) and f
is Li-smooth, i.e. has Li-Lipschitz continuous gradient with
respect to the Euclidean norm. Also, we assume that, for all
x, and i

Eξi [‖∇fi(x, ξi)−∇fi(x)‖2] 6 σ2
i , (2)

where ‖·‖ is the Euclidean norm. Finally, we assume that
each fi is µi-strongly convex (µi > 0). Important charac-
teristics of the objective in (1) are local strong convexity
parameter µl = min

i
µi and local smoothness constant Ll =

maxi Li, which define local condition number κl = Ll/µl,
as well as their global counterparts µg = 1

n

∑n
i=1 µi, Lg =

1
n

∑n
i=1 Li, κg = Lg/µg . The global condition number may

be significantly better than local (see e.g. [21] for details) and
it is desired to develop algorithms with complexity depending
on the global condition number. Moreover, we introduce a
worst-case smoothness constant over stochastic realizations
Lξ = max

i
max
ξ
Li(ξ) and a maximum gradient norm at

optimum Mξ = max
i

max
ξ
‖∇fi(x∗, ξ)‖ and assume that

these constants are well-defined (finite). Similarly to global
smoothness and strong convexity constants, we introduce
σ2
g = 1

n

∑n
i=1 σ

2
i .

To introduce the distributed optimization setup, we assume
that communication constraints in the computational network
are represented by an undirected communication graph which
may vary with time. Namely, the network is modeled with a
sequence of graphs

{
Gk = (V,Ek)

}∞
k=0

. We note that the set
of vertices remains the same, while set of edges is allowed to

ar
X

iv
:2

10
3.

15
59

8v
3

 [
m

at
h.

O
C

]
 9

 N
ov

 2
02

2

change with time. Each agent in the network corresponds to
a graph vertex and communication at time slot k is possible
only between nodes which are connected by an edge at this
time slot. Further, each agent i has access only to iid samples
from Di and corresponding stochastic gradients ∇fi(x, ξi).
The goal of the whole network is to solve the minimization
problem (1) by using only communication between neighbor-
ing nodes. The performance of decentralized optimization
algorithms depends on the characteristic number χ of the
network that quantifies its connectivity and how fast the
information is spread over the network. The precise definition
will be given later.

A. Related work

In centralized setting optimal methods exist [22] for the
considered setting of smooth strongly convex stochastic
optimization, as well as many algorithms for other settings
[23], [24], [25], [26]. Decentralized distributed optimiza-
tion introduces several challenges, one of them being that
one has to care about two complexities: number of oracle
calls which are made by each agent and the number of
communication steps, which are sufficient to reach a given
accuracy ε. In the simple case of all constants µi, Li, σi being
independent on i, the oracle complexity lower bound [21],
[27] Ω

(
max

{
σ2

nµε ,
√

L
µ ln 1

ε

})
is a clear counterpart of the

centralized lower bound [28]. The lower bound on communi-
cations number Ω

(√
L
µχ ln 1

ε

)
corresponds to decentralized

deterministic optimization and, compared to standard non-
distributed accelerated methods [29], [30], [31], has an
additional network-dependent factor

√
χ. Existing distributed

algorithms [32], [33], [27], [34], [35] achieve either the
lower oracle complexity bound or the lower communication
complexity bound, but not both simultaneously. In this paper
we propose an algorithm which closes this gap and achieves
both bounds simultaneously.

Deterministic decentralized optimization is quite well un-
derstood with many centralized algorithms having their de-
centralized counterparts. For example, there are decentralized
subgradient method [36], gradient methods [37], [38] and
many variants of accelerated gradient methods [39], [40],
[41], [42], [43], [27], [44], which achieve both communi-
cation and oracle complexity lower bounds [45], [46], [21],
[47]. The negative side of the majority of the accelerated dis-
tributed methods is that their complexity depends on the local
condition number κl, which may be larger than the global
condition number κg , which corresponds to the centralized
optimization. A number of methods [21], [48], [49], [43],
[50] require an assumption that the Fenchel conjugate for
each fi(x) is available, which may be restrictive in practice.
In contrast, our complexity bounds depend on the global
condition number and we use the primal approach without
additional assumptions on fi’s.

Another important part of our paper is decentralized
distributed optimization on time-varying networks. This area
is not understood as well as the simpler setting of fixed
networks. The first method with provable geometric conver-

gence was proposed in [51]. Such primal algorithms as Push-
Pull Gradient Method [52] and DIGing [51] are robust to
network changes and have theoretical guarantees of conver-
gence over time-varying graphs. Recently, a dual method for
time-varying architectures was introduced in [53]. All these
methods do not allow to achieve the above lower bounds.
Moreover, we are not aware of any accelerated algorithms
for stochastic optimization on time-varying networks.

B. Our contributions

The main contribution of this paper is twofold. Firstly,
when the communication network is fixed, we propose the
first optimal up to logarithmic factors accelerated decentral-
ized distributed algorithm for stochastic convex optimization.
This means that our algorithm has oracle per node complex-
ity Õ

(
max

{
σ2
g

nµgε
,
√

Lg

µg
ln 1

ε

})
and communication com-

plexity Õ
(√

Lg

µg
χ ln 1

ε

)
. Importantly, our communication

bound depends on global constants Lg, µg whereas existing
algorithms, even for deterministic setting, provide bounds
which depend on local constants Ll, µl that can be much
worse than Lg , µg .

Secondly, we propose the first accelerated distributed
stochastic optimization algorithm over time-varying graphs.
This algorithm has the same oracle per node complexity
as the above algorithm and the communication complexity
Õ
(
τ
λ

√
Lg

µg
ln 1

ε

)
, where τ and λ characterize the dynamics

of the communication graph (see the precise definition in
Assumption 2.1).

II. PRELIMINARIES

A. Problem reformulation

In order to solve problem (1) in a decentralized manner,
we assign a local copy of x to each node in the network,
which leads to a linearly constrained problem

min
x∈Rn×d

F (x) =

m∑
i=1

fi(xi) s.t. x1 = . . . = xn, (3)

where x = (x1 . . . xn)> ∈ Rn×d. We denote the feasible
set C = {x1 = . . . = xn} for brevity. Strong convexity and
smoothness parameters of F are related to that of functions
fi. Namely, F is Ll-smooth and µl-strongly convex on Rn×d
and Lg-smooth and µg-strongly convex on the set C.

B. Consensus procedure

In this subsection we discuss, how the agents can interact
by exchanging information. Importantly, the communication
graph G can change with time. Thus, we consider a sequence
of undirected communication graphs

{
Gk = (V,Ek)

}∞
k=0

and a sequence of corresponding mixing matrices
{
Wk

}∞
k=0

associated with it. We impose the following
Assumption 2.1: Mixing matrix sequence

{
Wk

}∞
k=0

sat-
isfies the following properties.
• (Decentralized property) (i, j) /∈ Ek ⇒ [Wk]ij = 0.
• (Double stochasticity) Wk1n = 1n, 1>nW

k = 1>n .

• (Contraction property) There exist τ ∈ Z++ and λ ∈
(0, 1) such that for every k ≥ τ − 1 it holds∥∥Wk

τx− x
∥∥ ≤ (1− λ) ‖x− x‖ ,

where Wk
τ = Wk . . .Wk−τ+1.

The contraction property in Assumption 2.1 was initially
proposed in [54] in a stochastic form. This property gener-
alizes several assumptions in the literature.
• Time-static connected graphs. In this scenario we have

Wk = W. Therefore, λ = 1− λ2(W), where λ2(W)
denotes the second largest eigenvalue of W.

• Sequence of connected graphs: every Gk is connected.
In this case λ = 1− sup

k≥0
λ2(Wk).

• τ -connected graph sequence: for every k ≥ 0 graph
Gkτ = (V,Ek ∪ Ek+1 ∪ . . . ∪ Ek+τ−1) is connected
[51]. For τ -connected graph sequences it holds 1−λ =
sup
k≥0

λmax(Wk
τ − 1

n1n1
>
n).

During every (synchronized) communication round, the
agents pull information from their neighbors and update their
local vectors according to the rule

xk+1
i = [Wk]iix

k
i +

∑
(i,j)∈Ek

[Wk]ijx
k
j ,

which writes as xk+1 = Wkxk in matrix form. The
contraction property in Assumption 2.1 requires a specific
choice of weights in Wk. Choosing Metropolis weighs is
sufficient to ensure the contraction property for τ -connected
graph sequences (see [51] for details):

[Wk]ij =

1/(1 + max{dki , dkj }) if (i, j) ∈ Ek,
0 if (i, j) /∈ Ek,
1−

∑
(i,m)∈Ek

[Wk]im if i = j,

where dki denotes the degree of node i in graph Gk.
When the communication graph G does not change with

time, it is possible to apply accelerated consensus procedures
by leveraging Chebyshev acceleration [55], [56]: given the
reference matrix W as above, set WT = PT (W) and
PT (1) = 1 (the latter is to ensure the double stochasticity of
WT), with T being the number of consensus steps and PT
being the Chebyshev polynomial of degree T . In this case
one can guarantee that

‖WTx− x‖ ≤ (1−
√

1− ρ)T ‖x− x‖ ,

where ρ := λ2(W) < 1. In this case we define χ = 1
1−ρ .

III. ALGORITHM AND MAIN RESULT

In this section we describe the proposed algorithm and
give its convergence theorem. Our algorithms is an acceler-
ated mini-batch stochastic gradient method equipped with a
consensus procedure. Let

{
ξ`i
}r
`=1

be independent random
variables with distribution Di. For function fi we define its
batched gradient of size r as

∇rf
(
x,
{
ξ`i
}r
`=1

)
=

1

r

r∑
`=1

∇fi(x, ξr`).

Batched gradient for F (x) is defined analogously. Let{
ξ`
}r
`=1

be independent, where ξ` = (ξ`1 . . . ξ
`
n)> is a

random vector consisting of random variables at all nodes.
Then we define ∇rF (x, {ξ}r`=1) as a matrix of Rn×d, the
i-th row of which stores ∇rfi

(
xi,
{
ξ`i
}r
`=1

)
. For brevity we

use notation ∇rfi(xi), ∇rF (x) for batched gradients of fi
and F , respectively.

To describe the algorithm we introduce sequences of
extrapolation coefficients αk, Ak similar to that of [57],
which are defined as follows.

α0 = A0 = 0 (4a)

(Ak + αk+1)(1 +Akµg/2) = 2Lg(α
k+1)2, (4b)

Ak+1 = Ak + αk+1. (4c)

Algorithm 1 Decentralized Stochastic AGD
Require: Initial guess x0 ∈ C, constants Lg, µg > 0,

u0 = x0

1: for k = 0, 1, 2, . . . do
2: yk+1 = αk+1uk+Akxk

Ak+1

3: vk+1 =
(αk+1µg/2)y

k+1+(1+Akµg/2)u
k

1+Ak+1µg/2
− αk+1∇rF (yk+1)

1+Ak+1µg/2

4: uk+1 = Consensus(vk+1, T k)

5: xk+1 = αk+1uk+1+Akxk

Ak+1

6: end for

Algorithm 2 Consensus
Require: Initial x0 ∈ C, number of iterations T .

for t = 1, . . . , T do
xt+1 = Wtxt

end for

In the next theorem, we provide oracle and communication
complexities of Algorithm 1, i.e. we estimate the number
of stochastic oracle calls by each node and the number of
communication rounds to solve problem (1) with accuracy
ε.

Theorem 3.1 (Main result): Let ε > 0 be the desired
accuracy. Set

Tk = T =
τ

2λ
log

D

δ′
, δ′ =

nε

32

µ
3/2
g

L
1/2
g L2

l

, r =
2σ2

g

ε
√
Lgµg

,

where

√
D =

(
2Ll√
Lgµg

+ 1

)
√
δ′ +

2nMξ√
Lgµg

(5)

+
2Ll
µg

√
n

(∥∥u0 − x∗∥∥2 +
2√
Lgµg

(
σ2
g

4nLgr2
+ δ

))1/2

.

Then, to yield xN such that

Ef(xN)− f(x∗) ≤ ε, E
∥∥xN − xN

∥∥2 ≤ δ′ = O(ε),

Algorithm 1 requires no more than

Norcl = N · r =
6σ2

g

nµgε
log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
(6)

stochastic oracle calls at each node and no more than

Ncomm = 3

√
Lg
µg
κ · log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
log

D

δ′
, (7)

communication rounds, where κ = τ
2λ under Assumption 2.1

and κ =
√
χ when the communication graph is static.

We provide the proof of Theorem 3.1 in Section IV.
The number of stochastic oracle calls at each node in (6)

coincides with the lower bound for centralized optimization
up to a constant factor. When the graph is time-varying,
the number of communication steps includes an additional
factor τ/λ, which characterizes graph connectivity. If the
communication graph is fixed, in addition to the lower
oracle complexity bound, our algorithm also achieves lower
communication bound up to a polylogarithmic factor.

IV. ANALYSIS OF THE ALGORITHM

Analysis of our algorithm consists of three main parts.
Firstly, if an approximate consensus is imposed on local vari-
ables at each node, this ensures a stochastic inexact oracle for
the global objective f . Secondly, we analyze an accelerated
stochastic gradient method with stochastic inexact oracle.
Thirdly, we analyze, how the consensus procedure allows to
obtain an approximate consensus. Finally, we combine the
building blocks together and prove the main result.

A. Stochastic inexact oracle via inexact consensus

In this subsection we show that if a point x ∈ Rn×d is
close to the set C, i.e. it approximately satisfies consensus
constraints, then, the mini-batched and averaged among
nodes stochastic gradient provides a stochastic inexact oracle
developed in [58], [59], [60].

Consider x, y ∈ Rd and define x = 1nx
> =

(x . . . x)>, y = 1ny
> = (y . . . y)> ∈ Rn×d. Let x ∈ Rn×d

be such that ΠC(x) = x and ‖x− x‖2 ≤ δ′.
Lemma 4.1: Define

δ =
1

2n

(
L2
l

Lg
+

2L2
l

µg
+ Ll − µl

)
δ′, (8)

fδ,L,µ(x,x) =
1

n
[F (x) + 〈∇F (x),x− x〉]

+

(
µl
2n
− 2L2

l

2nµg

)
‖x− x‖2 ,

gδ,L,µ(x,x) =
1

n

n∑
i=1

∇fi(xi)

g̃δ,L,µ(x,x) =
1

n

n∑
i=1

1

r

r∑
j=1

∇fi(xi, ξji).

Firstly, for any y ∈ Rd it holds
µg
4
‖y − x‖2 ≤ f(y)− fδ,L,µ(x,x)− 〈gδ,L,µ(x,x), y − x〉

Lg ‖y − x‖2 + δ ≥ f(y)− fδ,L,µ(x,x)− 〈gδ,L,µ(x,x), y − x〉 .

Secondly, g̃δ,L,µ(x,x) satisfies

Eg̃δ,L,µ(x) = gδ,L,µ(x) (9a)

E‖g̃δ,L,µ(x,x)− gδ,L,µ(x,x)‖2 ≤
∑n
i=1 σ

2
i

n2r
=
σ2
g

nr
. (9b)

The first statement is proved in Lemma 2.1 of [61]; the
proof of the second statement is provided in Appendix VI-A.

B. Similar Triangles Method with Stochastic Inexact Oracle

In this subsection we present a general algorithm for
minimization problems with stochastic inexact oracle. This
subsection is independent from the others and generalizes
the algorithm and analysis from [57], [62] to the stochastic
setting. Let f(x) be a convex function defined on a convex
set Q ⊆ Rm. We assume that f is equipped with stochastic
inexact oracle having two components. The first component
(fδ,L,µ(x), gδ,L,µ(x)) exists at any point x ∈ Q and satisfies
µ

2
‖y − x‖2 ≤ f(y)− (fδ,L,µ(x) + 〈gδ,L,µ(x), y − x〉)

≤ L

2
‖y − x‖2 + δ (10)

for all y ∈ Q. To allow more flexibility, we assume that δ
may change with the iterations of the algorithm. The second
component g̃δ,L,µ(x) is stochastic, is available at any point
x ∈ Q, and satisfies

Eg̃δ,L,µ(x) = gδ,L,µ(x), E‖g̃δ,L,µ(x)− gδ,L,µ(x)‖2 ≤ σ2.
(11)

We also denote the batched version of the stochastic com-
ponent as

g̃ r
δ,L,µ(x) =

1

r

r∑
i=1

g̃δ,L,µ(x, ξi), (12)

where ξi’s are iid realizations of the random variable ξ. It is
straightforward that

Eg̃ r
δ,L,µ(x) = gδ,L,µ(x), (13a)

E‖g̃ r
δ,L,µ(x)− gδ,L,µ(x)‖2 ≤ σ2

r
. (13b)

Let us consider the following algorithm for minimizing
f . Note that the error δ of the oracle and batch size r may
depend on the iteration counter k. Moreover, we let δ be
stochastic.

We analyze convergence of Algorithm 3 by revisiting
the proof of Theorem 3.4 in [57] and formulate the result
in Theorem 4.2 below. The complete proof is provided in
Appendix VI-B.

Theorem 4.2: Let Algorithm 3 be applied to solve the
problem minx∈Q f(x). Let also

∥∥u0 − x∗∥∥ ≤ R. Then, after
N iterations we have

Ef(xN)− f(x∗) ≤ 1

AN

(
R2 +

N∑
i=1

Ai

(
σ2

2Lri
+ Eδi

))
(14)

E
∥∥∥uN − x∗

∥∥∥2 ≤ 1

1 +ANµ

(
R2 +

N∑
i=1

Ai

(
σ2

2Lri
+ Eδi

))
(15)

Algorithm 3 AGD with stochastic inexact oracle
Require: Initial guess x0, constants L, µ ≥ 0, sequence of

batch sizes {rk}k≥0.
Set y0 := x0, u0 := x0, α0 := 0, A0 := 0

1: for k ≥ 0 do
2: Find αk+1 as the greater root of:

(Ak + αk+1)(1 +Akµ) = L
(
αk+1

)2
3: Renew the following variables:

Ak+1 := Ak + αk+1

yk+1 :=
αk+1uk +Akxk

Ak+1

4: Define the function:

φk+1(x) := αk+1
〈
g̃
rk+1

δk+1,L,µ
(yk+1), x− yk+1

〉
+ (1 +Akµ)

∥∥x− uk∥∥2 + αk+1
∥∥x− yk+1

∥∥2
5: Solve the optimization problem:

uk+1 := arg min
x∈Q

φk+1(x)

6: Update x:

xk+1 :=
αk+1uk+1 +Akxk

Ak+1

7: end for

In order to establish the rate, we recall the results of
Lemma 5 in [58] and Lemma 3.7 in [57] and estimate the
growth of coefficients AN .

Lemma 4.3: Coefficient AN can be lower-bounded as
following: AN ≥ 1/L·

(
1 + (1/2)

√
µ/L

)2(N−1)
. Moreover,

we have
∑N
i=1A

i/AN ≤ 1 +
√
L/µ.

C. Proof of the main result

Thoughout this section, we denote L = 2Lg, µ = µg/2
and σ2 = σ2

g/(nr).

1) Outer loop:
Lemma 4.4: Provided that consensus accuracy is δ′, i.e.

E
∥∥uj − uj

∥∥2 ≤ δ′ for j = 1, . . . , k, we have

Ef(xk)− f(x∗) ≤ 1

Ak

(∥∥u0 − x∗
∥∥2 + (σ2

2Lr
+ δ

) k∑
i=1

Ai

)
(16)

E
∥∥∥uk − x∗

∥∥∥2 ≤ 1

1 +Akµ

(∥∥u0 − x∗
∥∥2 + (σ2

2Lr
+ δ

) k∑
i=1

Ai

)

where δ is given in (8).

Proof: First, assuming that E
∥∥uj − uj

∥∥2 ≤ δ′, we
show that yj ,uj ,xj lie in

√
δ′-neighborhood of C by in-

duction. At j = 0, we have
∥∥x0 − x0

∥∥ =
∥∥u0 − u0

∥∥ = 0.

Using Aj+1 = Aj +αj , we get an induction pass j → j+1.

E
∥∥yj+1 − yj+1

∥∥
≤ αj+1

Aj+1
E
∥∥uj − uj

∥∥+
Aj

Aj+1
E
∥∥xj − xj

∥∥ ≤ √δ′,
E
∥∥xj+1 − xj+1

∥∥
≤ αj+1

Aj+1
E
∥∥uj+1 − uj+1

∥∥+
Aj

Aj+1
E
∥∥xj − xj

∥∥ ≤ √δ′.
Therefore, g(y) = 1

n

∑n
i=1∇f(yi) represents the inexact

gradient of f , and the desired result directly follows from
Theorem 4.2.

2) Consensus subroutine iterations: In order to establish
communication complexity of Algorithm 3, we estimate the
number of consensus iterations in the following Lemma.

Lemma 4.5: Let consensus accuracy be maintained at
level δ′, i.e. E

∥∥uj − uj
∥∥2 ≤ δ′ for j = 1, . . . , k and let

Assumption 2.1 hold. Then it is sufficient to make Tk =
T = τ

2λ log D
δ′ consensus iterations, where D is defined

in (5), in order to ensure δ′-accuracy on step k + 1, i.e.
E
∥∥uk+1 − uk+1

∥∥2 ≤ δ′.
Lemma 4.5 is analogous to Lemma A.3 in [61] and is proven
in Appendix VI-D.

In the same way we can prove that if the communication
network is static, we can establish a sufficiently accurate
consensus in the next iteration.

Lemma 4.6: Let consensus accuracy be maintained at
level δ′, i.e. E

∥∥uj − uj
∥∥2 ≤ δ′ for j = 1, . . . , k and let

the communication network be static. Then it is sufficient to
make Tk = T =

√
χ log D

δ′ consensus iterations, where D is
defined in (5), in order to ensure δ′-accuracy on step k + 1,
i.e. E

∥∥uk+1 − uk+1
∥∥2 ≤ δ′.

3) Putting the proof together: We derive the expressions
for r and δ to meet the requirement Ef(xk) − f(x∗) ≤ ε
according to (16). This is done by combining the results of
Lemmas 4.3, 4.5, 4.6. The details are given in Appendix
VI-E.

V. NUMERICAL TESTS

We run Algorithm 1 on L2-regularized logistic regression
problem:

f(x) =
1

m

m∑
i=1

log (1 + exp(−bi 〈ai, x〉)) +
θ

2
‖x‖2 .

Here a1, . . . , am ∈ Rd are entries of the dataset,
b1, . . . , bm ∈ {−1, 1} denote class labels and θ > 0 is a
penalty coefficient. Data points (ai, bi) are distributed among
the computational nodes in the network.

We use LIBSVM datasets [63] to run our experiments.
Work of Algorithm 1 is simulated on a9a data-set with
different settings for batch-size r and number of consensus
iterations T . The random geometric graph has 20 nodes. We
compare the performance of Algorithm 1 with DSGD [32],
[34], [35].

Fig. 1. Random geometric graph with 20 nodes; batch size r = 10

We observe a tradeoff between consensus accuracy and
convergence speed in function value. A large number of
consensus steps results in more accurate consensus and
slower convergence, and vice versa. This tradeoff is present
for different batch sizes.

VI. CONCLUSION

We propose an accelerated distributed optimization algo-
rithm for stochastic optimization problems in two settings:
time-varying graphs and static graphs. For the latter setting
we achieve the full acceleration and our method achieves
lower bounds both for the communication and oracle per
node complexity.

Our approach is based on accelerated gradient method with
stochastic inexact oracle which makes it generic with many
possible extensions. In particular, we focus on a specific
case of strongly convex smooth functions, but the possible
extensions include non-strongly convex and/or non-smooth
functions that can be covered by such inexact oracles [64],
[65]. Further, we believe that our results can be extended for
composite optimization problems, zeroth-order optimization
methods [66], [67], [68], and distributed algorithms for
saddle-point problems [69] and variational inequalities.

REFERENCES

[1] V. Borkar and P. P. Varaiya, “Asymptotic agreement in distributed
estimation,” IEEE Transactions on Automatic Control, vol. 27, no. 3,
pp. 650–655, 1982.

[2] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agree-
ment in distributed decision problems,” IEEE Transactions on Auto-
matic Control, vol. 29, no. 1, pp. 42–50, 1984.

[3] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[4] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of Optimization Theory and
Applications, vol. 129, no. 3, pp. 469–488, 2006.

[5] M. Rabbat and R. Nowak, “Decentralized source localization and
tracking wireless sensor networks,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing,
vol. 3, 2004, pp. 921–924.

[6] S. S. Ram, V. V. Veeravalli, and A. Nedic, “Distributed non-
autonomous power control through distributed convex optimization,”
in IEEE INFOCOM 2009. IEEE, 2009, pp. 3001–3005.

[7] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “Mlbase: A distributed machine-learning system.” in
CIDR, vol. 1, 2013, pp. 2–1.

[8] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for
cooperative inference,” arXiv preprint arXiv:1704.02718, 2017.

[9] ——, “Fast convergence rates for distributed non-bayesian learning,”
IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5538–
5553, 2017.

[10] C. A. Uribe, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and
A. Nedić, “Distributed computation of Wasserstein barycenters over
networks,” in 2018 IEEE Conference on Decision and Control (CDC),
2018, pp. 6544–6549.

[11] A. Kroshnin, N. Tupitsa, D. Dvinskikh, P. Dvurechensky, A. Gasnikov,
and C. Uribe, “On the complexity of approximating Wasserstein
barycenters,” in Proceedings of the 36th International Conference on
Machine Learning. PMLR, 2019, pp. 3530–3540.

[12] A. Ivanova, P. Dvurechensky, A. Gasnikov, and D. Kamzolov,
“Composite optimization for the resource allocation problem,”
Optimization Methods and Software, 2020. [Online]. Available:
https://doi.org/10.1080/10556788.2020.1712599

[13] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends® in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems.” in Conf.
on Language Resources and Evaluation (LREC’08), 2016, pp. 3243–
3249.

[16] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[17] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, Nov 2017.

[18] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[19] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of Optimization Theory and Applications, vol. 147, no. 3, pp. 516–
545, 2010.

[20] A. Daneshmand, G. Scutari, P. Dvurechensky, and A. Gasnikov,
“Newton method over networks is fast up to the statistical precision,”
in Proceedings of the 38th International Conference on Machine
Learning, vol. 139. PMLR, 2021, pp. 2398–2409.

[21] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” in International Conference on Machine Learning, 2017,
pp. 3027–3036.

[22] S. Ghadimi and G. Lan, “Optimal stochastic approximation algorithms
for strongly convex stochastic composite optimization, ii: Shrinking
procedures and optimal algorithms,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2061–2089, 2013.

[23] P. E. Dvurechensky, A. V. Gasnikov, and A. A. Lagunovskaya,
“Parallel algorithms and probability of large deviation for stochastic
convex optimization problems,” Numerical Analysis and Applications,
vol. 11, no. 1, pp. 33–37, 2018.

[24] Y. Zhang and L. Xiao, Communication-Efficient Distributed Optimiza-
tion of Self-concordant Empirical Loss. Cham: Springer International
Publishing, 2018, pp. 289–341.

[25] P. Dvurechensky, D. Kamzolov, A. Lukashevich, S. Lee, E. Or-
dentlich, C. A. Uribe, and A. Gasnikov, “Hyperfast second-order local
solvers for efficient statistically preconditioned distributed optimiza-
tion,” arXiv:2102.08246, 2021.

[26] A. Agafonov, P. Dvurechensky, G. Scutari, A. Gasnikov, D. Kamzolov,
A. Lukashevich, and A. Daneshmand, “An accelerated second-order
method for distributed stochastic optimization,” in 2021 60th IEEE
Conference on Decision and Control (CDC), 2021.

[27] D. Dvinskikh and A. Gasnikov, “Decentralized and parallel primal
and dual accelerated methods for stochastic convex programming
problems,” Journal of Inverse and Ill-posed Problems, vol. 29, no. 3,
pp. 385–405, 2021.

[28] A. Nemirovskii and Yudin, Problem Complexity and Method Efficiency
in Optimization. Wiley, 1983.

[29] Y. Nesterov, “A method of solving a convex programming problem

https://doi.org/10.1080/10556788.2020.1712599

with convergence rate o(1/k2),” Soviet Mathematics Doklady, vol. 27,
no. 2, pp. 372–376, 1983.

[30] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky, “Primal-
dual accelerated gradient methods with small-dimensional relaxation
oracle,” Optimization Methods and Software, pp. 1–28, 2020.
[Online]. Available: https://doi.org/10.1080/10556788.2020.1731747

[31] S. V. Guminov, Y. E. Nesterov, P. E. Dvurechensky, and A. V. Gas-
nikov, “Accelerated primal-dual gradient descent with linesearch for
convex, nonconvex, and nonsmooth optimization problems,” Doklady
Mathematics, vol. 99, no. 2, pp. 125–128, 2019.

[32] A. Fallah, M. Gurbuzbalaban, A. Ozdaglar, U. Simsekli, and L. Zhu,
“Robust distributed accelerated stochastic gradient methods for multi-
agent networks,” arXiv preprint arXiv:1910.08701, 2019.

[33] D. Dvinskikh, E. Gorbunov, A. Gasnikov, P. Dvurechensky, and C. A.
Uribe, “On primal and dual approaches for distributed stochastic
convex optimization over networks,” in 2019 IEEE 58th Conference
on Decision and Control (CDC), 2019, pp. 7435–7440.

[34] A. Olshevsky, I. C. Paschalidis, and S. Pu, “Asymptotic network
independence in distributed optimization for machine learning,” arXiv
preprint arXiv:1906.12345, 2019.

[35] ——, “A non-asymptotic analysis of network independence for dis-
tributed stochastic gradient descent,” arXiv:1906.02702, 2019.

[36] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[37] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal
on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[38] A. Rogozin and A. Gasnikov, “Projected gradient method for decen-
tralized optimization over time-varying networks,” arXiv:1911.08527,
2019.

[39] G. Qu and N. Li, “Accelerated distributed nesterov gradient descent,”
2016 54th Annual Allerton Conference on Communication, Control,
and Computing, 2016.

[40] H. Ye, L. Luo, Z. Zhou, and T. Zhang, “Multi-consensus decentralized
accelerated gradient descent,” arXiv preprint arXiv:2005.00797, 2020.

[41] H. Li, C. Fang, W. Yin, and Z. Lin, “A sharp convergence rate analysis
for distributed accelerated gradient methods,” arXiv:1810.01053, 2018.

[42] D. Jakovetic, “A unification and generalization of exact distributed
first order methods,” IEEE Transactions on Signal and Information
Processing over Networks, pp. 31–46, 2019.

[43] P. Dvurechenskii, D. Dvinskikh, A. Gasnikov, C. Uribe, and
A. Nedich, “Decentralize and randomize: Faster algorithm for wasser-
stein barycenters,” in Advances in Neural Information Processing
Systems 31, 2018, pp. 10 783–10 793.

[44] H. Li and Z. Lin, “Revisiting extra for smooth distributed optimiza-
tion,” arXiv preprint arXiv:2002.10110, 2020.

[45] H. Hendrikx, F. Bach, and L. Massoulie, “An optimal algorithm for
decentralized finite sum optimization,” arXiv:2005.10675, 2020.

[46] H. Li, Z. Lin, and Y. Fang, “Optimal accelerated variance reduced
extra and diging for strongly convex and smooth decentralized opti-
mization,” arXiv preprint arXiv:2009.04373, 2020.

[47] J. Tang, K. Egiazarian, M. Golbabaee, and M. Davies, “The prac-
ticality of stochastic optimization in imaging inverse problems,”
arXiv:1910.10100, 2019.

[48] X. Wu and J. Lu, “Fenchel dual gradient methods for distributed
convex optimization over time-varying networks,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), 2017, pp. 2894–
2899.

[49] G. Zhang and R. Heusdens, “Distributed optimization using the
primal-dual method of multipliers,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 4, no. 1, pp. 173–187,
2018.

[50] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “A dual approach
for optimal algorithms in distributed optimization over networks,”
Optimization Methods and Software, pp. 1–40, 2020.

[51] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[52] S. Pu, W. Shi, J. Xu, and A. Nedich, “A push-pull gradient method
for distributed optimization in networks,” 2018 IEEE Conference on
Decision and Control (CDC), pp. 3385–3390, 2018.

[53] M. Maros and J. Jaldén, “Panda: A dual linearly converging method for
distributed optimization over time-varying undirected graphs,” 2018

IEEE Conference on Decision and Control (CDC), pp. 6520–6525,
2018.

[54] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A
unified theory of decentralized sgd with changing topology and local
updates,” arXiv preprint arXiv:2003.10422, 2020.

[55] A. Wien, Iterative solution of large linear systems. Lecture Notes,
TU Wien, 2011.

[56] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Optimal
algorithms for non-smooth distributed optimization in networks,” in
Advances in Neural Information Processing Systems, 2018, pp. 2740–
2749.

[57] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov,
D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, and
V. Piskunova, “Inexact model: A framework for optimization and
variational inequalities,” Optimization Methods and Software, 2021.
[Online]. Available: https://doi.org/10.1080/10556788.2021.1924714

[58] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods with
inexact oracle: the strongly convex case,” CORE DP 2013/16, 2013.

[59] P. Dvurechensky and A. Gasnikov, “Stochastic intermediate gradient
method for convex problems with stochastic inexact oracle,” Journal
of Optimization Theory and Applications, vol. 171, no. 1, pp. 121–145,
2016.

[60] A. V. Gasnikov and P. E. Dvurechensky, “Stochastic intermediate
gradient method for convex optimization problems,” Doklady Mathe-
matics, vol. 93, no. 2, pp. 148–151, Mar 2016.

[61] A. Rogozin, V. Lukoshkin, A. Gasnikov, D. Kovalev, and E. Shulgin,
“Towards accelerated rates for distributed optimization over time-
varying networks,” arXiv preprint arXiv:2009.11069, 2020.

[62] F. S. Stonyakin, D. Dvinskikh, P. Dvurechensky, A. Kroshnin,
O. Kuznetsova, A. Agafonov, A. Gasnikov, A. Tyurin, C. A. Uribe,
D. Pasechnyuk, and S. Artamonov, “Gradient methods for problems
with inexact model of the objective,” in Mathematical Optimization
Theory and Operations Research, M. Khachay, Y. Kochetov, and
P. Pardalos, Eds. Cham: Springer International Publishing, 2019,
pp. 97–114.

[63] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[64] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of
smooth convex optimization with inexact oracle,” Mathematical Pro-
gramming, vol. 146, no. 1-2, pp. 37–75, 2014.

[65] D. Kamzolov, P. Dvurechensky, and A. V. Gasnikov, “Universal
intermediate gradient method for convex problems with inexact
oracle,” Optimization Methods and Software, 2020. [Online].
Available: https://doi.org/10.1080/10556788.2019.1711079

[66] E. Gorbunov, P. Dvurechensky, and A. Gasnikov, “An accelerated
method for derivative-free smooth stochastic convex optimization,”
arXiv:1802.09022, 2018.

[67] E. A. Vorontsova, A. V. Gasnikov, E. A. Gorbunov, and P. E.
Dvurechenskii, “Accelerated gradient-free optimization methods with
a non-euclidean proximal operator,” Automation and Remote Control,
vol. 80, no. 8, pp. 1487–1501, 2019.

[68] P. Dvurechensky, E. Gorbunov, and A. Gasnikov, “An accelerated
directional derivative method for smooth stochastic convex optimiza-
tion,” European Journal of Operational Research, vol. 290, no. 2, pp.
601 – 621, 2021.

[69] A. V. Gasnikov, D. M. Dvinskikh, P. E. Dvurechensky, D. I. Kamzolov,
V. V. Matyukhin, D. A. Pasechnyuk, N. K. Tupitsa, and A. V. Cher-
nov, “Accelerated meta-algorithm for convex optimization problems,”
Computational Mathematics and Mathematical Physics, vol. 61, no. 1,
pp. 17–28, 2021.

https://doi.org/10.1080/10556788.2020.1731747
https://doi.org/10.1080/10556788.2021.1924714
https://doi.org/10.1080/10556788.2019.1711079

APPENDIX

A. Proof of Lemma 4.1

Proof: The first statement is proved in Lemma 2.1 of [61]. For the second statement, we have

Eg̃δ,L,µ(x,x) =
1

n

n∑
i=1

1

r

r∑
j=1

E∇fi(xi, ξji) =
1

n

n∑
i=1

1

r

r∑
j=1

∇fi(xi) =
1

n

n∑
i=1

∇fi(xi) = gδ,L,µ(x,x).

It remains to show (9b).

E ‖g̃δ,L,µ(x,x)− gδ,L,µ(x,x)‖2 ≤ E

∥∥∥∥∥∥ 1

n

n∑
i=1

1

r

r∑
j=1

∇fi(xi, ξji)−
1

n

n∑
i=1

∇fi(xi)

∥∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

E

∥∥∥∥∥∥1

r

r∑
j=1

∇fi(xi, ξji)−∇fi(xi)

∥∥∥∥∥∥
2

≤ 1

n2r2

n∑
i=1

r∑
j=1

E
∥∥∥∇fi(xi, ξji)−∇fi(xi)∥∥∥2

≤
∑n
i=1 σ

2
i

n2r
=
σ2
g

nr
.

The last inequality follows directly from (2).

B. Proof of Theorem 4.2

For proving the theorem about complexity bounds, we need the following auxiliary Lemma:
Lemma 6.1: Let ψ be convex function. Then for

y = arg min
x∈Q

(
ψ(x) + β ‖x− z‖2 + γ ‖x− u‖2

)
, (17)

where β > 0 and γ > 0, the following is true for any x ∈ Q:

ψ(x) + β ‖x− z‖2 + γ ‖x− u‖2 ≥ ψ(y) + β ‖y − z‖2 + γ ‖y − u‖2 + (β + γ) ‖x− y‖2 . (18)
Proof: As y is minimum, the subgradient of function at point y includes 0:

∃g : g + β∇x ‖x− z‖2 |x=y + γ∇x ‖x− u‖2 |x=y = 0.

It holds

ψ(x)− ψ(y) ≥ 〈g, x− y〉 =
〈
β∇x ‖x− z‖2 |x=y + γ∇x ‖x− u‖2 |x=y, y − x

〉
(19)

= 〈2β(y − z) + 2γ(y − u), y − x〉 (20)

and we get that

2 〈y − z, y − x〉 = ‖y‖2 − ‖z‖2 − 2 〈z, y − z〉+ ‖x‖2 − ‖y‖2 − 2 〈y, x− y〉 − ‖x‖2 + ‖z‖2 + 2 〈z, x− z〉
= ‖y − z‖2 + ‖x− y‖2 − ‖x− z‖2 .

After similar manipulations with the 2 〈y − u, y − x〉 term and replacing the right part in (19), the lemma statement is
obtained.
Now we pass to the proof of Theorem 4.2 itself.

Proof: We begin from the right inequality from (10):

f(y)−
(
fδk+1,L,µ(x) +

〈
gδk+1,L,µ(x), y − x

〉)
≤ L

2
‖y − x‖2 + δk+1.

It can be rewritten as

f(xk+1)−
(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), xk+1 − yk+1

〉)
≤
〈
gδk+1,L,µ(yk+1)− g̃ rk+1

δk+1,L,µ
(yk+1), xk+1 − yk+1

〉
+
L

2

∥∥yk+1 − xk+1
∥∥2 + δk+1.

The first term in the right hand side can be estimated using Young inequality:〈
gδk+1,L,µ(yk+1)− g̃ rk+1

δk+1,L,µ
(yk+1), xk+1 − yk+1

〉
≤ L

2

∥∥xk+1 − yk+1
∥∥2 +

1

2L

∥∥∥gδk+1,L,µ(yk+1)− g̃ rk+1

δk+1,L,µ
(yk+1)

∥∥∥2

The combination of the last two expressions yields

f(xk+1) ≤ fδk+1,L,µ(yk+1) +
〈
g̃
rk+1

δk+1,L,µ
(yk+1), xk+1 − yk+1

〉
+ L

∥∥yk+1 − xk+1
∥∥2 + λ+ δk+1,

where

λ :=
1

2L

∥∥∥gδk+1,L,µ(yk+1)− g̃ rk+1

δk+1,L,µ
(yk+1)

∥∥∥2
for brevity. We substitute xk+1, yk+1 into several terms by their definitions:

f(xk+1) ≤ fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1),

αk+1uk+1 +Akxk

Ak+1
− yk+1

〉
+ L

∥∥∥∥αk+1uk +Akxk

Ak+1
− αk+1uk+1 +Akxk

Ak+1

∥∥∥∥2 + λ+ δk+1.

As Ak+1 = Ak + αk+1 by definition and as dot product is convex, we get the following:

f(xk+1) ≤ Ak

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), xk − yk+1

〉)
+
αk+1

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉)
+
L(αk+1)2

(Ak+1)2
∥∥uk − uk+1

∥∥2 + λ+ δk+1.

By definition of αk+1 we have:

f(xk+1) ≤ Ak

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), xk − yk+1

〉)
+
αk+1

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉)
+

1 +Akµ

Ak+1

∥∥uk − uk+1
∥∥2 + λ+ δk+1.

We rewrite that as:

f(xk+1) ≤ Ak

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
gδk+1,L,µ(yk+1), xk − yk+1

〉
+
〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), xk − yk+1

〉)
+
αk+1

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉)
+

1 +Akµ

Ak+1

∥∥uk − uk+1
∥∥2 + λ+ δk+1.

Using left part of (10), we get:

f(xk+1) ≤ Ak

Ak+1

(
f(xk) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), xk − yk+1

〉)
(21)

+
αk+1

Ak+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉)
+

1 +Akµ

Ak+1

∥∥uk − uk+1
∥∥2 + λ+ δk+1. (22)

From lemma 6.1 for optimization problem at step 5 in Algorithm 3 we have:

αk+1
〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉
+ (1 +Akµ)

∥∥uk+1 − uk
∥∥2 + αk+1µ

∥∥uk+1 − yk+1
∥∥2

+ (1 +Akµ+ αk+1µ)
∥∥uk+1 − x

∥∥2 ≤ αk+1
〈
g̃
rk+1

δk+1,L,µ
(yk+1), x− yk+1

〉
+ (1 +Akµ)

∥∥x− uk∥∥2 + αk+1µ
∥∥x− yk+1

∥∥2 .
As squared norm is always non-negative, we obtain

αk+1
〈
g̃
rk+1

δk+1,L,µ
(yk+1), uk+1 − yk+1

〉
+ (1 +Akµ)

∥∥uk+1 − uk
∥∥2 ≤ −(1 +Akµ+ αk+1µ)

∥∥uk+1 − x
∥∥2 (23)

+ αk+1
〈
g̃
rk+1

δk+1,L,µ
(yk+1), x− yk+1

〉
+ (1 +Akµ)

∥∥x− uk∥∥2 + αk+1µ
∥∥x− yk+1

∥∥2 (24)

Combining inequalities (21) and (23), we get:

Ak+1f(xk+1) ≤ Ak
(
f(xk) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), xk − yk+1

〉)
+ αk+1

(
fδk+1,L,µ(yk+1) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1), x− yk+1

〉
+ µ

∥∥x− yk+1
∥∥2)

+ (1 +Akµ)
∥∥x− uk∥∥2 − (1 +Akµ+ αk+1µ)

∥∥uk+1 − x
∥∥2 +Ak+1λ+ δk+1A

k+1

= Ak
(
f(xk) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), xk − yk+1

〉)
+ αk+1

(
fδk+1,L,µ(yk+1) +

〈
gδk+1,L,µ(yk+1), x− yk+1

〉)
+ αk+1

(〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), x− yk+1

〉
+ µ

∥∥x− yk+1
∥∥2)

+ (1 +Akµ)
∥∥x− uk∥∥2 − (1 +Akµ+ αk+1µ)

∥∥uk+1 − x
∥∥2 +Ak+1λ+ δk+1A

k+1.

Using the left part of (10) again results in

Ak+1f(xk+1) ≤Ak
(
f(xk) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), xk − yk+1

〉)
+ αk+1

(
f(x) +

〈
g̃
rk+1

δk+1,L,µ
(yk+1)− gδk+1,L,µ(yk+1), x− yk+1

〉
+
)

+ (1 +Akµ)
∥∥x− uk∥∥2 − (1 +Akµ+ αk+1µ)

∥∥uk+1 − x
∥∥2 +Ak+1λ+ δk+1A

k+1.

We can take expectation and we may see that angles terms go zero as Eg̃ r
δ,L,µ(x) = gδ,L,µ(x) for any r, and λ ≤ σ2

2Lrk+1
:

Ak+1Ef(xk+1)−Akf(xk) ≤ αk+1f(x)

+ (1 +Akµ)
∥∥x− uk∥∥2 − (1 +Ak+1µ)E

∥∥uk+1 − x
∥∥2 +

σ2Ak+1

2Lrk+1
+ δk+1A

k+1.

Now we should pay attention to the fact that the expectation is conditional because we consider xk and other k-th variables
known before the iteration:

Ak+1E
[
f(xk+1)|xk, . . . , x1

]
−Akf(xk) ≤ αk+1f(x) + (1 +Akµ)

∥∥x− uk∥∥2
− (1 +Ak+1µ)E

[∥∥uk+1 − x
∥∥2 |xk, . . . , x1]+

σ2Ak+1

2Lrk+1
+ E[δk+1|xk, . . . , x1]Ak+1.

If we take x = x∗, write these inequalities for all k from 0 to N − 1 and sum up all of them, we will get the following:

N∑
i=1

AiE
[
f(xi)|xi, . . . , x1

]
≤
N−1∑
i=0

Aif(xi) +

N∑
i=1

αif(x∗)+

+

N−1∑
i=0

(1 +Aiµ)
∥∥ui − x∗∥∥2 − N∑

i=1

(1 +Aiµ)E
[∥∥ui − x∗∥∥2 |xi, . . . , x1]+

N∑
i=1

Ai

(
σ2

2Lri
+ E[δi|xi, . . . , x1]

)
.

Next, we use the law of total expectation N times and get rid of conditional expectations, and after that get rid of similar
terms:

EANf(xN) ≤ ANf(x∗) +
∥∥u0 − x∗∥∥2 − (1 +ANµ)E

∥∥uN − x∗∥∥2 +

N∑
i=1

Ai

(
σ2

2Lri
+ Eδi

)
(25)

Here we also recall that A0 = α0 = 0,
∑N
i=1 αi = AN .

Finally, we get

Ef(xN)− f(x∗) ≤ 1

AN

(∥∥u0 − x∗∥∥2 +

N∑
i=1

Ai
(

σ2

2Lri
+ Eδi

))
.

The second inequality is obtained from (25) and the fact that f(x) ≥ f(x∗).

C. Proof of Lemma 4.3

Proof: In view of definition of sequence αk+1, we have:

AN ≤ AN (1 + µAN−1) = L(AN −AN−1)2

≤ L(
√
AN −

√
AN−1)2(

√
AN +

√
AN−1)2 ≤ 4LNAN (

√
AN −

√
AN−1)2.

For the case when µ > 0 we obtain:

µAN−1AN ≤ AN (1 + µAN−1) ≤ 4LAN (
√
AN −

√
AN−1)2.

From the fact that A1 = 1/L and the last inequality we can show that

√
AN ≥

(
1 +

1

2

√
µ

L

)√
AN−1 ≥ 1√

L

(
1 +

1

2

√
µ

L

)(N−1)

.

For the second statement, we recall the proof of Lemma A.1 in [61]. Update rule for Ak writes as

1 + µAk =
L(αk+1)2

Ak+1
, Ak =

k∑
i=0

αi, α0 = 0. (26)

A sequence
{
Bk
}∞
k=0

with a similar update rule is studied in [58].

L+ µBk =
L(βk+1)2

Bk+1
, Bk =

k∑
i=0

βi, β0 = 1, (27)

and for sequence
{
Bk
}∞
k=0

it is shown
∑k

i=0 B
i

Bk ≤ 1 +
√
L/µ. Dividing (27) by L yields

1 + µ(Bk/L) =
L(βk+1/L)2

(Bk+1/L)
,

which means that update rule for Bk/L is equivalent to (26). Since A1 = 1/L = B0/L, it holds Ak+1 = Bk/L, k ≥ 0 and∑k
i=1A

i

Ak
=

∑k−1
i=0 B

i/L

Bk−1/L
≤ 1 +

√
L

µ
.

D. Proof of Lemma 4.5

Proof: The proof follows by revisiting proof of Lemma A.3 in [61] in stochastic setting. First, note that multiplication
by a mixing matrix does not change the average of a vector, i.e. 1

n1n1
>
nx = 1

n1n1
>
nW

kx ∀k ≥ 0. This means uk+1 = vk+1.
Second, let us use the contraction property of mixing matrix sequence {Wk}∞k=0. We have

E
∥∥uk+1 − uk+1

∥∥2 ≤ (1− λ)2(T/τ)E
∥∥vk+1 − uk+1

∥∥2 ≤ e−2(T/τ)λE ∥∥vk+1 − uk+1
∥∥2 .

Assuming that E
∥∥vk+1 − uk+1

∥∥2 ≤ D, we only need T = τ
2λ log D

δ′ iterations to ensure E
∥∥uk+1 − uk+1

∥∥2 ≤ δ′. In the
rest of the proof, we show that E

∥∥vk+1 − uk+1
∥∥ = E

∥∥vk+1 − vk+1
∥∥ ≤ √D.

According to update rule of Algorithm 1, it holds

E
∥∥vk+1 − vk+1

∥∥ ≤ αk+1µE
∥∥yk+1 − yk+1

∥∥
1 +Ak+1µ

+
(1 +Akµ)E

∥∥uk − uk
∥∥

1 +Ak+1µ
+

αk+1

1 +Ak+1µ
E
∥∥∇rF (yk+1)

∥∥
≤
√
δ′ +

αk+1

1 +Ak+1µ
E
∥∥∇rF (yk+1)

∥∥ .
We estimate

∥∥∇rF (yk+1)
∥∥ using Lξ-smoothness of ∇F :∥∥∇rF (yk+1)

∥∥ ≤ ∥∥∇rF (yk+1)−∇rF (x∗)
∥∥+ ‖∇rF (x∗)‖

≤ Lξ
∥∥yk+1 − yk+1

∥∥︸ ︷︷ ︸
≤
√
δ′

+Lξ
∥∥yk+1 − x∗

∥∥︸ ︷︷ ︸
=
√
n‖yk+1−x∗‖

+ ‖∇rF (x∗)‖ (28)

where x∗ = arg minx∈Rd f(x), x∗ = 1n(x∗)>. It remains to estimate
∥∥yk+1 − x∗

∥∥.∥∥yk+1 − x∗
∥∥ ≤ αk+1

Ak+1

∥∥xk+1 − x∗
∥∥+

Ak

Ak+1

∥∥uk+1 − x∗
∥∥ ≤ max

{∥∥xk+1 − x∗
∥∥ ,∥∥uk+1 − x∗

∥∥}
By Lemma 4.4 and strong convexity of f :

E
∥∥xk+1 − x∗

∥∥2 ≤ 2

µ

(
Ef(xk+1)− f(x∗)

)
≤
∥∥u0 − x∗∥∥2
Ak+1µ

+

∑k+1
i=1 A

i

Ak+1µ

(
σ2

2Lr
+ δ

)
and therefore

E
∥∥yk+1 − x∗

∥∥2 ≤ max

{∥∥u0 − x∗∥∥2
Ak+1µ

+

∑k+1
i=1 A

i

Ak+1µ

(
σ2

2Lr
+ δ

)
,

∥∥u0 − x∗∥∥2
1 +Ak+1µ

+

∑k+1
i=1 A

i

1 +Ak+1µ

(
σ2

2Lr
+ δ

)}

≤
∥∥u0 − x∗∥∥2
Ak+1µ

+
1

µ

(
1 +

√
L

µ

)(
σ2

2Lr
+ δ

)
,

where the last inequality holds by Lemma 4.3.
Returning to (28), we get∥∥∇rF (yk+1)

∥∥
≤ Lξ

√
δ′ + Lξ

√
n

(∥∥u0 − x∗∥∥2
Ak+1µ

+
1

µ

(
1 +

√
L

µ

)(
σ2

2Lr
+ δ

))1/2

+ ‖∇rF (x∗)‖

≤ Lξ
√
δ′ + Lξ

√
n

(
L

µ

∥∥u0 − x∗∥∥2(1 +

√
µ

2L

)−2k
+

2L1/2

µ3/2

(
σ2

2Lr
+ δ

))1/2

+ ‖∇rF (x∗)‖

≤ Lξ
√
δ′ + Lξ

√
n

(
L

µ

∥∥u0 − x∗∥∥2 +
2L1/2

µ3/2

(
σ2

2Lr
+ δ

))1/2

+ ‖∇rF (x∗)‖ .

For distance to consensus of vk+1, it holds

E
∥∥vk+1 − vk+1

∥∥ ≤ √δ′ + αk+1

1 +Akµ+ µ
E
∥∥∇F (yk+1

)∥∥
We estimate coefficient by E

∥∥∇F (yk+1
)∥∥ using the definition of αk+1.

1 +Akµ =
L(αk+1)2

Ak + αk+1

L(αk+1)2 − (1 +Akµ)αk+1 − (1 +Akµ)Ak = 0

αk+1 =
1 +Akµ+

√
(1 +Akµ)2 + 4LAk(1 +Akµ)

2L

αk+1

1 +Ak+1µ
≤ αk+1

1 +Akµ
=

1

2L

1 +

√
1 + 4

LAk

1 +Akµ

≤ 1

2L

(√
L

µ
+

√
L

µ
+ 4

L

µ

)
≤ 2√

Lµ

Returning to vk+1, we get

E
∥∥vk+1 − vk+1

∥∥
≤
(

2Ll√
Lµ

+ 1

)√
δ′ + Ll

√
n

Lµ

(
L

µ

∥∥u0 − x∗∥∥2 +
2L1/2

µ3/2

(
σ2

2Lr
+ δ

))1/2

+
2E ‖∇rF (x∗)‖√

Lµ

≤

(
2Ll√
Lgµg

+ 1

)
√
δ′ +

2Ll
µg

√
n

(∥∥u0 − x∗∥∥2 +
2√
Lgµg

(
σ2
g

4nLgr2
+ δ

))1/2

+
2nMξ√
Lgµg

=
√
D,

where in the last inequality we used ‖∇rF (x∗)‖ ≤ nMξ.

E. Putting the proof of Theorem 3.1 together

Let us show that choice of number of subroutine iterations Tk = T yields

Ef(xk)− f(x∗) ≤ 1

Ak

(∥∥u0 − x∗∥∥2 +

(
σ2

2Lr
+ δ

) k∑
i=1

Ai

)
by induction. At k = 0, we have

∥∥u0 − u0
∥∥ = 0 and by Lemma 4.4 it holds

Ef(x1)− f(x∗) ≤ 1

A1

(∥∥u0 − x∗∥∥2 +

(
σ2

2Lr
+ δ

)
A1

)
.

For induction pass, assume that E
∥∥uj − uj

∥∥2 ≤ δ′ for j = 0, . . . , k. By Lemma 4.5, if we set Tk = T , then
E
∥∥uk+1 − uk+1

∥∥2 ≤ δ′. Applying Lemma 4.4 again, we get

Ef(xk)− f(x∗) ≤ 1

Ak

(∥∥u0 − x∗∥∥2 +

(
σ2

2Lr
+ δ

) k∑
i=1

Ai

)
.

Next, we substitute a bound on Ak from Lemma 4.3 and get

Ef(xN)− f(x∗)

≤ LR2

(
1 +

1

2

√
µ

L

)−2(N−1)
+

(
1 +

√
L

µ

)(
σ2

2Lr
+ δ

)

= 2LgR
2

(
1 +

1

4

√
µg
Lg

)−2(N−1)
+

(
1 + 2

√
Lg
µg

)(
σ2

4Lgr
+ δ

)
.

It remains to estimate the number of iterations required for ε-accuracy. In order to satisfy

2Lg
∥∥u0 − x∗∥∥2(1 +

1

4

√
µg
Lg

)−2(N−1)
≤ ε

2
,(

1 + 2

√
Lg
µg

)(
σ2

4Lgr
+ δ

)
≤ ε

2
,

it is sufficient to choose δ′ =
nε

32

µ
3/2
g

L
1/2
g L2

l

, r =
2σ2

ε
√
Lgµg

and

N = 3

√
Lg
µg

log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
.

Finally, the total number of stochastic oracle calls per node equals

Norcl = N · r =
6σ2

g

nµgε
log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
.

Further, the total number of communications is

Ncomm = N · T = 3

√
Lg
µg

log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
· κ · log

D

δ′

= O

(√
Lg
µg
κ · log

(
4Lg

∥∥u0 − x∗∥∥2
ε

)
log

D

δ′

)
,

where κ = τ
2λ if the communication network is time-varying and κ =

√
χ if the communication network is fixed.

	I Introduction
	I-A Related work
	I-B Our contributions

	II Preliminaries
	II-A Problem reformulation
	II-B Consensus procedure

	III Algorithm and main result
	IV Analysis of the algorithm
	IV-A Stochastic inexact oracle via inexact consensus
	IV-B Similar Triangles Method with Stochastic Inexact Oracle
	IV-C Proof of the main result
	IV-C.1 Outer loop
	IV-C.2 Consensus subroutine iterations
	IV-C.3 Putting the proof together

	V Numerical tests
	VI Conclusion
	References
	VI-A Proof of Lemma 4.1
	VI-B Proof of Theorem 4.2
	VI-C Proof of Lemma 4.3
	VI-D Proof of Lemma 4.5
	VI-E Putting the proof of Theorem 3.1 together

