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Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave

Saddle-Point Problems with Bilinear Coupling

Dmitry Kovalev 1 Alexander Gasnikov 2 Peter Richtárik 1

Abstract

In this paper we study the convex-concave

saddle-point problem minxmaxy f(x) +
yTAx − g(y), where f(x) and g(y) are smooth

and convex functions. We propose an Acceler-

ated Primal-Dual Gradient Method (APDG) for

solving this problem, achieving (i) an optimal

linear convergence rate in the strongly-convex-

strongly-concave regime, matching the lower

complexity bound (Zhang et al., 2021), and (ii)

an accelerated linear convergence rate in the case

when only one of the functions f(x) and g(y) is

strongly convex or even none of them are. Fi-

nally, we obtain a linearly convergent algorithm

for the general smooth and convex-concave sad-

dle point problem minx maxy F (x, y) without

the requirement of strong convexity or strong

concavity.

1. Introduction

In this paper we revisit the well studied smooth convex-

concave saddle point problem with a bilinear coupling func-

tion, which takes the form

min
x∈Rdx

max
y∈R

dy

F (x, y) = f(x) + y⊤Ax− g(y), (1)

where f(x) : Rdx → R and g(y) : Rdy → R are smooth

and convex functions, and A ∈ R
dy×dx is a coupling ma-

trix.

Problem (1) has a large number of application, some of

which we now briefly introduce.

1.1. Empirical risk minimization

A classical application is the regularized empirical risk min-

imization (ERM) with linear predictors, which is a clas-
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sical supervised learning problem. Given a data matrix

A = [a1, . . . , an]
⊤ ∈ R

n×d, where ai ∈ R
d is the feature

vector of the i-th data entry, our goal is to find a solution of

min
x

f(x) + ℓ(Ax), (2)

where f(x) : Rd → R is a convex regularizer, ℓ(y) : Rn →
R is a convex loss function, and x ∈ R

d is a linear predic-

tor. Alterantively, one can solve the following equivalent

saddle-point reformulation of problem (2):

min
x

max
y

f(x) + y⊤Ax− ℓ∗(y). (3)

The saddle-point reformulation is often preferable. For ex-

ample, when such a formulation admits a finite sum struc-

ture (Zhang & Lin, 2015; Wang & Xiao, 2017), this may

reduce the communication complexity in the distributed set-

ting (Xiao et al., 2019), and one may also better exploit the

udnerlying sparsity structure (Lei et al., 2017).

1.2. Reinforcement learning

In reinforcement learning (RL) we are given a sequence

{(st, at, rt, st+1)}nt=1 generated by a policy π, where st is

the state at time step t, at is the action taken at time step

t by policy π and rt is the reward after taking action at.
A key step in many RL algorithms is to estimate the value

function of a given policy π, which is defined as

V π(s) = E

[ ∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

s0 = s, π

]

, (4)

where γ ∈ (0, 1) is a discount factor. A common approach

to this problem is to use a linear approximation V π(s) =
φ(s)⊤x, where φ(s) is a feature vector of a state s. The

model parameter x is often estimated by minimizing the

mean squared projected Bellman error

min
x

‖Bx− b‖2
C−1 , (5)

where C =
∑n

t=1 φ(st)φ(st)
⊤, b =

∑n

t=1 rtφ(st) and

B = C − γ
∑n

t=1 φ(st)φ(st+1)
⊤. One can observe that

it is hard to apply gradient-based methods to problem (5)

because this would require one to compute an inverse of

http://arxiv.org/abs/2112.15199v2
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the matrix C. In order to tackle this issue, one can solve an

equivalent saddle-point reformulation proposed by Du et al.

(2017) instead. This reformulation is given by

min
x

max
y

−2y⊤Bx− ‖y‖2
C
+ 2b⊤y, (6)

and is an instance of problem (1). Solving this reformula-

tion with gradient methods does not require matrix inver-

sion.

1.3. Minimization under affine constraints

Next, consider the problem of convex minimization under

affine constraints,

min
Ax=b

f(x), (7)

where b ∈ rangeA. This problem covers a wide range

of applications, including inverse problems in imaging

(Chambolle & Pock, 2016), sketched learning-type appli-

cations (Keriven et al., 2018), network flow optimization

(Zargham et al., 2013) and optimal transport (Peyré et al.,

2019).

Another important application of problem (7) is de-

centralized distributed optimization (Kovalev et al., 2020;

Scaman et al., 2017; Li et al., 2020; Nedic et al., 2017;

Arjevani et al., 2020; Ye et al., 2020). In this setting, the

distributed minimization problem is often reformulated as

min√
W(x1,...,xn)⊤=0

[

f(x1, . . . , xn) =
n
∑

i=1

fi(xi)

]

, (8)

where fi(xi) is a function stored locally by a comput-

ing node i ∈ {1, . . . , n} and W ∈ R
n×n is the Lapla-

cian matrix of a graph representing the communication net-

work. The constraint enforces consensus among the nodes:

x1 = . . . = xn.

One can observe that problem (7) is equivalent to the

saddle-point formulation

min
x

max
y

f(x) + y⊤Ax− y⊤b, (9)

which is another instance of problem (1). State-of-the-

art methods often focus on this formulation instead of di-

rectly solving (7). In particular, Salim et al. (2021) and

Kovalev et al. (2020) obtained optimal algorithms for solv-

ing (7) and (8) using this saddle-point approach.

1.4. Bilinear min-max problems

Unconstrained bilinear saddle-point problems of the form

min
x∈Rdx

max
y∈R

dy

a⊤x+ y⊤Ax− b⊤y (10)

are another special case of problem (1), one where both

f(x) and g(y) are linear functions. While such prob-

lems do not usually play an important role in practice,

they are often a good testing ground for theoretical pur-

poses (Gidel et al., 2019; Azizian et al., 2020; Zhang et al.,

2021a; Mokhtari et al., 2020; Daskalakis et al., 2018;

Liang & Stokes, 2019).

Table 1. Comparison of method (APGD, Algorithm 1) with exist-

ing state-of-the-art algorithms for solving problem (1) in the 5

different cases described in Section 5.

Strongly-convex-strongly-concave case (Section 5.1)

Algorithm 1 O
(

max
{√

Lx

µx
,
√

Ly

µy
,

Lxy√
µxµy

}

log 1
ǫ

)

Lower bound

Zhang et al. (2021b)
O
(

max
{√

Lx

µx
,
√

Ly

µy
,

Lxy√
µxµy

}

log 1
ǫ

)

DIPPA

Xie et al. (2021)
Õ
(

max

{

4

√

L2
xLy

µ2
xµy

, 4

√

LxL2
y

µxµ2
y
,

Lxy√
µxµy

}

log 1
ǫ

)

Proximal Best Response

Wang & Li (2020)
Õ
(

max
{√

Lx

µx
,
√

Ly

µy
,
√

LxyL

µxµy

}

log 1
ǫ

)

Affinely constrained minimization case (Section 5.2)

Algorithm 1 O
(

Lxy

µxy

√

Lx

µx
log 1

ǫ

)

Lower bound

Salim et al. (2021)
O
(

Lxy

µxy

√

Lx

µx
log 1

ǫ

)

OPAPC

Kovalev et al. (2020)
O
(

Lxy

µxy

√

Lx

µx
log 1

ǫ

)

Strongly-convex-concave case (Section 5.3)

Algorithm 1 O
(

max

{√
LxLy

µxy
,
Lxy

µxy

√

Lx

µx
,
L2

xy

µ2
xy

}

log 1
ǫ

)

Lower bound N/A

Alt-GDA

Zhang et al. (2021a)
O
(

max
{

L2

µ2
xy
, L
µx

}

log 1
ǫ

)

Bilinear case (Section 5.4)

Algorithm 1 O
(

L2

xy

µ2
xy

log 1
ǫ

)

Lower bound

Ibrahim et al. (2020)
O
(

Lxy

µxy
log 1

ǫ

)

Azizian et al. (2020) O
(

Lxy

µxy
log 1

ǫ

)

Convex-concave case (Section 5.5)

Algorithm 1 O
(

max

{√
LxLyLxy

µ2
xy

,
L2

xy

µ2
xy

}

log 1
ǫ

)

Lower bound N/A

2. Literature Review and Contributions

In this work we are interested in algorithms able to solve

problem (1) with a linear iteration complexity. That is,

we are interested in methods that can provably find an ǫ-
accurate solution of problem (1) in a number of iterations

proportional to log 1
ǫ

(see Definitions 3.5 and 3.6). This

is typically achieved when functions f(x) and g(x) are

assumed to be strongly convex (see Definition 3.1). An

example of this is the celebrated extragradient method of

Korpelevich (1976).

Recent work has shown that linear iteration complexity can

be achieved also in the less restrictive case when only one

of the functions f(x) and g(x) is strongly convex. This was
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first shown by Du & Hu (2019), and later improved on by

Zhang et al. (2021a).

However, and this is the starting point of our re-

search, to the best of our knowledge, there are

no algorithms with linear iteration complexity in

the case when neither f(x) nor g(x) is strongly

convex.

2.1. Acceleration

Loosely speaking, we say that an algorithm is non-

accelerated if its iteration complexity is proportional to at

least the first power of the condition numbers associated

with the problem, such as Lx/µx and Ly/µy , where Lx and

Ly are smoothness constants, and µx and µy are strong con-

vexity constants (see Assumption 3.2 and Assumption 3.3).

In contrast, the iteration complexity of an accelerated algo-

rithm is proportional to the square root of such condition

numbers, e.g.,
√

Lx/µx and
√

Ly/µy.

There were several recent attempts to design acceler-

ated algorithms for solving problem (1) (Xie et al., 2021;

Wang & Li, 2020; Alkousa et al., 2020). These attempts

rely on stacking multiple algorithms on top of each other,

and result in complicated methods. For example, Lin et al.

(2020) use a non-accelerated algorithm as a sub-routine for

the inexact accelerated proximal-point method. This ap-

proach allows them to obtain accelerated algorithms for

solving problem (1) in a straightforward and tractable way.

However, this approach has significant drawbacks: the al-

gorithms obtained this way have (i) additional logarithmic

factors in their iteration complexity, and (ii) a complex

nested structure with the requirement to manually set in-

ner loop sizes, which is a byproduct of the design process

based on combining multiple algorithms. This drawback

limits the performance of the resulting algorithms in the-

ory, and requires additional fine tuning in practice.

A philosophically different approach to designing such

algorithms—one that we adopt in this work—is to attempt

to provide a direct acceleration of a suitable algorithm for

solving problem (1), similarly to what Nesterov (1983) did

for convex minimization problems. While this technically

more demanding, algorithms obtained this way typically

don’t have the aforementioned drawbacks. Hence, we fol-

low the latter approach in this work.

2.2. Main contributions

In this work we propose an Accelerated Primal-Dual Gradi-

ent Method (APDG; Algorithm 1) for solving problem (1)

and provide a theoretical analysis of its convergence prop-

erties (Theorem 4.2). In particular, we prove the following

results.

(i) When both functions f(x) and g(y) are strongly con-

vex, Algorithm 1 achieves the optimal linear con-

vergence rate, matching the lower bound obtained

by Zhang et al. (2021b). To the best of our knowl-

edge, Algorithm 1 is the first optimal algorithm in this

regime.

(ii) We establish linear convergence of Algorithm 1 in

the case when only one of the functions f(x) or g(y)
is strongly convex, and A is a full row or full col-

umn rank matrix, respectively. This improves upon

the results provided by Du & Hu (2019); Zhang et al.

(2021a).

(iii) We establish linear convergence of the Algorithm 1 in

the case when neither of the functions f(x) nor g(y)
is strongly convex, and the matrix A is square and

full rank. To the best of our knowledge, Algorithm 1

is the first algorithm achieving linear convergence in

this setting.

Table 1 provides a brief comparison of the complexity of

Algorithm 1 (Theorem 4.2) with the current state of the art.

Please refer to Section 5 for a detailed discussion of this

result and comparison with related work.

2.3. General min-max problem and additional

contributions

In our work we also consider the saddle-point problem

min
x∈Rdx

max
y∈R

dy

F (x, y), (11)

where F (x, y) : Rdx × R
dy → R is a smooth function,

which is convex in x and concave in y. One can observe

that the main problem (1) is a special case of this more gen-

eral problem (11).

As an additional contribution, we propose a Gradient

Descent-Ascent Method with Extrapolation (GDAE; Algo-

rithm 2) for solving the general convex-concave saddle-

point problem (11), and provide a theoretical analysis of

its convergence properties (Theorem 6.4).

(i) When the functionF (x, y) is strongly convex in x and

strongly concave in y, Algorithm 2 achieves a linear

convergence rate, which recovers the convergence re-

sult of Cohen et al. (2020).

(ii) Under certain assumptions on the way the vari-

ables x and y are coupled by the function F (x, y),
we establish linear convergence of Algorithm 2 in

the case when the function F (x, y) is strongly-

convex-concave, convex-strongly-concave, or even

just convex-concave. To the best of our knowledge,

Algorithm 2 is the first algorithm achieving linear con-

vergence under such assumptions.
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Please refer to Section 6.3 for discussion of Theorem 6.4

and related work.

3. Basic Definitions and Assumptions

We start by formalizing the notions of smoothness and

strong convexity of a function.

Definition 3.1. Function h(z) : Rd → R is L-smooth and

µ-strongly convex for L ≥ µ ≥ 0, if for all z1, z2 ∈ R
d the

following inequality holds:

µ

2
‖z1 − z2‖2 ≤ Bh(z1, z2) ≤

L

2
‖z1 − z2‖2. (12)

Above, Bh(z1, z2) = h(z1)−h(z2)−〈∇h(z2), z1− z2〉 is

the Bregman divergence associated with the function h(z).

We are now ready to state the main assumptions that we

impose on problem (1). We start with Assumptions 3.2

and 3.3 that formalize the strong-convexity and smoothness

properties of functions f(x) and g(y).

Assumption 3.2. Function f(x) is Lx-smooth and µx-

strongly convex for Lx ≥ µx ≥ 0.

Assumption 3.3. Function g(y) is Ly-smooth and µy-

strongly convex for Ly ≥ µy ≥ 0.

Note, that µx and µy are allowed to be zero. That is, both

f(x) and g(y) are allowed to be non-strongly convex.

The following assumption formalizes the spectral proper-

ties of matrix A.

Assumption 3.4. There exist constants Lxy > µxy, µyx ≥
0 such that

µ2
xy ≤

{

λ+
min(AA

⊤) ∇g(y) ∈ rangeA for all y ∈ R
dy

λmin(AA
⊤) otherwise

µ2
yx ≤

{

λ+
min(A

⊤
A) ∇f(x) ∈ rangeA⊤ for all x ∈ R

dx

λmin(A
⊤
A) otherwise

L2
xy ≥ λmax(A

⊤
A) = λmax(AA

⊤),

where λmin(·), λ+
min(·) and λmax(·) denote the smallest,

smallest positive and largest eigenvalue of a matrix, respec-

tively, and range denotes the range space of a matrix.

By S ⊂ R
dx × R

dy we denote the solution set of prob-

lem (1). Note that (x∗, y∗) ∈ S if and only if (x∗, y∗)
satisfies the first-order optimality conditions

{

∇xF (x∗, y∗) = ∇f(x∗) +A
⊤y∗ = 0,

∇yF (x∗, y∗) = −∇g(y∗) +Ax∗ = 0.
(13)

Our main goal is to propose an algorithm for finding a so-

lution to problem (1). Numerical iterative algorithms typi-

cally find an approximate solution of a given problem. We

formalize this through the following definition.

Definition 3.5. Let the solution set S be nonempty. We call

a pair of vectors (x, y) ∈ R
dx ×R

dy an ǫ-accurate solution

of problem (1) for a given accuracy ǫ > 0 if it satisfies

min
(x∗,y∗)∈S

max
{

‖x− x∗‖2, ‖y − y∗‖2
}

≤ ǫ. (14)

We also want to propose an efficient algorithm for solving

problem (1). That is, we want to propose an algorithm with

the the lowest possible iteration complexity, which we de-

fine next.

Definition 3.6. The iteration complexity of an algorithm

for solving problem (1) is the number of iterations the al-

gorithm requires to find an ǫ-accurate solution of this prob-

lem. At each iteration the algorithm is allowed to perform

O(1) computations of the gradients ∇f(x) and ∇g(y) and

matrix-vector multiplications with matrices A and A
⊤.

4. Accelerated Primal-Dual Gradient Method

In this section we present the Accelerated Primal-Dual

Gradient Method (APDG; Algorithm 1) for solving prob-

lem (1). First, we prove an outline of the key ideas used in

the development of this algorithm.

4.1. Algorithm development strategy

First, we observe that problem (1) is equivalent to the prob-

lem of finding a zero of a sum of two monotone operators,

G1, G2 : R
dx × R

dy → R
dx × R

dy , defined as

G1 : (x, y) 7→ (∇f(x),∇g(y)), (15)

G2 : (x, y) 7→ (A⊤y,−Ax). (16)

Indeed, G1(x
∗, y∗) + G2(x

∗, y∗) = 0 is just another way

to write the optimality conditions (13).

The Forward Backward algorithm. A natural way to

tackle this problem is via Forward Backward algorithm

(Bauschke & Combettes, 2011), the iterates of which have

the form

(xk+1, yk+1) = JG2

(

(xk, yk)−G1(x
k, yk)

)

, (17)

where the operator JG2
is the inverse of the operator I+G2,

and I is the identity operator. Note that JG2
can be written

as JG2
: (x, y) 7→ (x+, y+), where (x+, y+) ∈ R

dx × R
dy

is a solution of the linear system

{

x+ = x−A
⊤y+

y+ = y +Ax+
. (18)

Linear extrapolation step. Next, notice that the compu-

tation of operator JG2
requires solving the linear system



Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

1: Input: x0 ∈ rangeA⊤, y0 ∈ rangeA, ηx, ηy, αx, αy, βx, βy > 0, τx, τy, σx, σy ∈ (0, 1], θ ∈ (0, 1)
2: x0

f = x0

3: y0f = y−1 = y0

4: for k = 0, 1, 2, . . . do

5: ykm = yk + θ(yk − yk−1)
6: xk

g = τxx
k + (1− τx)x

k
f

7: ykg = τyy
k + (1− τy)y

k
f

8: xk+1 = xk + ηxαx(x
k
g − xk)− ηxβxA

⊤(Axk −∇g(ykg ))− ηx
(

∇f(xk
g) +A

⊤ykm
)

9: yk+1 = yk + ηyαy(y
k
g − yk)− ηyβyA(A⊤yk +∇f(xk

g))− ηy(∇g(ykg )−Axk+1)

10: xk+1
f = xk

g + σx(x
k+1 − xk)

11: yk+1
f = ykg + σy(y

k+1 − yk)
12: end for

(18). This is expensive1 and has to be done at each iter-

ation of the Forward Backward algorithm. Let us instead

consider the related problem

{

x+ = x−A
⊤ym

y+ = y +Ax+
, (19)

where ym ∈ R
dy is a newly introduced variable. It’s easy

to observe that (19) is equivalent to (18) when ym = y+.

Next, notice that choosing ym = y makes (19) easy to

solve. However, it turns out that the convergence analysis

of an algorithm with this approximation may be challeng-

ing (Zhang et al., 2021a), especially if we want to combine

it with other techniques, such as acceleration. Our key idea

is to propose a better alternative: the linear extrapolation

step

ym = y + θ(y − y−), (20)

where y− ∈ R
dy corresponds to y obtained from the pre-

vious iteration of the Forward Backward algorithm, and

θ ∈ (0, 1] is an extrapolation parameter. The linear extrap-

olation step was introduced by Chambolle & Pock (2011)

in the analysis of the Primal-Dual Hybrid Gradient algo-

rithm2.

Nesterov acceleration. Next, we note that operator G1

is equal to the gradient of the (potential) function (x, y) 7→
f(x) + g(y) function. This function is smooth and convex

due to Assumptions 3.2 and 3.3. This allows us to incorpo-

rate the Nesterov acceleration mechanism in the Forward

Backward algorithm. Nesterov acceleration is known to be

1The solution of (18) can be written in a closed form and
requires to compute an inverse matrix (I + A

⊤
A)−1 or (I +

AA
⊤)−1, where I is the identity matrix of an appropriate size.

2However, the Primal-Dual Hybrid Gradient algorithm is not
applicable in our case since it requires to compute the prox-
imal operator of f(x) and g(y) at each iteration. Moreover,
Chambolle & Pock (2011) established linear convergence of this
algorithm in the strongly-convex-strongly-concave setting only.

a powerful tool which allows to improve convergence prop-

erties of gradient methods (Nesterov, 1983; 2003).

4.2. Convergence of the algorithm

We are now ready to study the convergence properties of

Algorithm 1. We are interested in the case when the follow-

ing condition holds:

min {max {µx, µyx} ,max {µy, µxy}} > 0. (21)

In this case one can show that the solution set S of prob-

lem (1) is nonempty. Moreover, strong duality holds in this

case, as captured by the following lemma.

Lemma 4.1. Let Assumptions 3.2, 3.3 and 3.4 and condi-

tion (21) hold. Let p be the optimal value of the primal

problem

p = min
x∈Rdx

[P (x) = f(x) + g∗(Ax)] , (22)

and let d be the optimal value of the dual problem

d = max
y∈R

dy

[

D(y) = −g(y)− f∗(−A
⊤y)

]

. (23)

Then p = d is finite and (x∗, y∗) ∈ S if and only if x∗ is a

solution of the primal problem (22) and y∗ is a solution of

the dual problem (23).

Under the aforementioned conditions, Algorithm 1

achieves linear convergence. That is, the iteration complex-

ity is proportional to log 1
ǫ
.

Theorem 4.2. Let Assumptions 3.2, 3.3 and 3.4 and condi-

tion (21) hold. Then there exist parameters of Algorithm 1

such that its iteration complexity for finding an ǫ-accurate

solution of problem (1) is

O
(

min {Ta, Tb, Tc, Td} log
C

ǫ

)

, (24)
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where Ta, Tb, Tc, Td are defined as

Ta = max

{
√

Lx

µx

,

√

Ly

µy

,
Lxy√
µxµy

}

,

Tb = max

{

√

LxLy

µxy

,
Lxy

µxy

√

Lx

µx

,
L2
xy

µ2
xy

}

,

Tc = max

{

√

LxLy

µyx

,
Lxy

µyx

√

Ly

µy

,
L2
xy

µ2
yx

}

,

Td = max

{

√

LxLyLxy

µxyµyx

,
L2
xy

µ2
yx

,
L2
xy

µ2
xy

}

,

and C > 0 is some constant, which does not depend on ǫ,
but possibly depends on Lx, µx, Ly, µy, Lxy, µxy, µyx.

5. Discussion of Theorem 1 and Related Work

In this section we comment on the iteration complexity re-

sult for Algorithm 1 provided in Theorem 4.2. We consider

important and illustrative special cases of this complexity

result and draw connections with the existing results in the

literature.

5.1. Strongly convex and strongly concave case

In this case µx, µy > 0. We can always assume µxy =
µyx = 0 in Assumption 3.4. Then, Algorithm 1 has itera-

tion complexity given by

O
(

max

{
√

Lx

µx

,

√

Ly

µy

,
Lxy√
µxµy

}

log
1

ǫ

)

. (25)

This improves the current state-of-the-art results

Õ
(

max

{

4

√

L2
xLy

µ2
xµy

, 4

√

LxL2
y

µxµ2
y

,
Lxy√
µxµy

}

log
1

ǫ

)

(26)

due to Xie et al. (2021), and

Õ
(

max

{
√

Lx

µx

,

√

Ly

µy

,

√

LxyL

µxµy

}

log
1

ǫ

)

, (27)

due to Wang & Li (2020), where Õ(·) hides additional log-

arithmic factors, and L = max{Lx, Ly, Lxy}. Moreover,

our result (25) matches the lower complexity bound pro-

vided by Zhang et al. (2021b). Hence, Algorithm 1 is op-

timal in this regime. To the best of our knowledge, Al-

gorithm 1 is the first algorithm which achieves the lower

complexity bound (25) for smooth and strongly-convex-

strongly-concave saddle-point problems with bilinear cou-

pling.

5.2. Affinely-constrainted minimization case

In this case µx > 0 and µy = 0. Firstly, we consider

the case when Ly = 0, i.e., g(y) is a linear function.

Then, problem (1) is equivalent to the smooth and strongly-

convex affinely-constrained minimization problem (7). Al-

gorithm 1 enjoys the linear convergence rate

O
(

max

{

Lxy

µxy

√

Lx

µx

,
L2
xy

µ2
xy

}

log
1

ǫ

)

, (28)

where µxy = λ+
min(AA

⊤) > 0 due to Assumption 3.4.

This result recovers the complexity of the APAPC algo-

rithm (Kovalev et al., 2020). It is possible to incorporate

the Chebyshev acceleration mechanism (Arioli & Scott,

2014) into Algorithm 1 for solving problem (7) to obtain

the improved complexity

O
(

Lxy

µxy

√

Lx

µx

log
1

ǫ

)

. (29)

This matches the complexity of the OPAPC algorithm

of Kovalev et al. (2020); Salim et al. (2021), which was

shown to be optimal (Salim et al., 2021; Scaman et al.,

2017).

5.3. Strongly convex and concave case

We also allow Ly > 0, i.e., function g(y) is a general, not

necessarily linear, smooth and convex function. It is often

possible that µxy > 0 due to Assumption 3.4; for instance,

whenA is a full row rank matrix. Then, Algorithm 1 enjoys

the following linear iteration complexity:

O
(

max

{

√

LxLy

µxy

,
Lxy

µxy

√

Lx

µx

,
L2
xy

µ2
xy

}

log
1

ǫ

)

. (30)

This case was previously studied by Du & Hu (2019);

Du et al. (2017); Zhang et al. (2021a). Du & Hu (2019)

provided an analysis for an algorithm called Sim-GDA, and

established its iteration complexity

O
(

max

{

L3
xLyL

2
xy

µ2
xµ

4
xy

,
L3
xL

4
xy

µ3
xµ

4
xy

}

log
1

ǫ

)

. (31)

This result is substantially worse than our complexity

(30); possibly due to a suboptimal analysis. Subsequently,

Zhang et al. (2021a) provided an improved analysis for the

Sim-GDA algorithm, obtaining the complexity

O
(

max

{

L3

µxµ2
xy

,
L2

µ2
x

}

log
1

ǫ

)

. (32)

They also studied the Alt-GDA method, obtaining the com-

plexity

O
(

max

{

L2

µ2
xy

,
L

µx

}

log
1

ǫ

)

, (33)
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where L = max{Lx, Ly, Lxy}. However, these results are

local, i.e., they are valid only if the initial iterates of these

algorithms are close enough to the solution of problem (1).

Moreover, these results are still worse than our rate (30) be-

cause Sim-GDA and Alt-GDA do not utilize the Nesterov

acceleration mechanism, while our Algorithm 1 does.

5.4. Bilinear case

In this case µx = µy = Lx = Ly = 0. That is, func-

tions f(x) and g(y) are linear. Then, problem (1) turns

into the bilinear min-max problem (10), and µ2
xy = µ2

yx =

λ+
min(A

⊤
A) > 0 due to Assumption 3.4. The iteration

complexity of Algorithm 1 becomes

O
(

L2
xy

µ2
xy

log
1

ǫ

)

. (34)

This recovers the results of Daskalakis et al. (2018);

Liang & Stokes (2019); Gidel et al. (2018; 2019);

Mishchenko et al. (2020); Mokhtari et al. (2020) for

the bilinear min-max problem (10). However, this result is

worse than the complexity lower bound

O
(

Lxy

µxy

log
1

ǫ

)

, (35)

obtained in the work of Ibrahim et al. (2020), which was

reached by Azizian et al. (2020)3.

5.5. Convex-concave case

In this case µy = µx = 0. It is often possible that µxy =
µyx > 0 due to Assumption 3.4, for example, when A is a

square and full rank matrix. Then, the iteration complexity

of Algorithm 1 becomes

O
(

max

{

√

LxLyLxy

µ2
xy

,
L2
xy

µ2
xy

}

log
1

ǫ

)

, (36)

which is still linear. This complexity result generalizes the

result (34) for bilinear min-max problems as it allows for

general, not necessarily linear, convex and smooth func-

tions f(x) and g(x). To the best of our knowledge, Algo-

rithm 1 is the first algorithm which can achieve linear con-

vergence for smooth and non-strongly convex non-strongly

concave min-max problems with bilinear coupling.

3We provide these results for completeness. The result of
Azizian et al. (2020) is better than our result (34) for Algorithm 1
because they specifically focus on solving the bilinear min-max
problem (10), while Algorithm 1 aims to solve the much more
general convex-concave saddle-point problem (1).

6. A Novel Gradient Method for General

Convex-Concave Saddle-Point Problems

In this section we present a new method—Gradient

Descent-Ascent Method with Extrapolation (GDAE; Algo-

rithm 2)—for solving problem (11).

6.1. Assumptions and definitions

First, we state the main assumptions that we impose on

problem (11).

Assumption 6.1. Function F (x, y) is Lx-smooth and µx-

strongly convex in x and Ly-smooth and µy-strongly con-

cave in y, where Lx ≥ µx ≥ 0, Ly ≥ µy ≥ 0.

Assumption 6.1 generalizes the smoothness and strong con-

vexity Assumptions 3.2 and 3.3 imposed on problem (1).

Assumption 6.2. There exists a constantLxy > 0 such that

for all x, x1, x2 ∈ R
dx and y, y1, y2 ∈ R

dy , the following

inequalities hold:

‖∇xF (x, y1)−∇xF (x, y2)‖ ≤ Lxy‖y1 − y2‖,
‖∇yF (x1, y)−∇yF (x2, y)‖ ≤ Lxy‖x1 − x2‖.

(37)

Assumption 6.3. There exist constants µxy, µyx ≥ 0 such

that for all x, x1, x2 ∈ R
dx and y, y1, y2 ∈ R

dy , the follow-

ing inequalities hold:

‖∇xF (x, y1)−∇xF (x, y2)‖ ≥ µxy‖y1 − y2‖,
‖∇yF (x1, y)−∇yF (x2, y)‖ ≥ µyx‖x1 − x2‖.

(38)

Assumptions 6.2 and 6.3 combined form a generalized ver-

sion of Assumption 3.4 for problem (11). Indeed, if one

assumes that (37) and (38) hold for problem (1), then the

following inequalities hold

µ2
xy ≤ λmin(AA

⊤) ≤ L2
xy,

µ2
yx ≤ λmin(A

⊤
A) ≤ L2

xy,
(39)

which can be seen as a simplified version of Assump-

tion 3.4.

Next, we recall several basic definitions. Similarly to Sec-

tion 3, by S ⊂ R
dx × R

dy we denote the solution set of

problem (11). Note that (x∗, y∗) ∈ S if and only if (x∗, y∗)
satisfies the optimality conditions

{

∇xF (x∗, y∗) = 0,

∇yF (x∗, y∗) = 0.
(40)

We also use notions of iteration complexity for achieving

an ǫ-accurate solution analogous to Definitions 3.5 and 3.6,

respectively.

6.2. Algorithm development

We now present the main ingredients and intuition behind

the development of our method.
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Algorithm 2 GDAE: Gradient Descent-Ascent with Extrapolation

Input: x0 ∈ R
dx , y0 ∈ R

dy , ηx, ηy > 0, θ ∈ (0, 1)
x−1 = x0

y−1 = y0

for k = 0, 1, 2, . . . do

xk+1 = xk − ηx∇xF (xk, yk)− ηxθ(∇xF (xk−1, yk)−∇xF (xk−1, yk−1))
yk+1 = yk + ηy∇yF (xk+1, yk)

end for

Implicit gradient descent-ascent. First, we recall the it-

erations of the Forward-Backward algorithm (17), which

can be written in the form
{

x+ = x− ηx∇f(x)− ηxA
⊤y+

y+ = y − ηy∇g(y) + ηyAx+
, (41)

where ηx, ηy > 0 are stepsizes. Iterations (41) can also be

written in terms of the gradients∇xF (x, y) and∇yF (x, y),

{

x+ = x− ηx∇xF (x, y+)

y+ = y + ηy∇yF (x+, y)
, (42)

which makes the method applicable to the general prob-

lem (11).

Iterations (42) were the foundation for the development of

Algorithm 1 for solving problem (1), with strong conver-

gence properties established by Theorem 4.2. Hence, we

expect that this approach would work for solving the more

general problem (11). However, (42) is an implicit algo-

rithm and can’t be applied in its current state.

Gradient extrapolation. In analogy to the development

of Algorithm 1, we want to find a good approximation of

the implicit iterations (42). A naive solution would be using

the approximation
{

x+ = x− ηx∇xF (x, ym)

y+ = y + ηy∇yF (x+, y)
, (43)

where ym ≈ y+. Similarly to Section 4.1, we could use

ym = y, which would lead to the Alt-GDA algorithm

(Zhang et al., 2021a), or ym = y + θ(y − y−), which is

a linear extrapolation step (Chambolle & Pock, 2011).

The linear extrapolation step with θ = 1 is based on the

“assumption” that y+ ≈ ym = y+(y−y−), or equivalently,

y+ − y ≈ y − y−. We can use a similar intuition for the

gradients∇xF (x, y) rather than the iterates y. In particular,

we “assume” that

∇xF (x, y+)−∇xF (x, y) ≈ ∇xF (x−, y)−∇xF (x−, y−),

or equivalently,
{

∇xF (x, y+) ≈ ∆x

∆x = ∇xF (x, y) + (∇xF (x−, y)−∇xF (x−, y−))
.

This intuition leads to the following novel update rule,

which we call gradient extrapolation step:

{

∆x = ∇xF (x, y) + θ(∇xF (x−, y)−∇xF (x−, y−))

x+ = x− ηx∆x

.

Above, θ ∈ (0, 1] is the extrapolation parameter. We use

this gradient extrapolation step together with the update

rule for y from (42) in the design of our Algorithm 2.

6.3. Convergence of Algorithm 2 and related work

We now present Theorem 6.4, which establishes linear con-

vergence rate for Algorithm 2 under Assumptions 6.1, 6.2

and 6.3.

Theorem 6.4. Let Assumptions 6.1, 6.2 and 6.3 and condi-

tion (21) hold. Then there exist parameters of Algorithm 2

such that the iteration complexity for finding an ǫ-accurate

solution of problem (11) is

O
(

min {Ta, Tb, Tc, Td} log
C

ǫ

)

, (44)

where Ta, Tb, Tc, Td are defined as

Ta = max

{

Lx

µx

,
Ly

µy

,
Lxy√
µxµy

}

,

Tb = max

{

Lx

µx

,
LxLy

µ2
xy

,
L2
xy

µ2
xy

}

,

Tc = max

{

Ly

µy

,
LxLy

µ2
yx

,
L2
xy

µ2
yx

}

,

Td = max

{

LxLy

µ2
xy

,
LxLy

µ2
yx

,
L2
xy

µ2
xy

,
L2
xy

µ2
yx

}

,

and C > 0 is some constant, which does not depend on ǫ,
but possibly depends on Lx, µx, Ly, µy, Lxy, µxy, µyx.

Consider the case when µx, µy > 0. In this case the itera-

tion complexity of Algorithm 2 becomes

O
(

max

{

Lx

µx

,
Ly

µy

,
Lxy√
µxµy

}

log
1

ǫ

)

. (45)
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This recovers the result of Cohen et al. (2020). More-

over, when µx = µy , this result recovers the complex-

ity of solving problem (11) by a number of known algo-

rithms, including the extragradient method (Korpelevich,

1976), optimistic gradient method (Daskalakis et al., 2018;

Gidel et al., 2018), and the dual extrapolation method

(Nesterov & Scrimali, 2006).

Finally, consider then opposite case when at least one of the

constants µx and µy is zero. To the best of our knowledge,

there are no algorithms that can achieve a linear conver-

gence. However, Algorithm 2 can still achieve linear itera-

tion complexity provided that condition (21) is satisfied.

References

Alkousa, M., Gasnikov, A., Dvinskikh, D., Kovalev, D.,

and Stonyakin, F. Accelerated methods for saddle-point

problem. Computational Mathematics and Mathemati-

cal Physics, 60(11):1787–1809, 2020.

Arioli, M. and Scott, J. Chebyshev acceleration of itera-

tive refinement. Numerical Algorithms, 66(3):591–608,

2014.

Arjevani, Y., Bruna, J., Can, B., Gürbüzbalaban, M.,
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optimal algorithm for strongly convex minimization un-

der affine constraints. arXiv preprint arXiv:2102.11079,

2021.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Mas-

soulié, L. Optimal algorithms for smooth and strongly

convex distributed optimization in networks. In interna-

tional conference on machine learning, pp. 3027–3036.

PMLR, 2017.

Wang, J. and Xiao, L. Exploiting strong convexity from

data with primal-dual first-order algorithms. In Interna-

tional Conference on Machine Learning, pp. 3694–3702.

PMLR, 2017.

Wang, Y. and Li, J. Improved algorithms for

convex-concave minimax optimization. arXiv preprint

arXiv:2006.06359, 2020.

Xiao, L., Yu, A. W., Lin, Q., and Chen, W. Dscovr: Ran-

domized primal-dual block coordinate algorithms for

asynchronous distributed optimization. The Journal of

Machine Learning Research, 20(1):1634–1691, 2019.

Xie, G., Han, Y., and Zhang, Z. Dippa: An improved

method for bilinear saddle point problems. arXiv

preprint arXiv:2103.08270, 2021.

Ye, H., Luo, L., Zhou, Z., and Zhang, T. Multi-

consensus decentralized accelerated gradient descent.

arXiv preprint arXiv:2005.00797, 2020.

Zargham, M., Ribeiro, A., Ozdaglar, A., and Jadbabaie,

A. Accelerated dual descent for network flow optimiza-

tion. IEEE Transactions on Automatic Control, 59(4):

905–920, 2013.

Zhang, G., Wang, Y., Lessard, L., and Grosse, R. Don’t fix

what ain’t broke: Near-optimal local convergence of al-

ternating gradient descent-ascent for minimax optimiza-

tion. arXiv preprint arXiv:2102.09468, 2021a.

Zhang, J., Hong, M., and Zhang, S. On lower iteration com-

plexity bounds for the convex concave saddle point prob-

lems. Mathematical Programming, pp. 1–35, 2021b.

Zhang, Y. and Lin, X. Stochastic primal-dual coordinate

method for regularized empirical risk minimization. In

International Conference on Machine Learning, pp. 353–

361. PMLR, 2015.



Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Appendix

In Appendix A we provide a proof of Lemma 4.1, in Appendix B we provide a proof of Theorem 4.2, and in Appendix C

we provide a proof of Theorem 6.4.

A. Proof of Lemma 4.1

Part 1. Let us first show that primal problem (22) has at least a single solution x∗ ∈ R
dx .

Condition (21) implies that max{µx, µyx} > 0. If µx > 0 then function P (x) is obviously strongly convex and primal

problem indeed has a solution. Consider the opposite case µx = 0. Then µyx > 0 due to condition (21).

Assumption 3.4 and µyx > 0 imply that ∇f(x) ∈ rangeA⊤ for all x ∈ R
dx . Hence,

f(x+ x′) = f(x) for all x ∈ R
dx , x′ ∈ kerA. (46)

Using the definition of P (x) we get

P (x+ x′) = f(x+ x′) + g∗(A(x + x′))

= f(x) + g∗(Ax)

= P (x)

for all x ∈ R
dx , x′ ∈ kerA. From this one can conclude that

min
x∈Rdx

P (x) = min
x∈x0+rangeA⊤

P (x).

for any vector x0 ∈ R
dx . From the definition of P (x) it follows that P (x) is µyx-strongly convex on any affine space

x0 +rangeA⊤ for arbitrary x0 ∈ R
dx . Hence, problem minx∈x0+rangeA⊤ P (x) has a unique solution and primal problem

minx∈Rdx P (x) has at least a single solution x∗.

Part 2. Let us show that there exists y∗ ∈ R
dy such that (x∗, y∗) ∈ S, i.e., (x∗, y∗) satisfy optimality conditions (13).

Let us show that −∇f(x∗) ∈ A
⊤∂g∗(Ax∗). We use condition (21) which implies max{µy, µxy} > 0. If µy > 0,

then function g∗(y) is smooth and our statement is trivial. Consider the opposite case µy = 0. Then µxy > 0 due to

condition (21).

Assumption 3.4 and µxy > 0 imply that ∇g(y) ∈ rangeA for all y ∈ R
dy . Hence, dom g∗(·) ⊂ rangeA. Let h(x) =

g∗(Ax). From standard theory it follows that −∇f(x∗) ∈ ∂h(x∗) or

h(x) ≥ h(x∗)− 〈∇f(x∗), x− x∗〉 for all x ∈ R
dx ,

From this one can conclude that

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ x∗ + kerA,

which implies ∇f(x∗) ∈ (kerA)⊥ = rangeA⊤. Hence, there exists vector y∗ ∈ R
dy such that −∇f(x∗) = A

⊤y∗. Now,

we can write

h(x) ≥ h(x∗) + 〈A⊤y∗, x− x∗〉 for all x ∈ R
dx ,

which is equivalent to

g∗(Ax) ≥ g∗(Ax∗) + 〈y∗,Ax−Ax∗〉 for all x ∈ R
dx .

The latter can be written as

g∗(y) ≥ g∗(Ax∗) + 〈y∗, y −Ax∗〉 for all y ∈ rangeA.

But dom g∗(·) ⊂ rangeA, which means that g∗(y) = +∞ for all y /∈ rangeA. This implies

g∗(y) ≥ g∗(Ax∗) + 〈y∗, y −Ax∗〉 for all y ∈ R
dy ,

which is a definition of y∗ ∈ ∂g∗(Ax∗). An equivalent for this is ∇g(y∗) = Ax∗, which together with −∇f(x∗) = A
⊤y∗

form optimality condition (13).

Part 3. We showed that there exists a pair of vectors (x∗, y∗) ∈ R
dx ×R

dy which is a saddle point of the function F (x, y)
in problem (1). Hence, strong duality holds and proof of the rest of Lemma 4.1 is trivial.
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B. Proof of Theorem 4.2

Lemma B.1. There exists a solution (x∗, y∗) ∈ S of the problem (1) such that for all k = 0, 1, 2, . . . the iterates of

Algorithm 1 satisfy

‖A(xk − x∗)‖ ≥ µyx‖xk − x∗‖,
‖A⊤(yk − y∗)‖ ≥ µxy‖yk − y∗‖.

(47)

Proof. The proof of this lemma is a trivial extension of the derivations from the proof of Lemma 4.1.

Lemma B.2. Let τx be defined as

τx = (σ−1
x + 1/2)−1. (48)

Let αx be defined as

αx = µx. (49)

Let βx be defined as

βx = min

{

1

2Ly

,
1

2ηxL2
xy

}

. (50)

Then, the following inequality holds:

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

µx + Lxσx − 1

2ηx

)

‖xk+1 − xk‖2

+ Bg(y
k
g , y

∗)− Bf (x
k
g , x

∗)− 2

σx

Bf (x
k+1
f , x∗) +

(

2

σx

− 1

)

Bf (x
k
f , x

∗)

− 2〈A⊤(ykm − y∗), xk+1 − x∗〉.

(51)

Proof. Using Line 8 of the Algorithm 1 we get

1

ηx
‖xk+1 − x∗‖2 =

1

ηx
‖xk − x∗‖2 + 2

ηx
〈xk+1 − xk, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2

=
1

ηx
‖xk − x∗‖2 + 2αx〈xk

g − xk, xk+1 − x∗〉 − 2βx〈A⊤(Axk −∇g(ykg )), x
k+1 − x∗〉

− 2〈∇f(xk
g) +A

⊤ykm, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2.

Using the parallelogram rule we get

1

ηx
‖xk+1 − x∗‖2 =

1

ηx
‖xk − x∗‖2 + αx

(

‖xk
g − x∗‖2 − ‖xk

g − xk+1‖2 − ‖xk − x∗‖2 + ‖xk+1 − xk‖2
)

− 2βx〈Axk −∇g(ykg ),A(xk+1 − x∗)〉 − 2〈∇f(xk
g) +A

⊤ykm, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2.

Using the optimality condition ∇g(y∗) = Ax∗, which follows from (13), and the parallelogram rule we get

1

ηx
‖xk+1 − x∗‖2 =

1

ηx
‖xk − x∗‖2 + αx

(

‖xk
g − x∗‖2 − ‖xk

g − xk+1‖2 − ‖xk − x∗‖2 + ‖xk+1 − xk‖2
)

+ βx

(

‖A(xk+1 − xk)‖2 − ‖A(xk − x∗)‖2 + ‖∇g(ykg )−∇g(y∗)‖2 − ‖∇g(ykg )−A(xk+1)‖2
)

− 2〈∇f(xk
g) +A

⊤ykm, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2.
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Using Assumption 3.4, equation 47 and Ly-smoothness of g we get

1

ηx
‖xk+1 − x∗‖2 ≤ 1

ηx
‖xk − x∗‖2 + αx‖xk

g − x∗‖2 − αx‖xk − x∗‖2 + αx‖xk+1 − xk‖2

+ βxL
2
xy‖xk+1 − xk‖2 − βxµ

2
yx‖xk − x∗‖2 + 2βxLyBg(y

k
g , y

∗)

− 2〈∇f(xk
g) +A

⊤ykm, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2

=

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2

+ 2βxLyBg(y
k
g , y

∗) + αx‖xk
g − x∗‖2 − 2〈∇f(xk

g) +A
⊤ykm, xk+1 − x∗〉.

Using the optimality condition ∇f(x∗) +A
⊤y∗ = 0, which follows from (13), we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + 2βxLyBg(y
k
g , y

∗)

+ αx‖xk
g − x∗‖2 − 2〈∇f(xk

g)−∇f(x∗), xk+1 − x∗〉 − 2〈A⊤(ykm − y∗), xk+1 − x∗〉

=

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2

+ 2βxLyBg(y
k
g , y

∗) + αx‖xk
g − x∗‖2 − 2〈∇f(xk

g)−∇f(x∗), xk+1 − xk + xk − xk
g + xk

g − x∗〉
− 2〈A⊤(ykm − y∗), xk+1 − x∗〉

Using µy-strong convexity of f and Lines 6 and 10 of the Algorithm 1 we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + 2βxLyBg(y
k
g , y

∗)

+ αx‖xk
g − x∗‖2 − 2

σx

〈∇f(xk
g)−∇f(x∗), xk+1

f − xk
g〉+

2(1− τx)

τx
〈∇f(xk

g)−∇f(x∗), xk
f − xk

g〉

− 2Bf (x
k
g , x

∗)− µx‖xk
g − x∗‖2 − 2〈A⊤(ykm − y∗), xk+1 − x∗〉

=

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + (αx − µx)‖xk
g − x∗‖2

+ 2βxLyBg(y
k
g , y

∗)− 2Bf(x
k
g , x

∗)− 2

σx

〈∇f(xk
g)−∇f(x∗), xk+1

f − xk
g〉

+
2(1− τx)

τx
〈∇f(xk

g)−∇f(x∗), xk
f − xk

g〉 − 2〈A⊤(ykm − y∗), xk+1 − x∗〉.

Using convexity of Bf (x, x
∗) with respect to x, which follows from the convexity of f , we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + (αx − µx)‖xk
g − x∗‖2

+ 2βxLyBg(y
k
g , y

∗)− 2Bf(x
k
g , x

∗)− 2

σx

〈∇f(xk
g)−∇f(x∗), xk+1

f − xk
g〉

+
2(1− τx)

τx

(

Bf (x
k
f , x

∗)− Bf (x
k
g , x

∗)
)

− 2〈A⊤(ykm − y∗), xk+1 − x∗〉.

Using Lx-smoothness of Bf (x, x
∗) with respect to x, which follows from the Lx-smoothness of f , we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + (αx − µx)‖xk
g − x∗‖2

+ 2βxLyBg(y
k
g , y

∗)− 2Bf(x
k
g , x

∗)− 2

σx

(

Bf (x
k+1
f , x∗)− Bf (x

k
g , x

∗)− Lx

2
‖xk+1

f − xk
g‖2
)

+
2(1− τx)

τx

(

Bf (x
k
f , x

∗)− Bf (x
k
g , x

∗)
)

− 2〈A⊤(ykm − y∗), xk+1 − x∗〉.
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Using Line 10 of the Algorithm 1 we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx − 1

ηx

)

‖xk+1 − xk‖2 + (αx − µx)‖xk
g − x∗‖2

+ 2βxLyBg(y
k
g , y

∗)− 2Bf(x
k
g , x

∗)− 2

σx

(

Bf (x
k+1
f , x∗)− Bf (x

k
g , x

∗)− Lxσ
2
x

2
‖xk+1 − xk‖2

)

+
2(1− τx)

τx

(

Bf (x
k
f , x

∗)− Bf (x
k
g , x

∗)
)

− 2〈A⊤(ykm − y∗), xk+1 − x∗〉

=

(

1

ηx
− αx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

βxL
2
xy + αx + Lxσx − 1

ηx

)

‖xk+1 − xk‖2

+ (αx − µx)‖xk
g − x∗‖2 + 2βxLyBg(y

k
g , y

∗) +

(

2

σx

− 2

τx

)

Bf (x
k
g , x

∗)− 2

σx

Bf (x
k+1
f , x∗)

+

(

2

τx
− 2

)

Bf (x
k
f , x

∗)− 2〈A⊤(ykm − y∗), xk+1 − x∗〉.

Using the definition of τx, αx and βx we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

µx + Lxσx − 1

2ηx

)

‖xk+1 − xk‖2

+ Bg(y
k
g , y

∗)− Bf (x
k
g , x

∗)− 2

σx

Bf (x
k+1
f , x∗) +

(

2

σx

− 1

)

Bf (x
k
f , x

∗)

− 2〈A⊤(ykm − y∗), xk+1 − x∗〉.

Lemma B.3. Let τy be defined as

τy = (σ−1
y + 1/2)−1. (52)

Let αy be defined as

αy = µy. (53)

Let βy be defined as

βy = min

{

1

2Lx

,
1

2ηyL2
xy

}

. (54)

Then, the following inequality holds:

1

ηy
‖yk+1 − y∗‖2 ≤

(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2 +
(

µy + Lyσy −
1

2ηy

)

‖yk+1 − yk‖2

+ Bf (x
k
g , x

∗)− Bg(y
k
g , y

∗)− 2

σy

Bg(y
k+1
f , y∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈A(xk+1 − x∗), yk+1 − y∗〉.

(55)

Proof. The proof is similar to the proof of the previous lemma.

Lemma B.4. Let ηx be defined as

ηx = min

{

1

4(µx + Lxσx)
,

δ

4Lxy

}

, (56)

and let ηy be defined as

ηy = min

{

1

4(µy + Lyσy)
,

1

4Lxyδ

}

, (57)

where δ > 0 is a parameter. Let θ be defined as

θ = θ(δ, σx, σy) = 1−max {ρa(δ, σx, σy), ρb(δ, σx, σy), ρc(δ, σx, σy), ρd(δ, σx, σy)} , (58)
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where ρa(δ, σx, σy), ρb(δ, σx, σy), ρc(δ, σx, σy), ρd(δ, σx, σy) are defined as

ρa(δ, σx, σy) =

[

max

{

4(µx + Lxσx)

µx

,
2

σx

,
4(µy + Lyσy)

µy

,
2

σy

,
4Lxy

µxδ
,
4Lxyδ

µy

}]−1

, (59)

ρb(δ, σx, σy) =

[

max

{

4(µx + Lxσx)

µx

,
2

σx

,
8Lx(µy + Lyσy)

µ2
xy

,
2

σy

,
2L2

xy

µ2
xy

,
8LxLxyδ

µ2
xy

,
4Lxy

µxδ

}]−1

, (60)

ρc(δ, σx, σy) =

[

max

{

4(µy + Lyσy)

µy

,
2

σy

,
8Ly(µx + Lxσx)

µ2
yx

,
2

σx

,
2L2

xy

µ2
yx

,
8LyLxy

µ2
yxδ

,
4Lxyδ

µy

}]−1

, (61)

ρd(δ, σx, σy) =

[

max

{

8Ly(µx + Lxσx)

µ2
yx

,
2

σx

,
8Lx(µy + Lyσy)

µ2
xy

,
2

σy

,
8LyLxy

δµ2
yx

,
8LxLxyδ

µ2
xy

,
2L2

xy

µ2
yx

,
2L2

xy

µ2
xy

}]−1

. (62)

Let Ψk be the following Lyapunov function:

Ψk =
1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 2

σx

Bf (x
k
f , x

∗) +
2

σy

Bg(y
k
f , y

∗)

+
1

4ηy
‖yk − yk−1‖2 − 2〈yk − yk−1,A(xk − x∗)〉.

(63)

Then, the following inequalities hold

Ψk ≥ 3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2, (64)

Ψk+1 ≤ θΨk. (65)

Proof. After adding up (51) and (55) we get

(LHS) ≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

+

(

µx + Lxσx − 1

2ηx

)

‖xk+1 − xk‖2 +
(

µy + Lyσy −
1

2ηy

)

‖yk+1 − yk‖2

+

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗) + 2〈yk+1 − ykm,A(xk+1 − x∗)〉.

where (LHS) is given as

(LHS) =
1

ηx
‖xk+1 − x∗‖2 + 1

ηy
‖yk+1 − y∗‖2 + 2

σx

Bf(x
k+1
f , x∗) +

2

σy

Bg(y
k+1
f , y∗).
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Using Line 5 of the Algorithm 1 and Assumption 3.4 we get

(LHS) ≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

+

(

µx + Lxσx − 1

2ηx

)

‖xk+1 − xk‖2 +
(

µy + Lyσy −
1

2ηy

)

‖yk+1 − yk‖2

+

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk+1 − x∗)〉

≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

+

(

µx + Lxσx − 1

2ηx

)

‖xk+1 − xk‖2 +
(

µy + Lyσy −
1

2ηy

)

‖yk+1 − yk‖2

+

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉+ 2θLxy‖yk − yk−1‖‖xk+1 − xk‖.

Using the definition of ηx and ηy and the fact that θ < 1 we get

(LHS) ≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

− 1

4ηx
‖xk+1 − xk‖2 − 1

4ηy
‖yk+1 − yk‖2 +

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉+ θ

2
√
ηxηy

‖yk − yk−1‖‖xk+1 − xk‖

≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

− 1

4ηx
‖xk+1 − xk‖2 − 1

4ηy
‖yk+1 − yk‖2 +

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉+ θ

4ηx
‖xk+1 − xk‖2 + θ

4ηy
‖yk − yk−1‖2

≤
(

1

ηx
− µx − βxµ

2
yx

)

‖xk − x∗‖2 +
(

1

ηy
− µy − βyµ

2
xy

)

‖yk − y∗‖2

+
θ

4ηy
‖yk − yk−1‖2 − 1

4ηy
‖yk+1 − yk‖2 +

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉.
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Using the definition of βx and βy we get

(LHS) ≤
(

1− ηxµx −min

{

ηxµ
2
yx

2Ly

,
µ2
yx

2L2
xy

})

1

ηx
‖xk − x∗‖2 +

(

1− ηyµy −min

{

ηyµ
2
xy

2Lx

,
µ2
xy

2L2
xy

})

1

ηy
‖yk − y∗‖2

+
θ

4ηy
‖yk − yk−1‖2 − 1

4ηy
‖yk+1 − yk‖2 +

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉

≤
(

1−max

{

ηxµx,min

{

ηxµ
2
yx

2Ly

,
µ2
yx

2L2
xy

}})

1

ηx
‖xk − x∗‖2

+

(

1−max

{

ηyµy,min

{

ηyµ
2
xy

2Lx

,
µ2
xy

2L2
xy

}})

1

ηy
‖yk − y∗‖2

+
θ

4ηy
‖yk − yk−1‖2 − 1

4ηy
‖yk+1 − yk‖2 +

(

2

σx

− 1

)

Bf (x
k
f , x

∗) +

(

2

σy

− 1

)

Bg(y
k
f , y

∗)

+ 2〈yk+1 − yk,A(xk+1 − x∗)〉 − 2θ〈yk − yk−1,A(xk − x∗)〉.

Using the definition of θ we get

(LHS) ≤ θ

(

1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 1

4ηy
‖yk − yk−1‖2 − 2〈yk − yk−1,A(xk − x∗)〉

)

+ θ

(

2

σx

Bf (x
k
f , x

∗) +
2

σy

Bg(y
k
f , y

∗)

)

− 1

4ηy
‖yk+1 − yk‖2 + 2〈yk+1 − yk,A(xk+1 − x∗)〉.

After rearranging and using the definition of Ψk we get

Ψk+1 ≤ θΨk.

Finally, using the definition of Ψk, ηx and ηy we get

Ψk ≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 1

4ηy
‖yk − yk−1‖2 − 2〈yk − yk−1,A(xk − x∗)〉

≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 1

4ηy
‖yk − yk−1‖2 − 2Lxy‖yk − yk−1‖‖xk − x∗‖

≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 1

4ηy
‖yk − yk−1‖2 − 1

2
√
ηxηy

‖yk − yk−1‖‖xk − x∗‖

≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 + 1

4ηy
‖yk − yk−1‖2 − 1

4ηx
‖xk − x∗‖2 − 1

4ηy
‖yk − yk−1‖2

=
3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2.

Proof of Theorem 4.2. From (64) and (65) we can conclude that

3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 ≤ θkΨ0.

This implies the following inequality

max
{

‖xk − x∗‖2, ‖yk − x∗‖2
}

≤ θkΨ0 max {4ηx/3, ηy} .

Hence, we can conclude that

max
{

‖xk − x∗‖2, ‖yk − x∗‖2
}

≤ ǫ,
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as long as the number of iterations k satisfies

k ≥ 1

1− θ
log

C

ǫ
,

where C = Ψ0max {4ηx/3, ηy}, which does not depend on ǫ. From (58) we obtain

1

1− θ
= min

{

1

ρa(δ, σx, σy)
,

1

ρb(δ, σx, σy)
,

1

ρc(δ, σx, σy)
,

1

ρd(δ, σx, σy)

}

.

We can now try to approximately optimize parameters δ > 0 and σx, σy ∈ (0, 1] to obtain the smallest possible values of

ρa(δ, σx, σy)
−1, ρb(δ, σx, σy)

−1, ρc(δ, σx, σy)
−1, ρd(δ, σx, σy)

−1. This can be done in a closed form and the result is the

following:

1

ρa
≤ 4 + 4max

{
√

Lx

µx

,

√

Ly

µy

,
Lxy√
µxµy

}

for δ =

√

µy

µx

, σx =

√

µx

2Lx

, σy =

√

µx

2Lx

,

1

ρb
≤ 4 + 8max

{

√

LxLy

µxy

,
Lxy

µxy

√

Lx

µx

,
L2
xy

µ2
xy

}

for δ =

√

µ2
xy

2µxLx

, σx =

√

µx

2Lx

, σy = min

{

1,

√

µ2
xy

4LxLy

}

,

1

ρc
≤ 4 + 8max

{

√

LxLy

µyx

,
Lxy

µyx

√

Ly

µy

,
L2
xy

µ2
yx

}

for δ =

√

2µyLy

µ2
yx

, σx = min

{

1,

√

µ2
yx

4LxLy

}

, σy =

√

µy

2Ly

,

1

ρd
≤ 2 + 8max

{

√

LxLyLxy

µxyµyx

,
L2
xy

µ2
yx

,
L2
xy

µ2
xy

}

for δ =
µxy

µyx

√

Ly

Lx

, σx = min

{

1,

√

µ2
yx

4LxLy

}

, σy = min

{

1,

√

µ2
xy

4LxLy

}

.

Note, that we set µy = 0 in the bound for ρ−1
b , µx = 0 in the bound for ρ−1

c and µx = µy = 0 in the bound for ρ−1
d . This

is a valid move, because any convex function is 0-strongly convex by the definition of strong convexity.
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C. Proof of Theorem 6.4

Lemma C.1. Problem (11) has a unique solution (x∗, y∗).

Proof. Consider operator T : Rdx × R
dy → R

dx × R
dy defined as T : (x, y) 7→ (x − tx∇xF (x, y), y − ty∇yF (x, y))

for some fixed tx, ty > 0. It is obvious that (x, y) is a fixed point of operator T if and only if (x, y) is a solution to

problem (11). If one can show that this operator is contractive, then it has a unique fixed point due to Banach fixed-point

theorem. The proof of the fact that T is contractive is similar to the proof of the rest of Theorem 6.4.

Lemma C.2. Let ηx be defined as

ηx = min

{

1

8Lx

,
δ

4Lxy

}

, (66)

and let ηy be defined as

ηy = min

{

1

8Ly

,
1

4δLxy

}

, (67)

where δ > 0 is a parameter. Let θ be defined as

θ = θ(δ) = 1−max {ρa(δ), ρb(δ), ρc(δ), ρd(δ)} , (68)

where ρa(δ), ρb(δ), ρc(δ), ρd(δ) are defined as

1

ρa(δ)
= max

{

8Lx

µx

,
8Ly

µy

,
4Lxy

δµx

,
4Lxyδ

µy

}

, (69)

1

ρb(δ)
= max

{

8Lx

µx

,
512LxLy

µ2
xy

,
4Lxy

δµx

,
256LxLxyδ

µ2
xy

,
256LyLxy

µ2
xyδ

,
128L2

xy

µ2
xy

}

, (70)

1

ρc(δ)
= max

{

8Ly

µy

,
512LxLy

µ2
yx

,
4Lxyδ

µy

,
256LxLxyδ

µ2
yx

,
256LyLxy

µ2
yxδ

,
128L2

xy

µ2
yx

}

, (71)

1

ρd(δ)
= max

{

512LxLy

min{µ2
xy, µ

2
yx}

,
256LxLxyδ

min{µ2
xy, µ

2
yx}

,
256LyLxy

min{µ2
xy, µ

2
yx}δ

,
128L2

xy

min{µ2
xy, µ

2
yx}

}

. (72)

Let Ψk be the following Lyapunov function:

Ψk =
1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 − 2〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5

16ηy
‖yk − yk−1‖2. (73)

Then, the following inequalities hold

Ψk ≥ 3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2, (74)

Ψk+1 ≤ θΨk. (75)

Proof. Using Line 5 of the Algorithm 2 we get.

1

ηx
‖xk+1 − x∗‖2 =

1

ηx
‖xk − x∗‖2 + 2

ηx
〈xk+1 − xk, xk+1 − x∗〉 − 1

ηx
‖xk+1 − xk‖2

=
1

ηx
‖xk − x∗‖2 − 1

ηx
‖xk+1 − xk‖2

− 2〈∇xF (xk, yk) + θ(∇xF (xk−1, yk)−∇xF (xk−1, yk−1)), xk+1 − x∗〉

=
1

ηx
‖xk − x∗‖2 − 1

ηx
‖xk+1 − xk‖2 − 2〈∇xF (xk, yk+1), xk+1 − xk + xk − x∗〉

+ 2〈∇xF (xk, yk+1)−∇xF (xk, yk), xk+1 − x∗〉 − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk+1 − x∗〉.
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Using the Assumption 6.1 we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2 − 2(F (xk+1, yk+1)− F (x∗, yk+1))

+ 2〈∇xF (xk, yk+1)−∇xF (xk, yk), xk+1 − x∗〉 − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk+1 − x∗〉.

Using the Assumption 6.2 we get

1

ηx
‖xk+1 − x∗‖2 ≤

(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2 − 2(F (xk+1, yk+1)− F (x∗, yk+1))

+ 2〈∇xF (xk, yk+1)−∇xF (xk, yk), xk+1 − x∗〉 − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉
+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖.

Similarly, we can obtain the following upper-bound on 1
ηy
‖yk+1 − y∗‖2:

1

ηy
‖yk+1 − y∗‖2 ≤

(

1

ηy
− µy

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2 + 2(F (xk+1, yk+1)− F (xk+1, y∗)).

Summing up the upper-bounds on 1
ηx
‖xk+1 − x∗‖2 and 1

ηy
‖yk+1 − y∗‖2 gives

(LHS) ≤
(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉
+ 2(F (x∗, yk+1)− F (xk+1, y∗)),

where (LHS) is defined as

(LHS) =
1

ηx
‖xk+1 − x∗‖2 + 1

ηy
‖yk+1 − y∗‖2 − 2〈∇xF (xk, yk+1)−∇xF (xk, yk), xk+1 − x∗〉.

The Assumption 6.1 states, that function F (x, y) is Lx-smooth in x and Ly-smooth in y. Hence, using the optimality

conditions (40) we get

(LHS) ≤
(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉
− 2(F (xk+1, y∗)− F (x∗, y∗))− 2(F (x∗, y∗)− F (x∗, yk+1))

≤
(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

− δx
Lx

‖∇xF (xk+1, y∗)‖2 − δy
Ly

‖∇yF (x∗, yk+1)‖2,



Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

where δx, δy ∈ (0, 1] are some parameters, that will be defined later. Using the Assumption 6.3 we get

(LHS) ≤
(

1

ηx
− µx

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

− δx
2Lx

‖∇xF (xk+1, y∗)−∇xF (xk+1, yk)‖2 + δx
Lx

‖∇xF (xk+1, yk)‖2

− δy
2Ly

‖∇yF (x∗, yk+1)−∇yF (xk, yk+1)‖2 + δy
Ly

‖∇yF (xk, yk+1)‖2

≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+
δx
Lx

‖∇xF (xk+1, yk)‖2 + δy
Ly

‖∇yF (xk, yk+1)‖2

Using Lines 5 and 6 of the Algorithm 2and the Lipschitzness property of ∇xF (x, y) and ∇yF (x, y) we get

(LHS) ≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+
2δx
Lx

‖∇xF (xk+1, yk)−∇xF (xk, yk)− θ(∇xF (xk−1, yk)−∇xF (xk−1, yk−1))‖2 + 2δx
Lxη2x

‖xk+1 − xk‖2

+
2δy
Ly

‖∇yF (xk, yk+1)−∇yF (xk+1, yk)‖2 + 2δy
Lyη2y

‖yk+1 − yk‖2

≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+ 4δxLx‖xk+1 − xk‖2 +
4δxL

2
xyθ

2

Lx

‖yk − yk−1‖2 + 2δx
Lxη2x

‖xk+1 − xk‖2

+ 4δyLy‖yk+1 − yk‖2 +
4δyL

2
xy

Ly

‖xk+1 − xk‖2 + 2δy
Lyη2y

‖yk+1 − yk‖2.
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Now, we set δx = min {1, cxηxLx}, δy = min {1, cyηyLy}, where cx, cy > 0 will be defined later, and obtain

(LHS) ≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

+ 2Lxyθ‖xk+1 − xk‖‖yk − yk−1‖ − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+ 4cxηxL
2
x‖xk+1 − xk‖2 + 4cxηxL

2
xyθ

2‖yk − yk−1‖2 + 2cx
ηx

‖xk+1 − xk‖2

+ 4cyηyL
2
y‖yk+1 − yk‖2 + 4cyηyL

2
xy‖xk+1 − xk‖2 + 2cy

ηy
‖yk+1 − yk‖2.

Using the definition of ηx and ηy we get

(LHS) ≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

− 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+ 4cxηxL
2
x‖xk+1 − xk‖2 + (cx + 1)θ2

4ηy
‖yk − yk−1‖2 + 2cx

ηx
‖xk+1 − xk‖2

+ 4cyηyL
2
y‖yk+1 − yk‖2 + cy + 1

4ηx
‖xk+1 − xk‖2 + 2cy

ηy
‖yk+1 − yk‖2.

Now, we choose cx = cy = 1
4 and get

(LHS) ≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

Lx − 1

ηx

)

‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
(

Ly −
1

ηy

)

‖yk+1 − yk‖2

− 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉

+ ηxL
2
x‖xk+1 − xk‖2 + 5θ2

16ηy
‖yk − yk−1‖2 + 1

2ηx
‖xk+1 − xk‖2

+ ηyL
2
y‖yk+1 − yk‖2 + 5

16ηx
‖xk+1 − xk‖2 + 1

2ηy
‖yk+1 − yk‖2

=

(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 + ηxLx + η2xL
2
x − 3/16

ηx
‖xk+1 − xk‖2

+

(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2 +
ηyLy + η2yL

2
y − 3/16

ηy
‖yk+1 − yk‖2

− 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5θ2

16ηy
‖yk − yk−1‖2 − 5

16ηy
‖yk+1 − yk‖2.

Using the definition of ηx and ηy we get

(LHS) ≤
(

1

ηx
− µx −

δyµ
2
yx

2Ly

)

‖xk − x∗‖2 +
(

1

ηy
− µy −

δxµ
2
xy

2Lx

)

‖yk − y∗‖2

− 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5θ2

16ηy
‖yk − yk−1‖2 − 5

16ηy
‖yk+1 − yk‖2.
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Using the definition of δx and δy we get

(LHS) ≤
(

1−max

{

ηxµx,min

{

ηxµ
2
yx

2Ly

,
ηxηyµ

2
yx

8

}})

1

ηx
‖xk − x∗‖2

+

(

1−max

{

ηyµy,min

{

ηyµ
2
xy

2Lx

,
ηyηxµ

2
xy

8

}})

1

ηy
‖yk − y∗‖2

− 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5θ2

16ηy
‖yk − yk−1‖2 − 5

16ηy
‖yk+1 − yk‖2.

Using the definition of ηx, ηy and θ we get

(LHS) ≤ θ

ηx
‖xk − x∗‖2 + θ

ηy
‖yk − y∗‖2 − 2θ〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5θ

16ηy
‖yk − yk−1‖2

− 5

16ηy
‖yk+1 − yk‖2.

After rearranging and using the definition of Ψk we get

Ψk+1 ≤ θΨk.

Finally, using the definition of Ψk, ηx and ηy we get

Ψk =
1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 − 2〈∇xF (xk−1, yk)−∇xF (xk−1, yk−1), xk − x∗〉+ 5

16ηy
‖yk − yk−1‖2

≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 − 2Lxy‖yk − yk−1‖‖xk − x∗‖+ 5

16ηy
‖yk − yk−1‖2

≥ 1

ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 − 1

4ηx
‖xk − x∗‖2 − 1

4ηy
‖yk − yk−1‖2 + 5

16ηy
‖yk − yk−1‖2

≥ 3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2.

Proof of Theorem 6.4. From (74) and (75) we can conclude that

3

4ηx
‖xk − x∗‖2 + 1

ηy
‖yk − y∗‖2 ≤ θkΨ0.

This implies the following inequality

max
{

‖xk − x∗‖2, ‖yk − x∗‖2
}

≤ θkΨ0 max {4ηx/3, ηy} .

Hence, we can conclude that

max
{

‖xk − x∗‖2, ‖yk − x∗‖2
}

≤ ǫ,

as long as the number of iterations k satisfies

k ≥ 1

1− θ
log

C

ǫ
,

where C = Ψ0max {4ηx/3, ηy}, which does not depend on ǫ. From (68) we obtain

1

1− θ
= min

{

1

ρa(δ)
,

1

ρb(δ)
,

1

ρc(δ)
,

1

ρd(δ)

}

.
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Now, we find the parameter δ to obtain the following upper bounds on ρa(δ), ρb(δ), ρc(δ), ρd(δ):

1

ρa
= max

{

8Lx

µx

,
8Ly

µy

,
4Lxy√
µxµy

}

for δ =

√

µy

µx

, (76)

1

ρb
= max

{

8Lx

µx

,
512LxLy

µ2
xy

,
128L2

xy

µ2
xy

}

for δ = max

{

µxy

8
√
µxLx

,

√

Ly

Lx

}

, (77)

1

ρc
= max

{

8Ly

µy

,
512LxLy

µ2
yx

,
128L2

xy

µ2
yx

}

for δ = min

{

8
√

µyLy

µyx

,

√

Ly

Lx

}

, (78)

1

ρd
= max

{

512LxLy

µ2
xy

,
512LxLy

µ2
yx

,
128L2

xy

µ2
xy

,
128L2

xy

µ2
yx

}

for δ =

√

Ly

Lx

. (79)


