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Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave
Saddle-Point Problems with Bilinear Coupling

Dmitry Kovalev' Alexander Gasnikov? Peter Richtarik '

Abstract

In this paper we study the convex-concave
saddle-point  problem min, max, f(z) +
yTAx — g(y), where f(z) and g(y) are smooth
and convex functions. We propose an Acceler-
ated Primal-Dual Gradient Method (APDG) for
solving this problem, achieving (i) an optimal
linear convergence rate in the strongly-convex-
strongly-concave regime, matching the lower
complexity bound (Zhang et al., 2021), and (ii)
an accelerated linear convergence rate in the case
when only one of the functions f(z) and g(y) is
strongly convex or even none of them are. Fi-
nally, we obtain a linearly convergent algorithm
for the general smooth and convex-concave sad-
dle point problem min, max, F'(x,y) without
the requirement of strong convexity or strong
concavity.

1. Introduction

In this paper we revisit the well studied smooth convex-
concave saddle point problem with a bilinear coupling func-
tion, which takes the form
min max F(z,y) = f(z)+y Az —g(y), (1)
z€RIz ycRYY
where f(z): R% — R and g(y): R% — R are smooth

and convex functions, and A € R% >4+ is a coupling ma-
trix.

Problem (1) has a large number of application, some of
which we now briefly introduce.
1.1. Empirical risk minimization

A classical application is the regularized empirical risk min-
imization (ERM) with linear predictors, which is a clas-

'King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia “Moscow Institute of Physics and Technol-
ogy, Dolgoprudny, Russia. Correspondence to: Dmitry Kovalev
<dakovalevl @gmail.com>.

March 10, 2022

sical supervised learning problem. Given a data matrix
A =ay,...,a,)" € R™? where a; € R? is the feature
vector of the i-th data entry, our goal is to find a solution of

mzin f(z) + £(Ax), )

where f(z) : R? — R is a convex regularizer, £(y) : R" —
R is a convex loss function, and 2 € R? is a linear predic-
tor. Alterantively, one can solve the following equivalent
saddle-point reformulation of problem (2):

minmax f(z) +y' Az — £*(y). 3)
z

The saddle-point reformulation is often preferable. For ex-
ample, when such a formulation admits a finite sum struc-
ture (Zhang & Lin, 2015; Wang & Xiao, 2017), this may
reduce the communication complexity in the distributed set-
ting (Xiao et al., 2019), and one may also better exploit the
udnerlying sparsity structure (Lei et al., 2017).

1.2. Reinforcement learning

In reinforcement learning (RL) we are given a sequence
{(s¢,as, 74, 8141)}1 1 generated by a policy 7, where s; is
the state at time step ¢, a; is the action taken at time step
t by policy 7 and r; is the reward after taking action ay.
A key step in many RL algorithms is to estimate the value
function of a given policy 7, which is defined as

Vi(s)=E lz yhrg
=0

where v € (0,1) is a discount factor. A common approach
to this problem is to use a linear approximation V™ (s) =
#(s) Tz, where ¢(s) is a feature vector of a state s. The
model parameter x is often estimated by minimizing the
mean squared projected Bellman error

50 = S,W] ; “)

min | Bz — b||5-1, (5)

where C = Y7 d(st)o(s) T, b = Sof, red(sy) and
B =C—7Y"  ¢(st)¢(s5:+1) . One can observe that
it is hard to apply gradient-based methods to problem (5)
because this would require one to compute an inverse of
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the matrix C. In order to tackle this issue, one can solve an
equivalent saddle-point reformulation proposed by Du et al.
(2017) instead. This reformulation is given by

minmax —2y ' Bz — ||y[|& +2bTy, (6)
z y

and is an instance of problem (1). Solving this reformula-
tion with gradient methods does not require matrix inver-
sion.

1.3. Minimization under affine constraints

Next, consider the problem of convex minimization under
affine constraints,

Iinin f(x), (7

z=b
where b € rangeA. This problem covers a wide range
of applications, including inverse problems in imaging
(Chambolle & Pock, 2016), sketched learning-type appli-
cations (Keriven et al., 2018), network flow optimization
(Zargham et al., 2013) and optimal transport (Peyré et al.,
2019).

Another important application of problem (7) is de-
centralized distributed optimization (Kovalev et al., 2020;
Scaman et al., 2017; Lietal.,, 2020; Nedicetal.,, 2017;
Arjevani et al., 2020; Ye et al., 2020). In this setting, the
distributed minimization problem is often reformulated as

min

wetn |z ;fm @®)

where f;(x;) is a function stored locally by a comput-
ing node i € {1,...,n} and W € R"™ " is the Lapla-
cian matrix of a graph representing the communication net-
work. The constraint enforces consensus among the nodes:
1 =...=Tnp.

One can observe that problem (7) is equivalent to the
saddle-point formulation

minmax f(z) +y' Az —y'b, )
Ty

which is another instance of problem (1). State-of-the-
art methods often focus on this formulation instead of di-
rectly solving (7). In particular, Salim et al. (2021) and
Kovalev et al. (2020) obtained optimal algorithms for solv-
ing (7) and (8) using this saddle-point approach.

1.4. Bilinear min-max problems
Unconstrained bilinear saddle-point problems of the form

min max a' z+y Az —b'y (10)

zERz 4Ry
are another special case of problem (1), one where both
f(z) and g(y) are linear functions. While such prob-
lems do not usually play an important role in practice,

they are often a good testing ground for theoretical pur-
poses (Gidel et al., 2019; Azizian et al., 2020; Zhang et al.,
2021a; Mokhtari et al., 2020; Daskalakis et al., 2018;
Liang & Stokes, 2019).

Table 1. Comparison of method (APGD, Algorithm 1) with exist-
ing state-of-the-art algorithms for solving problem (1) in the 5
different cases described in Section 5.

Strongly-convex-strongly-concave case (Section 5.1)

o (oo VB i) )
9] (max{@, m V%}log%)

P B R (e { /B )

Affinely constrained minimization case (Section 5.2)

Algorithm 1

Lower bound
Zhang et al. (2021b)

DIPPA
Xie et al. (2021)

. Lo Ly 1
Algorithm 1 o ( i) log e)
Lower bound Loy [Ly »l>

Salim et al. (2021) © (“ o8 e

OPAPC Loy [Lu 1o L
Kovalev et al. (2020) 0 (/* o log )

Strongly-convex-concave case (Section 5.3)
\/LzL. - L?
(@] (max{ T 2, 51‘: \/ %, n } log %)
Lower bound N/A
Alt-GDA 2oL\ )
Zhang et al. (2021a) © (max { K2y Ha } log ¢
Bilinear case (Section 5.4)
L2
o (ugz log %)

Lower bound 0 ( Lay
Ibrahim et al. (2020)

Algorithm 1

Algorithm 1

Azizian et al. (2020) o (f— log %)

Convex-concave case (Section 5.5)

Algorithm 1 (@] (max { 7%:[4“]’ i—gf} log %)
Lower bound N/A

2. Literature Review and Contributions

In this work we are interested in algorithms able to solve
problem (1) with a linear iteration complexity. That is,
we are interested in methods that can provably find an e-
accurate solution of problem (1) in a number of iterations
proportional to log% (see Definitions 3.5 and 3.6). This
is typically achieved when functions f(x) and g(z) are
assumed to be strongly convex (see Definition 3.1). An
example of this is the celebrated extragradient method of
Korpelevich (1976).

Recent work has shown that linear iteration complexity can
be achieved also in the less restrictive case when only one
of the functions f(z) and g(z) is strongly convex. This was
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first shown by Du & Hu (2019), and later improved on by
Zhang et al. (2021a).

However, and this is the starting point of our re-
search, to the best of our knowledge, there are
no algorithms with linear iteration complexity in
the case when neither f(x) nor g(z) is strongly
convex.

2.1. Acceleration

Loosely speaking, we say that an algorithm is non-
accelerated if its iteration complexity is proportional to at
least the first power of the condition numbers associated
with the problem, such as L«/u, and Lv/u,, where L, and
L, are smoothness constants, and /1, and y,, are strong con-
vexity constants (see Assumption 3.2 and Assumption 3.3).
In contrast, the iteration complexity of an accelerated algo-
rithm is proportional to the square root of such condition

numbers, e.g., \/Le/u, and \/Lv/p,.

There were several recent attempts to design acceler-
ated algorithms for solving problem (1) (Xie et al., 2021;
Wang & Li, 2020; Alkousa et al., 2020). These attempts
rely on stacking multiple algorithms on top of each other,
and result in complicated methods. For example, Lin et al.
(2020) use a non-accelerated algorithm as a sub-routine for
the inexact accelerated proximal-point method. This ap-
proach allows them to obtain accelerated algorithms for
solving problem (1) in a straightforward and tractable way.
However, this approach has significant drawbacks: the al-
gorithms obtained this way have (i) additional logarithmic
factors in their iteration complexity, and (ii) a complex
nested structure with the requirement to manually set in-
ner loop sizes, which is a byproduct of the design process
based on combining multiple algorithms. This drawback
limits the performance of the resulting algorithms in the-
ory, and requires additional fine tuning in practice.

A philosophically different approach to designing such
algorithms—one that we adopt in this work—is to attempt
to provide a direct acceleration of a suitable algorithm for
solving problem (1), similarly to what Nesterov (1983) did
for convex minimization problems. While this technically
more demanding, algorithms obtained this way typically
don’t have the aforementioned drawbacks. Hence, we fol-
low the latter approach in this work.

2.2. Main contributions

In this work we propose an Accelerated Primal-Dual Gradi-
ent Method (APDG:; Algorithm 1) for solving problem (1)
and provide a theoretical analysis of its convergence prop-
erties (Theorem 4.2). In particular, we prove the following
results.

(i) When both functions f(z) and g(y) are strongly con-
vex, Algorithm 1 achieves the optimal linear con-
vergence rate, matching the lower bound obtained
by Zhang et al. (2021b). To the best of our knowl-
edge, Algorithm 1 is the first optimal algorithm in this
regime.

(i1)) We establish linear convergence of Algorithm 1 in
the case when only one of the functions f(x) or g(y)
is strongly convex, and A is a full row or full col-
umn rank matrix, respectively. This improves upon
the results provided by Du & Hu (2019); Zhang et al.
(2021a).

(iii) We establish linear convergence of the Algorithm 1 in
the case when neither of the functions f(z) nor g(y)
is strongly convex, and the matrix A is square and
full rank. To the best of our knowledge, Algorithm 1
is the first algorithm achieving linear convergence in
this setting.

Table 1 provides a brief comparison of the complexity of
Algorithm 1 (Theorem 4.2) with the current state of the art.
Please refer to Section 5 for a detailed discussion of this
result and comparison with related work.

2.3. General min-max problem and additional
contributions

In our work we also consider the saddle-point problem

min max F(z,y), 11

iy max (z,y) (11)
where F(z,y): R% x R% — R is a smooth function,
which is convex in x and concave in . One can observe
that the main problem (1) is a special case of this more gen-
eral problem (11).

As an additional contribution, we propose a Gradient
Descent-Ascent Method with Extrapolation (GDAE; Algo-
rithm 2) for solving the general convex-concave saddle-
point problem (11), and provide a theoretical analysis of
its convergence properties (Theorem 6.4).

(i) When the function F'(z, y) is strongly convex in  and
strongly concave in y, Algorithm 2 achieves a linear
convergence rate, which recovers the convergence re-
sult of Cohen et al. (2020).

(i) Under certain assumptions on the way the vari-
ables = and y are coupled by the function F(z,y),
we establish linear convergence of Algorithm 2 in
the case when the function F(z,y) is strongly-
convex-concave, convex-strongly-concave, or even
just convex-concave. To the best of our knowledge,
Algorithm 2 is the first algorithm achieving linear con-
vergence under such assumptions.
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Please refer to Section 6.3 for discussion of Theorem 6.4
and related work.

3. Basic Definitions and Assumptions

We start by formalizing the notions of smoothness and
strong convexity of a function.

Definition 3.1. Function 2(z): R? — R is L-smooth and
p-strongly convex for L > p > 0, if for all 21, 25 € R4 the
following inequality holds:
L
Ellz1 =zl < Bu(z, ) < S lla - =% (12)
Above, Bh(Zl, 22) = h,(Zl) - h(ZQ) — <Vh(22), Z1 — ZQ> is
the Bregman divergence associated with the function h(z).

We are now ready to state the main assumptions that we
impose on problem (1). We start with Assumptions 3.2
and 3.3 that formalize the strong-convexity and smoothness
properties of functions f(z) and g(y).

Assumption 3.2. Function f(z) is L,-smooth and -
strongly convex for L, > u, > 0.

Assumption 3.3. Function g¢(y) is L,-smooth and p,-
strongly convex for L, > p, > 0.

Note, that p,, and pu,, are allowed to be zero. That is, both
f(x) and g(y) are allowed to be non-strongly convex.

The following assumption formalizes the spectral proper-
ties of matrix A.

Assumption 3.4. There exist constants L,y > figy, flys >
0 such that

Vg(y) € rangeA forall y € R
otherwise

Vf(x) € rangeA T for all x € R=

+
2 < min
Hya = Amin(ATA)  otherwise

Liy > /\max(ATA) = )\max(AAT)a

where Amin(+), )\Ln(-) and Apax(-) denote the smallest,
smallest positive and largest eigenvalue of a matrix, respec-

tively, and range denotes the range space of a matrix.

By S € R% x R% we denote the solution set of prob-

lem (1). Note that (z*,y*) € S if and only if (z*,y*)

satisfies the first-order optimality conditions
{VIF(I*,y*) =Vf(x*)+ATy* =0,

13
VyF(x*,y*) = =Vg(y*) + Az" = 0. ()

Our main goal is to propose an algorithm for finding a so-
lution to problem (1). Numerical iterative algorithms typi-
cally find an approximate solution of a given problem. We
formalize this through the following definition.

Definition 3.5. Let the solution set S be nonempty. We call
a pair of vectors (z,y) € R% x R% an e-accurate solution
of problem (1) for a given accuracy € > 0 if it satisfies

min max { ||z — 2% — "2l < e
i max {| 1% lly = y* 117} <

(14)
We also want to propose an efficient algorithm for solving
problem (1). That is, we want to propose an algorithm with
the the lowest possible iteration complexity, which we de-
fine next.

Definition 3.6. The iteration complexity of an algorithm
for solving problem (1) is the number of iterations the al-
gorithm requires to find an e-accurate solution of this prob-
lem. At each iteration the algorithm is allowed to perform
O(1) computations of the gradients V f (z) and Vg(y) and
matrix-vector multiplications with matrices A and A T.

4. Accelerated Primal-Dual Gradient Method

In this section we present the Accelerated Primal-Dual
Gradient Method (APDG; Algorithm 1) for solving prob-
lem (1). First, we prove an outline of the key ideas used in
the development of this algorithm.

4.1. Algorithm development strategy

First, we observe that problem (1) is equivalent to the prob-
lem of finding a zero of a sum of two monotone operators,
G1,Ga: R% x R% — R% x R%, defined as

Gi: (z,y) = (Vf(2),Vg(y)),
Go: (z,y) — (ATy, —Ax).

5)
(16)

Indeed, G1(x*,y*) + Ga(z*,y*) = 0 is just another way
to write the optimality conditions (13).

The Forward Backward algorithm. A natural way to
tackle this problem is via Forward Backward algorithm
(Bauschke & Combettes, 2011), the iterates of which have
the form

(@M ) = Ja, ((25,97) = G 9h) . a7
where the operator J, is the inverse of the operator 1 +Go,
and [ is the identity operator. Note that J, can be written
as Ja,: (v,y) — (zF,y"), where (21, y) € R4 x R
is a solution of the linear system
+ —pr— ATyt
:er x Y (18)

yt=y+ Azt

Linear extrapolation step. Next, notice that the compu-
tation of operator Jg, requires solving the linear system
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Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

1: Input: 2° € rangeA T,y € rangeA, Nas Ny, O, Ay, By By > 0, Ty, Ty, 05, 0y €

2: ,T(} =0

Byp=y ="
4: fork=0,1,2,...do

1

(0,1],0 € (0,1)

50 yp =y H00 =yt

6: x’; = 7pzb 4+ (1 - TI)ZC]}

7. y]; =7yy* + (1 - Ty)ylf

8: =2k 4 nzaz(xlg - xk) - WIBIAT (Axk - VQ(yI;)) — N (Vf(fg) + ATyfn)
9: Y =y F oy (yy —y") —myByA(ATY" + Vf(xg)) —ny(Volyy) — Azt
10: x];"'l =2k + oy (2T — 2F)

1y =y oy (T - )

12: end for

(18). This is expensive' and has to be done at each iter-
ation of the Forward Backward algorithm. Let us instead
consider the related problem

+ — T

{erx Afm 7 (19)
yT=y+ Az
where v, € R% is a newly introduced variable. It’s easy
to observe that (19) is equivalent to (18) when y,,, = y+.
Next, notice that choosing y,, = y makes (19) easy to
solve. However, it turns out that the convergence analysis
of an algorithm with this approximation may be challeng-
ing (Zhang et al., 2021a), especially if we want to combine
it with other techniques, such as acceleration. Our key idea
is to propose a better alternative: the linear extrapolation
step

Ym =y +0(y—y ), (20)

where 3y~ € R% corresponds to y obtained from the pre-
vious iteration of the Forward Backward algorithm, and
6 € (0,1] is an extrapolation parameter. The linear extrap-
olation step was introduced by Chambolle & Pock (2011)
in the analysis of the Primal-Dual Hybrid Gradient algo-
rithm?.

Nesterov acceleration. Next, we note that operator Gy
is equal to the gradient of the (potential) function (x,y) —
f(z) + g(y) function. This function is smooth and convex
due to Assumptions 3.2 and 3.3. This allows us to incorpo-
rate the Nesterov acceleration mechanism in the Forward
Backward algorithm. Nesterov acceleration is known to be

'The solution of (18) can be written in a closed form and
requires to compute an inverse matrix (I + AT A)~* or (I +
AAT)™!, where I is the identity matrix of an appropriate size.

“However, the Primal-Dual Hybrid Gradient algorithm is not
applicable in our case since it requires to compute the prox-
imal operator of f(z) and g(y) at each iteration. Moreover,
Chambolle & Pock (2011) established linear convergence of this
algorithm in the strongly-convex-strongly-concave setting only.

a powerful tool which allows to improve convergence prop-
erties of gradient methods (Nesterov, 1983; 2003).

4.2. Convergence of the algorithm

We are now ready to study the convergence properties of
Algorithm 1. We are interested in the case when the follow-
ing condition holds:

min {max { iz, fiyz } , max {fy, tay > 0. (21)
In this case one can show that the solution set S of prob-

lem (1) is nonempty. Moreover, strong duality holds in this
case, as captured by the following lemma.

Lemma 4.1. Let Assumptions 3.2, 3.3 and 3.4 and condi-
tion (21) hold. Let p be the optimal value of the primal
problem

p= min [P(x) = f(z) +g"(Az)], ()
and let d be the optimal value of the dual problem
d= max [D(y) =—g(y) - [*(-ATy)].  (23)

yERY

Then p = d is finite and (z*,y*) € S if and only if z* is a
solution of the primal problem (22) and y* is a solution of
the dual problem (23).

Under the aforementioned conditions, Algorithm 1
achieves linear convergence. That is, the iteration complex-
ity is proportional to log %

Theorem 4.2. Let Assumptions 3.2, 3.3 and 3.4 and condi-
tion (21) hold. Then there exist parameters of Algorithm 1

such that its iteration complexity for finding an e-accurate
solution of problem (1) is

@ (min {To, Ty, T, Ty} log g) , (24)
€
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where T,, Ty, T, Ty are defined as

el

T, = max

s

Hyx
Lolyley Lz L_ﬁﬁ

T.

T, = Inax{

and C > 0 is some constant, which does not depend on e,
but possibly depends on Ly, [y, Ly, fty, Ly, oy, Pyz-

5. Discussion of Theorem 1 and Related Work

In this section we comment on the iteration complexity re-
sult for Algorithm 1 provided in Theorem 4.2. We consider
important and illustrative special cases of this complexity
result and draw connections with the existing results in the
literature.

5.1. Strongly convex and strongly concave case

In this case fig, 1y > 0. We can always assume i,y =
fye = 0in Assumption 3.4. Then, Algorithm 1 has itera-
tion complexity given by

(nlax {\/7 \/7 } 1) . (25)
RN

This improves the current state-of-the-art results
_ JLelZ Ly, 1
O [ max< { log — (26)
okl /by €

due to Xie et al. (2021), and
L, L 1
—4=tlog— |, @0
Hoaz oy €

o (m{ﬁ,,/ﬂ,
Mz Hy

due to Wang & Li (2020), where O(-) hides additional log-
arithmic factors, and L = max{L,, Ly, L;,}. Moreover,
our result (25) matches the lower complexity bound pro-
vided by Zhang et al. (2021b). Hence, Algorithm 1 is op-
timal in this regime. To the best of our knowledge, Al-
gorithm 1 is the first algorithm which achieves the lower
complexity bound (25) for smooth and strongly-convex-
strongly-concave saddle-point problems with bilinear cou-

pling.

2L,
12 py

5.2. Affinely-constrainted minimization case

In this case p; > 0 and p, = 0. Firstly, we consider
the case when L, = 0, ie., g(y) is a linear function.
Then, problem (1) is equivalent to the smooth and strongly-
convex affinely-constrained minimization problem (7). Al-
gorithm 1 enjoys the linear convergence rate

Lyy [L, L2, !
O | max{ —¢ _J% log =]+
My Ha Moy €
where (i1, = M

Fa(AAT) > 0 due to Assumption 3.4.
This result recovers the complexity of the APAPC algo-
rithm (Kovalev et al., 2020). It is possible to incorporate
the Chebyshev acceleration mechanism (Arioli & Scott,
2014) into Algorithm 1 for solving problem (7) to obtain
the improved complexity

Ley, [L,. 1
(@) <—’ — log —> .
My Moz €

This matches the complexity of the OPAPC algorithm
of Kovalev et al. (2020); Salim et al. (2021), which was
shown to be optimal (Salim et al., 2021; Scaman et al.,
2017).

(28)

(29)

5.3. Strongly convex and concave case

We also allow L, > 0, i.e., function g(y) is a general, not
necessarily linear, smooth and convex function. It is often
possible that p,,, > 0 due to Assumption 3.4; for instance,
when A is a full row rank matrix. Then, Algorithm 1 enjoys
the following linear iteration complexity:

VIsLy Ley |Le L3, 1
O | max —=v Y3log=|. (30)
,u,ry /j.lJ Ha /1.’1;/ €

This case was previously studied by Du & Hu (2019);
Duetal. (2017); Zhang et al. (2021a). Du & Hu (2019)
provided an analysis for an algorithm called Sim-GDA, and
established its iteration complexity

L3 L4

O | max 2‘4 log — | . (3D

This result is substantially worse than our complexity
(30); possibly due to a suboptimal analysis. Subsequently,
Zhang et al. (2021a) provided an improved analysis for the
Sim-GDA algorithm, obtaining the complexity

L3 L2 1
o e £ E i)
Ha [y I €

They also studied the Alt-GDA method, obtaining the com-

plexity
L?> L 1
O (max{ 5 ,—}1og—> ,
/’L;Ey /'L:E €

(32)

(33)
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where L = max{L,, L,, L,,}. However, these results are
local, i.e., they are valid only if the initial iterates of these
algorithms are close enough to the solution of problem (1).
Moreover, these results are still worse than our rate (30) be-
cause Sim-GDA and Alt-GDA do not utilize the Nesterov
acceleration mechanism, while our Algorithm 1 does.

5.4. Bilinear case

In this case pp = puy = Ly = L, = 0. That is, func-
tions f(x) and g(y) are linear. Then, problem (1) turns
into the bilinear min-max problem (10), and i3, = 2, =
At (ATA) > 0 due to Assumption 3.4. The iteration

complexity of Algorithm 1 becomes

L? 1
@) ( ;y 1og—> .

This recovers the results of Daskalakisetal. (2018);
Liang & Stokes (2019); Gideletal. (2018; 2019);
Mishchenko et al.  (2020); Mokhtari et al. (2020) for
the bilinear min-max problem (10). However, this result is
worse than the complexity lower bound

L, 1
@ ( Y log —) ,
Hay €

obtained in the work of Ibrahim et al. (2020), which was
reached by Azizian et al. (2020)°.

(34)

(353)

5.5. Convex-concave case

In this case p, = p, = 0. It is often possible that ji, =
fyz > 0 due to Assumption 3.4, for example, when A is a
square and full rank matrix. Then, the iteration complexity
of Algorithm 1 becomes

’ LZI?L'I/L[I?'I/ L%[/ 1

O max{ XY= 22 Yiog = |, (36)
2 2 g
/1/:1:;(/ /1/:1:;(/ €

which is still linear. This complexity result generalizes the
result (34) for bilinear min-max problems as it allows for
general, not necessarily linear, convex and smooth func-
tions f(z) and g(z). To the best of our knowledge, Algo-
rithm 1 is the first algorithm which can achieve linear con-
vergence for smooth and non-strongly convex non-strongly
concave min-max problems with bilinear coupling.

3We provide these results for completeness. The result of
Azizian et al. (2020) is better than our result (34) for Algorithm 1
because they specifically focus on solving the bilinear min-max
problem (10), while Algorithm 1 aims to solve the much more
general convex-concave saddle-point problem (1).

6. A Novel Gradient Method for General
Convex-Concave Saddle-Point Problems

In this section we present a new method—Gradient
Descent-Ascent Method with Extrapolation (GDAE; Algo-
rithm 2)—for solving problem (11).

6.1. Assumptions and definitions

First, we state the main assumptions that we impose on
problem (11).

Assumption 6.1. Function F(z,y) is L,-smooth and .-
strongly convex in « and L,-smooth and p,,-strongly con-
cave in y, where L, > i, > 0, Ly > py > 0.

Assumption 6.1 generalizes the smoothness and strong con-
vexity Assumptions 3.2 and 3.3 imposed on problem (1).

Assumption 6.2. There exists a constant L, > 0 such that
for all z, 21,20 € R% and y,y1,y2 € R%, the following
inequalities hold:

IVaF (z,51) = Vo F(2,y2)|| < Layllyr — w2,

IVyF(21,y) = VyF(22,y)|| < Layllz1 — 22
Assumption 6.3. There exist constants fzy, tiyz > 0 such
that for all x, z1, 22 € R% and Y, Y1,Y2 € R, the follow-
ing inequalities hold:

IVaF(2,91) = Vo F(2,y2)[| > payllyr — v2l,

IVyF(z1,y) = VyF(z2, )| 2 pyellzr — z2|.

(37)

(38)

Assumptions 6.2 and 6.3 combined form a generalized ver-
sion of Assumption 3.4 for problem (11). Indeed, if one
assumes that (37) and (38) hold for problem (1), then the
following inequalities hold

,UJ?J;E S )\min(ATA) S Liyv
which can be seen as a simplified version of Assump-
tion 3.4.

Next, we recall several basic definitions. Similarly to Sec-
tion 3, by S € R% x R% we denote the solution set of
problem (11). Note that (z*,y*) € S if and only if (z*, y*)
satisfies the optimality conditions

{VI?F(:C*a y*) = 07

4
V,F(z*,y*) = 0. (40)

We also use notions of iteration complexity for achieving
an e-accurate solution analogous to Definitions 3.5 and 3.6,
respectively.

6.2. Algorithm development

We now present the main ingredients and intuition behind
the development of our method.
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Algorithm 2 GDAE: Gradient Descent-Ascent with Extrapolation

Input: 2° € R4,y € R%, n,,m, > 0,0 € (0,1)
~1_ .0

X =X

y =90

fork=0,1,2,...do

a T = ab — Vo F 2k, y%) — no0(Vo F(zF 1 yF) — Vo F (a1 gk 1))

y" =y g,V F(aMT k)
end for

Implicit gradient descent-ascent. First, we recall the it-
erations of the Forward-Backward algorithm (17), which
can be written in the form

et =z —n,Vf(z) —nATy"
y =y —n,Vg(y) +nyAz"

where 7,71, > 0 are stepsizes. Iterations (41) can also be
written in terms of the gradients V, F'(z,y) and V, F(z, y),

; (41)

tT=x— msz ) +

ot ==V ) )
yT=y+nVyF(aT,y)

which makes the method applicable to the general prob-

lem (11).

Iterations (42) were the foundation for the development of
Algorithm 1 for solving problem (1), with strong conver-
gence properties established by Theorem 4.2. Hence, we
expect that this approach would work for solving the more
general problem (11). However, (42) is an implicit algo-
rithm and can’t be applied in its current state.

Gradient extrapolation. In analogy to the development
of Algorithm 1, we want to find a good approximation of
the implicit iterations (42). A naive solution would be using
the approximation

{$+ =T — %VzF(%ym)

, (43)
yt=y+n,VyF(zt,y)

where y,,, &~ yT. Similarly to Section 4.1, we could use
Ym = Y, which would lead to the Alt-GDA algorithm
(Zhang et al., 2021a), or y,, = y + 6(y — y~), which is
a linear extrapolation step (Chambolle & Pock, 2011).

The linear extrapolation step with § = 1 is based on the
“assumption” that y ™ = y,,, = y+(y—y ™), or equivalently,
yt —y ~ y — y~. We can use a similar intuition for the
gradients V. F'(x, y) rather than the iterates y. In particular,
we “assume” that

VoF (2, y") =V, F(x,y) ~ V. F(x™,y)~V.F(z",y),
or equivalently,

{VIF(I, yT) ~ A,
Am = VIF(Ia y) + (VIF(I_vy) - VIF(I_vy_))

This intuition leads to the following novel update rule,
which we call gradient extrapolation step:

Ay =V F(z,y) +0(VoF(z™,y) — V. F(z™,y7))
T =a—n,A,

Above, 6 € (0,1] is the extrapolation parameter. We use
this gradient extrapolation step together with the update
rule for y from (42) in the design of our Algorithm 2.

6.3. Convergence of Algorithm 2 and related work

We now present Theorem 6.4, which establishes linear con-
vergence rate for Algorithm 2 under Assumptions 6.1, 6.2
and 6.3.

Theorem 6.4. Let Assumptions 6.1, 6.2 and 6.3 and condi-
tion (21) hold. Then there exist parameters of Algorithm 2
such that the iteration complexity for finding an e-accurate
solution of problem (11) is

@ (min {To, Ty, T, Ty} log g) , (44)
€

where T,, Ty, T, Ty are defined as

L, L L
Ta = ma'X{_za _yv i} )
M Hy /My
L, L,L, L?
T, = max { —, 12‘”, ;y ,
L, L,L, L?
T, = max{ —<, zgy, ;y ,
L.L, L.L, L3, L;
Td:ma'x 12 yv 12 yv ;yv ;y )

and C > 0 is some constant, which does not depend on e,
but possibly depends on Ly, 1y, Ly, fty, Ly, oy, byz-

Consider the case when p,, 1, > 0. In this case the itera-
tion complexity of Algorithm 2 becomes

L:r L’l L/I?’l 1
@ (111;1}( {— = —/} log —) . (45)
Ko Ky /Kty €
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This recovers the result of Cohen etal. (2020). More-
over, when p, = p,, this result recovers the complex-
ity of solving problem (11) by a number of known algo-
rithms, including the extragradient method (Korpelevich,
1976), optimistic gradient method (Daskalakis et al., 2018;
Gidel et al., 2018), and the dual extrapolation method
(Nesterov & Scrimali, 2006).

Finally, consider then opposite case when at least one of the
constants p,, and i, is zero. To the best of our knowledge,
there are no algorithms that can achieve a linear conver-
gence. However, Algorithm 2 can still achieve linear itera-
tion complexity provided that condition (21) is satisfied.
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Appendix

In Appendix A we provide a proof of Lemma 4.1, in Appendix B we provide a proof of Theorem 4.2, and in Appendix C
we provide a proof of Theorem 6.4.

A. Proof of Lemma 4.1

Part 1. Let us first show that primal problem (22) has at least a single solution z* € R% .

Condition (21) implies that max{ i, ftyz} > 0. If g, > 0 then function P(z) is obviously strongly convex and primal
problem indeed has a solution. Consider the opposite case j;, = 0. Then f1,,, > 0 due to condition (21).

Assumption 3.4 and 1, > 0 imply that V f(z) € rangeA " for all z € R% . Hence,
fx+2') = f(x) forall z € R% 2’ € ker A. (46)
Using the definition of P(x) we get
Ple+a) = f(z+2') +g"(A(z +2))
= f(z) + 9" (Ax)
= P(x)
for all z € R% 2’ € ker A. From this one can conclude that

min P(x) = min P(x).
rERdz z€x%+rangeAT

for any vector 2° € R%. From the definition of P(z) it follows that P(z) is j,,-strongly convex on any affine space
2% +rangeA T for arbitrary 2 € R% . Hence, problem min, ¢ o0 trangea™ P (2) has a unique solution and primal problem
min,cge. P(x) has at least a single solution 2*.

Part 2. Let us show that there exists y* € R% such that (z*,y*) € S, i.e., (x*,y*) satisfy optimality conditions (13).

Let us show that —V f(z*) € ATdg*(Az*). We use condition (21) which implies max{ji, pizy} > 0. If g, > 0,
then function ¢*(y) is smooth and our statement is trivial. Consider the opposite case i, = 0. Then 5, > 0 due to
condition (21).

Assumption 3.4 and ji,, > 0 imply that Vg(y) € rangeA for all y € R%. Hence, dom g*(-) C rangeA. Let h(z) =
g*(Ax). From standard theory it follows that —V f (z*) € dh(x*) or
h(z) > h(z*) — (Vf(z*),x — z*) forall z € R%=,
From this one can conclude that
(Vf(x"),x —z*) > 0forallz € " + ker A,
which implies V f(2*) € (ker A)* = rangeA ". Hence, there exists vector y* € R% such that —V f(z*) = ATy*. Now,
we can write
h(z) > h(z*) + (ATy* x —2*) forall z € R,
which is equivalent to
g (Az) > g*(Az™) + (y*, Az — Az™) forall z € R%.
The latter can be written as
g (y) > g"(Az™) + (y*,y — Az™) for all y € rangeA.
But dom ¢g*(-) C rangeA, which means that g*(y) = +oo for all y ¢ rangeA. This implies
9 (y) > g"(Az*) + (y*,y — Az") forall y € R%,
which is a definition of y* € dg*(Axz*). An equivalent for this is Vg(y*) = Ax*, which together with —V f(z*) = A Ty*
form optimality condition (13).

Part 3. We showed that there exists a pair of vectors (z*,3*) € R% x R% which is a saddle point of the function F(z, )
in problem (1). Hence, strong duality holds and proof of the rest of Lemma 4.1 is trivial. O
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B. Proof of Theorem 4.2

Lemma B.1. There exists a solution (z*,y*) € S of the problem (1) such that for all k = 0,1,2,... the iterates of
Algorithm 1 satisfy

IA(® = 2)]| 2 pyollz® — 2],

. . 47)
IAT (5" =y = paylly® ="
Proof. The proof of this lemma is a trivial extension of the derivations from the proof of Lemma 4.1. o
Lemma B.2. Let 7, be defined as
Tp = (o +1/2)7 (48)
Let oy be defined as
Ay = [y (49)
Let B be defined as
1 1
pmmn L L 50
B mln{2Ly 27711392%,} (50)
Then, the following inequality holds:
1 1 1
ottt — a2 < (= = e = BarZy ) 2 = 22 + (o + Laos — 5— ) b — |2
- N Y 20,
By (0f) ~ Bylahiat) - 2By e + (2 - 1) Bylaha) e
—2(AT (g, — ), 2R o).
Proof. Using Line 8 of the Algorithm 1 we get
1 1 2 1
_||$k+1 _ x*H2 _ —||$k _ x*H2 + —<$k+1 _ xk7xk+1 _ .’L'*> _ _ka-i-l _ ka2
T]Cl) T]Cl) x X
1
— —||:1c’C —2*|? + 2a1<x5 — gk k= x*) — 2BQE<AT(A967C — Vg(y’;)), R — x")
1
= 2(Vf(zg) + ATyp, " —a®) — — [ — k|2,
Nz
Using the parallelogram rule we get
1 1
n—llﬂv’”l — 2| = = la® = 2P + a (g — 2P — log — 2P le® = 2|+ 2t - 22
1
~ 26:(Ax" — Vg(yp), Al —27) = AV () + ATy, " —a7) — =l — |

Using the optimality condition Vg(y*) = Axz*, which follows from (13), and the parallelogram rule we get

1 1
—[la" = 2| = = la® = 2"|* + ap (log — 2"|* = log — 2" = [la® — 2P + |25 - 2F)?)

Na Ne g
+ B (JA@EFT — 2™ — A" — 212 + IVa(yy) — Vau)I” = IVg(ys) — A%
(V) + ATy oM gy - Lkt

x
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Using Assumption 3.4, equation 47 and L,-smoothness of g we get

1 1
—[la* T — 2P < —la* — 2| + aullaf — 2P — agllet — 2|+ ap [t — 28|
xT T
+ ﬁ1L§y||$k+l - xk”2 - Bmufmllwk - x*HQ + 2ﬁ1LyBg(y§7 y*)
. 1
- 277 () + ATyh T — ) = Lk b2
T
_(r 2 k2 12 1 k1 k2
N M

+28:LyBy vy, y*) + aallag — 2| = 2(V f(zg) + ATy, o —a%).
Using the optimality condition V f(z*) + A Ty* = 0, which follows from (13), we get
Lok )2 1 2 k %2 2 1 k+1 k|2 ko o*
77_Hx — 2|7 < 77_ — Qg _Bwﬂym 2% —2*[|" + ﬁIL;Ey + oy — 77_ B — 2" +2BwLyBg(ygay )
+aglley — 2| =2V f(ap) = Vf(a*), 2" =) = 2(AT (yp, —y"), " —a¥)

1 . 1

TNz
+ 2ﬁmLyBg(y’;, y*) + awaZ —2*|? - 2(Vf(x§) — Vf(:v*),ka —zF 4k — :v’; + :v’; —z*)
—2AT (g}, — ), — )

Using yt,-strong convexity of f and Lines 6 and 10 of the Algorithm 1 we get

Lkt -t < <n— - Bzufw> ot — 2*|? + (miy Fas - n—) JeA T — a2 4 28, LyBy (4, ")

2(1 _Tm)
Tz
~ 2By (o, 2°) — el — "2~ 2AAT (W, ), 2t — )

1 1 "
_ <n— o —Bzuiz) la* — 2% + (ﬂzLiy s n—) J T — a2 4 (o — o) — )
xT X

oy — P = (V) — V@), —af) +

(Vf(k) = Vf(a*), ok — oF)

2
Oz

+ 2BILyBg(y§,y*) — 2Bf(x5,x*) — ;(Vf(:v’g“) — Vf(:v*),:v’}“ — x’;>
+ 2T (9 () — f(at), - o) — 2AAT (0, — ). aF T — ).

Tz
Using convexity of By (z, 2*) with respect to =, which follows from the convexity of f, we get

1 1 1 "
Lkt -t < <n— o, —Bzufw) la* — 2" + (miy Fas - n—) J T — 22 4 (o — )2 — 2

+28:LyBy(yy,y*) — 2B (g, 27) —
2(1 — 7,)

Tx

Z(Vi(ah) - V() A - ah)

+ (Bf(;[;];’x*) — Bf(xl(;,x*)) _ 2<AT(y7’31 . y*),$k+1 _ LL'*>

Using L,-smoothness of B (x, z*) with respect to z, which follows from the L, -smoothness of f, we get

1 1 1 .
Dt o < (o B ) k= a2 (B2 = ) = P (= )l -

X x X

* 5y 2 . o L
+ 28 LyBy (g, ") — 2By (wg, 27) P (Bf($1;+l,$ ) = By(al,z*) — 7||:v’;+1 _ x§|2)
2(1 — 72) . . ) )

7_7 (Bf(x];,l' )—Bf(xl;,x )) _2<AT(yfn —y ),Jik+1 . >

+
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Using Line 10 of the Algorithm 1 we get

1 1

X x X

g’

* * 2 * * Lio—;%
+ 26mLyBg(y§,y ) — 2Bf(x§,x ) — — (Bf(xljfﬂrl’x ) — Bf(ggk x*) — TkaH _ xk|2>

2(1 — 72) . . ) )
T (Bf(x];,l' )—Bf(xl;,x )) _2<AT(yfn —y ),1‘k+1 . >

+

Na z

1 1
= <— —ay — Bzufﬂ) l|lz* — 2|2 + <BzLiy + oy + Loy — 77_> [|l*H — 2|2

) . 2 2 2
= ol 24 28,1, Bh ) + (2 = 2 Bylahan) - 2Byt

x TI x

2 « % *
n (— —2) By(ah, 2%) — 2(AT (5, — y*), a1 — o).

Tx
Using the definition of 7., a, and 3, we get

1

x xX

k+1
¥

By ()~ Bylahiat) - 2By e + (2 1) Bylaha)

x O-IE

—2(AT(yk, —y"),2F T — ).

Lemma B.3. Let 7, be defined as
Ty = (0, +1/2)7".
Let cvy be defined as
Qy = Hy-
Let B, be defined as
1

By =min{ =

=ming-—,——¢.
Y 2L, 2n,L2,
Then, the following inequality holds:

1

y y 21y

. o2 (2 )
#By(aba) < Bylun) - 2By 0 + (2 - 1) Bylohn)
Yy

Oy
+ 2<A(9c]“rl —z"), Yt — y*).

Proof. The proof is similar to the proof of the previous lemma.

Lemma B.4. Let 1, be defined as

. 1 1)
e = T { 4(pa + anx)7 4Lzy} ’

and let 1, be defined as

. 1 1
= mm{4(ﬂy + Lyoy)’ 4Lwy6} 7
where § > 0 is a parameter. Let 0 be defined as

0= 9(57 Oz, Uy) =1 —max {pa(67 Ogx, Uy)u pb(67 Oz, 0y)7p0(67 Ogx, O'y)apd(éu O, Uy)} )

;)

bt o < <— e —Bzuiz) ot — 2| + <ux Y Lo - —) b — a2
n n 21,

1 . 1
Ly -y < <n— oy —ﬁyuiy> lh =y + <uy Loy - —) I — )

* * 1 *
el R e A LUt RS

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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where po (8, 04,0y), pp(0, 0, 0y), pe(8, 04, 0y), pa(d, 04, 0y) are defined as

pu(3,05,0,) = |max

A(pz + Lyoz) 2 4(py + Lyoy) 2 4Lgy 4Lgyd H -1

s 3 3

Oz My Oy ,U/ac&’ Hy

] 2 )

-1
(fto + La0s) 2 8Lu(py + Lyoy,) 2 2Liy 8Ly Lay6 4LWH

pc(67 Ogx, Uy)

e {5
pp(0,04,0y) = {4 a

—1
A( uy—i—L 0,) 2 8Ly(js + Looy) 2 2L2, SL,L., 4Lwy6}1

) ) )

P 2 2 2 ’
Uy :uyac Oz /Lyac ,uyza /Ly

(M+L 02) 2 8Ly(py+Lyo,) 2 8LyLsy 8L.Ly,d 2L3, 2L3

ul5.7.00,) - max{

) 2 3 3 ) ) 3

’ 2 2 2 2

Let U* be the following Lyapunov function:

1 . 1 . 2
vk = n—uxk =@l TR By )+ B oW y")

z Yy

+—Hy v - 20" -y AR -2,

Then, the following inequalities hold

3 . 1 .
> ko Lty
Nz My

T+ < gk,

Proof. After adding up (51) and (55) we get

1 . 1 .
(LHS) < (— . —Bmuim) ot — 22 + (n— iy —Byuiy) Iy — o1

X

Y

1 1
+ o+ L0 — —) [+t — k% + (u + Lyoy — —) "+t — ¥

2 * 2 * *
(2= 1) By 4 (22 1) B + 205 s AGH -0,

Ox

where (LHS) is given as

Y

1 . 1 . 2 2 .
(LHS) = 77—||f17’“+1 —a*|* + 77—||y’“+1 —y*+ O_—Bf(fzf’}*1 #*) + —By(yi ™, y").

x

Yy z Oy

)

-1

(59)

(60)

(61)

(62)

(63)

(64)

(65)
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Using Line 5 of the Algorithm 1 and Assumption 3.4 we get

* 1 *
e —ﬁmuzm) ot — 2| + (n— iy —ﬁyuiy) I — o2
Yy
o 4 Lo — = ) 25— a2 4 (a4 Lyoy — = ) [ — )2
27790 Y vy 277

Y
2 k x 2 k  *
w2 1) Bk + (2 1) Byho)
)
+ 2y =y AP —at)) - 2000 — P A - 1Y)

1 . 1 .
< (— e —ﬁzu§z> ot — | + (n— oy —Byu§y> T
Yy

Y

1 1
L _ k+1 _ k2 L o k+1 _ k12
# (et a5 I =2 (1 Ly = 5 ) I = o)

2 2
2 1)Bshe) + (2 1) Bytuh)

+
Yy
20y —yF AT = 27)) — 20(yF — yF T A (2R — 27)) + 2014, |lyF -y 2R - 2R

Using the definition of 1, and n, and the fact that § < 1 we get

1 . 1 .
(LHS) < (n— - m‘;z) ok — a2 + (% . ﬂyuiy) T

1 P . P .
ol =g (2 1) Byt + (2 - 1) Byho)

1
_”Ik-i-l _ kaZ _ 1
Ty z Oy

Cdn,

)
Loy b AT - a)) — 200k — P AR — ) + Iy — yF e — o)
2\/7717774
1 * 1 *
< (F s —ﬂxuiz) ot — a2 + <n— oy —ﬁyuiy> T
T Yy
C L e s L ez (2 1) By(ehat) + (2 1) Bywhy)
4n, 477y Ox A Oy 9
. . 0 ’ )
Lol - gk A - ) — 280F — P Ak — )+ [l - R g g2
477;6 4771}
1 2 k * |12 1 2 k * |12
< n——uz—ﬂxuym |z — 2| + n——uy—ﬂyumy ly™ =yl
T Yy

0 k k—1)2 1 k+1 k2 2 k 2 k
- — - — Z _1)B, * Z _1)B *
g I T M ( ek o) + S5 y)

+ 20— yF AP —27)) = 20(yF — P A — 27)).
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Using the definition of 3, and 3, we get

2 2 2 2
LHS) < [ 1= ol — Y Y k2 1— _ Y Y ek 22
( >_< net mm{ T 2L}> et 2 (1 —min § ST |
0 k k=12 1 k+1 k)2 2 k 2 k
— — - — — — —11]B o — —11]B *
+ 4nylly y 477ylly vIF+ o rlag,a”) + - o5y

20y —yF AT —at)) — 20(y" — P AT - a)

+
e Moo 1
< 1—-m My Yy - k_ * (12
< {nxux,mln{ 212, 0 2% — 27|
2
nyﬂmy :uwy 1 k * (12
+ | 1 — max { 7y 4y, min ; —[ly" ="l

0 k _ k12 k+1 k2 <2 ) k * 2 k o ox
+—lly —y -y — — 1) By(@f,27)+ | — — 1) Bglyy,y
4%II ° - i, I”+ @y, x") a5 y")
k—

+ 2y =y AR = a)) = 20(yF —y

Using the definition of § we get

1 . 1 . 1 _ _ N
(0HS) 0 (Ll =y = g~ - 20 - A - o))

2 2 . 1 .
0 (2B5tah) + 2, 0h) ) - gl - 20T AR o))
T Y

Y

After rearranging and using the definition of ¥* we get
ThHL < guk,
Finally, using the definition of ¥*, 7, and 1y We get
k Lok w20 Lok (|2 Lok k—1)2 k k-1 k *
UP > —[la ="+ —[ly" = y* "+ —ly" =y T = 20" — " A" —27))
Ui My Any

x

1 N 1 1 _ - *
> Lot a1+ Lyt =y 1+ el — PR — 2Lyl — et — %)
My My

1 1 1
> — ¥ — 2P+ =" =y 1P+ —ly" — P - —=y" — " llla* - 27
N Ny 4ny 2%
1 1 1 1
> _||$k _ x*HQ + _”yk _ y*H2 + _Hyk _ yk—1H2 _ —ka _ x*H2 _ _” k_ k—1H2
N Ny 4ny 41 4ny

3 . 1
= — 2" —2*|> + —|ly* — y*|*.
i Ty

Proof of Theorem 4.2. From (64) and (65) we can conclude that

3 . 1 x
it A /A [ 2
Nz Ty

This implies the following inequality
max {[Ja% — %%, lly* — «*||*} < 0*0° max {41, /3,7, } .

Hence, we can conclude that
max{”‘rk - ‘T*sz Hyk - x*”2} < €,
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as long as the number of iterations k satisfies

1
k> 1ogg
-0 €

where C' = ¥ max {4, /3,1, }, which does not depend on ¢. From (58) we obtain

1 . { 1 1 1 1 }
— = Imin 3 ) ’ :
1-90 pa(éa Umaay) pb(éa Umaay) pc(éa Umaay) Pd(57 Umaay)

We can now try to approximately optimize parameters 6 > 0 and 0,0, € (0, 1] to obtain the smallest possible values of
pa(8,00,00) 71, pu(0, 04, 04) ", pe(8,00,04) 7Y, pa(d, 04, 0,) 7", This can be done in a closed form and the result is the
following:

— <44 4max ford =,/ 0, = , O ,

Pa {\/ fher \/ umuy} V b V2L, Y 2L,

—<4+8max y - J Ty for § = Hay O = a ,0y =min < 1, Hay ,
Ty u /LI Ky 205 Ly 2L, 4L, L,

1 L.,L, L., |L, L2 241, L 2 [Tty

— <4+ 8max{ Y ¥ 22 —y,Ty for 6 = %,az:min 1, s ,Oy = ﬂ,

1 LyLyLy, L2, L2, ey [Ly 2 2
—§2+8max{¢, Y for § = Ko ,0,; = min T ,0y =min ¢ 1, Hry .

Pd Hayblye iy K2, fiyz \ Lo AL,L, AL, L,

Note, that we set 1, = 0 in the bound for pb_l, pz = 0 in the bound for p_ ! and 1, = p,, = 0 in the bound for pgl. This
is a valid move, because any convex function is 0-strongly convex by the definition of strong convexity. O
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C. Proof of Theorem 6.4

Lemma C.1. Problem (11) has a unique solution (z*, y*).

Proof. Consider operator T': R% x R% — R x R defined as T': (z,y) — (z — t, Vo F(2,9),y — t,V,F(z,y))
for some fixed ¢,¢, > 0. It is obvious that (z,y) is a fixed point of operator 7" if and only if (x,y) is a solution to
problem (11). If one can show that this operator is contractive, then it has a unique fixed point due to Banach fixed-point
theorem. The proof of the fact that 7" is contractive is similar to the proof of the rest of Theorem 6.4. O

Lemma C.2. Let 0, be defined as

1 )
r = i or a1 (> 66
' mm{sLx 4Lzy} (66)
and let 1, be defined as
1 1
=minqg—,—— 67
77y mln{sLy745Lzy}u ( )
where § > 0 is a parameter. Let 0 be defined as
0= 9(6) =1—max {pa(5), pb(5)a pc(5), pd(é)} s (68)
where po (), pu(0), p pd(0) are defined as
1 e { 8L, 7 8Ly 4qu, 4Lmy5} 7 69)
pa 5 Ha oy
2
{ . 512L Ly ALuy 256La Lzy5’ 2561L,, Lzy’ 12821312,}’ 0,
B 8Ly, 512L,L, 4L,y 256LyLyy0 256LyLgy 128L§y 1)
pC 6 IUJ :uyx ’ ,uy ’ :uyx ’ :UJyx(S ’ :uzx ’
2
e 512L,L, ?56L21Lmy26 7 .256§yL12y - 1282Lgcy2 (72)
pdw) W2, 12, ] {2y 2, ] i, 12,10 min{iZ,. 12}
Let U* be the following Lyapunov function:
1 . 1 N _ _ _ . _
U=l =2t eyt gt 2V P ) - VP Ty, e —a) y R (73)
z y
Then, the following inequalities hold
k 3 k * (12 1 k * (2
UF 2 el =2+ T =y, (74)
Na Ty
Prtl < ook, (75)
Proof. Using Line 5 of the Algorithm 2 we get.
1 1 2 1
_”IkJrl _ x*HQ _ _ka _ x*”Q + _<xk+1 _ xk7xk+1 _ x*> _ _kaJrl _ Ik”Q
1 1
= it — 2| — e - o)
— 2V F(z*,y*) + 0(V. F (2" %) — Vo F(a*~1, k1)), 2Pt — %)
1 1
e L R R T A W N )

+ 2V F(aF y* ) — Vo F(ak %), 2Pt — 2%y — 20(V, F(2F 1, yF) — Vo F(ah= 1 yF 1), ab 1 — 2%).
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Using the Assumption 6.1 we get

1 1 1
77_||xk+1 _ x*HQ < <77_ _ ﬂm) ka _ x*HQ + <Lm _ 77_) kaJrl _ kaQ _ 2(F(£L‘k+l,yk+1) _ F(,T*,ykJrl))

+ 2V F(z* ") — V F(a®, yF), a* — 2*) — 20(V, F (2"t %) — Vo F(2F 1 y* 1), 2% — 7).

Using the Assumption 6.2 we get

1 1
n—n:ck“—w*vs(n——um)m’f—mﬁ (Lw )|w’f+1—xk||2—2<F<xk+l,yk+1>—F(x*,y’”l»

+ 2V, (e g = V(e ), @ e — %) = 20(V, F(ah 1 k) — VP ), ok — o)
2Bl — )

k+1

Similarly, we can obtain the following upper-bound on % [yt — |2

Ly -y < <n— —uy) I — o + <Ly - n—) [ = g2 4+ 2(P(h 1, gy — Pk yo)).

Summing up the upper-bounds on nl |2kt — 2*||? and nl ly* L — y*||? gives
T Y

1 1
(LHS) < (77_ - um) l2F — 2 ||* + (Lm — 77_) [+ — k)2

X x

1 *
+ <— _ uy> I* = y*II7 + <L - —) I — gt
My My

+ 2L, 08 — aF |y — gt - 200V, Pab 1 k) — VR ), ok — o)
+2(F (e, y*+Y) — b, y),

where (LHS) is defined as
1 " 1 N ”
(LHS) = ,T”xkﬂ — P+ =y =y = 2V F(aF, gt ) = Vo F (2, yF) 2 - 2.
T Y

The Assumption 6.1 states, that function F'(x,y) is Lg-smooth in = and L,-smooth in y. Hence, using the optimality
conditions (40) we get

1 1
(LHS) < (— - m) e — 2*||* + <Lz —) [+t — 2|2
1 Mo

X

1 . 1
n <— —uy> I — o2 + <Ly —) lH+ = g2
Thy My
+ 2L, 0|2 — 2P| [lyF — g - 20V, F (bt yF) — VPR R 2k - o)

—2(F (@M YY) = Fa*y") = 2(F (", y") = F(a",y")

1 1
< (— - uz) ok — a2 + <Lz - —) a1 — ok
Nz Nz
1 1
i (— - uy> I =2 + (Lu R
Ui Ty
k—

Y
+ 2Lgy 0|2 — 2|y —y Y = 20(Vo F(z" 1 yF) = Vo F(ab 1y 1), 2% — 2¥)

* /\

Oz R «
2T P - T, ),
x Yy
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where 0,9, € (0, 1] are some parameters, that will be defined later. Using the Assumption 6.3 we get

1 . 1
(LHS) < (n— - uz) ok — 2| + (Lw - —) kT — k2
1 . 1
; <——uy> I — o2 + <Ly—— I+ — g2
Thy Ty
k—

+2ny9||xk+1 k””y -y 1” _29<V1 (.I 17yk)_V1F(xkilayk71)aIk _I*>

6;E * 6LE
~ 57 1IVs (2P y*) — VL F (e )% + L—HVIF(:E’““,y’“)ll2

5 . 5
— |V F (g = Yy F (b, " 1P + 22|V Fa®, )12
2L, L,

1 Sy, 1
< (W_x — lg — ;/Zy ) |z* — %% + (Lm — W_x> 2R+t — )

1 1/’1’1
+<— ”)m P (Ly )ny’f“—yw
Ty
+2Lmﬂ||:v'”1 | y* =y = 200V P (2 ) = Vo F (e g, ab — a¥)

1)
9, Pty )
Y

VL )P

Using Lines 5 and 6 of the Algorithm 2and the Lipschitzness property of V. F'(x,y) and V, F(x,y) we get

1 Sy12, 1
(LHS) < <_ — [ — ﬂ) ||:1:k _ $*||2 + (Lx . _) kaﬂ _ kaz
Nz

Ne 2L,
1 51”211 k 2 < 1 ) k
+ - _ iy % + L _ +1 _ k2
(ny iy ly™ ="l Ty lly Il
+ 2Ly 0| — 2|y — o T = 20(VL F (2R b)) = Vo F (R ) 2k — )
25, B I 2,
+ —HVIF(w’““,y’“) — Vo F(a", y") — 9(V1F(£v’“ Lyk) = Vo Py )1 + L—nQIIiv’“’L1 — z¥|?
25
”HV F(2F, y* ) — v, F(a" ) |1? + Ton2 el A Tl

| Syti2s
< (n— - e ) ot — a1 + (2. - ) 41— 4|2

1 51M2y k 2, k
- _ i o L +1 _ k|2
+ (ny T ly™ = y*[I7 + { Ly — lly vl

+ 2Lg 0|2 T — 2||||y* — T - 29<VmF(:ﬂ FLyR) = Vo PRy, b — )

2 p2
451‘[’9099 ”yk _ k—1H2 204 ka-i-l _ :Ek||2
Ly Lon;

+ 48, Ly ||z"t — %)% +

46,12 26
+ 40, Ly g = ¥ (P + —— 2 = 2P+ 5y - )

L, Lyn

Yy
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Now, we set 0, = min{1, cznz Ly}, §, = min {1, ¢,y Ly}, where cg, ¢, > 0 will be defined later, and obtain

1 Syti2, .
(LHS) < (_ — Mz — %) ||(Ek - .’II*H2 + (LI — _> ||£Ck+1 _ xk”Q
o B} m

1 51/‘31/ k 2 1 k+1 k(2
+ | — =y — Ny =y 1P+ Ly — — ) 0" ="l
<77y Y 2L, Y Ny

+ 2L, 08— aF |y — gt - 200V, P(ab 1 k) — VR ), ok — o)

2
+deame L[ = ab? + deana 2,07y — 12 + =2ttt — o2
X
2c
ey Ly [y™ = yF I - deymy L2 ] — | 4 Tl = oM
y
Using the definition of 7, and 7, we get

1 512, .
(LHS) < (77_ - Mz — uhy ) ||$k - JJ*H2 + (Lw — 77_> ”xk-l-l _ ka2

2L, "
L Outty k 2 1 k1 k2
=y | Y =y P+ Ly — — ) T =7
(ny ! 2Ly . Ny
_ 29<VIF($kfl7yk) _ va(.’I]kil,ykil), (Ek _ (E*>
-+ 1)6? 2,
+ degns Ly ™ = a®* + %ly’“ B A el A
Yy T
cy +1 2¢c
+deyn, Lylly*t —oF (1P + ZTW“ B Y NI ES
z y

Now, we choose ¢; = ¢, = % and get

1 1) 21 1
(LHS) < (n— g — L ) lla* — z*[|* + (Lm —~ n—) |27 FE — 2F|2

oL, o

1 Sty k 2 ( 1) k1 _ k|2
=y - Y=y P Ly = — ) Iy
— 20V F (a1 y*) = Vo F (a1 1), ah — 2%)

562 _ 1
m”yk -y P+ ﬁ”ﬂﬁkﬂ —z*|?
Yy T

1
41 = a2 4 = )

+ e Lyt — 2 +

L21* L — k)2
+myLylly ylIF+ o,

1 Sy, oLy +n2L2 —3/16
_ ( N yHy ) ka —$*||2+ n + Ml / kaJrl _kaQ

me 1T L,

X

1 Salipy \ |\ & o, Myly +myLy —3/16 o
| ==y | I =y I+ ———— [y — "]
<77y Y 2L, My

562 5
— 2OV F (2" yF) = Vo F (2R ym 1), b — ) 2|y — k12 — B _ k)2
(VaF (27, y") (@ y" ), 2" —at) + 16ny”y v 1677y||y "l

Using the definition of 1, and 7, we get

(LHS>s<n——um——;Ly e e e ey 1 A
r Y Y T

92
—20(V, F(e* ) — VL F (@bl R ), ok — o) 4 —

E k=132
Tor, (|

ly ly* = y¥|12.

167,
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Using the definition of ¢, and 6, we get
2 2
x x x xT 1 *
(LHS) < | 1 — max{ 74z, min M, ety Hya [
2L, 8 T

2 2
. NMyMzy MyTle g, 14 *
+ <1 —max{nyuy,mm{ﬁ77”}}> %Hy —y|?

562 5
— 20V F (2" L %) = Vo F (2R yf 1), % — ) 4 2|y — k12 — B _ k)2
(VaF (27, y") (@ y" ), 2" —at) + 16ny”y v 1677y||y "l

Using the definition of 1,7, and 6 we get

0 . 0 . - I .50 -
(LHS) < — ||z — 2*||> + —|ly* — y*||? = 20(V, F (2" 1 y*) = Vo P (2" 1,y 1), 2% — o) + ——|lyF — "1
Nz Ty 1677y

_ E+1 k2
—16nylly Y=

After rearranging and using the definition of ¥* we get
Ukt < 9ok,
Finally, using the definition of ¥*, 7, and 1y We get

5

! * 1 * - - - * _
VP = —la® — 2P+ — [y =y = 2V P ") = VaF (g ) e — ) el -
1 1 5
> =2 =2 P+ —[ly* = y"I* = 2Lay " =y 2" = 2]+ " =y
Nz My i 167,
1 1 1
> —|la* — 2|2+ —lv* =y |IP = — 2" — 2> = —v* =" P+ " — P
N Ty 4n, 477y 1677y
3 . 1 .
> e =~y =y

Proof of Theorem 6.4. From (74) and (75) we can conclude that

3 . 1 X
ok Lyt g < g,
4n, My

This implies the following inequality
max {[|z% — 2*(1%, ly* — 2*||*} <65 WO max {4n,/3,7,} .
Hence, we can conclude that
max {[[z* — 2*|%, [ly* — 2*[|*} <,

as long as the number of iterations k satisfies

C
k> log —
_1—90g6’

where C' = ¥ max {47, /3,1, }, which does not depend on . From (68) we obtain




Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Now, we find the parameter 0 to obtain the following upper bounds on p,(6), pp(9), pe(6), pa(d):

1
Pa

el
e
an
.

8/ 1y L
y} f0r5_min{ﬂ

8L, 8Ly ﬂ}ﬁm_ iy
o fy  /Halty Ha
512L,L, 128L2%,
Hi, o3,
8L, 512LL 12812
Mo Mg
512L,L, 512L,L, 128L2, 128L2
N - 1 N 1

} f0r5_max{8\/'u%_lzm,

Ky

y} for 6 =

(76)

(77)

(78)

(79)



