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Abstract— We study multimarginal optimal transport (MOT)
problems, which include, as a particular case, the Wasser-
stein barycenter problem. In MOT problems, one has to find
an optimal coupling between 𝑚 probability measures, which
amounts to finding a tensor of order 𝑚. We propose a method
based on accelerated alternating minimization and estimate the
complexity to find an approximate solution. We use entropic
regularization with a sufficiently small regularization parameter
and apply accelerated alternating minimization to the dual
problem. A novel primal-dual analysis is used to reconstruct the
approximately optimal coupling tensor. Our algorithm exhibits
a better computational complexity than the state-of-the-art
methods for some regimes of the problem parameters.

I. INTRODUCTION

Optimal transport (OT) has gained increasing interest in
recent years from its broad range of applications ranging
from medical image processing [1], machine learning [2],
graph-theory [3], control theory [4], among many others.
Fundamentally, many of these applications require the com-
parison and quantification of distances between probability
distributions [5]. In Kantorovich formulation, the OT problem
seeks to minimize

ż

𝑀1ˆ¨¨¨ˆ𝑀𝑚

𝑐p𝑥1, ¨ ¨ ¨ , 𝑥𝑚q𝑑𝜋p𝑥1, ¨ ¨ ¨ , 𝑥𝑚q,

over the set Πp𝑝1. ¨ ¨ ¨ , 𝑝𝑚q of positive joint measures 𝜋 on
the product space 𝑀1ˆ¨ ¨ ¨𝑀𝑚 whose marginals are the 𝑝𝑘’s,
where 𝑝1. ¨ ¨ ¨ , 𝑝𝑚 (marginals) is a set of probability measures
on smooth manifolds 𝑀1, . . . ,𝑀𝑚, and 𝑐p𝑥1, ¨ ¨ ¨ , 𝑥𝑚q is a
cost function [6].
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Although the OT problem formulation is mathematically
precise, see, for example, the seminal monograph by Vil-
lani [7], and references therein, its translation to practical
applications heavily depends on the availability of computa-
tionally attractive methods. Many of the OT related problems
are computationally intense, and much effort has been put into
analyzing the underlying complexity of such problems [8]–
[11].
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Fig. 1. A visual representation of the multimarginal optimal transport
problem for 𝑚 “ 2 and 𝑚 “ 3. When 𝑚 “ 2, the transport plan defines the
optimal cost of moving 𝑝1 into 𝑝2. For discrete distributions this corresponds
to a matrix with marginals 𝑝1 and 𝑝2. When 𝑚 “ 3, in the discrete case
is, the transport plan is a three dimensional tensor, whose marginals are 𝑝1,
𝑝2, and 𝑝3.

Classically, OT has been studied for quantifying distances
between two probability distributions (i.e., 𝑚 “ 2) for which
theory is fairly well understood [7], [12], [13]. However, for
𝑚 ě 3, i.e., the multimarginal optimal transport (MOT)
problem, much less is known, even though such regime
has been recently shown useful for many applications, like
tomographic image reconstruction [14], generative adversar-
ial networks [15], economics [16], and density functional
theory [17]. Figure 1 shows a visual representation of the
MOT problem for 𝑚 “ 3. See [6] for a recent survey of
fundamental theoretical formulations and applications of the
MOT problem.

Computational aspects of the MOT problem were studied
in [18], where an Iterative Bregman Projections algorithm was
proposed for this problem, yet without complexity analysis.
It was also pointed out that the MOT problem can be applied
to calculate the barycenter of 𝑚 measures without fixing the
barycenter’s support. In [19], the authors propose and analyze
the complexity of two algorithms for the MOT problem. We
follow [19] by using the entropy regularization approach as
well [20].

In this paper, we develop an algorithm for the computa-
tion of approximate solutions for the MOT problem using
recently developed methods of alternating minimization. Our
contributions are three-fold:
‚ We develop a novel algorithm for the approximate com-

putation of MOT maps based on accelerated alternating
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minimization algorithm.
‚ We formally prove the computational complexity of

the proposed algorithm. We show that the proposed
algorithm has an iteration complexity r𝑂

`

𝑚2𝑛1{2{𝜀
˘

,
and a computational complexity of r𝑂

`

𝑚3𝑛𝑚`1{2{𝜀
˘

arithmetic operations. Our result indicates an upper ex-
ponential bound for the Wasserstein barycenter problem’s
complexity with free support, which is known to be a
non-convex optimization problem.

‚ We show that in some regimes of the MOT problem
parameters 𝑚 (number of distributions), 𝑛 (dimension of
the distributions), and 𝜀 (desired accuracy), the proposed
algorithm has better iteration complexity in comparison
with existing methods.

This paper is organized as follows. Section II presents the
problem formulation and the dual aspects of the OT problem.
Section III contains the algorithm design methodology and
the theoretical primal-dual analysis required for the establish-
ment of the algorithmic complexity. Section V shows some
preliminary experiments. Section IV discusses the specific
computational complexity results. Finally. Section VI presents
the conclusions and future work.

II. THE ENTROPY REGULARIZED MOT PROBLEM

In what follows, Δ𝑛 denotes the probability sim-
plex in R𝑛

`: Δ𝑛 “ t𝑢 P R𝑛
` : 1J𝑛𝑢 “ 1u. For

a tensor 𝐴 “ p𝐴𝑖1,...,𝑖𝑚q P R𝑛1ˆ...ˆ𝑛𝑚 , we write
}𝐴}8 “ max1ď𝑖𝑘ď𝑛𝑗 ,@𝑘Pt1,...,𝑚u |𝐴𝑖1,...,𝑖𝑚 | and }𝐴}1 “
ř

1ď𝑖𝑘ď𝑛𝑗 ,@𝑘Pt1,...,𝑚u
|𝐴𝑖1,...,𝑖𝑚 |, and denote by 𝑝𝑘p𝐴q P R𝑛𝑘

its 𝑘-th marginal for 𝑘 P t1, . . . ,𝑚u where each component
is defined as

r𝑝𝑘p𝐴qs𝑗 “
ÿ

1ď𝑖𝑙ď𝑛𝑙,@𝑙‰𝑘

𝐴𝑖1,...,𝑖𝑘´1,𝑗,𝑖𝑘`1,...,𝑖𝑚 .

For two tensors of the same dimension, we denote the
Frobenius inner product of 𝐴 and 𝐵 by

x𝐴,𝐵y “
ÿ

1ď𝑖𝑘ď𝑛𝑘,@𝑘Pt1,...,𝑚u

𝐴𝑖1,...,𝑖𝑚𝐵𝑖1,...,𝑖𝑚 .

The MOT problem between 𝑚 ě 2 discrete probability
distributions with 𝑛 support points1 has the following form:

min
𝑋PR𝑛ˆ...ˆ𝑛

`
, 𝑝𝑘p𝑋q“𝑝𝑘, @𝑘Pt1,...,𝑚u

x𝐶,𝑋y , (1)

where 𝑋 denotes a multimarginal transportation plan and
𝐶 P R𝑛ˆ...ˆ𝑛

` is a cost tensor. For all 𝑘 P t1, . . . ,𝑚u, a
vector 𝑝𝑘 “ p𝑝𝑘𝑗q is given as a probability vector in Δ𝑛.

The MOT problem is a linear program with 𝑚𝑛 equality
constraints, and 𝑛𝑚 variables and inequality constraints. When
𝑚 “ 2, the MOT problem reduces to the classical OT
problem [7].

In the general case of 𝑚 measures, one of the applications
of MOT is grid-free Wasserstein barycenter computation [18].
Despite the linear programming (LP) formulation being in its
standard form, the problem’s dimension, which is exponential

1For simplicity we consider same cardinality of the support set for each
distribution. This can be extended for general case.

in 𝑚, does not allow the use of standard LP solvers such
as interior-point methods [21], [22]. Next, we describe how
to apply the entropic regularization approach so ameliorate
such computational requirements.

Following [18], [20] , we consider a regularized version
of (1), in which we add an entropic penalty to the multi-
marginal transportation plan. The resulting problem has the
following form:

min
𝑋PR𝑛ˆ...ˆ𝑛

`
,

𝑝𝑘p𝑋q“𝑝𝑘, @𝑘Pt1,...,𝑚u
ř

𝑖1,...,𝑖𝑚
𝑋𝑖1,...,𝑖𝑚“1, 1ď𝑖𝑗ď𝑛

𝐹 p𝑋q :“ x𝐶,𝑋y ´ 𝛾𝐻p𝑋q,

(2)
where 𝛾 ą 0 is the regularization parameter, and 𝐻p𝑋q is
the entropic regularization term: 𝐻p𝑋q :“ ´x𝑋, logp𝑋qy .
Here logarithm of a tensor should be understood as
component-wise. We underline that we add a constraint
that 𝑋 belongs to probability simplex of the size 𝑛𝑚. This
constraint is a corollary of the fact that all the vectors 𝑝𝑘,
𝑘 “ 1, ...,𝑚 belong to Δ𝑛. Adding this constraint does not
change the problem’s solution, but it is crucial to obtain a
dual optimization problem to have a Lipschitz-continuous
gradient. The reason for the latter is that entropy is strongly
convex on the probability simplex w.r.t. the 1-norm.

The next lemma shows that the entropy regularized MOT
problem has a closed-form dual representation that we can
exploit for developing computationally efficient approaches.

Lemma 1. The dual problem formulation of the entropy
regularized MOT problem (2) is defined as maxΛ 𝜑pΛq, where

𝜑pΛq :“

´ 𝛾

«

ln
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

exp

#

´

𝑚
ÿ

𝑘“1

r𝜆𝑘s𝑖𝑘

𝛾
´

𝐶𝑖1...𝑖𝑚

𝛾
´ 1

+

` 1`
1

𝛾

𝑚
ÿ

𝑘“1

𝜆𝑇
𝑘 𝑝𝑘

ff

. (3)

Moreover, the primal variable can computed as

𝑋𝑖1...𝑖𝑚pΛq “

exp

ˆ

´
𝑚
ř

𝑘“1

r𝜆𝑘s𝑖𝑘
𝛾 ´

𝐶𝑖1...𝑖𝑚

𝛾

˙

ř

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

exp

"

´
𝑚
ř

𝑘“1

r𝜆𝑘s𝑖𝑘
𝛾 ´

𝐶𝑖1...𝑖𝑚

𝛾

* (4)

Finally, with the change of variable 𝑢𝑘 “ ´
𝜆𝑘

𝛾 ´
1
𝑚 the dual

problem becomes

min
𝑈

𝜑p𝑈q ” 𝜑p𝑢1, . . . , 𝑢𝑚q. (5)

where 𝑈 “ p𝑢𝑇
1 , . . . , 𝑢

𝑇
𝑚q

𝑇 P R𝑚𝑛.

All the proofs of this paper can be found in [23].

Proof. We introduce dual variables 𝜆𝑖 P R𝑛 for 𝑖 P

t1, . . . ,𝑚u and define the Lagrangian function as follows:



𝐿p𝑋,Λ, 𝜇q “ x𝐶,𝑋y ` 𝛾 x𝑋, logp𝑋qy

`

𝑚
ÿ

𝑘“1

𝜆𝑇
𝑘 p𝑝𝑘p𝑋q ´ 𝑝𝑘q ` 𝜇

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

𝑋𝑖1...𝑖𝑚 ´ 𝜇, (6)

where Λ “ p𝜆𝑇
1 , . . . , 𝜆

𝑇
𝑚q

𝑇 P R𝑚𝑛, and formulate the dual
unconstrained problem

max
ΛPR𝑚𝑛

max
𝜇PR

min
𝑋PR𝑛𝑚

`

𝐿p𝑋,Λ, 𝜇q.

Taking the derivative with respect to 𝑋𝑖1...𝑖𝑚 and setting
it to zero yields

B𝐿

B𝑋𝑖1...𝑖𝑚

p𝑋,Λ, 𝜇q “ 𝐶𝑖1...𝑖𝑚 ` 𝛾 ` 𝛾 logp𝑋𝑖1...𝑖𝑚q

`

𝑚
ÿ

𝑘“1

r𝜆𝑘s𝑖𝑘 ` 𝜇 “ 0. (7)

the solution of the above problem is

𝑋𝑖1...𝑖𝑚pΛ, 𝜇q “ exp

ˆ

´
ř𝑚

𝑘“1r𝜆𝑘s𝑖𝑘 ´ 𝐶𝑖1...𝑖𝑚 ´ 𝛾 ´ 𝜇

𝛾

˙

.

Therefore, we have

𝐿pΛ, 𝜇q “ ´𝛾
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

𝑋𝑖1,...,𝑖𝑚pΛ, 𝜇q ´
𝑚
ÿ

𝑘“1

𝜆𝑇
𝑘 𝑝𝑘 ´ 𝜇.

By taking a derivative w.r.t 𝜇 and setting it to zero we
have

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

𝑋𝑖1,...,𝑖𝑚pΛ, 𝜇pΛqq ´ 1 “ 0.

From where we can express 𝜇pΛq as

exp

"

´
𝜇

𝛾

*

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

exp

#

´

𝑚
ÿ

𝑘“1

𝜆𝑘𝑖𝑘

𝛾
´

𝐶𝑖1...𝑖𝑚

𝛾
´ 1

+

“ 1,

yielding the theorem’s statements.
As it is known [24], the objective in (3) has Lipschitz

continuous gradient. This follows from the fact that entropy
is strongly convex on the probability simplex. Since the
dual objective has Lipschitz gradient, we can use gradient-
type of methods to solve the dual problem and obtain the
corresponding complexity.

Finally, with the change of variable 𝑢𝑘 “ ´
𝜆𝑘

𝛾 ´
1
𝑚 the

dual objective becomes

𝜑p𝑈q ” 𝜑p𝑢1, . . . , 𝑢𝑚q ”

𝛾

«

ln
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

exp

#

𝑚
ÿ

𝑘“1

r𝑢𝑘s𝑖𝑘 ´
𝐶𝑖1...𝑖𝑚

𝛾

+

´

𝑚
ÿ

𝑘“1

𝑢𝑇
𝑘 𝑝𝑘

ff

,

(8)

where 𝑈 “ p𝑢𝑇
1 , . . . , 𝑢

𝑇
𝑚q

𝑇 P R𝑚𝑛.

III. ALGORITHM DESIGN BASED ON THE ALTERNATING
MINIMIZATION APPROACH

In this section, we describe the proposed approach for
designing an algorithm to approximately solve the MOT
problem, based on an alternating minimization approach.

First, we introduce the tensor 𝐵p𝑈q P R𝑛𝑚

` with elements
given as

𝐵𝑖1,...,𝑖𝑚p𝑢1, . . . , 𝑢𝑚q “ exp

#

𝑚
ÿ

𝑘“1

r𝑢𝑘s𝑖𝑘 ´
𝐶𝑖1...𝑖𝑚

𝛾

+

,

and element-wise sum given as

Σp𝑈q “
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛,1ď𝑗ď𝑚

𝐵𝑖1,...,𝑖𝑚p𝑢1, . . . , 𝑢𝑚q.

Moreover, it follows that the partial derivatives of the dual
function 𝜑 are

1

𝛾

„

B𝜑

B𝑢𝜉



𝜂

“
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚
𝑖𝜉“𝜂

exp
!

ř𝑚
𝑘“1r𝑢𝑘s𝑖𝑘 ´

𝐶𝑖1...𝑖𝑚

𝛾

)

Σp𝑈q
´r𝑝𝜉s𝜂

“
r𝑝𝜉p𝐵p𝑈qqs𝜂

Σp𝑈q
´ r𝑝𝜉s𝜂. (9)

Therefore, as shown in the next lemma, we obtain a
closed-form solution for alternating minimization of the dual
problem.

Lemma 2. The iterations

𝑢𝑡`1
𝑘 P argmin

𝑢PR𝑛

𝜑p𝑢𝑡
1, . . . , 𝑢

𝑡
𝑘´1, 𝑢, 𝑢

𝑡
𝑘`1, . . . , 𝑢

𝑡
𝑚q,

can be written explicitly as

𝑢𝑡`1
𝑘 “ 𝑢𝑡

𝑘 ` ln 𝑝𝑘 ´ ln 𝑝𝑘p𝐵p𝑈
𝑡qq,

or entry-wise as

r𝑢𝑡`1
𝑘 s𝜂 “ r𝑢

𝑡
𝑘s𝜂 ` lnr𝑝𝑘s𝜂 ´ lnr𝑝𝑘p𝐵p𝑈

𝑡qqs𝜂. (10)

Proof. Consider the following tensor

𝐵𝑖1,...,𝑖𝑚p𝑢
𝑡
1, . . . , 𝑢

𝑡
𝜉´1, 𝑢

𝑡`1
𝜉 , 𝑢𝑡

𝜉`1, . . . , 𝑢
𝑡
𝑚q

“ exp

#

r𝑢𝑡`1
𝜉 s𝑖𝜉 `

ÿ

𝑘‰𝜉

r𝑢𝑡
𝑘s𝑖𝑘 ´

𝐶𝑖1...𝑖𝑚

𝛾

+

“
expr𝑢𝑡`1

𝜉 s𝑖𝜉

expr𝑢𝑡
𝜉s𝑖𝜉

exp

#

r𝑢𝑡
𝜉s𝑖𝜉 `

ÿ

𝑘‰𝜉

r𝑢𝑡
𝑘s𝑖𝑘 ´

𝐶𝑖1...𝑖𝑚

𝛾

+

“
expr𝑢𝑡`1

𝜉 s𝑖𝜉

expr𝑢𝑡
𝜉s𝑖𝜉

𝐵p𝑈 𝑡q,



and plug in the expression (10) from the lemma statement
ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

𝐵𝑖1,...,𝑖𝑚p𝑢
𝑡
1, . . . , 𝑢

𝑡
𝜉´1, 𝑢

𝑡`1
𝜉 , 𝑢𝑡

𝜉`1, . . . , 𝑢
𝑡
𝑚q

“
ÿ

𝜂

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚
𝑖𝜉“𝜂

𝐵𝑖1,...,𝑖𝑚p𝑢
𝑡
1, . . . , 𝑢

𝑡
𝜉´1, 𝑢

𝑡`1
𝜉 , 𝑢𝑡

𝜉`1, . . . , 𝑢
𝑡
𝑚q

“
ÿ

𝜂

expr𝑢𝑡`1
𝜉 s𝜂

expr𝑢𝑡
𝜉s𝜂

r𝑝𝜉p𝐵p𝑈
𝑡qqs𝜂

(10)
“

ÿ

𝜂

r𝑝𝜉s𝜂
r𝑝𝜉p𝐵p𝑈 𝑡qqs𝜂

r𝑝𝜉p𝐵p𝑈
𝑡qqs𝜂 “ 1.

Next, we plug (10) in the optimality conditions B𝜑
Br𝑢𝜉s𝜂

“ 0
and show that the conditions are satisfied

r𝑝𝜉s𝜂 “

“

exppr𝑢𝑡`1
𝜉 s𝜂q

ř

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚
𝑖𝜉“𝜂

exp
!

ř

𝑘‰𝜉r𝑢
𝑡
𝑘s𝑖𝑘 ´

𝐶𝑖1...𝑖𝑚

𝛾

)

ř

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚

𝐵𝑖1,...,𝑖𝑚p𝑢
𝑡
1, . . . , 𝑢

𝑡
𝜉´1, 𝑢

𝑡`1
𝜉 , 𝑢𝑡

𝜉`1, . . . , 𝑢
𝑡
𝑚q

“ exppr𝑢𝑡`1
𝜉 s𝜂q

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢𝑡
𝑘s𝑖𝑘 ´

𝐶𝑖1...𝑖𝑚

𝛾

+

“
𝑒r𝑢

𝑡`1
𝜉 s𝜂

𝑒r𝑢
𝑡
𝜉s𝜂

ÿ

...

...
𝑖𝜉“𝜂

𝐵p𝑈 𝑡q
(10)
“

r𝑝𝜉s𝜂
r𝑝𝜉p𝐵p𝑈 𝑡qqs𝜂

r𝑝𝜉p𝐵p𝑈
𝑡qqs𝜂.

Lemma 2 implies that the dual objective 𝜑 can be explicitly
minimized in each of the 𝑚 blocks of variables 𝑢𝑘, 𝑘 “
1, ...,𝑚, suggesting to use alternating minimization algorithms
for the dual problem. Note that the nature of the Iterative
Bregman Projections algorithm [18] is different since it is an
alternating projection algorithm for the primal problem.

A. General Primal-Dual Accelerated Alternating Minimiza-
tion

In order to analyze the proposed algorithm, first we develop
a general framework for primal-dual accelerated alternating
minimization. We consider a general minimization problem

p𝑃1q min
𝑥P𝑄Ď𝐸

t𝑓p𝑥q : 𝒜𝑥 “ 𝑏u ,

where 𝐸 is a finite-dimensional real vector space, 𝑄 is a
simple closed convex set, 𝒜 is a given linear operator from 𝐸
to some finite-dimensional real vector space 𝐻 , 𝑏 P 𝐻 is given.
This problem template, in particular, covers Problem (2). The
Lagrange dual problem to Problem p𝑃1q is

p𝐷1q max
𝜆PΛ

"

´x𝜆, 𝑏y `min
𝑥P𝑄

`

𝑓p𝑥q ` x𝒜𝑇𝜆, 𝑥y
˘

*

.

Here, we define Λ “ 𝐻˚. Note also that Problem (3)
is a particular case of this general dual template. It is
convenient to rewrite Problem p𝐷1q in the equivalent form
of a minimization problem

p𝑃2q min
𝜆PΛ

"

𝜙p𝜆q “ x𝜆, 𝑏y `max
𝑥P𝑄

`

´𝑓p𝑥q ´ x𝒜𝑇𝜆, 𝑥y
˘

*

.

Since 𝑓 is convex, 𝜙p𝜆q is a convex function. Thus, by
Danskin’s theorem (see e.g. [24]), its subgradient is

∇𝜙p𝜆q “ 𝑏´𝒜𝑥p𝜆q, (11)

where 𝑥p𝜆q is some solution of the convex problem

max
𝑥P𝑄

`

´𝑓p𝑥q ´ x𝒜𝑇𝜆, 𝑥y
˘

. (12)

In what follows, we assume that 𝜙p𝜆q is 𝐿-smooth and that
the dual problem p𝐷1q has a solution 𝜆˚ and there exist some
𝑅 ą 0 such that }𝜆˚}2 ď 𝑅. We underline that the quantity
𝑅 will be used only in the convergence analysis, but not in
the algorithm itself.

To describe our algorithm we also need the following
notation. The set t1, . . . , 𝑁u of indices of the orthonormal
basis vectors t𝑒𝑖u𝑁𝑖“1 is divided into 𝑚 disjoint subsets
(blocks) 𝐼𝑘, 𝑘 P t1, . . . ,𝑚u. Let 𝑆𝑘p𝑥q “ 𝑥 ` spant𝑒𝑖 :
𝑖 P 𝐼𝑘u, i.e. the affine subspace containing 𝑥 and all the
points differing from 𝑥 only over the block 𝑘.

The idea of the Algorithm 1 is to use greedy alternating
minimization steps in the dual and combine them with
momentum, as in Nesterov’s accelerated methods. This allows
us to obtain an accelerated convergence rate for the dual
problem. Further, we add a step which updates the primal
variable, which is our actual objective, since it corresponds
to the multimarginal transportation tensor.

Algorithm 1 Primal-Dual Accelerated Alternating Minimiza-
tion (PD-AAM)

1: 𝐴0 “ 𝛼0 “ 0, 𝜂0 “ 𝜁0 “ 𝜃0 “ 0𝑚𝑛

2: for 𝑡 ě 0 do
3: Set 𝛽𝑡 “ argmin

𝛽Pr0,1s

𝜙 p𝜂𝑡 ` 𝛽p𝜁𝑡 ´ 𝜂𝑡qq

4: Set 𝜃𝑡 “ 𝜂𝑡 ` 𝛽p𝜁𝑡 ´ 𝜂𝑡q
5: Choose 𝑖𝑡 “ argmax

𝑖Pt1,...,𝑛u

}∇𝑖𝜙p𝜃
𝑡q}22

6: Set 𝜂𝑡`1 “ argmin
𝜂P𝑆𝑖𝑡 p𝜃

𝑡q

𝜙p𝜂q

7: Find largest 𝑎𝑡`1 from the quadratic equation

𝜙p𝜃𝑡q ´
𝑎2𝑡`1

2p𝐴𝑡 ` 𝑎𝑡`1q
}∇𝜙p𝜃𝑡q}22 “ 𝜙p𝜂𝑡`1q

8: Set 𝐴𝑡`1 “ 𝐴𝑡 ` 𝑎𝑡`1

9: Set 𝜁𝑡`1 “ 𝜁𝑡 ´ 𝑎𝑡`1∇𝜙p𝜃𝑡q

10: Set �̂�𝑡`1 “
𝑎𝑡`1𝑥p𝜃

𝑡
q`𝐴𝑡�̂�

𝑡

𝐴𝑡`1
, where 𝑥p𝜃𝑡q is the primal

variable reconstruction (Eq. (4) in the case of MOT)
11: end for
Output: The points �̂�𝑡`1, 𝜂𝑡`1.

The key result for this method is that it guarantees
convergence in terms of the constraints and the duality gap



for the primal problem, provided that the dual is smooth, in
the spirit of [25]–[30].

Theorem 3 ( [31], Theorem 3). Let the objective 𝜙 in the
problem p𝑃2q be 𝐿-smooth and the solution of this problem be
bounded, i.e. }𝜆˚}2 ď 𝑅. Then, for the sequences �̂�𝑡`1, 𝜂𝑡`1,
𝑡 ě 0, generated by Algorithm 1, we have

𝑓p�̂�𝑡q ´ 𝑓˚ ď 𝑓p�̂�𝑡q ` 𝜙p𝜂𝑡q ď
2𝑚𝐿𝑅2

𝑡2
, (13)

}𝒜�̂�𝑡 ´ 𝑏}2 ď
8𝑚𝐿𝑅

𝑡2
. (14)

To apply this result we need to estimate the Lipschitz
constant 𝐿 of the gradient of the dual objective and provide
a bound 𝑅 for an optimal solution.

Later, we will see the application of Theorem 3 to the
MOT problem based on the following change of variables.

𝑥é 𝑋, 𝑓p𝑥q é 𝐹 p𝑋q, 𝜙pΛq é 𝜑p𝑈q é 𝜑pΛq

t𝑥 : 𝒜𝑥 “ 𝑏u é t𝑋 : 𝑝𝑘p𝑋q “ 𝑝𝑘, @𝑘 P t1, . . . ,𝑚uu

𝑄é t𝑋 P R𝑛ˆ...ˆ𝑛
` :

ÿ

𝑖1,...,𝑖𝑚

𝑋𝑖1,...,𝑖𝑚 “ 1, 1 ď 𝑖𝑗 ď 𝑛u

The primal variable 𝑋 is reconstructed from the dual variable
𝑈 or Λ using (4).

B. Bound for L
We endow the space of transportation tensors with 1-

norm, which leads to the primal objective in (2) being
strongly convex on the feasible set of this problem with
parameter 𝛾. Further, we use the 2-norm for the dual space
of Lagrange multipliers Λ in (3). Hence, the dual objective
in (3) is 𝐿-smooth with the parameter 𝐿 ď }𝒜}21Ñ2{𝛾 [24].
Here 𝒜 : R𝑛𝑚

Ñ R𝑚𝑛 is the linear operator defining the
linear constraints of the problem, which, in the case of
the multimarginal optimal transport problem, is defined by
𝒜 vec p𝑋q “ p𝑝1p𝑋q

𝑇 , . . . , 𝑝𝑚p𝑋q
𝑇 q𝑇 . Thus, each column

of the matrix 𝒜 contains no more than 𝑚 non-zero elements,
which are equal to one. Hence, since }𝒜}1Ñ2 is equal to
maximum 2-norm of the column of this matrix, we have that
}𝒜}1Ñ2 “

?
𝑚. Finally, we have that 𝐿 ď 𝑚

𝛾 .

C. Bound for R
We return to the particular dual problem (5) for the MOT

problem to estimate the norm of an optimal dual solution in
this particular case.

Lemma 4. For every 𝑢˚𝜉 entry of 𝑈˚ “ pr𝑢˚1 s
𝑇 , . . . , r𝑢˚𝑚s

𝑇 q𝑇

the following holds

max
𝜂
r𝑢˚𝜉 s𝜂 ´min

𝜂
r𝑢˚𝜉 s𝜂 ď ´ ln 𝜈min

𝜂
r𝑝𝜉s𝜂.

Proof. By the optimality condition (9)

0 “
B𝜑

Br𝑢𝜉s𝜂
“ ´r𝑝𝜉s𝜂

`
exppr𝑢𝜉s𝜂q

Σp𝑈q

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
1ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢𝑘s𝑖𝑘 ´
𝐶𝑖1...𝑖𝑚

𝛾

+

,

where 𝜈 “ exp ´}𝐶}8𝛾 . Since 𝑝𝜉 P Δ𝑛, we obtain the bound
for the the solution of the above optimality conditions

1 ě r𝑝𝜉s𝜂

“
exppr𝑢˚𝜉 s𝜂q

Σp𝑈˚q

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
0ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢˚𝑘 s𝑖𝑘 ´
𝐶𝑖1...𝑖𝑚

𝛾

+

ě 𝜈 exppr𝑢˚𝜉 s𝜂qΣp𝑈
˚q´1

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
0ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢˚𝑘 s𝑖𝑘

+

“ 𝜈 exppr𝑢˚𝜉 s𝜂qΣp𝑈
˚q´1

𝑚
ÿ

𝑘“1
𝑘‰𝜉

x1, 𝑒𝑢
˚
𝑘 y. (15)

From the above inequality we have

r𝑢˚𝜉 s𝜂 ď lnΣp𝑈˚q ´ ln 𝜈 ´ ln
𝑚
ÿ

𝑘“1
𝑘‰𝜉

x1, 𝑒𝑢
˚
𝑘 y. (16)

On the other hand,

r𝑝𝜉s𝜂 “
exppr𝑢˚𝜉 s𝜂q

Σp𝑈˚q

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
0ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢˚𝑘 s𝑖𝑘 ´
𝐶𝑖1...𝑖𝑚

𝛾

+

ď exppr𝑢˚𝜉 s𝜂qΣp𝑈
˚q´1

ÿ

𝑖1,...,𝑖𝑚
1ď𝑖𝑗ď𝑛
0ď𝑗ď𝑚
𝑖𝜉“𝜂

exp

#

ÿ

𝑘‰𝜉

r𝑢˚𝑘 s𝑖𝑘

+

, (17)

leads to

r𝑢˚𝜉 s𝜂 ě lnr𝑝𝜉s𝜂 ` lnΣp𝑈˚q ´ ln
𝑚
ÿ

𝑘“1
𝑘‰𝜉

x1, 𝑒𝑢
˚
𝑘 y. (18)

Combining (18) and (16) we have, for all 𝜉 “ 1, ...,𝑚,

max
𝜂
r𝑢˚𝜉 s𝜂 ´min

𝜂
r𝑢˚𝜉 s𝜂 ď ´ ln 𝜈min

𝜂
r𝑝𝜉s𝜂.

Lemma 5. Defining Λ0 “ ´
𝛾
𝑚1𝑚𝑛, there exists a solution

Λ˚ of the dual problem (3) such that

𝑅 “ }Λ˚ ´ Λ0}2 ď

?
𝑚𝑛

2

ˆ

}𝐶}8 ´
𝛾

2
lnmin

𝑖,𝑗
tr𝑝𝑖s𝑗u

˙

.

Proof. We begin by deriving an upper bound on
}p𝑢˚𝑇1 , . . . , 𝑢˚𝑇𝑚 q𝑇 }2. Using the results of the previous lemma,
it remains to notice that the objective 𝜑p𝑈q is invariant under
transformations 𝑢𝑖 Ñ 𝑢𝑖 ` 𝑡𝑖1, 𝑡𝑖 P R for 𝑖 P t1, . . . ,𝑚u,
so there must exist some solution with max𝜂r𝑢

˚
𝑖 s𝜂 “

´min𝜂r𝑢
˚
𝑖 s𝜂 “ }𝑢

˚
𝑖 }8, so

}𝑢˚𝑖 }8 ď ´
1

2
ln 𝜈min

𝜂
r𝑝𝑖s𝜂.



As a consequence,

}𝑢˚𝑖 }2 ď
?
𝑛}𝑈˚}8 ď

ď ´

?
𝑛

2
ln 𝜈min

𝑖,𝑗
tr𝑝𝑖s𝑗u

ď

?
𝑛

2

ˆ

}𝐶}8
𝛾

´
1

2
lnmin

𝑖,𝑗
tr𝑝𝑖s𝑗u

˙

.

and

}𝑈˚}2 “

g

f

f

e

𝑚
ÿ

𝑖

}𝑢˚𝑖 }
2
2 ď

?
𝑚𝑛

2

ˆ

}𝐶}8
𝛾

´
1

2
lnmin

𝑖,𝑗
tr𝑝𝑖s𝑗u

˙

By definition, 𝑢𝑖 “ ´
1
𝛾𝜆𝑖 ´

1
𝑚1, so we have the inverse

transformation 𝜆𝑖 “ ´𝛾𝑢𝑖´
𝛾
𝑚1. Finally, with Λ0 “ ´

𝛾
𝑚1𝑚𝑛

𝑅 “ }Λ˚ ´ Λ0}2 “

“

›

›

›
p´𝛾𝑢˚1 ´

𝛾

𝑚
1, . . . ,´𝛾𝑢˚𝑚 ´

𝛾

𝑚
1q

´ p´
𝛾

𝑚
1, . . . ,´

𝛾

𝑚
1q
›

›

›

2
“ } ´ 𝛾p𝑢˚1 , . . . , 𝑢

˚
𝑚q}2

“ 𝛾}𝑈˚}2 ď

?
𝑚𝑛

2

ˆ

}𝐶}8 ´
𝛾

2
lnmin

𝑖,𝑗
tr𝑝𝑖s𝑗u

˙

.

D. Projection on the feasible set

The Algorithm 1 may return a point in the primal space
which does not satisfy the equality constraints. In this
subsection, we provide a procedure to project approximate
transport tensor to obtain a feasible point for the primal
problem, i.e. find such p𝑋 « �̂�𝑡 that 𝑝𝑖p p𝑋q “ 𝑝𝑖. To do
this we formulate Algorithm 2, which is a generalization of
rounding procedure in [32], see also [19].

Algorithm 2 Multimarginal Rounding
1: 𝑉1 “ 𝑈
2: for 𝑟 “ 1, ¨ ¨ ¨ ,𝑚´ 1 do
3: r𝑋𝑟s𝑖 “ min tr𝑝𝑟s𝑖{r𝑝𝑟p𝑉𝑟qs𝑖, 1u
4: 𝑋𝑟 “ DiagTensorp𝑥𝑟q

5: 𝑉𝑟`1 “ ProdTensor𝑟p𝑉𝑟, 𝑋𝑟q

6: end for
7: for 𝑟 “ 1, ¨ ¨ ¨ ,𝑚 do
8: err𝑟 “ 𝑝𝑟 ´ 𝑝𝑟p𝑉𝑚q

9: end for
Output: 𝑉 “ 𝑉𝑚 `

Â𝑚
𝑟“1 err𝑟{}err𝑚}𝑚´1

1

Note that in Algorithm 2 the function DiagTensorp¨q takes
a vector as input and outputs a 𝑚-dimensional tensor with
the input as its diagonal. Moreover, ProdTensor𝑟p𝐴,𝐵q takes
two 𝑚-dimensional tensors as input, and multiplies them in
the direction 𝑟. We use

Â

to denote the tensor product of
the input factors. The next lemma shows that the output of
Algorithm 2 is in the desired space with the corresponding
marginals, and bounds the error induced by the projection.

Lemma 6. Let t𝑝𝑘u𝑚𝑘“1 P Δ𝑛, and 𝑈 P R𝑛ˆ¨¨¨ˆ𝑛
` , then

Algorithm 2 outputs a matrix 𝐹 with marginals t𝑝𝑘u𝑚𝑘“1,
satisfying }𝑈 ´ 𝑉 }1 ď 2

ř𝑚
𝑟“1 }𝑝𝑟 ´ 𝑝𝑟p𝑈q}1.

Algorithm 3 Approximate MOT by PD-AAM
Input: Accuracy 𝜀.

1: Set 𝛾 “ 𝜀
2𝑚 ln𝑛 , 𝜀1 “ 𝜀

8}𝐶}8
.

2: Define 𝑝𝑘 “
´

1´ 𝜀1

4𝑚

¯

𝑝𝑘 `
𝜀1

4𝑚𝑛1𝑛, 𝑘 “ 1, ...,𝑚.
3: Apply PD-AAM to the dual problem (5) with

marginals 𝑝𝑘, 𝑘 “ 1, ...,𝑚 until the stopping criterion
2
ř𝑚

𝑘“1 }𝑝𝑘p
p𝑋𝑡q ´ 𝑝𝑘}1 ` 𝐹 p�̂�𝑡q ` 𝜑p𝜂𝑡q ď 𝜀{2.

4: Find p𝑋 as the projection of p𝑋𝑡 on t𝑋 P

R𝑛ˆ...ˆ𝑛
` , 𝑝𝑘p𝑋q “ 𝑝𝑘, @𝑘 “ 1, . . . ,𝑚u by the

Algorithm 2.
Output: p𝑋 .

Proof. Initially, note that for all 𝑘 “ 1, . . . ,𝑚, we have

𝑝𝑘p𝑉 q “ 𝑝𝑘p𝑉𝑚q ` 𝑝𝑘p
𝑚
â

𝑟“1

err𝑟{}err𝑚}𝑚´1
1 q

“ 𝑝𝑘p𝑉𝑚q ` err𝑘 “ 𝑝𝑘.

Thus, the output of the �̂� has the desired marginals. Now,
define 𝐼 “ }𝑈}1 ´ }𝑉𝑚}1, thus,

𝐼 “
𝑚
ÿ

𝑟“1

𝑛
ÿ

𝑖“1

pr𝑝𝑟p𝑉𝑟qs𝑖 ´ r𝑝𝑟s𝑖q`

Moreover, we have

}𝑉 ´ 𝑈} ď 𝐼 ` }
𝑚
â

𝑟“1

err𝑟}{}err𝑚}𝑚´1
1 “

𝐼 ` 1´ }𝑉𝑚}1 “ 2𝐼 ` 1´ }𝑈}1 “ 2
𝑚
ÿ

𝑟“1

}𝑝𝑟 ´ 𝑝𝑟p𝑈q}1,

where the last line follows the same arguments as the proof
of Lemma 7 in [32].

IV. COMPLEXITY OF MULTIMARGINAL OT

In this section, we prove the computational complexity of
finding a 𝜀-solution for the original non-regularized MOT
problem (1), i.e. we estimate the complexity to find p𝑋
satisfying all the constraints in (1) and also satisfying

x𝐶, p𝑋y ď x𝐶,𝑋˚y ` 𝜀, (19)

where 𝑋˚ is an optimal solution for (1).The approximation
is produced by Algorithm 3 below.

To obtain its complexity, we combine all the above building
blocks, i.e., analysis of the PD-AAM algorithm and estimates
for 𝑅 and 𝐿, and the rounding procedure.

To adapt Algorithm 1 to Problem (5), one should replace
Step 4 with: Choose 𝐼 “ argmax

𝑖Pt1,...,𝑚u

›

›

›

B𝜑
B𝑢𝑖
p𝜃𝑡q

›

›

›

2
, and Step 5

with: Set

𝜂𝑡`1
𝑖 “

! 𝜃𝑡𝑖 ` ln 𝑝𝑖 ´ ln 𝑝𝑖p𝐵p𝜃
𝑡qq, 𝑖 “ 𝐼

𝜃𝑡𝑖 , otherwise.

Theorem 7. The output �̂� of Algorithm 3 is an 𝜀-solution
for the original non-regularized MOT problem (1), e.g.

x𝐶, p𝑋y ď x𝐶,𝑋˚y ` 𝜀. (20)



Proof. By Lemma 6, p𝑋 is a feasible point for Problem (1).
Let us estimate the objective residual. We have

x𝐶, p𝑋y “ x𝐶,𝑋˚y ` x𝐶,𝑋˚
𝛾 ´𝑋˚y ` x𝐶, p𝑋𝑡 ´𝑋˚

𝛾 y

` x𝐶, p𝑋 ´ p𝑋𝑡y ď x𝐶,𝑋˚y ` 𝛾𝑚 ln𝑛` 𝐹 p�̂�𝑡q ` 𝜑p𝜂𝑡q

` 2
𝑚
ÿ

𝑘“1

›

›

›
𝑝𝑘p p𝑋

𝑡q ´ 𝑝𝑘

›

›

›

1
}𝐶}8, (21)

where p𝑋𝑡 is the output of Algorithm 1, p𝑋 is a projection
of p𝑋𝑡 by Algorithm 2 on the feasible set, 𝑋˚ is a solution
to the non-regularized multimarginal OT problem (1), 𝑋˚

𝛾

is a solution to the entropy-regularized multimarginal OT
problem (2).To obtain the last inequality we used the fact
that the Entropy on the standard simplex in the dimension 𝑛𝑚

belongs to the interval ´𝐻p𝑋q P r´𝑚 ln𝑛, 0s, and, hence,
x𝐶,𝑋˚

𝛾 ´𝑋˚y ď 0 and

x𝐶, p𝑋𝑡 ´𝑋˚
𝛾 y “ px𝐶,

p𝑋𝑡y ´ 𝛾𝐻p p𝑋𝑡qq

´ px𝐶,𝑋˚
𝛾 y ´ 𝛾𝐻p𝑋˚

𝛾 qq ` 𝛾p𝐻p p𝑋𝑡q ´𝐻p𝑋˚
𝛾 qq

(13)
ď 𝐹 p�̂�𝑡q ` 𝜑p𝜂𝑡q ` 𝛾𝑚 ln𝑛. (22)

Finally, by the Hölder inequality and Lemma 6,

x𝐶, p𝑋 ´ p𝑋𝑡
y ď }𝐶}8} p𝑋 ´ p𝑋𝑡

}1 ď 2}𝐶}8

𝑚
ÿ

𝑘“1

}𝑝𝑘p p𝑋
𝑡
q ´ 𝑝𝑘}1.

This finishes the proof of inequality (21).
Further, we have

𝑚
ÿ

𝑘“1

}𝑝𝑘p p𝑋
𝑡
q´𝑝𝑘}1 ď

𝑚
ÿ

𝑘“1

´
›

›

›
𝑝𝑘p p𝑋

𝑡
q ´ 𝑝𝑘

›

›

›

1
` }𝑝𝑘 ´ 𝑝𝑘}1

¯

ď 𝜀1,

by the construction of 𝑝𝑘 and the stopping criterion in step 3
of Algorithm 3. Combining this, (21), the choice of 𝛾 and 𝜀1

as well as the stopping criterion in step 3 of Algorithm 3,
we obtain that (20) holds.

It remains to estimate the complexity of the algorithm. By
Theorem 3, we obtain that

𝑚
ÿ

𝑘“1

›

›

›
𝑝𝑘p p𝑋

𝑡
q ´ 𝑝𝑡

›

›

›

1
ď
?
𝑚𝑛}𝒜 p𝑋𝑡

´ 𝑏}2 ď
8𝑚

3
2 𝑛

1
2𝐿𝑅

𝑡2

ď
8𝑚

3
2 𝑛

1
2

𝑡2
¨
𝑚 ¨ 2𝑚 ln𝑛

𝜀
¨

?
𝑚𝑛

´

}𝐶}8 `
𝜀

4𝑚 ln𝑛
ln 4𝑚𝑛¨8}𝐶}8

𝜀

¯

2

“
8𝑚4𝑛}𝐶}8 ln𝑛

𝜀𝑡2

ˆ

1`
𝜀

4𝑚}𝐶}8 ln𝑛
ln

32𝑚𝑛}𝐶}8
𝜀

˙

,

where the operator 𝒜 is defined in Sect III-B and we used
that by the choice of 𝑝𝑘, min

𝑖,𝑗
tr𝑝𝑖s𝑗u ě

𝜀1

4𝑚𝑛 . At the same

time,

𝐹 p�̂�𝑡
q ` 𝜑p𝜂𝑡

q ď
2𝑚𝐿𝑅2

𝑡2

ď
2𝑚

𝑡2
¨
𝑚 ¨ 2𝑚 ln𝑛

𝜀
¨
𝑚𝑛

4

ˆ

}𝐶}8 `
𝜀

4𝑚 ln𝑛
ln

32𝑚𝑛}𝐶}8
𝜀

˙2

“
𝑚4𝑛}𝐶}28 ln𝑛

𝑡2𝜀

ˆ

1`
𝜀

4𝑚}𝐶}8 ln𝑛
ln

32𝑚𝑛}𝐶}8
𝜀

˙2

.

Let us denote 𝛿𝜀 “ 1` 𝜀
4𝑚}𝐶}8 ln𝑛 ln 32𝑚𝑛}𝐶}8

𝜀 . Since 𝜀 is
small and 𝑚,𝑛 are large, we can think of this quantity as

𝛿𝜀 “ 𝑂p1q. Then, to satisfy the stopping criterion in step 3
of Algorithm 3 we need to take

𝑡 ě

c

128𝑚4𝑛}𝐶}28𝛿𝜀 ln𝑛

𝜀2
“ r𝑂

ˆ

𝑚2𝑛1{2}𝐶}8
𝜀

˙

, and

𝑡 ě

c

4𝑚4𝑛}𝐶}28𝛿
2
𝜀 ln𝑛

𝜀2
“ r𝑂

ˆ

𝑚2𝑛1{2}𝐶}8
𝜀

˙

.

Since in each iteration we need to calculate the full gradient of
the dual objective, which amounts to calculating 𝑚 marginals
𝑝𝑘p𝐵p𝑈qq, 𝑘 “ 1, ...,𝑚 of the 𝑚-dimensional tensor 𝐵p𝑈q,
the cost of this operation is 𝑂p𝑚𝑛𝑚q and it dominates the
complexity of other operations in each iteration. This gives
the following theorem and the main result of the paper.

Theorem 8. The computational complexity of finding an 𝜀-
approximate solution for the non-regularized MOT problem
using Algorithm 3 is

r𝑂

ˆ

𝑚3𝑛𝑚`1{2}𝐶}8
𝜀

˙

.

We now discuss the scalability of the proposed algorithm.
As already mentioned, the most expensive operation on each
iteration is the calculation of 𝑚 marginals 𝑝𝑘p𝐵p𝑈qq of the
𝑚-dimensional tensor 𝐵p𝑈q. This operation can be organized
in parallel if we store this tensor in shared memory and allow
𝑚 workers to access it. Then, they can independently calculate
all the marginals. The total amount of arithmetic operations
remains the same, but the work time is now proportional to
𝑛𝑚 rather than 𝑚𝑛𝑚.

Next, we compare our complexity results with the estimates
in the preprint [19]. By inspecting their Algorithm 2 and
Algorithm 5, we see that similarly to our algorithm, in each
iteration, they need to calculate all the marginals (which
they denote by 𝑟𝑖p𝐵p𝛽qq) to choose the block 𝐼 , which will
be updated. The complexity of this operation dominates
the complexity of other operations in each step. Thus,
since each iteration in their algorithms and our algorithm
is the same, we compare the iteration complexity of the
algorithms. The iteration complexity of our algorithm is
r𝑂
`

𝑚2𝑛1{2}𝐶}8{𝜀
˘

. The iteration complexity of the mul-
timarginal Sinkhorn’s algorithm [19] is r𝑂

`

𝑚3}𝐶}28{𝜀
2
˘

,
which has worse dependence on 𝜀 and 𝑚 than our bound. The
claimed iteration complexity of multimarginal RANDKHORN
algorithm in [19] is r𝑂

´

𝑚8{3𝑛1{3}𝐶}
4{3
8 {𝜀

¯

, which has worse
dependence on 𝑚 and }𝐶}8 than our bound. Moreover, the
multimarginal RANDKHORN is a randomized algorithm, and
its complexity is estimated on average, whereas our algorithm
and complexity are deterministic.

V. EXPERIMENTS

This section provides a numerical comparison of multi-
marginal Sinkhorn’s algorithm from [19] with our AAM
method. We performed experiments using randomly chosen
vectors 𝑝𝑖 P Δ𝑛 and tensor 𝐶 P R𝑛𝑚

` . We slightly modified
the smaller values of 𝑝𝑖 as described above to lower bound



their minimal value. We choose several values of accuracy
𝜀 P r0.25, 0.0125s, and run the methods until the stopping
criterion was reached. One can see that our AAM algorithm
outperforms multimarginal Sinkhorn’s algorithm from [19].
2. Unfortunately, we were not able to implement the multi-
marginal RANDKHORN algorithm since its stopping criterion
�̄�𝑡 ą 𝜀1 depends on expected residual in the constraints given
in [19, Eq. (28)], which is unavailable in practice.

Fig. 2. Performance comparison between multimarginal Sinkhorn’s
algorithm and Algorithm 3 (𝑛 “ 15, 𝑚 “ 4).
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Fig. 3. Performance comparison between multimarginal Sinkhorn’s
algorithm and Algorithm 3 (𝑚 “ 4, 𝜀 “ 0.05).

VI. CONCLUSIONS

We provide a novel algorithm for the computation of
approximate solutions to the multimarginal optimal transport
problem. Our results are based on a new primal-dual analysis
of the entropy regularized optimal transport problem. We
show that the iteration complexity of our algorithm is better
than the state-of-the-art methods in a large set of problem
regimes to the number of distributions, dimension of the
distributions, and desired accuracy.

As a byproduct of our analysis, given that the Wasserstein
barycenter of a set of distributions can be recovered from
the optimal multimarginal transport plan [18], we provide
some evidence of an exponential complexity bound for the

2 The code available https://rb.gy/siirke

computation of the free-support barycenter which is known
to be a non-convex problem.

Future work will include the study of fully decentralized
approaches and extensive experimental results for applications
related to signal processing.
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