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Abstract

During recent years the interest of optimiza-
tion and machine learning communities in high-
probability convergence of stochastic optimiza-
tion methods has been growing. One of the main
reasons for this is that high-probability complex-
ity bounds are more accurate and less studied
than in-expectation ones. However, SOTA high-
probability non-asymptotic convergence results
are derived under strong assumptions such as
the boundedness of the gradient noise variance
or of the objective’s gradient itself. In this pa-
per, we propose several algorithms with high-
probability convergence results under less restric-
tive assumptions. In particular, we derive new
high-probability convergence results under the
assumption that the gradient/operator noise has
bounded central a-th moment for « € (1,2] in
the following setups: (i) smooth non-convex /
Polyak-Eojasiewicz / convex / strongly convex
/ quasi-strongly convex minimization problems,
(i1) Lipschitz / star-cocoercive and monotone /
quasi-strongly monotone variational inequalities.
These results justify the usage of the considered
methods for solving problems that do not fit stan-
dard functional classes studied in stochastic opti-
mization.

'King Abdullah University of Science and Technology,
KSA *Moscow Institute of Physics and Technology, Russia
*Mohamed bin Zayed University of Artificial Intelligence, UAE
“Université de Montréal and Mila, Canada >Canada CIFAR Al
Chair Weierstrass Institute for Applied Analysis and Stochas-
tics, Germany 'Skolkovo Institute of Science and Technol-
ogy, Russia SInstitute for Information Transmission Problems
RAS, Russia. Correspondence to: Eduard Gorbunov <ed-
uard.gorbunov@mbzuai.ac.ae>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction

Training of machine learning models is usually per-
formed via stochastic first-order optimization methods, e.g.,
Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951)

ghtt = ok — YV fer (z*), 1)

where V fex (x*) represents the stochastic gradient of the
objective/loss function f at point z*. Despite numerous
empirical studies and observations validating the good per-
formance of such methods, it is also important for the field
to understand their theoretical convergence properties, e.g.,
under what assumptions a method converges and what the
rate is. However, since the methods of interest are stochas-
tic, one needs to specify what type of convergence is con-
sidered before moving on to further questions.

Typically, the convergence of the stochastic methods is
studied only in expectation, i.e., for some performance met-
ric! P(z), upper bounds are derived for the number of iter-
ations K needed to achieve E[P(2¥)] < e, where z¥ is
the output of the method after K steps, ¢ is an optimization
error, and E[] is the full expectation. These bounds can
be “blind” to some important properties like light-/heavy-
tailedness of the noise distribution and, as a result, such
guarantees do not accurately describe the methods’ conver-
gence in practice (Gorbunov et al., 2020). In contrast, high-
probability convergence guarantees are more sensitive to
the noise distribution and thus are more accurate. Such
results provide upper bounds for the number of iterations
K needed to achieve P{P(z%) < e} > 1 — 3 for some
confidence level 8 € (0, 1], where P{-} denotes some prob-
ability measure determined by a setup.

With the ultimate goal of bridging the theory and practice of
stochastic methods, recent works on high-probability con-
vergence guarantees (Nazin et al., 2019; Davis et al., 2021;
Gorbunov et al., 2020; 2021; 2022a; Cutkosky & Mehta,
2021) focus on an important direction of the relaxing the as-
sumptions under which these guarantees are derived. Our

"Examples of performance metrics for minimization of func-
tion f: P(z) = f(z) - f(z*), P(z) = |Vf(2)|]*, P(z) =

llz — z*||?, where z* € arg min, cpa f(z).
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paper further extensively complements this line of works in
two main aspects: for a plethora of settings, we derive new
high-probability results allowing the variance of the noise
and the gradient of the objective to be unbounded.

1.1. Technical Preliminaries

Before we move on to the main part of the paper, we intro-
duce the problems considered in the work and all necessary
preliminaries. In particular, we consider stochastic uncon-
strained optimization problems

min {f(z) =Ee~p [fe(2)]} @)

where ¢ is a random variable with distribution D.
Such problems often arise in machine learning, where
fe(z) represents the loss function on the data sample £
(Shalev-Shwartz & Ben-David, 2014).

Another class of problems that we consider this work is un-
constrained variational inequality problems (VIP), i.e., non-
linear equations (Harker & Pang, 1990; Ryu & Yin, 2021):

find * € R? such that F'(z*) = 0, 3)

where F'(z) = E¢op[Fe(z)]. These problems arise in
adversarial/game formulations of machine learning tasks
(Goodfellow et al., 2014; Gidel et al., 2019).

Notation. We use standard notation: ||z| = +/(x, z) de-
notes the standard Euclidean norm in R?, E¢[-] denotes
an expectation w.r.t. the randomness coming from random
variable &, Br(z) = {y € R¢ | ||[y—z|| < R} isaball with
center at x and radius R. We define restricted gap-function
as Gapg(z) = maxycp,(o+)(F(y), 2 — y) — a standard
convergence criterion for monotone VIP (Nesterov, 2007).
Finally, O(-) hides numerical factors and O(-) hides poly-
logarithmic and numerical factors.

Assumptions on a subset. Although we consider uncon-
strained problems, our analysis does not require any as-
sumptions to hold on the whole space. For our purposes,
it is sufficient to introduce all assumptions only on some
subset of R, since we prove that the considered methods
do not leave some ball around the solution or some level-set
of the objective function with high probability. This allows
us to consider quite large classes of problems.

Stochastic oracle. We assume that at given point z we
have an access to the unbiased stochastic oracle returning
V fe(z) or Fe(z) that satisfy the following conditions.

Assumption 1.1. We assume that there exist some set ) C
R? and values ¢ > 0, € (1, 2] such that for all z € Q

(i) for problem (2) Ec.p[V fe(z)] = Vf(z) and

Eeop[|[Vfe(z) = V(@)["] < 0, 4)

(ii) for problem (3) E¢p[F¢(z)] = F(x) and
Ecpll|Fe(x) - F(x)["] < 0. )

When o = 2, the above assumption recovers the standard
uniformly bounded variance assumption (Nemirovski et al.,
2009; Ghadimi & Lan, 2012; 2013). However, Assump-
tion 1.1 allows the variance of the estimator to be un-
bounded when o € (1,2), ie., the noise can follow
some heavy-tailed distribution. For example, the distribu-
tion of the gradient noise in the training of large attention
models resembles Lévy a-stable distribution with o < 2
(Zhang et al., 2020b). There exist also other versions of
Assumption 1.1, see (Patel et al., 2022).

Assumptions on f. We start with a very mild assumption
since without it, problem (2) does not make sense.

Assumption 1.2. We assume that there exist some set ) C
R? such that f is uniformly lower-bounded on Q: f, =
infyeq f(z) > —o0.

Moreover, when working with minimization problems (2),
we always assume smoothness of f.

Assumption 1.3. We assume that there exist some set () C
R? and constant L > 0 such that for all z,y € Q

[Vf(z) =Vl < Llz—yl, (6)
IVf@)? < 2L(f(z)—f), D

where f, = inf,eq f(x) > —oc0.

We notice here that (7) follows from (6) for Q = R?, but in
the general case, the implication is slightly more involved
(see the details in Appendix B). When () is a compact set,
the function f is allowed to be non-L-smooth on the whole
R?, which is related to local-Lipschitzness of the gradients
(Patel et al., 2022; Patel & Berahas, 2022).

In each particular special case, we also make one of the fol-
lowing assumptions about the structured non-convexity of
the objective function. The previous two assumptions hold
for a very broad class of functions. The next assumption —
Polyak-Lojasiewicz condition (Polyak, 1963; Lojasiewicz,
1963) — narrows the class of non-convex functions.
Assumption 1.4. We assume that there exist some set
Q C R? and constant 1 > 0 such that f satisfies Polyak-
Lojasiewicz (PL) condition/inequality on @, i.e., for all
x € Q and 2* = argmingcpa f(x)

IVF@)II* > 20 (f(z) - f(z7)). ®

When function f is u-strongly convex, it satisfies PL condi-
tion. However, PL inequality can hold even for non-convex
functions. Some analogs of this assumption have been ob-
served for over-parameterized models (Liu et al., 2022).

We also consider another relaxation of convexity.
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Assumption 1.5. We assume that there exist some set
@ C R and constant i > 0 such that f is ji-quasi-strongly
convex, i.e., forall z € @ and 2* = arg min,cpa f(z)

F@) = f@) + (Vf@)a* )+ Slle =2 ©)

As PL condition, this assumption holds for any p-strongly
convex function but does not imply convexity. Neverthe-
less, for the above two assumptions, some standard deter-
ministic methods such as Gradient Descent (GD) converge
linearly; see more details and examples in (Necoara et al.,
2019).

In the analysis of the accelerated method, we also need stan-
dard (strong) convexity.

Assumption 1.6. We assume that there exist some set ) C
R? and constant 2 > 0 such that f is u-strongly convex,
ie, forallz,y € Q

) 2 f@) + (V@) =)+ Slly =% (10
When p = 0 function f is called convex.

Assumptions on F. In the context of solving (3), we as-
sume Lipschitzness of F' — a standard assumption for VIP.

Assumption 1.7. We assume that there exist some set ) C
R? and constant L > 0 such that for all 2,y € Q

[F(z) = F(y)ll < Lllx = yll, (11

Similarly to the case of minimization problems, we make
one or two of the following assumptions about the struc-
tured non-monotonicity of the operator F'. The first as-
sumption we consider is the standard monotonicity.

Assumption 1.8. We assume that there exist some set ) C
R? such that F is monotone on @, i.e., forall z,y € Q

(F(z) = F(y),z —y) = 0. (12)
Monotonicity can be seen as an analog of convexity for VIP.

When (12) holds with |z — y||? in the r.h.s. instead of just
0, operator F' is called p-strongly monotone.

Next, we consider quasi-strong  monotonicity
(Mertikopoulos & Zhou, 2019; Song et al., 2020;
Loizouetal.,, 2021) — a relaxation of strong mono-

tonicity. There exist examples of non-monotone problems
such that the assumption below holds (Loizou et al., 2021,
Appendix A.6).

Assumption 1.9. We assume that there exist some set
Q C R? and constant g > 0 such that F' is p-quasi
strongly monotone on @, i.e., for all z € @ and z* such
that F'(z*) = 0 we have

(F(z),z —z*) 2,u||:v—:v*||2. (13)

Another structured non-monotonicity assumption that we
consider in this paper is star-cocoercivity.

Assumption 1.10. We assume that there exist some set
Q C R% and constant £ > 0 such that F is star-cocoercive
on @, ie., forallz € @ and 2* such that F'(z*) =0

| F(2)|]> < {F(x),z — x*). (14)

This assumption can be seen as a relaxation of the stan-
dard cocoercivity: || F(x) — F(y)||? < {(F(z)— F(y), v —
y). However, unlike cocoercivity, star-cocoercivity im-
plies neither monotonicity nor Lipschitzness of operator F'
(Loizou et al., 2021, Appendix A.6).

1.2. Closely Related Works and Our Contributions

In this subsection, we overview closely related works and
describe the contributions of our work. Additional related
works are discussed in Appendix A.

Convex optimization and monotone VIPs. Classical
high-probability results for (strongly) convex minimization
(Nemirovski et al., 2009; Ghadimi & Lan, 2012) and mono-
tone VIP (Juditsky et al., 2011) are derived under the so-
called light-tails assumption, meaning that the noise in
the stochastic gradients/operators is assumed to be sub-
Gaussian: E¢plexp(IV/fe(@)=V@)I°/s2)] < exp(1) or
E¢~plexp([IFe(@)—F(2)1?/o2)] < exp(1). In these settings,
optimal (up to logarithmic factors) rates of convergence are
derived in the mentioned papers.

The first high-probability results with logarithmic depen-
dence? on 1/3 under just bounded variance assumption are
given by Nazin et al. (2019), where the authors show non-
accelerated rates of convergence for a version of Mirror
Descent with a special truncation operator for smooth con-
vex and strongly convex problems defined on the bounded
sets. Then, Davis et al. (2021) derive accelerated rates in
the strongly convex case using robust distance estimation
techniques. Gorbunov et al. (2020; 2021) propose an accel-
erated method with clipping for unconstrained (strongly)
convex problems with Lipschitz / Holder continuous gradi-
ents and derive the first high-probability results for clipped-
SGD. In the context of VIP, Gorbunov et al. (2022a) derive
the first high-probability results for the stochastic methods
for solving VIP under bounded variance assumption and
different assumptions on structured non-monotonicity.

2Note that from in-expectation convergence guarantee, one
can always get a high-probability one using Markov’s inequality.
For example, under bounded variance, smoothness, and strong
convexity assumptions SGD achieves E||z* — z*||? < ¢ after
k = O(max{L/u,o*/uc}) iterations. Therefore, taking k such
that E|lz* — z*||> < &8 we get from Markov’s inequality that
P{||lz* — z*||> < €} < B. However, in this case, we get bound
k = O(max{L/u,*/ucs}), having undesirable inverse-power
dependence on 3.
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Table 1: Summary of known and new high-probability complexity results for solving smooth problem (2). Column “Setup” indicates the assumptions made in addition

to Assumptions 1.1 and 1.3. All assumptions are made only on some ball around the solution with radius ~ R > ||ac0
complexity we mean the number of stochastic oracle calls needed for a method to guarantee that P{Metric < e}

— || (unless the opposite is indicated). By the
> 1— pforsomee > 0,8 € (0,1] and “Metric”

is taken from the corresponding column. For simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “«” shows the allowed values of c,
“UD?” shows whether the analysis works on unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation:
L = Lipschitz constant; D = diameter of the domain (for the result from (Nazin et al., 2019)); o = parameter from Assumption 1.1; R = any upper bound on Hmo -z p

= (quasi-)strong convexity/Polyak-Eojasiewicz parameter; A = any upper bound on f (z 0y — f.; G = parameter such that Eenp||Vfe(x)|| < G (for the result from
(Cutkosky & Mehta, 2021)). The results of this paper are highlighted in blue.

[ Setup ] Method Citation Metric Complexity @ UD?  UG? |
RSMD (Nazin et al., 2019)V F(@5) = f(z") max{L?Dz, %} 2 X v
. i (Gorbunov et al., 2020) —Ky * . LR? o2R? .
Ny clipped-SGD (Gorbunov et al., 2021) F@E7) = f@) max { LE%, <24 | 2 oo
S. 1.
) ’ (Gorbunov et al., 2020) Ky _ * . LR2 o2R? .

(w=0) | clipped-SSTM (G unoy etal ., 2021) Fy™) = f@®) max { Ve oz } 2 o
clipped-SGD Theorems 3.1 & E.6 F@%) — f(=*) max {I‘TRZ s (%) a—1 } (1,2] v v
clipped-SSTM Theorems 3.2 & F.2 FW) = f(z*) max {\/ LR2 (@) a1 } (1, 2] v v

restarted-RSMD (Nazin et al., 2019)" F@E) — f(z*) max { L ME 2 X v
proxBoost (Davis et al., 2021)" F@E) - f(=*) max {, /L e ‘LE }(2) 2 v v

As. 1.6 . (Gorbunov et al., 2020) K . .

(> 0) R-clipped-SGD (Gorbunov et al., 2021) F@*) = f(@") max { s 2 4 v
i 3 (Gorbunov et al., 2020) KN\ (o LT o

R-clipped-SSTM (Gorbunov et al., 2021) fy™) = fla”) max { (VAT E} 2 v v
R-clipped-SSTM Theorems 3.2 & F.3 F@*) — f(z*) max { % s (Z—Z) A@=1 } (1,2] v v
As. 1.5 ; L K _ %2 . L (22D
(150 | clipped-SGD Theorems 3.1 & E.8 lz® — 2*|| max { = (“25) (1,2 v v
: (1) LS ky)i2 L2A2 % 3)
MSGD (Li & Orabona, 2020) X 197G max { a? ?2} X0 v v
; 2 oy Bo=2
As.12 | clipped-NMSGD  (Cutkosky & Mehta, 2021) ( 1 AC k)\\) ) (G—) 2a=2 (1,2] v x
" _a
clipped-SGD Theorems 3.1 & E.2 K 2 IV f (z*)]|? max{LT, ( v I‘EA”) Gl } (1,2] v v
As. 14 clipped-SGD Theorems 3.1 & E.4 © F(eE) — f(z*) max { L (ﬁf ) 2(a-1) } (1,2 v v

() All assumptions are made on the whole domain.
) Complexity has extra logarithmic factor of In(L/u).

©) Li & Orabona (2020) assume that the noise is sub-Gaussian: E [cxp (H Ve (@)=V (@)l 2/52)] < exp(1) for all  from the domain.

2
“ We notice that (K}H SK ||Vf(ack)||) < ﬁ K, IV £(2*)||? and in the worst case the left-hand side is K + 1 times smaller than the right-hand

side.
) All assumptions are made on the level set @ = {x € R% | 3y € R? :

However, there are no high-probability results (with log-
arithmic dependence on the confidence level) for smooth
(strongly) convex minimization problems and Lipschitz
VIP without imposing bounded variance assumption. Only
recently, Zhang & Cutkosky (2022) derived optimal regret-
bounds under Assumption 1.1 in the convex case with
bounded gradients on R%. However, the bounded gradients
assumption is quite restrictive when assumed on the whole
space. Thus, a noticeable gap in the stochastic optimization
literature remains.

Contribution. We obtain new high-probability conver-
gence results under Assumption 1.1 for smooth convex min-
imization problems and Lipschitz VIP; see the summary in
Tables 1 and 2. In particular, for Clipped Stochastic Sim-
ilar Triangles Method (clipped-SSTM) (Gorbunov et al.,
2020) and its restarted version, we derive high-probability
convergence results for smooth convex and strongly convex
problems. The high-probability complexity in the strongly
convex case matches (up to logarithmic factors) the known

f) < fe+20and ||z — y|| < VB/20vT}

in-expectation lower bound (Zhang et al., 2020b) and de-
terministic lower bound (Nemirovskij & Yudin, 1983). In
other words, we derive the first optimal high-probability
complexity results for smooth strongly convex optimiza-
tion. Noticeably, the derived results have clear separa-
tion between accelerated part and stochastic part that em-
phasizes a potential of clipped-SSTM for efficient par-
allelization. Next, we derive high-probability results for
clipped-SGD for smooth star-convex and quasi-strongly
convex objectives under Assumption 1.1. Finally, under
the same assumption, we prove the high-probability conver-
gence of Clipped Stochastic Extragradient (clipped-SEG)
(Korpelevich, 1976; Juditsky et al., 2011; Gorbunov et al.,
2022a) for Lipschitz monotone and quasi-strongly mono-
tone VIP and also obtain high-probability results for
Clipped Stochastic Gradient Descent-Ascent (clipped-
SGDA) for star-cocoercive and monotone / quasi-strongly
monotone VIP. In the special case of & = 2, our analy-
sis recovers SOTA high-probability results under bounded
variance assumption.
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Table 2: Summary of known and new high-probability complexity results for solving (3). Column “Setup” indicates the assumptions made in addition to Assumption 1.1.
All assumptions are made only on some ball around the solution with radius ~ R > Hmo — 2™ || (unless the opposite is indicated). By the complexity we mean the number
of stochastic oracle calls needed for a method to guarantee that P{Metric < e} > 1 — S forsomee > 0, 8 € (0, 1] and “Metric” is taken from the corresponding column.
For simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “«” shows the allowed values of «, “UD?” shows whether the analysis works on
unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation: fffg = ﬁ Zi{:o Z* (for clipped-SEG),

K

avg

= ﬁ Sk, ¥ (for clipped-SGDA); L = Lipschitz constant; D = diameter of the domain (used in (Juditsky et al., 2011)); Gap p (z) = maxyex (F(y), z—y),

where X is a bounded domain with diameter D where the problem is defined (used in (Juditsky et al., 2011)); D = diameter of the domain (for the result from (Juditsky et al.,
2011)); o = parameter from Assumption 1.1; R = any upper bound on Hmo — z™||; u = quasi-strong monotonicity parameter; £ = star-cocoercivity parameter. The results of

this paper are highlighted in blue.

[ Setup [ Method Citation Metric Complexity @ UD?  UG? |
Mirror-Prox (Juditsky et al., 2011)1 Gapp (Eféq) max ng , ”251232 x@ X v
As.17&18 | clipped-SEG  (Gorbunov et al., 2022a) Gapg(FX,) max { LA? o2R2 2 VR
clipped-SEG Theorems 4.1 & G.2 GapR(Eigg) max { L? s (% a-1 } (1,2] v v
i
clipped-SEG (Gorbunov et al., 2022a) P — x*|? max 4 L&, <2 2 v v
As.17&19 PP I I = u25}a .
clipped-SEG Theorems 4.1 & G.4 |lz* — z*|)? max{;, (ﬁ) @@= } (1,2] v v
; K ¢tR%Z o2R? P
e L8& 110 | CiPPEd-SGDA  (Gorbunovetal, 2022) Gapp(zX,) max {T —2} 2 v v
s. 1. . T o
clipped-SGDA Theorems 4.2 & H.3 GapR(mgq) max { LR? , (28) 5T } (1, 2] v v
) ;. & g2 2R2 (2,2R2 .
clipped-SGDA  (Gorbunov etal. 2022a) g 3 |[F(z*)]| max { £2R% 72} 2 v v
As. 1.10 k;“
(o3
clipped-SGDA Theorems 4.2 & H.4 K£r1 kzo | F(z*))) max { @ , (@) a—1 } (1,2] v v
3 z
clipped-SGDA  (Gorbunov et al., 2022a) = — |2 max 4 £, < 2 v v
As. 1.9 & 1.10 PP I I . u25}a '
clipped-SGDA Theorems 4.2 & H.6 |lz® — z*|? max {ﬁ, (ﬁ) @@= } (1,2] v v

M Al assumptions are made on the whole domain.

@ Juditsky et al. (2011) assume that the noise is sub-Gaussian: E [cxp (H Fe(z)—F(x) ”2/02)] < exp(1) for all = from the domain.

Non-convex optimization. Under the light-tails and
smoothness assumption Li & Orabona (2020) derive high-
probability convergence rates to the first-order station-
ary point for SGD. These rates match the known in-
expectation guarantees for SGD and are optimal up
to logarithmic factors (Arjevani et al., 2022). Recently,
Cutkosky & Mehta (2021) derived the first high-probability
results for non-convex optimization under Assumption 1.1
for a version of SGD with gradient clipping and normal-
ization of the momentum. The results are obtained for the
non-standard metric — ﬁ ZkK:o |V f(«*)| — and match
in-expectation lower bound for the expected (non-squared)
norm of the gradient from (Zhang et al., 2020b). However,
Cutkosky & Mehta (2021) make an additional assumption
that the norm of the gradient is bounded® on R¢, which is
quite restrictive.

Contribution. We derive the first high-probability result
with logarithmic dependence on the confidence level for
finding first-order stationary points of smooth (possibly,
non-convex) functions without bounded gradients assump-
tion. The result is derived for simple clipped-SGD. More-
over, we extend the analysis to the functions satisfying
Polyak-Lojasiewicz condition; see Table 1 for the sum-
mary.

SMore  precisely, instead of  Assumption 1.1,
Cutkosky & Mehta (2021) assume E¢o||Vfe(2)]|® < G¢
for some G > 0. This assumption implies Assumption 1.1 and
boundedness of ||V f(x)]|.

Gradient clipping received a lot of attention in the ma-
chine learning community due to its successful empiri-
cal applications in the training of deep neural networks
(Pascanu et al., 2013; Goodfellow et al., 2016). The clip-
ping operator is defined as clip(z, A\) = min {1,/ ||/} =
(clip(z,A) = 0, when = = 0). From the theoretical
perspective, gradient clipping is used for multiple different
purposes: to handle structured non-smoothness in the ob-
jective function (Zhang et al., 2020a), to robustify aggrega-
tion (Karimireddy et al., 2021) and to provide privacy guar-
antees (Abadi et al., 2016) in the distributed training. More-
over, as we already mentioned before, gradient clipping
is used to handle heavy-tailed noise (satisfying Assump-
tion 1.1) in the stochastic gradients (Zhang et al., 2020b)
and, in particular, to derive better high-probability guar-
antees under bounded variance assumption (Nazin et al.,
2019; Gorbunov et al., 2020). However, there are no re-
sults showing the necessity of modifying standard meth-
ods like SGD and its accelerated variants to achieve high-
probability convergence with logarithmic dependence on
the confidence level under bounded variance assumption.

Contribution. We construct an example of a strongly con-
vex smooth problem and stochastic oracle with bounded
variance such that to achieve P{||z*—2*||? > ¢} < 8 SGD
requires ) (02/ u@) iterations, i.e., the algorithm has
inverse-power dependence on the confidence level. This
justifies the importance of using some non-linearity such
as gradient clipping to achieve logarithmic dependence on
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the confidence level even in the bounded variance case.

2. Failure of Standard SGD

It is known that SGD z*™! = 2% — 4V fe (2¥) can di-
verge in expectation, when Assumption 1.1 is satisfied with
a < 2 (Zhang et al., 2020b, Remark 1). However, it does
converge in expectation when o = 2, i.e., when the vari-
ance is bounded. In contrast, there are no high-probability
convergence results for SGD having logarithmic depen-
dence on !/g. The next theorem establishes the impossi-
bility of deriving such high-probability results.

Theorem 2.1. For any € > 0 and sufficiently small B €
(0, 1) there exist problem (2) such that Assumptions 1.1, 1.3,
and 1.6 hold with Q = RLa=20< w < L and for the
iterates produced by SGD with any stepsize v > 0

P{|ja* —z*||? > el < kE=Q L)
{let = P> e} <p — (u@

The proof is deferred to Appendix D. We believe that sim-
ilar examples can be constructed for any stochastic first-
order methods having linear dependence on the stochastic
gradients in their update rules. Thus, Theorem 2.1 mo-
tivates the use of non-linear operators such as gradient
clipping in stochastic methods to achieve logarithmic de-
pendence on the confidence level in the high-probability
bounds.

3. Main Results for Minimization Problems
3.1. SGD with Clipping
We start with clipped-SGD:

gl =2k 4. clip (Vfgk(xk)’Ak) , (15)

where £* is sampled from D}, independently from previous
steps. We emphasize here and below that distribution of
the noise is allowed to be dependent on k: we require just
independence of £* from the the previous steps. Our main
convergence results for clipped-SGD are summarized in
the following theorem.

Theorem 3.1 (Convergence of clipped-SGD). Ler k > 0
and B € (0,1] are such that A = In % > 1.

Case 1. Let Assumptions 1.1, 1.2, 1.3 hold for
Q = {z e R | 3y € R :  fy) <
fo+ 20 and ||lx — y|| < VB/20vI}, A > f(2°) — £
and 0 < v < O (min{l/La,VB/oVLK/*A"" /o)),
A = A = O(VA/VIqaA).

Case 2. Let Assumptions 1.1, 1.3, 1.4 hold for
Q = {z e R | 3y € R :  fy) <
fo+ 20 and ||lx — y|| < VB/20vI}, A > f(a2°) - f.
and 0 < v = O(min{l/ra,n(Bx)/u(K+1)}), Bx =

2(e=1)/a o
(C] (Inax{2,(K+1) o N2A/L0'2A2( D/ lnz(BK)});

)\k = G(QXP(_'YH(l"'k/z))\/Z/\/Z'yA).

Case 3. Let Assumptions 1.1, 1.3, 1.6 with
u = 0 hold for Q = Bsgr(z*), R > |2° — z*||
and 0 < v < O@min{Y/ra,B/og">al*" /),

A = A = O(B/y4).

Case 4. Let Assumptions 1.1, 1.3, 1.5 with y > 0
hold for Q@ = Bsg(z*), R > |2° — z*| and
0 < v = O(min{Yra,Bx)/uK+1)}), Bx =
© (IIlElJX{27 (K+1)2(a71)/aﬂ2R2/0'2A2(a71)/0‘ lnz(BK)});

Ak = O(exp(—vn(1++/2)) R/ 4).

Then to guarantee KL—H ZZ:O IV f(x®)]]? < ¢ in Case 1,
f(@X) — f(z*) < ein Case 2, f(zX) — f(z*) < ein
Case 3 with t% = = S :ck oK —2*)]2 < cin
Case 4 with probability > 1 — 3 clipped-SGD requires

LAU) a (16)

3

L (Lo?\% D
el 2 GE)7T)) o
_ 2 a1
Case 3: O(max{%,(?) }) (18)
2 =T
<max{§,(%>( )}> (19)

The complete formulation of the result and full proofs are
deferred to Appendix E. As one can see from Table 1,
for = 2 the derived complexity bounds match the best-
known ones for clipped-SGD in the setups where it was an-
alyzed. Next, we emphasize that the second term under the
maximum in (19) (quasi-strongly convex functions) is opti-
mal up to logarithmic factors (Zhang et al., 2020b). In the
convex case, there are no lower bounds, but we conjecture
that the second term in (18) is optimal (up to logarithms) in
this case as well.

~ LA
Case 1: O | max —,<

Case2: O

Cased: O

oracle calls.

Next, in the case of PL-functions, we are not aware of any
high-probability convergence results in the literature. In the
special case of a = 2, the derived complexity bound (17)
matches the best-known in-expectation complexity bound
for SGD (Karimi et al., 2016; Khaled & Richtarik, 2020)
and the first term coincides (up to logarithms) with the
lower bound for deterministic first-order methods in this
setup (Yue et al., 2022).

Finally, in the non-convex case, bound (16) is the first
high-probability result under Assumption 1.1 without the
additional assumption of the boundedness of the gradi-
ents. For o = 2 it matches (up to logarithms) in-
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expectation lower bound (Arjevanietal., 2022). How-
ever, when @ < 2, bound (16) is inferior to the ex-
.. ~ 2 Ba=2)/2(a—1)

isting one O ((G /5) ) by Cutkosky & Mehta
(2021), which relies on the stronger assumption that
Een||Vfe(x)|* < G for some G > 0 and all
x € R and also do not match the lower bound
by Zhang et al. (2020b) derived for E||V f(z*)||, where
xF is the output of the stochastic first-order method.
It is also worth mentioning that Cutkosky & Mehta
(2021) use a different 2performance metric: 75K =
(e S V7))

than Pre = 74 S IV £(2*)[|2, which we use in our
result. In the worst case, Px can be K + 1 times larger than
751(. Moreover, the lower bound from (Zhang et al., 2020b)
is derived for E||V f(z*)| that is also always smaller than
the standard quantity of interest E[|V f(x*)||2. Therefore,
the question of optimality of the bound (16) remains open
for a < 2. Moreover, it will also be interesting to modify
our analysis in this case to derive a better bound for metric
Py than (16).

. This metric is always smaller

3.2. Acceleration

Next, we focus on the accelerated version of clipped-
SGD called Clipped Stochastic Similar Triangles Method
clipped-SSTM (Gorbunov et al., 2020). The method
constructs three sequences of points {z*}>0, {¥*}r>0,
{2*} >0 satisfying the following update rules: 2° = y° =
2% and

k k
pr1 . AryTtagpiz

20

. (20)

Zk"_l = zk — ak+1 . clip (Vfgk (xk-’_l),)\k) ) (21)
k1 _ Ary® + agpp 2P (22)

Apq1

where Ag = ap = 0, ap1 = 282, Ap iy = A + g,
and £* is sampled from D}, independently from previous
steps. Our main convergence result for clipped-SSTM is
given in the following theorem.

Theorem 3.2 (Convergence of clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with n = 0 hold for
Q = Bag@*), R > |2° — 2*|* and a =
O(max{A2, oK aCTV g N = O(R/(ansa4)),
where A = In %, B € (0,1] are such that A > 1. Then
to guarantee f(y%) — f(x*) < e with probability > 1 — j3
clipped-SSTM requires

_ [T R2 a1
@ <Inax{ ﬂ, <ﬁ> }) oracle calls. (23)
€ €

Moreover, with probability > 1 — [ the iter-
ates of clipped-SSTM stay in the ball Bap(z*):

{fk}kK:—Blv {yk}szov {Zk}kK:O C Bag(z").

The derived high-probability bound matches (see the proof
in Appendix F.1) the best-known one in the case of a =
2. For o < 2 there are no lower bounds in the con-
vex case. However, the first term in (23) is optimal and
matches the deterministic lower bound in the convex case
(Nemirovskij & Yudin, 1983). The second term is the same
as in the bound for clipped-SGD (18) and we conjecture
that it cannot be improved.

In the strongly convex case, we consider clipped-SSTM
with restarts (R-clipped-SSTM). This method consists of
7 stages. On the ¢-th stage R-clipped-SSTM runs clipped-
SSTM for K| iterations from the starting point %, which
is the output from the previous stage (&' = 2°), and de-
fines the obtained point as #'*1; see Algorithm 3 in Ap-
pendix F2. For this procedure we have the following re-
sult.

Theorem 3.3 (Convergence of R-clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with p > 0 hold for Q =
Bsgr(z*), R > |2 — z*||* and R-clipped-SSTM
runs clipped-SSTM 7 = [log,(1#R*/2¢)] times. Let
K, = O(max{yIF /e, (shefe) /Y, ap =
O(max{1, UK?H/Q/LRt}), A= é(R/OéZH) be the param-
eters for the stage t of R-clipped-SSTM, where R, =
2=0=V2p o, = nRY /4, In % >1forallt=1,...,7
and some 3 € (0, 1]. Then to guarantee f(i™)— f(x*) < e
with probability > 1 — 8 R-clipped-SSTM requires

~ 2 2(o¢_011)
@ <Inax{ £, <0—) }) oracle calls. (24)
\/ oo\ pe

Moreover, with probability > 1 — 3 the iterates of R-
clipped-SSTM at stage t stay in the ball Bag, , (x*).

The obtained complexity bound (see the proof in Ap-
pendix F.2) is the first optimal (up to logarithms) high-
probability complexity bound under Assumption 1.1 for
the smooth strongly convex problems. Indeed, the first
term cannot be improved in view of the deterministic lower
bound by Nemirovskij & Yudin (1983), and the second
term is optimal due to Zhang et al. (2020b).

4. Main Results for Variational Inequalities

4.1. Clipped Stochastic Extragradient

For (quasi strongly) monotone VIPs we consider Clipped
Stochastic Extragradient method (clipped-SEG):

TF =k — . clip(Fe (%), i),
oM = 2% — 5 clip(Fe (%), M),

(25)
(26)
where £F, ¢5 are sampled from Dj independently from

previous steps. Our main convergence results for clipped-
SEG are summarized below.
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Theorem 4.1 (Convergence of clipped-SEG).
Case 1. Let Assumptions 1.1, 1.3, 1.8 hold for QQ =
Bir(z*) and 0 < v = O (min{l/za, B/k"/*ga" "D/ }),

Ak O (R/vA), where A = 1n% > 1,
B € (0,1].

Case 2. Let Assumptions 1.1, 1.3, 1.9 with
w > 0 hold for Q@ = Bsg(z*) and 0 <
v =  O(min{l/ra,n(Bx)/uk+1)}), Bg =

2(a—1)/4 o
© (Inax{2,(K+1) (et N2R2/02A2( R lnz(BK)});

Ae = O(exw(—vn(+4/2)R)54), where A = In ST
B € (0,1) are such that A > 1.
Then to guarantee Gapp(TE,)) < ¢ in Case 1 with

avg)
PR = 21 Yo @, ||aX — 2*||? < e in Case 2 with

probability > 1 — (3 clipped-SEG requires

2 a1
Case I: (5<max{£,<ﬂ) }) 27)
19 19
- L [ o2\D
Case 2: O(max{—,<7> }) (28)
p\ p2e

oracle calls.
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The proofs are deferred to Appendix G. When a = 2,
the above bounds recover SOTA high-probability bounds
for monotone and quasi-strongly monotone Lipschitz VIP
(Gorbunov et al., 2022a). For the case of o < 2 (27) and
(28) are the first high-probability results for the mentioned
classes. Next, the first terms in these complexity bounds are
optimal (up to logarithms) due to the lower bounds for the
deterministic methods (Ouyang & Xu, 2021; Zhang et al.,
2022). The second term in (28) is also optimal (up to loga-
rithms) due to the lower bounds for stochastic strongly con-
vex minimization (Zhang et al., 2020b). Similarly to the
convex case in minimization, we conjecture that the sec-
ond term in (27) cannot be improved in the monotone case
as well.

4.2. Clipped Stochastic Gradient Descent-Ascent

In the star-cocoercive case, we focus on Clipped Stochastic
Gradient Descent-Ascent (clipped-SGDA):

ah = 2% — . clip(Fer (2F), \i), 29)

where £* is sampled from D}, independently from previous
steps. For this method we derive the following convergence
guarantees.

Theorem 4.2 (Convergence of clipped-SGDA).

Case 1. Let Assumptions 1.1, 1.10, 1.8 hold for QQ =
Bop(z*) and 0 < v = O (min{l/ea, B/k"/*gA" "D/},
A = A= 0O (B/ya), B € (0,1] are such that A > 1.

Case 2. Let Assumptions 1.1, 1.10 hold for Q = Bag(x*)
and 0 < ~ = O (min{l/ea, B/k"*ea" D/},

A = A = O (R/y4), where A =1n %, B e (0,1] are
such that A > 1.

Case 3. Let Assumptions 1.1, 1.10, 1.9 with
w > 0 hold for Q = Bog(z*) and 0 <
vy = O (min{l/ea,n(Bx)/u(k+1)}), Bk =

2(a—1)/q _
© (IIlElJX{27 (K+1) / N2R2/02A2(a D/ lnz(BK)}),

A = O(exp(—yp(1+%/2))R/y4), where A = 1n%
B € (0, 1] are such that A > 1.
Then to guarantee Gapg(Zl,) < ¢ in Case 1 with

~ K~ k .
Tk, = KLH > po 2F, KLH a0 IF(@)[? < lein
Case 2, ||z% — x*||? < ¢ in Case 3 with probability
> 1 — B clipped-SGDA requires

N 2 asT
Case I and2: O (max {% (g) }) (30)
~ 2 2(0771)
Case2: O (max {é, (UT) }) 31
p\ p2e

oracle calls.
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One can find the proofs in Appendix H. The derived high-
probability results generalize the existing SOTA results
from the case of o = 2 (Gorbunov et al., 2022a) to the case
of v < 2.

5. Key Lemma and Intuition Behind the
Proofs

The proofs of all results in this paper follow a very similar
pattern. To illustrate the main idea, we consider the anal-
ysis of clipped-SGD in the non-convex case. Mimicking
the proof of deterministic GD we derive the following in-
equality:

K
VY IVIEH)IP S Ao — Ak (32)
k=0
K K—1
=Y VL), 00) + Ly > 110k,
k=0 k=0

where Ay = f(a*) — f. and 0y = Vfer(z¥) — Vf(2F).
In other words, we separate the deterministic part of the
method from its stochastic part. To obtain the result of
Theorem 3.1 (Case 1) it remains to upper bound with high-
probability the sums from the second line of the formula
above. We do it with the help of Bernstein’s inequality
(Lemma B.2). However, it requires several preliminary
steps. In particular, Bernstein’s inequality needs the ran-
dom variables to be bounded. The magnitudes of sum-
mands depend on Vf(z") that can be arbitrarily large
due to the stochasticity in z*. However, (32) allows to
bound A ;1 inductively and, using smoothness, to bound
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|V f(z%*+1)||. Secondly, Bernstein’s inequality requires
knowing the bounds on the bias and variance of the clipped
stochastic estimator. For such purposes, we derive the
following result, which is a generalization of Lemma F.5
from (Gorbunov et al., 2020); see also Lemma 10 from
(Zhang et al., 2020b).

Lemma 5.1. Let X be a random vector in R and X =
clip(X,A). Then, | X — E[X]|| < 2\. Moreover, if for
some o > 0 and o € (1,2] we have E[X] = = € RY,
E[||X — z]|%] < 0% and ||z|| < M2, then

] < 25 e
E M)? — xm < 18A2 %0, (34)
E [Hf{ - E[)Z]m < 18\, (35)

This lemma can be useful on its own for analyses involving
clipping operators. Moreover, our high-probability analy-
sis does not rely on the choice of clipping explicitly: in the
proofs, we use only || X|| < A and inequalities (33)-(35).
Therefore, our results hold for the methods considered in
this work with any other non-linearity ¢ (x) (not neces-
sary clipping), if it satisfies the conditions from the above
lemma for X = ¢ (X).

6. Discussion

In this work, we contributed to the stochastic optimization
literature via deriving new high-probability results under
Assumption 1.1. Our results can be extended to the min-
imization of functions with Holder continuous gradients
using similar ideas to (Gorbunov et al., 2021). Another
prominent direction is in obtaining new high-probability
results for other types of non-linearities, e.g., like in
(Polyak & Tsypkin, 1980; Jakovetic et al., 2022).
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A. Additional Related Work

In this section, we provide an overview of the existing in-expectation convergence results under Assumption 1.1.

Convex minimization. The first in-expectation result under Assumption 1.1 is given by Nemirovskij & Yudin (1983),
who derive* O(a*a/ («=1) complexity for Mirror Descent applied to the minimization of convex functions with bounded
gradients. This result was recently extended by Vural et al. (2022) to the uniformly convex functions, and matching lower
bounds were derived. In the strongly convex case, Zhang et al. (2020b) prove O (e ~*/*(“~1) complexity for clipped-SGD.
However, all these results rely on the boundedness of the gradient. To the best of our knowledge, there are no results for
smooth convex problems under Assumption 1.1 without assuming that the gradient is bounded even in terms of expectation.

Non-convex minimization. In the non-convex smooth case, Zhang et al. (2020b) prove O(s~®*~?/(«=1) complexity
for clipped-SGD to produce a point « such that E||V f(x)|| < e. In the same work, the authors derive the matching lower
bound. However, both upper and lower bounds are derived for E||V f (x)|| which is smaller than \/E||V f(z)||?. The later
one is stronger and is more standard performance metric for stochastic non-convex optimization. Therefore, the question
of deriving lower and matching upper bounds for the standard metric remains open.

*In this section, we hide in O(-) all dependencies except the dependency on ¢.

13
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B. Useful Facts
Smoothness. If f is L-smooth on convex set Q@ C R?, then for all z, y € Q (Nesterov et al., 2018)
L 2
Fy) < fl2) +(Vf(2),y —2) + Sy — 2l (36)

In particular, if x and y = = — %V f () lie in @, then the above inequality gives

7)< @) = ZIVF@IP + 51V @IP = £(@) — 5|95 @)I?
and

IVf(@)II* < 2L (f(2) = f(y) < 2L (f(z) = f+)

under the assumption that f, = infyeq f(2) > —oo. In other words, (7) holds for any € @ such that (z— +V f(z)) € Q.
For example, if 2* is an optimum of f, then L-smoothness on Bog(x*) implies that (7) holds on Bg(z*): indeed, for any
x € Br(z*) we have

1 . L1 © .
v = 7Vf@)—a"|| < o - + Vi@l < 2w — 2™ < 2R.

This derivation means that, in the worst case, to have (7) on a set () we need to assume smoothness on a slightly larger set.

Parameters in clipped-SSTM. To analyze clipped-SSTM we use the following lemma about its parameters «y, and
Ap.

Lemma B.1 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {cy; }r>0 and { Ay } >0 satisfy

k+2

ag=A0 =0, Apy1 =Ar+ops1, Qg1 = vk >0, (37
2al
where a > 0, L > 0. Then forallk > 0
(k+1)(k+4)
A = — 7 38
k+1 1ol ) (38)
Ak > aLaiJrl. (39)

Bernstein inequality. One of the final steps in our proofs is in the proper application of the following lemma known as
Bernstein inequality for martingale differences (Bennett, 1962; Dzhaparidze & Van Zanten, 2001; Freedman et al., 1975).

Lemma B.2. Let the sequence of random variables {X;};>1 form a martingale difference sequence, Ii.e.

E[X; | Xi-1,...,X1] = 0 forall i > 1. Assume that conditional variances o? Yy [XZQ | Xiz1,... ,Xl] exist and
are bounded and assume also that there exists deterministic constant ¢ > 0 such that | X;| < c¢ almost surely for all i > 1.
Then forallb > 0,G > 0andn > 1

P{‘i){i
=1

n b2
> band Zang} < 2exp (—7) . (40)
— 2G + 2¢b/3

14
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C. Proof of Lemma 5.1
Lemma C.1 (Lemma 5.1). Let X be a random vector in R and X = c1 ip(X, A). Then,

H)? —E[)N(]H < 2. (41)
Moreover, if for some o > 0 and o € [1,2)
EX] =z €R% E[|X —z[* <o (42)
and ||z|| < X2, then
o] < 2%
flf -] = e

18A2 95 . (45)

IN

EMX—EQM?

Proof. Proof of (41): by definition of a clipping operator, we have

|Z-elz]| < %]+ = %]
Je1in(X, )+ [E[e15p(X A

oo {1 g o]+ o {1557} ]

= min {[[ X[, A} + E [min {[| X]|, A}]
< A+A=2\

IN

A

Proof of (43): To start the proof, we introduce two indicator random variables. Let

L, if | X > A 1, if| X —z| >3
— Iy, - T —{ 27 46
A {0, otherwise T XX —el> 3} 0, otherwise (40)
= H_/
Moreover, since || X || < ||z|| + || X — || + || X — z||, we have x < 7. We are now in a position to show (43).
Using that
)N(—min{l L}X—XLX—i-(l—)QX
Xl X ’
we obtain

|
=

I A
= =
< =
_
=
f:/\f/
5 e
1 5
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Since 1 — /|1 x|| € (0,1) when x # 0, we derive

[E[X]-=| < EnixI]
)
< EpIX -z +nlel]
Y RN =D E [1=) T + 2R )
@ 1o )\

o (B[n==])"" +3E[),
where in (%) we applied Holder’s inequality. By Markov’s inequality,

E[prs] = EM]_P{|X—$H>%}—P{|X—I|a>/2\—z}

22 o
S EIX — )]

< (%)

Thus, in combination with the previous chain of inequalities, we finally have
a—1 «
> 20 A (20 2%
s[f)- = o(5) () -5
H r = 7 A + 2 by e—1

Proof of (44): Using || X — z|| < || X|| + [|z|| < A+ 2 = 2, we have

IN

E[IX — oI B [IX - ol 2% - o]

AN s e =
2 E[IX —altx+ 1K — el -]

2) el
= E|x||75X—2
( 1]
X[+ 1all) -+ 1x = el - 0]
(]
I3 /3A " el (3N, e
= 7 X 7 +U 9
where in the last inequality we applied (42) and 1 — x < 1. By (47) and x < 7, we obtain
- 9N 20\ /3A\*7°
IE[ X - 2} (e 24 a
o] = () ()

ON (oo, 27 0
1 30 ) xa

< 18M\FT0,

IN

++X—ﬂwu—xﬂ

IN
R
o £
~——
[~}
3
=

A

IN

Proof of (45): Using variance decomposition and (44), we have

~ ~ 112 ~
E [HX—IE[X]H } <E [||X—:c|ﬂ < 18N,

16

(47)
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D. Proof of Theorem 2.1

In this section, we give an example of the problem for which SGD without clipping leads to a weak high-probability
convergence guarantee even under the strong assumption of bounded variance. Theorem below formally states our result,
showing that, in the worst-case, the bound for SGD scales worse than that of clipped-SGD in terms of the probability .

Theorem D.1. Foranye > 0, § € (0,1), and SGD parameterized by the number of steps K and stepsize -y, there exists
problem (2) such that Assumptions 1.1, 1.3, and 1.6 hold with o = 2, 0 < p < L and for the iterates produced by SGD
with any stepsize 0 < v < 1/,

Pl 2" 2>} <p — K_Q< (48)

)

Proof. To prove the above theorem, we consider the simple one-dimensional problem f(x) = nz®/2. It is easy to see
that the considered problem is pu-strongly convex, p-smooth, and has optimum at z* = 0. We construct the noise in an
adversarial way with respect to the parameters of the SGD. Concretely, the noise depends on the number of iterates NV,
stepsize v, target precision ¢, the starting point 2, and bound on the variance o2 such that

Vfe, (2%) = pa® — oz,
where

0, ifk < K —1or(1—vyp)X|2% >/,

—A, with probability 51,
2L =
¥ 0 with probability 1 — 45, otherwise

A, with probability 5%,

Vk e {0,1,....K —1}, (49)

where A = max { 2,;(/5, 1}. We note that E [2*] = 0. Therefore, E [V f¢, (z*)] = pa* = V f(2*). Furthermore,

Var [zk} =E [(zk)z} < LA2 + L

2 _
~ 242 2A2A =1

which implies that Assumption 1.1 holds for « = 2. We note that our construction depends on the parameters of the
algorithm and the target value €. However, our analysis of the methods with clipping works in such generality.

Let us now analyze the properties of the introduced problem. We are interested in the situation when
P{la® —a|* >} <5

for 3 € (0,1). We first prove that this implies that (1 — yu)%|2°) < /2. To do that we proceed by contradiction and
assume that

(1= y) 52| > Ve (50)

By construction, this implies that z;, = 0, Yk € {0, 1,..., K}. This, in turn, implies that 2 = (1 — )% 20, and, further,
by (50) and since x* = 0, that

P{[aX — 2|2 > e} =P{|aX|2> e} = 1.

NG

In In
Thus, the contradiction shows that (1 — yu)%|z°| < /g, which yields K > ln(l‘jz‘#) > 7‘;2‘ > % =1In ‘z—\g Using
49) with K > - log 121 we obtain

2% —2*)* = (1 — )" 2® + yo2x)*

17
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Furthermore,

P{||z% —a*|> > e} =P {|(1 — yu)*2° + vozk]| > vz}
=P {yozx > Ve — (1 —yp) 2"} + P {yozx < —ve — (1 —yp)*a"}
>P{yozx > Ve+ (1 —yu) a2’} + P{yozx < —ve— (1 —yu)"a’}
=P {|yozx| > Ve + (1 — )2}

> P{|yozk| > 2Ve} = P{|2K|> \/_}

Now if 27‘5 < 1then A = 1. Therefore,
2
1=P {|z | > 7\/—}<]P’{||:1: o* > e} < B,
o

yielding contradiction, which implies that if [P {HxK —x*|]? > 5} < (3 for our constructed problem, then % > 1,1ie.,
v < 20—‘/5 Fory < 2;/5, we have

K * (12 \/_ 1 7")/20'2
B>P{[lz" —a*| ZE}ZP{|2K| —U} 2T 4

12°]

This implies that v < 2‘/_ . Combining this inequality with K > log NG yields

log 171 |27
T 2u/Be T Ve

and concludes the proof. O
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E. Missing Proofs for clipped-SGD

In this section, we provide all the missing details and proofs of the results for clipped-SGD. For brevity, we will use the
following notation: V fex (z%) = c1ip(V fer (z¥), Ak).

Algorithm 1 Clipped Stochastic Gradient Descent (clipped-SGD) (Pascanu et al., 2013)

Input: starting point 2°, number of iterations K, stepsize v > 0, clipping levels {\ k}k e

1: fork =0,. ~K—ldo
2: Compute V fer (z%) = clip (V fer (2¥), i) using a fresh sample £¥ ~ Dy,
30 okl =gk — ’Y%fgk (z%)
4: end for
Output: =%

E.1. Non-Convex Functions

We start the analysis of clipped-SGD in the non-convex case with the following lemma that follows the proof of determin-
istic GD and separates the stochasticity from the determinisitc part of the method.

Lemma E.1. Let Assumptions 1.2 and 1.3 holdon Q = {x € R? | 3y e R? : f(y) < f. +2A and ||z —y|| < VB/20VL},
where A > Ag = f(2°) — f., and let stepsize vy satisfy v < % Ifz* € Qforallk =0,1,...,K, K > 0, then after K
iterations of clipped-SGD we have

K-1
(1——>Z|Vf I = (PG = f) = (F@S) = f) == L) Y _(V
QK 1 =0

Z 16x 1%, (51)

O < Viwla®) - V(b (52)

Proof. Using z*T1 = 2% — 4V fer (2*) and smoothness of f (1.3) we get that forall k = 0,1,..., K — 1

f(xk-'rl)

IN

Fla*) + (VF @), a4 — 2¥) 4 2 - o
k ky k Ly’ & kypi2
= TN AUV, T (ah) + T )]
2
D) AP AT, 06) + T 0
2
DIV F P + LT 5 "), 00

= 168 = (1= B 19 -2 - 2w 00 + ool

We rearrange the terms and get

(1= B I < 5= 1) - - L)@ 0+ D

19
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Finally, summing up these inequalities for k = 0, ..., K — 1, we get

v (1- —) Z IV

=
N

AN
—
~

) — f(a*T) — (1 = L) <Vf() k)

Z 191

K—1
= (F) = f) = (F@") = £) =21 = Ly) D _(V ("), b%)
2 K-1 =
Z 191%,
which concludes the proof. o

Using this lemma, we prove the main convergence result for clipped-SGD in the non-convex case.

Theorem E.2. Let Assumptions 1.1, 1.2, 1.3 holdon Q = {x € R? | 3y e R?: f(y) < fo+2A and ||z—y|| < VB/20vT},
where A > Ag = f(2°) — f., stepsize

1 VA

7 < min ; — (> (53)
80L In AK+1) 1 1 4(K+1) aTl
7 21R200VIK S (In 25
and clipping level
VA

Ak = A= TESE (54)

20v/Ly1n %

for some K > 0 and 8 € (0,1] such that In (KBJrl) > 1. Then, after K iterations of clipped-SGD the iterates with
probability at least 1 — (3 satisfy

2A
—%) (K +1)

(55)

K
ZIIVf )P <
k: 7(

In particular, when v equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

LAWY VIAs In*& K

2 _
K+1Z”Vf P =0 | max § — —— : (56)

K
meaning that to achieve —— V f(x*)]|2 < € with probability at least 1 — 3 clipped-SGD requires
g i1 p ty pp q
k=0

LA LA (VLA == 1 (VLA ==
K =0 | max —lnE (%) In E( . G) iterations/oracle calls. 57)

Proof. Let Ay, = f(z¥) — f. forall k > 0. Next, our goal is to show by induction that A; < 2A with high probability,
which allows to apply the result of Lemma E.1 and then use Bernstein’s inequality to estimate the stochastic part of the

upper-bound. More precisely, foreach k = 0, ..., K + 1 we consider probability event F}, defined as follows: inequalities
2 t—1 t—1

ZIW 1P =1 =Ly) Y (Vf(h),0) < A, (58)
=1

Ay < 2A (59)

20
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hold for all t = 0,1,...,k simultaneously. We want to prove via induction that P{E)} > 1 — k8/(x+1) for all k =
0,1,...,K + 1. For £k = 0 the statement is trivial. Assume that the statement is true for some k = T — 1 < K:
P{Er_1} > 1 — (T-1)B/(k+1). One needs to prove that P{E1} > 1 — T8/(k+1). First, we notice that probability event
E7_; implies that A; < 2A forallt = 0,1,..., T — 1,ie, 2t € {y e RY| f(y) < fu +2A}fort =0,1,..., 7 — 1.
Moreover, due to the choice of clipping level A we have

T T-1 = T_1 (54) VA VA
T —T =v||V fer-1(x <A\ = < .
| [ =V fer—(z" )| <v VI E < VI

Therefore, E7_ 1 implies {z* o € @, meaning that the assumptions of Lemma E.1 are satisfied and we have
t—1 2 t—1
AZ IVFEOIE < A=A —y(1— L) S (V) 0) + 21 Z 16:]1%, (60)
k=0
Ly 63
A y<1—77>_0 61)
forallt =0,1,...,7T simultaneously and for all ¢ = 1,...,7T — 1 this probability event also implies that
t—1 2 t—1 G ) 2A
ZHW )2'< (A Y(1—Ly) Y (Vf(a').0) +—Z||9 ||2> (62)
k=0
T—1
Taking into account that A Y ||V f(z!)||?> > 0, we also derive that E_; implies
t=0
42 T—1 T— 1
Ar<at+ il ZH@ 1> = ~y(1 = L) (63)

t:O

Next, we define random vectors

- {Vfw), if |V /()] < 2VIA,

0, otherwise,
forallt =0,1,...,7 — 1. By definition these random vectors are bounded with probability 1
[me]l < 2V LA. (64)
Moreover, fort =1,...,T — 1 event Ep_; implies

IVFa] 2 2L — f) = VEEA < 2VIR L % (65)

meaning that Er_1 implies thatn; = V f(z?) forallt = 0,1,...,T — 1. Next, we define the unbiased part and the bias of
0; as 0} and 62, respectively:

0r =V fer (at) — Eer [6 fer (a:t)] 0P =Ee {% fer (:ct)} —Vf(ah). (66)

We notice that §; = 8% + 6. Using new notation, we get that F7_; implies

T-1 T-1 T-1
Ar < A—y(1=Ly) Y00 m) —v(1 = L) D (6km) + 102 Y (16317 — B [671°])
t=0 t=0 t=0
[©) @ ®
T—-1 T-1 5
+ L9 Y Ee [l0F17] + 202 [t 67)
t=0 t=0
@ ®
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It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive
proof we need to show that ® + @ + ® + @ + ® < A with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of § and §°. First, by definition of clipping operator,
we have with probability 1 that

1] < 2A. (68)
Moreover, since Ep_; implies that ||V f(z!)|| < Y2 fort = 0,1,...,7 — 1 (see (65)), then, in view of Lemma 5.1, we
have that E'7_; implies
2%«
(G (69)
Eee [01]] < 18X*7%0°, (70)

Upper bound for @. By definition of #}', we have E¢: [#}'] = 0 and
E¢e [=y(1 = Ly){6}',me)] = 0.
Next, sum @ has bounded with probability 1 terms:

" (53) u (64),(68) 54 A
(= £9) G | < A Dl < 4AVER 2 ey e an
Iy
B

The summands also have bounded conditional variances o2 & Eee [v2(1 — Ly)*(0, me)?):

(64) (53)
0? < Eet [y (1= Ly U6 - Imel®] < 49%(1 — L) LAE [|61]7] < 49°LAE [I617] . (72)

In other words, we showed that {—~(1 — Ly) (0%, n:)} =5 is a bounded martingale difference sequence with bounded
conditional variances {c7}7'. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —v(1 — Ly) (0, n:),
2

A _
parameter casin (71),b = 2, G = E

T-1 A2 b2 p
A 2l gep (= = :
@>5 Zat = T50m A5 [ = exp< 2GJFM’/3> 2AK+1)

Equivalently, we have

ETD -
B

B T—-1 ) A2 A
P{Es}>1— ———, f FEq = < eith > ———— Q< —3. 73
{Eg} > 2K 1) or Ey either ;at o 4(KB+1) or @< 3 (73)

In addition, E'r_; implies that

T—-1 a2 T—-1
Yo} < 4PLAY Ee [|6}| } 7272LAUO‘TA2*Q
t=0 t=0
s 920°VA T TVIN ) A2 L
B 50 In?~ AL ~ 1501 AH) 7
Upper bound for @. From Ep_; it follows that
T-1
649,69 2. 20~ygT/LA
@ = —(1-Ly) Z tant WZ ||9b|| el < T o1
t=0
22—«
a o o (53)
(5:4) g T\/— \/— < = A (75)
10 In 11—« 4(K+1)
T
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Upper bound for ®. First, we have
Be: [L7* (167117 —Ee: [1071°] )] = 0.

Next, sum @ has bounded with probability 1 terms:
|2y2 (16317 — Bee [l6:12])| < 192 (1671 + Eee [16717))
(68) 2,2 69 A A def

< 8Ly 5012 2D = 5 1 20D =c (76)
B B

2
The summands also have bounded conditional variances 72 def Ege {Lzﬂy4 (HG;‘ I? - Eee [||9§‘ ||2]) ] :

6 A N N 2L72A u
5 < e Be [0 1001 ~ Be [1071°]|] < —firayBe (16717, (77)

T-1
since In 45 B > 1. In other words, we showed that { 2 (H9“H2 — Egt [||9“||2] ) } is a bounded martingale difference
=0

sequence with bounded conditional variances {52 }tT 01 Next, we apply Bernstein’s inequality (Lemma B.2) with X; =

2
192 (161> — Eer [1631%] ), parameter c as in (76), b = 2, G = T e

|©|>— and Z~2 A72 <2e - s = b
150 In AL = P\ T2G b5 ) T 2K 1)

Equivalently, we have

3 T—1 A2 A
P{Eg} >1— ————, for Eg = eith oF > @< —>. 78
{ @}— 2(K—|—1)7 or ® {el er ;Ut > 1501114(}{;_1) or | |— 5} (78)
In addition, E'r_; implies that
T—1 T—1
) 2L72A ( )36L72A)\2 agaT
2 u
Zat < 4(K+1) ZEft 16 ” L(K+1)
t=0 — 38
sy 9-200 UO‘T\/Z4 VI'yr e AP o
- 500 13— 4(1?1) = 1501 4(KB+1)' (79
Upper bound for @. From Ep_; it follows that
T-1 e 22—«
_ 9 “ 2\2-0 o (54) 9.20¢ \/Z ”yO‘UO‘T\/Z (53) A
® = LV Ee [He I } 2181422 T = R © = (80)
t=0 B
Upper bound for ®. From Ep_1 it follows that
2 <69) 49529T L2 (s4) 1600% 2T L2 A= (53) A
_ L'yzZHHbH T @ < @1)

A2e-1) T 400 12— 4(Kﬂ+1) = 5

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Er_; implies

(67)
Ar < A+D+O0+B+@+ 06,

as A 0) A @D A
Q< — B -, 6<< —
— 57 —_ 57 —_ 57

T-1 (74) T-1

(79) A2
0; < —————— < —4mM8 ———
tz 150In 4<K+1> Z 150 In 2D
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Moreover, we also have (see (73), (78) and our induction assumption)

(T -1)B B B
P{Er 1} >1———7— PlEs}>1———, P{Eg}>1— ——
{Broa) = K1 i)z 20K +1) {Ba} = 20K +1)
where
T—1
A? A
E@ = {either Gt2 > T AWK+ or |®| S —},
— 150 In 2ECED 5
T—1
A2 A
Esy = {either 5? > —ak+o O |®| < —} .
— 1501n% 5
Thus, probability event E7_; N Egp N Eg implies
A A A A A
Ar < A+—4+—+—=—+—=—+4+—==2A
T < + 5 + 5 + 5 + 5 + 5 )

which is equivalent to (58) and (59) for ¢ = T', and

— S — — — — T
P{ET} > P{ET,1 N Eg N E@} =1- ]P){ETfl UFEpU E@} >1- P{ETfl} — ]P){E@} — P{E@} >1- K——fl
This finishes the inductive part of our proof, i.e., forallk = 0,1, ..., K + 1 we have P{E,} > 1 — #8/(kx+1). In particular,

for k = K + 1 we have that with probability at least 1 — 3

2A (53) 2A
i Z IV <

and {z*} X C @, which follows from (59).
Finally, if

5

1
a—1 Y

v < min 4(K+1)° a1
80LIn =5 orlons/IKE (ln —4“;“)) .

then with probability at least 1 — 3

ZH M < 2A . 4A
K+1 v( _%)(KH) (K +1)
a=1
320ALIn 45D 80VA2TwoVIK ™ ( %) :
T K+1 K+1
LAln \/LAaln o
= O | max 7 =

To get =5 +1 Z |V f(z*)||> < e with probability at least 1 — J it is sufficient to choose K such that both terms in the

maximum above are O(e). This leads to

v\ a1 o1
K =0 | max % In %, —LAG In 1 LAo ,
€ ep € B €
which concludes the proof. O
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E.2. Polyak-L.ojasiewicz Functions

In this subsection, we provide a high-probability analysis of clipped-SGD in the case of Polyak-t.ojasiewicz functions. As

in the non-convex case, we start with the lemma that handles optimization part of the algorithm and separates it from the
stochastic one.

Lemma E.3. Let Assumptions 1.3 and 1.4 holdon Q = {zx € R? | 3y e R?: f(y) < fo +2A and ||z — y|| < VA/20vT},

where A = f(z°) — f., and let stepsize ~ satisfy v < % Ifz* € Qforallk =0,1,...,K +1, K > 0, then after K
iterations of clipped-SGD for all © € Q we have

K
FERH) = £ < (=R FE0) = £2) = 21— L) SO (1 =) TR F (), 0)
k=0

2 K
Z (L =) F )6l (82)
k=0
where 0y, is defined in (52).

Proof. Using xF+1 = 2F — VVfEk( *) and smoothness of f (1.3) we get that forall k = 0,1,..., K

) < fR) 4 (TR, 2 ok 4 Dt k)
~ I~ ~
< I AT e () + T e )
2
D) = (1= 5) IVIEHIE =20 - I, + S

<

2
< 5N = TIVFERIP (0= L)), ) + o P

=

~
INe

ky _ B _ £\ (1 k Ly e
F@®) =yl f(@®) = fo) =71 = YNV f(2"), ) + =~ [10x1".

By rearranging the terms and subtracting f,, we obtain

L 2
FEY = £ < =) () = £) =10 = DNV, 00) + -6
Unrolling the recurrence, we obtain (82). O

Theorem E.4. Let Assumptions 1.1, 1.3, 1.4 holdonQ = {x € R? | Iy e R?: f(y) < fu+2A and ||z—y|| < VA/20vT},
where A > Ag = f(2°) — f., stepsize

. 1 1D(BK)
0 < 83
<y < mm{250Lln (K+1) K[ (83)
2(o¢ 1)
Bx = max{ 2, . (K+1)1 A (84)
2646002 Lo In" (%)m?(BK)
2(o¢ 1)
K== A

= 0O |max{ 1, = , (85)

Lo?In (%)ln2 max 2,%

Lo?2In™ « (%)

and clipping level
| exp(yu(l £ H2) VA 86)
- 4(K+1)
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for some K > 0 and B € (0,1] such that In (KBH) > 1. Then, after K iterations of clipped-SGD the iterates with
probability at least 1 — (3 satisfy

F (@5 = fo < 2exp(—yu(K +1))A. (87)

In particular, when ~ equals the minimum from (83), then the iterates produced by clipped-SGD after K iterations with

probability at least 1 — (3 satisfy
(a—1) 2(a—1)
Lo?In o (%) In? [ max{ 2, %
MK ) Lo2ln~ « (%)

- , (83)
K 2(a—1)
Lln F a

f(:CK) — f =0 | max< Aexp (—

meaning that to achieve f (a:K) — f« < & with probability at least 1 — 3 clipped-SGD requires

L (A L. A\ [(Lo2\*@ D (1 [Lo2\%@ D\ .
keo(fu(S)n(Ens) () (5 ()7 )perm). @

iterations/oracle calls, where

A
eln <% (%) 2(a1))

Proof. As in the previous results, the proof is based on the induction argument and shows that the iterates do not leave
some set with high probability. More precisely, for each k = 0,1, ..., K + 1 we consider probability event E}, as follows:
inequalities

B. = max{ 2,

Ay < 2exp(—yut)A (90)

hold for t = 0,1,...,k simultaneously, where A; = f(z') — f.. We want to prove P{E} > 1 — k8/(k+1) for all
k=0,1,..., K + 1 by induction. The base of the induction is trivial: for & = 0 we have Ay < A < 2A by definition.
Next, assume that for k = T — 1 < K the statement holds: P{Er_1} > 1 — (T-1)8/(k+1). Given this, we need to
prove P{Er} > 1 — T8/(k+1). Since A; < 2exp(—yut)A < 2A, we have 2t € {y € R? | f(y) < f. + 2A} for
t=0,1,...,T — 1, where function f is L-smooth. Thus, Ep_; implies

) (90) (83),(86) \
IVF@EH < V2L(f(2t) — fo) < 2v/Lexp(—yut)A < g 1)

forallt =0,1,...,7 — 1. Moreover

(86) A
2T — 2T Y = |V T U <yAror € ——,
[ =MV fers (@Dl < < o

meaning that Er_; implies 27 € {x € R? | 3y e R? : f(y) < f. +2A and ||z — y|| < VA/20vL}. Using Lemma E.3
and (1 — yu)T < exp(—yuT), we obtain that E7_; implies

Apr < exp(—ypT)A —~(1 — L) Z ’YHT - l<vf( ), 61)
1=0

o T—1

Y 1
T Z(l—VM)T |6

1=0
To handle the sums above, we introduce a new notation:

m= {Vf(xm if[7()]) < 2V exp(—0/2) VB,

. (92)
0, otherwise,
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fort =0,1,...,T — 1. These vectors are bounded almost surely:

[nell < 2VLexp(—vnt/2)V'A (93)
forallt = 0,1,...,7 — 1. In other words, E7_; implies n; = Vf(z!) forallt = 0,1,...,T — 1, meaning that from
FEr_1 it follows that

T-1

Ap < exp(—yuD)A —y(1 = Ly) Y (1 =)™, 6)
=0
Ly2 T2

Z T 17lH9lH2.

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of 6;:

0 =V fer (z!) — e [6 fer (a:t)] . 0 =Egq {% fer (:ct)} — Vf(ah). 94)
forall! =0,...,T — 1. By definition we have §; = 6}* 4 9? foralll =0,...,T — 1. Therefore, Ep_, implies
T—1 T—1
Ar < exp(—ypT)A—y(1=Ly) > (1 =y, 61) =y(1 = L9) Y (1 =)™ i, 67)
=0 =0
) @
T—1
+ Ly? Z — )" R (16717 + Ly D (=) (16117 — Eer [116141%])
1=0
® ®
T—1
FLYY (=) 0P (95)
1=0
®

where we also apply inequality ||a + b]|? < 2|a||? + 2||b||? holding for all a,b € R to upper bound ||6;||?. It remains to
derive good enough high-probability upper-bounds for the terms @, @, ®, ®, ®, i.e., to finish our inductive proof we need
to show that ® + @ + @ + @ + ® < exp(—~vyuT)A with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of 6 and 6?. First, by definition of clipping operator,
we have with probability 1 that

16| < 2As. (96)

Moreover, since E7_1 implies that ||V f(z!)||? < M/2foralll = 0,1,...,7 — 1 (see (91)), from Lemma 5.1 we also have
that Er_; implies

67| < Aa T 97)

Ee: [I671P] < 18X 20°, 98)

foralll =0,1,...,7 — 1.

Upper bound for @®. By definition of 6}, we have E¢: [0}'] = 0 and

Egt [=v(1 = Ly)(1 =)™, 67)] = 0
Next, sum @ has bounded with probability 1 terms:
T—-1-1 u @) u
| =71 = Ly)(1 = yp) (m: 61 < yexp(=yu(T =1 =1))llmll - 1|67
(93),(96)
AV LAy exp(=yu(T — 1 = /2)) N

#3680 exp(—YpT)A gt

S pniEm ©9)
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The summands also have bounded conditional variances o7 &ef Eg [72(1 — Ly)?(1 — yp)*T =272y, 9?>2} :

of < Ea [¥2(1— Ly)?exp(—yu(2T — 2 — 20))||m|* - |6}*]|?]
Ay LA exp(—ypu(2T — 2 — 1))Eq [|16}']1%]
10v°LA exp(—yp(2T — 1)) R*Eq [1|6}]1] - (100)

In other words, we showed that {—~(1 — L’y)(l — )Ty, 00}t is a bounded martingale difference sequence
with bounded conditional variances {07},

. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —v(1 —
Ly)(1 — yp)T =1, 6}), parameter c as in (99), b = 1 exp(—yuT)A, G = exp(-2yp A,

150 In 4“‘“) :
1 — exp (—2yuT)A? b? Jé]
P @ - T)A —_— 3 <2 — = .
{' > 5 exp(=uT)A and Z; 0w AR [ TP\ 1 2s) T 2K+ 1)
Equivalently, we have
B - exp(—2yuT)A? 1
P{Ep}>1— ———, f Egp = < eith 2, - T @ < = —yuT)A ». (101
(Eo} 1= gl for By { e 3ot > P o 101 Geslo) } (101)
In addition, F/7_; implies that
T-1
(100) Eeq []]03)?
Z of < 1092 LA exp(—2yuT) Z M
pre = exp(—yul)
K 2—«
(98),T<K+1 A
< 1802 LA exp(—2yuT)o® —_—
= lZeXp (=)
(36) 180y VI VA" exp(=2yuT)o® 2-a
= (exp(—ypu(1 + Y2
1202— a1n2 a 4(1;+1) ; ’Y,LLZ ( ( / )))
e 4—a
B 180v*VL VA " exp(—2yuT)o XK: p(vla—2)) e (7ual>
- a1n2—a 4 K+1
1202-« p?~« 4K 4D —
< 180y*v/L VAT exp(—27,uT)0°‘(K—|— 1) exp(%)
- 12020 p?~* LD
& exp(—2yuT)A?

150 In 2EEED (102

where we also show that E'r_; implies

mi M VEVE (K el (103)
exp(—yul) 120270‘1112_&% |

28



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Upper bound for @. From Ep_; it follows that

(83)
@ < v exp(—

(93),(97)

G orta 19001y VAT N exp(—yu(T — 1))4°

< 21200 I VAT exp(—yu(T — 1))7%0 In® ! G + Dexp (

1
< R exp(—yuT)A.

Upper bound for ®. From E;_; it follows that

® = Ly’ exp(—yu(T -

98)
<

(103) 187%/3“\@ B

< 21t 1207 1\/_1 a\/_Q Oéexp( (T — 1))y*

18 L2 exp(—y

IImH ||9b||

T-1

, 1
< 2" yexp(—yu(T — D))VAC Y ——
1=

oA Lexp(—r1l/2)

a a1 4(K+1) Z

exp(74/2)

S Ee [l6717]

) — exp(—ypul)
T-1 AQ a
lZ:eXp (=yul)
" exp(—yp(T = 1))o (K + 1) exp(25%)

(83)

Upper bound for @. First, we have

< %eXp(—wT)A-

1202— p?~ @ —4“;“)

Ly3(1 = ) B [16711% — By (116717 =

Next, sum @ has bounded with probability 1 terms:

Ly (1 =)™ 16712

The summands also have conditional variances

—Ea [I0/17]] <

)\2

©6)  8Ly* exp(—ypT)A]
exp(—yu(1 +1))
8o exp(—yu(T +1))A

1800 In® 2D

exp(—yuT)A
51n AL

~9 def o “ w12
67 & Ber [L27*(1 =)™ 272 (072 — Eg: [1l671%] 7]
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Yok

5 exp (—yp(l+1/2))%"

ajpa-1 4(K+1) Z ( H041>

)

(104)

(105)

(106)
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that are bounded

oy (106 Ly? exp(=2yuT)A u u
5 B [[1671° — g [l6717]]
Sexp(—yu(l+1))In ===
2L~ exp(=2yuT)A u
ey Be [16:11%] - (107)
Sexp(—yu(l+1))In ===
In other words, we showed that { Lv*(1 — vu)T’l’l (163117 — Ee [1167117]) },_ "1 is a bounded martingale difference

sequence with bounded conditional variances {57 }_".
Ly2(1 =)™ (1072

T-1
1
P {|@| > exp(—yuT)A and ; o7 <

Equivalently, we have

P{E@} >1-

In addition, E'r_; implies that

107)

— Eei [[164]|2]), parameter ¢ as in (106), b = & exp(—yuT)A, G = 22

exp(=2yuT)A?
150 In 22D

B _ 52>
3K +1) for FEg = | either Z

2Ly exp(—yu(2T — 1))A

Next, we apply Bernstem s inequality (Lemma B.2) with X; =

(=2yuT)A?

A(K+D
150In ===

b? B
2G+2cb/3> 2K +1)

|

exp(—2yuT)A?

1
150 In 4(K5+1) |®] < gexp(—WuT)A}. (108)

* Eg [1671°]

T—1
> 5 <
=0

98), T<K+1
<

5In LN

— exp(—ypul)

36 L2 exp(—yu(2T — 1)) Ac® i AT
51n AL = exp(—ypul)

(103)

36V 7 exp(—yu(2T — ))VA

o*(K +1) exp(#)

exp(=2yuT) A%
150 1n 4(K+1)

Upper bound for ®. From Ep_; it follows that

51202 In®~ AT

(109)

(w@a -2) (1 + %)) exp(yul)

T—1
® = Ly* Y exp(—yu(T — 1= 1))[167])?
1=0
T—1
©7) 1
< 22 Ly? exp(—yulT — 1)) —
; AP exp(—yul)
86, T<K+1 2-22. 12020"2720‘\/320‘ exp(—ypT)o2® In?* 2 4(Kﬂ+1) K
S 2a—2 Z exXp
VA =0
4 .92, 12020472,}/204\/320‘ exp(—'yuT) 2a ln2a 2 4(1;+1 K
< \/Z2a_2 Z exp(yual)
4 .92, 12020[—27204\/3201 exp(—’YﬂT)02a In2e—2 @(K + 1) exp(ypaK)
S \/Z2a72
$3) 1
< 5 exp(—yuT)A.

(110)
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Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Er_; implies

95)
Ap < exp(—ypT)A+DP+@0+@+ @+ 6,

(104) 1 (105) 1 (110) 1
@ < gexp(-wI)A, @ < cexp(—wT)A, © < zexp(-yuT)A,
S 2 19 exp(=2yuT)A% (= Ly 199 exp(=29pT)A?
Zal = o AEED ZU = o AEED
=0 n B 1=0 n—ﬁ
Moreover, we also have (see (101), (108) and our induction assumption)
(T-1)p
P{Er 1} >1— ———
{Br1} = K+1 '
P{E®}>1—L P{E@}>1—L
- 2(K +1)’ - 2(K +1)’
where
) - exp(—2ypT)A?
Ey = [either Z % @ < = exp( yuT)A 5,
150 In
. exp 2'yuT)A
Eg = [ either ——— or |® < exp YUT)A 5 .
fover St > S o 012 Lo

Thus, probability event E7-_1 N Eg N Eg implies

95)
Ar < exp(—ypTA4+D+@0+0+@+®

< 2exp(—yuT)A,
which is equivalent to (90) for ¢ = T, and

_ — — T
P{ET} > P{ET,1 N Eg N E@} =1- ]P){ET,1 UFEpU E@} >1- K——fl

This finishes the inductive part of our proof, i.e., forallk = 0,1, ..., K + 1 we have P{E} > 1 — #8/(x+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

F@T) = f. < 2exp(—yu(K +1))A.

Finally, if
— min 1 ln(BK)
T 250L In 2USHD " p(K +1) f7
Bxg = max({ 2 (K+1) A

-1

2646002 Lo2 In"" (%)m“‘(BK)

2(o¢ 1)

K= u?A

o) e\ 2 TN
Lo?2In~ = (F) In” | max < 2, ——————
Lo?2ln~ « (%)
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then with probability at least 1 — 3

f@) = fo < 2exp(—yu(K +1)A
p(K +1) 1
SEETN LGS ) N P
max {eXP < 9507 In % BK

. 2(a—1)
Lo? lnz( o (%) In? <max {2, %})
K LG‘2 In e =
O | max Aexp(— K ), (%)

Lln% K@lﬂ

To get ||z % +1

above are O(e). This leads to

L (A L A Lo2\ T@-D Lo2\ 7@\ .
K”(ﬂ(?)m(ml 2) (%) m(ﬁ(u%) )1““(36))’

where

This concludes the proof.

E.3. Convex Functions

Now, we focus on the case of convex functions. We start with the following lemma.

Lemma E. 5 Let Assumptions 1.3 and 1.6 with p = 0 hold on Q = Bag(z*), >
satisfy v < + Ifac e€Qforallk =0,1,..., K+ 1, K >0, then after K iterations of clipped-SGD we have

2% = a*||? — " * — 27|

K+1

KHZ“’ @t =V f(),0

" K+1Zx

v (fEF) - fa¥) <

2

K
DI
k=0

8
|

where 0y, is defined in (52).
Proof. Using xF+1 = 2F — yﬁfgk (x*), we derive forall k = 0,1,..., K that
b+t — a2 = b = 2¥||? = 29(ah — 2*, Vfer (2F)) + A2V fer (20|
= [l =P =292 — 2t V() = 29(2® — 2%, Ok) + AV (@) + 0k

S |laF — a2 = 2y (F@@F) — F(27)) — 29(a" — 2F — AV f(2"), 0s)
+2 IV £ @) + 210k

< 2 =P =2y (1= AL) (f(2%) = f(2")) — 2v(a® — 27 — AV f(2"), 0k)
+921 0|

v<1/L

< lat =P =y (F@0) = (@) = 29(a" — 2t = AV F ("), ) + 7710k
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Summing up the above inequalities for k = 0, 1, ..., K and rearranging the terms, we get
. K K 2y K
] (f(z*) = f(a")) Z (2% — z*||? = la*+t — 2*)?) - i > @k — 2" =V f(ab), Or)
k=0 k: k=0
" 2
T z joul
[ o U W T o RS PR
= — r —Tr — x
K+1 K+1&~ 7 Ok
2
T z o>
Finally, we use the definition of Z¥ and Jensen’s inequality and get the result. O
y quality g

Using this lemma we prove the main convergence result for clipped-SGD.

Theorem E.6 (Case 3 from Theorem 3.1). Let Assumptions 1.1, 1.3 and 1.6 with . = 0 hold on Q = Bag(z*), where
R > ||2° — 2*||, and

1 R
: S (113)
L(K11) a1
80LIn === 108d 90, K2 (ln —4“;“)) ¢

R

v < min

forsome K > 0and B € (0,1] such that ln K > 1. Then, after K iterations of clipped-SGD the iterates with probability
at least 1 — (3 satisfy
f@®) - fz*) < 2R and {z*}E . C B s5,(z") (115)
(K +1) k=0 = PV2R\" )

In particular, when v equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

x . LRQIH% O'RIH%%

meaning that to achieve f(T%) — f(x*) < e with probability at least 1 — 3 clipped-SGD requires

2 a7
K=0 <max {%, (?) In (ﬁ <0€R> ) }) iterations/oracle calls. 117

Proof. Let Ry = ||z* — x*|| for all k > 0. Next, our goal is to show by induction that R; < 2R with high probability,
which allows to apply the result of Lemma E.5 and then use Bernstein’s inequality to estimate the stochastic part of the

upper-bound. More precisely, foreach k£ = 0, ..., K + 1 we consider probability event E, defined as follows: inequalities
t—1 t—1
—2y) (' —a" V@), o)+ D lel? < R (118)
=0 =0
R, < V2R (119)
hold for all ¢ = 0,1,...,k simultaneously. We want to prove via induction that P{E},} > 1 — k8/(kx+1) for all k =
0,1,...,K + 1. For k£ = 0 the statement is trivial. Assume that the statement is true for some £k = T — 1 < K:
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P{Er_1} > 1 — (T=-1)B/(x+1). One needs to prove that P{Er} > 1 — T8/(kx+1). First, we notice that probability event
Er_4 implies that z; € BﬁR(:C*) forallt =0,1,...,7 — 1. Moreover, E7_1 implies
T T—1 S T—1 T—1 S T—1 aih
Jo = &) = |57 = 2" = 4V fera @7 < 16T = 2| + 4| ferr (2T < VIR 4+ 'S 2R,

ie, 20 2, ... 2T € Byg(x*). Therefore, Er_1 implies {z*}T_, C @, meaning that the assumptions of Lemma E.5 are
satisfied and we have

2% = 2*|* — Jl* — 2|2

t
— 72 t—1
2
Z;:c—x — AV f(ah), 0) +7le9|| (120)
forallt =1,...,T simultaneously and for all ¢ = 1,...,T — 1 this probability event also implies that
t—1 * 2 — 2 2 (“8) 2R®
@Y - f@) < Wt R* =2y (o' —a* — 4V f(a'),00) +7 Z||9z|| " (121)
1=0
Taking into account that f(z7 1) — f(x*) > 0, we also derive from (120) that E_; implies
t—1 t—1
R < R? =2y (' —a" =4V f@h),0) +7° > 161 (122)
=0 =0
Next, we define random vectors
ot —a* —yVf(at), if [z’ —2* —yVf(')® <2R,
e = .
0, otherwise,
forallt =0,1,...,7 — 1. By definition, these random vectors are bounded with probability 1
ln:]] < 2R. (123)
Moreover, fort =0,...,T — 1 event E7_; implies
©) . (m) 114) )
Vi)l € Llat—a) < VALR 3 (124)
(124) (113)
" —a* =V i) < 2’ =2 +Vf@E) < V2R +Ly) < 2R.
Next, we define the unbiased part and the bias of 0; as 6} and 6, respectively:
0 =V fer (z!) — e [%fgt (a:t)] . 0 =Ege {%fgt (:ct)} — V(). (125)
We notice that 6; = 6} + 9? . Using new notation, we get that E7_; implies
T—1
B < RP-2937(60m) 2 Z TR o (Nox1® - Eee [1021°))
t=0 t=0
@ ) ®
T—1 T—1 )
+29° Y Ee [||9;:||2} +292 3 |02 (126)
t=0 t=0

@ ®

It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive
proof we need to show that ® + @ + ® + @ + ® < R? with high probability. In the subsequent parts of the proof, we
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will need to use many times the bounds for the norm and second moments of #* and #?. First, by definition of clipping
operator, we have with probability 1 that

102 < 2. (127)
Moreover, since Er_1 implies that ||V f(z!)|| < M2fort =0,1,...,T — 1 (see (124)), then, in view of Lemma 5.1, we
have that E'7_; implies

2%
ol < Sa= (128)
Ee [|107]7] < 18A*"“0™. (129)
Upper bound for @. By definition of 6}, we have E¢: [0}'] = 0 and
Eee [=2v(0), n)] = 0.
Next, sum @ has bounded with probability 1 terms:
w “ (123),(127) (114) R? def
129 €0 ne) | < 29010801 - [lmell < 8YAR = AR =c (130)
5In -5
The summands also have bounded conditional variances 02 & Ee. [442(6%, n;)?):
2 2| gu||2 27 12V 2 2 w2
of <Eee [4970717 - Imel®] < 169°R*Eee [||6F]7] - (131)
In other words, we showed that {—2~ (6}, nt>}tT;01 is a bounded martingale difference sequence with bounded conditional
variances {02 tTgol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —2~ (0}*, n;), parameter c as in (130),
R? R* .
b=50= o

B2 T-1 R b2 B
{| > e ;Gt_mmn%}_ eXp< 2G+2d’/3> 2K +1)

Equivalently, we have

B T-1 X R4 R2
P{FEp}>1— ————, f Eq = « eith —_— Ol —». 132
{Eo} > KT D) or FEg either ;Gt>1501n4(}<ﬁ+1) or |@ < 5 (132)
In addition, E'r_; implies that
T—1 T—1
(131 (129)
Yo7 < 16y°RPY) R [[I07]7] < 2889°RP0OTAT
t=0 t=0
14y 9-40°R* o TH> (113) R4 33
T oo S AR S g, 10 (3
Upper bound for @. From Ep_1 it follows that
T—1 T—1
(123),(128) 4 . 29T R
@ = —2WZ<9577715> < QVZ 1621 - llmell - < el
t=0 t=0
a1y 80% o“TR?> 4 (113) R? .
T e dE <5 (134)

Upper bound for ®. First, we have
Ee 292 (11071 — Ee: [1611°])] = 0.
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Next, sum @ has bounded with probability 1 terms:

22 (10217 — Bee [l017])] < 292 (HW +Ee [161°])

(127) }{2 2
2 2 (114) R def
= A 100 In? —4“;“) = 51ln _4<Kﬁ+1> - ¢ (135)

2
The summands also have bounded conditional variances o2 &f Eg: [474 ( [|6)|% — Eg: [||6‘}J ||2D ] :

(135 R2 " N 4~2R? .
7S e (2|10 - B (160 |] < g Be (16507 (136)

T—1
since In % > 1. In other words, we showed that {272 (HG}JHQ — Eg {HH}JHQ} )} . is a bounded martingale dif-
t=

ference sequence with bounded conditional variances {Ef}tT:_ol. Next, we apply Bernstein’s inequality (Lemma B.2) with

. 2 4
X =2v? (HWH2 — K¢t [||0,§‘||2]),parameterc asin (135),b =&, G = mlfw

|®)] > and Z o2 7}34 <2e s b
- X — = .
= s0m AE [ =TT TaG s ) T 2K 1)

Equivalently, we have

B T-1 ) R4 R2
P{Es} >1— ———, for Eg = { either o > —————— or [® < — (137)
2(K +1) ; 7 1501 AUSHD
In addition, E'r_; implies that
O = . )7272}%2/\2 agar
Z - S 1n 4(K+1) ZEﬁt 16711%] 5 1 20D
0778

(14 9-40% aTR4 Oy (113) R4

000 e TEED S Ty, 6T (39
Upper bound for @. From Ep_; it follows that
® = 29°Y Eu [He;‘ﬂ 2 3672220 (19 94§8a 112“2% 2 R;. (139)
= B
Upper bound for ®. From Ep_1 it follows that
— 242 Z H sz 128) 2. 4252 2 (119, 6400 o?0T~? 22 (113) R2 (140)

A\2(a—1) T 800 1 2(1—a) 4(K6+1) = 5 )

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Ep_; implies

(126)
R:L < R+D+@+0@+@+06,

(134 R2 (139 R2 (140) R2
< O < - ® < —_,
5 5 5
T-1 T—1
D A a— > a A G
=0 150 In 4<K+1> 150 In 2CH)
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Moreover, we also have (see (132), (137) and our induction assumption)

(T-1)8 B B
P{Epr 1} >1———— P{Ep}>1—- ——, P{Eg}>1-
{Froap 2 K1 Dz leamy PR 2o amey
where
T—1
R* R?
E@ = {either 0't2 > AR or |®| < —},
= 150 In LED 5
{ T—1 , Rt 2
E@ = either 5t > AR or |©| < — .
paurs 150 In 2EED 5
Thus, probability event Er_; N Eg N Eg implies
R* R? R? R? R?
R} < R+ —+—+—+—+— =2R?

- 5 5 5 5 5
which is equivalent to (118) and (119) for ¢ = T, and
_ - _ _ _ s
P{Er} >P{Er_1NEsNEs}=1-P{Er_1UEgUEg} >1—-P{Ep_1} —P{Eo} —P{Es} >1— 1

This finishes the inductive part of our proof, i.e., forallk = 0,1, ..., K + 1 we have P{E} > 1 — #8/(kx+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

121) 2R?
=K\ * <
and {z"}&  C @, which follows from (119).
Finally, if
< 1 R
7= oL m A (7

71087 200K (In G

then with probability at least 1 — 3

2R2
=K\ * <
f@X) = fla*) < KD
a-1
160LE2 I AE+D 40 . 108% s RK * (1n%) “
= max A ,
K+1 K+1
LR2InE sRIn*+ K
= O | max B B

a—1

K e

To get f(zX) — f(2*) < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum
above are O(e). This leads to

K=0 (max{L—RQInL—RQ, (ﬁ)alln (l <ﬁ>al>}>,
€ ef € B\ €

which concludes the proof.
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E.4. Quasi-Strongly Convex Functions

Finally, we consider clipped-SGD under smoothness and quasi-strong convexity assumptions. As the next lemma shows,
the gradient of such function is quasi-strongly monotone and star-cocoercive operator.

Lemma E.7. Consider differentiable function f : R® — R. If f satisfies Assumption 1.5 on some set Q with parameter
1, then operator F(x) = V f(z) satisfies Assumption 1.9 on Q with parameter /2. If  satisfies Assumptions 1.3 and 1.5
with = 0 on some set @, then operator F(x) = V f(x) satisfies Assumption 1.10 on Q) with £ = 2L.

Proof. We start with the first part. Assumption 1.5 on set () means that for any = € @
* * /’L *
J@*) 2 f@) + (V)" —a) + Sl — a2
For F(z) = V f(z) it implies that for all z € Q
F * > * 1% *(|12 > 1% * (12
(), —a") 2 f(@) = f@*) + Sl — a2 = Lo — 2|2,

i.e., Assumption 1.9 holds on @) with parameter #/2 for operator F'(x).

Next, we prove the second part. Assume that f satisfies Assumptions 1.3 and 1.5 with g = 0 on some set (). Our goal
is to show that F'(z) = V f(x) satisfies Assumption 1.10 on Q. In view of (Gorbunov et al., 2022b, Lemma C.6), this is
equivalent to showing that operator Id — 1 F' is non-expansive around z*, i.e., we need to show that [|(Id — $ F)(z) —
(Id = +F)(z*)|| < ||l — «*|| for any z € Q. We have

[

2

H <Id - %F) () — (m - %F) @) = |lr—a2- % (2)
= o2l - Ho— 2, @) + | F@I?
= o2l - o -2, V@) + IV @I
" et - 2 (@)~ FE) + 2 () - 1))
= Jo-aI,
This finishes the proof. O

Therefore, using the result of Theorem H.6 with £ := 2L and u := #/2, we get the convergence result for clipped-SGD
under smoothness and quasi-strong convexity assumptions.

Theorem E.8 (Case 4 in Theorem 3.1). Let Assumptions 1.1, 1.3, 1.5, hold for Q = Bagr(z*) = {x € R? | ||z — 2*|| <
2R}, where R > ||z° — z*||, and

. 1 211?1(BK)
0<vy < min , ; (141)
{800/:111@ u(K +1)
2(a—1)
K+1)"a p2R?
Bx = max{2, 2( t(all) o (142)
45400202 In"% (@)m?(BK)
2(a—1)
K== 2 P2
— 0| max{2, wER : , (143)
— 2(ax—1
o2 In e (%)1112 max 2,%
o2n”a (f)
_ 14k
N — exp(—y(#/2)(1 + /2))R7 (144)

120v1n %
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for some K > 0and 8 € (0, 1] such that In 4(Kﬂ+1) > 1. Then, after K iterations the iterates produced by clipped-SGD
with probability at least 1 — [3 satisfy

25+ — 2% < 2exp(—7(#/2)(K + 1)) R (145)

In particular, when ~y equals the minimum from (141), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

(a—1) 2(a—1)
2" (E) In? [ max 2, Kfaiﬁ
” K *”2 O R2 < MK ) ’ o?ln (a )(%)
| e max exp | — ,

éln% K@/ﬂ

, (146)

meaning that to achieve ||z — x*||? < € with probability at least 1 — 3 clipped-SGD requires
g 4 ry pp q

L (R L, R (2\® 0 (1/c2\TD\

iterations/oracle calls, where
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F. Missing Proofs for clipped-SSTM and R-clipped-SSTM

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and the
missing proofs. For brevity, we will use the following notation: V fex (#*71) = clip (V fer ("), Ag).

Algorithm 2 Clipped Stochastic Similar Triangles Method (clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point z°, number of iterations K, stepsize parameter a > 0, clipping levels {\x }f;ol, smoothness constant
L.
1: Set Ag = ag =0, y° = 20 = 2°
2: fork:O,...,K—ldo
3: Set g1 = 2aL’ Ak+1 = Ak + ap1

4 okl AryPtagyqz*
Apt1
5. Compute vfgk( a1y = clip (V fer (1), \y) using a fresh sample £ ~ Dy,
6: 2P =2k — gV fer (aF )
k41 _ Ay tagg 2t
7: Y i rea—
8: end for

Output: y*

F.1. Convex Functions

We start with the following lemma, which is a special case of Lemma 6 from (Gorbunov et al., 2021). This result can be
seen the “optimization” part of the analysis of clipped-SSTM: the proof follows the same steps as the analysis of determin-
istic Similar Triangles Method (Gasnikov & Nesterov, 2016; Dvurechenskii et al., 2018) and separates stochasticity from
the deterministic part of the method.

Lemma F.1 (Special case of Lemma 4.1 from (Gorbunov et al., 2021)). Let Assumptions 1.3 and 1.6 with u = 0 hold

on Q = Bsgr(x*), where R > ||2° — > (x*) for all
k=0,1,...,N, N >0, then after N iterations of clipped-SSTM for all z € Bsr(x*) we have
1 1 N-1
An (FG™M) = f(2) < §|\20 —z|* - §||ZN =2+ ) g1 (Brgr, 2 — 25+ e V(M)
k=0
+ Z gy [0kl (148)
k=0
de =
Opir L Ve = V@R, (149)

Proof. For completeness, we provide the full proof. Using 2*1 = 2% — a1V fer (5+1) we get that for all 2 € Byp(z*)
andk=0,1,...,N—1

Q1 <Vf£k k+1 Sk Zk+1> + g <§f§k(:ck“),zk“ _ z>
= e <Vf£k k+1 2k Zk+1> + <Zk+1 ok Zk+1>

g1y ok Zk+1> _ %sz k2

Okt 1 <6f£k (xF Ty, 2% — z>

= Ok41 fok

1 1
] G Nl Eald (150)

k+1 k+1

where in the last step we apply 2(a, b) = |la +b||%> — ||a||? — ||b]|? with @ = 2%+ — 2¥ and b = 2z — 2**+1. The update rules

(22) and (20) give the following formula:

k k+1
k1 Ary® gt

AvuF k
_ AkY t arnz 4 Okt (Zk+1 _ Zk) _ gkl k41 (Zk+1 _ Zk) (151)
Ak A A A
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It implies

_ (149),(150)
Qkt1 <Vf5k (zFF1), 2k — z> <

(1s1)

1
Qg1 <Vf($k+1),zk _ Zk+1> _ §sz _ Zk+1H2
1 1
+agpr (Orr, 2F =250 + §H2'k — 2| - §H2'k+1 — 2|
1
AkJrl <Vf(xk+1),117k+1 _ yk+1> _ §sz _ Zk+1||2

1 1
st (B, 2F = L) | =P - S P

< Agt1 (f(xkﬂ) - f(ykﬂ)) +

2
AL
LkaJrl _ yk+1H2 _

1
5 —||Zk _Zk+1||2

2

1 1
st (B, 2F = L) | = 2P - S P

asn)

Apgr (f(&"T) = FMY) +

2

l (ai-l-lL _ 1) ”Zk _Zk+1H2
2\ Ak

1 1
i1 <9k+172k _ Zk+1> + §sz _ Z||2 _ _HZkJrl _ Z||2,

2

where in the third inequality we use 2", y**1 € Bsg(z*). Since Apq1 > aLypi104,, (LemmaB.1) and a > 1 we can

continue our derivation as follows:

anrn (Vo (@), 28 = 2) < A (@) = ) + appn (B, 25 = 241

Convexity of f gives

The definition of 21 (20) implies

1 1
5] i Nt] Eald (152)
< (149)
(V@) yh = b1y L (V@) g — 2P 4 (B, — M)
< R = FEEY) 4 (Brgr, gt - 2. (153)
appr (¥ = 2F) = A (yF — 2MT) (154)

since Ap+1 = Ar + ag+1. Putting all inequalities together, we derive that

Qk+1 <€f£k (Ik+1)a - Z> =
(154)

(153),(152)
<

(154)

At 1 <%f£k($k+l),$k+l — zk> + Qg1 <%f£k($k+l), 2k — z>
Ay <%f£k (), o — :vk+1> + Qg1 <6f£k (zF 1), 2F — z>

Ak (f(yk) - f(xk—’_l)) + Ak <9k+17yk — wk+1>

F A (FEY) = FF) + argr (O, 25 = 25

1 1
5 ll2k = 22 = S -2

Apf(W") = Apir fT) + aigr (Opr, 2T = 2F)

tapp f(@ ) + appr (O, 25 = 24

1 1
32k = 22— Sk 2P

Apf(y*) = A f ) + g f (@)

1 1
a1 <6‘;€+1,$k+1 _ Zk+l> + ink _ 2”2 _ _sz-i-l _ 2”2
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Rearranging the terms, we get

A S = AN < o (FE + (Tha ),z = b)) Sl - P

%sz-l—l — 2|2 + ansr (B, aF T — 2R
(14:9) i1 (f(xk-i-l) + <Vf(gck+1),z _ xk+1>)
T F | LA | P
+ak+1 <9k+1,$k+1 - Zk+1>
S arnf(2)F gllet — 2P = LI = 2l o (B, - )

where in the last inequality we use the convexity of f. Taking into account Ag = ap = 0 and Ay = ngv:_ol Qk+1 WE sum
up these inequalities for k = 0,..., N — 1 and get

N—-1
1 1
ANFY) S ANSE) 510 = = SN =24 Y e (B, — )
k=0
1 1 N-1 B
= ANFE+ 310 =2 = 1N =22+ Y ane (a2 — 2+ e V(@)
k=0
(149) 1 1 =
= AN G120 2P = Sl = 2P+ Y angr (B, 2 — 2+ @k Ve (aM)
k=0
N-1
2
+ D ke [0kl
k=0
which concludes the proof. o

Using this lemma we prove the main convergence result for clipped-SSTM.

Theorem F.2 (Full version of Theorem 3.2). Let Assumptions 1.1, 1.3 and 1.6 with p = 0 hold on QQ = Bsg(x™*), where
R > ||2° — 2*|, and

a—1
4K 9000(K +1)Kaln s 24K
a > max { 48600 In’ 5 ( zR 5\

B R
3004 In 27

(155)

N (156)

for some K > 0 and g € (0,1] such that In % > 1. Then, after K iterations of clipped-SSTM the iterates with
probability at least 1 — (3 satisfy

a 2
F) - flam) < okt

Sk ™ {12 A 0, (v Heo € Bar(a®). (157)

In particular, when parameter a equals the maximum from (155), then the iterates produced by clipped-SSTM after K
iterations with probability at least 1 — (3 satisfy

LR?1n? % oR 11104771 %
K2 B e ’

fWS) = f(z*) = O | max (158)

meaning that to achieve f(y™) — f(x*) < e with probability at least 1 — 3 clipped-SSTM requires
4 Yy p ty pp q

LR2 LR2 a1 1 e
K=014 i In i, ﬁ In| = ﬂ iterations/oracle calls. (159)
€ ep € B\ ¢
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Proof. The proof starts similarly to the proof of Theorem 4.1 from (Gorbunov et al., 2021). Let Ry, = l|2% — x|, RO = RO,

Rk+1 = InaX{Rk, Ry41} for all k > 0. We first show by induction that for all & > 0 the iterates z**1 2 ¥ lie

_ A4z’ _
1

oAyl e Bg,  (x*) for some [ > 1. By definitions of 1?; and R; we have that 2! € B, (z*) € Bg, (z*). Since y!
is a convex combination of y!~* € Bg (2*) € B (z), e Bg (z*) and By (z*) is a convex set we conclude that

y' € By, («*). Finally, since 2" is a convex combination of ' and z' we have that 2/ lies in By (¢*) as well.

in By (¢*). The induction base is trivial since y° = 2%, Ry = Ro, and z! 29. Next, assume that

Next, our goal is to show by induction that R, < 3R with high probability, which allows us to apply the result of Lemma F.1
and then use Bernstein’s inequality to estimate the stochastic part of the upper-bound. More precisely, for each & =

0, ..., K we consider probability event E}, defined as follows: inequalities
t—1 t—1
Z [07EN] <91+1, ¥ — Zl + CYl.,.lVfEL ((El+1)> + Z Oél2+1 H9l+1 H2 < RQ, (160)
1=0 =0
Ry <2R (161)

hold forallt =0, 1,. .., k simultaneously. We want to prove via induction that P{E}} > 1 —k8/k forallk = 0,1,..., K.
For k = 0 the statement is trivial: the left-hand side of (160) equals zero and R > Ry by definition. Assume that the
statement is true forsome k =T — 1 < K — 1: P{Ep_1} > 1 — (T-1)8/Kk. One needs to prove that P{FEr} > 1 — T8/k.

First, we notice that probability event E'r_; implies that R; < 2R forallt =0,1,...,T — 1. Moreover, it implies that

T _ Wy« = (156)
|27 — || < [|l2" —2*|| + ar||Vfer-i(z )H <2R+ar -1 < 3R.

Therefore, E_1 implies {a*}1_ {z*}1_,, {v*}1_, C Bsr(x*), meaning that the assumptions of Lemma F.1 are satis-
fied and we have

t—1 t—1
A (f') = f@) < —Ro - —R2 + > (B, et =2+ VAET)) + ) a6 (162)
1=0 1=0
forallt =0,1,...,T simultaneously and for all ¢ = 1,...,7T — 1 this probability event also implies that

1p2 _ 1p2 2
“ (160)2162) sRy—sR; + R < 3R*  6aLR?

b — — = . 163
1) = ) S < mmey (163
Taking into account that f(y”) — f(2*) > 0, we also derive that E7_1 implies
T-1 T-1
Ry < R3+2) o1 (Or1,2” — 2+ 0 V™)) 42> ofyy [0
t=0 t=0
2By

< R?+2Brp. (164)

Before we estimate Br, we need to derive a few useful inequalities. We start with showing that Fr_; implies
IV f(xtT1)] < M2 forallt =0,1,...,T — 1. For t = 0 we have z! = 20 and

©6) 60 In A& (155)
V7)) = V@) € Lja® - 2% < 2 =20 2225 2 20 (165)

aon 2 a - 2
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Next, fort =1,...,T — 1 event E'p_; implies

V£

IN

IV f(") —
©.

VIO + IV

< Lll2" =y + V2L (f(y') — f(a*))

(59,063 Loy, ;11 4 12a L% R?
< T =y
Ay t(t +3)
< ALRoy 41 12aL2R?
= Ay t(t +3)
_ R 240LaZ, In 4% 12aL2a?, In? &
600&,5+1 In % At t(t + 3)
38,056 ), [ 240L (%)2 In % 12aL2 (%)2 In? %
< — + 60
= t(t+3)
2 — t(t+3)
_ At 240(t +2)%In 3(t+2)2In 2
2 t(t+3)a t(t+3)a
4K 4K
< %(540111 7 +90f?/1_n g ) (1%5)%, (166)
a a
where in the last row we use i’z:ﬁj < % for all £ > 1. Therefore, probability event E7_; implies that
. . (161),(165),(166) R
o = 2" + @ V(Y] < Jla” = 2| + ara [V < G0 K = 3F (167)
B
forallt =0,1,...,T — 1. Next, we define random vectors
et =2 V(E), if ot = 2t 4 e V(@) < 3R,
= 0, otherwise,
forallt =0,1,...,7 — 1. By definition these random vectors are bounded with probability 1
]| < 3R (168)

and probability event Er_; implies that n; = 2* — 2* + a1 Vf(2!T1) forallt = 0,1,...,T — 1. Then, form Er_1 it

follows that

T-1 T-1
Br = > a1 (Ornm) + Y i [0l
t=0 t=0

Next, we define the unbiased part and the bias of 6,1 as 6%, ; and 62, respectively:

0% =V fer (a'1) — Eer [6 fer (xt“)} . 0, =Ee [6 fer (xtﬂ)] — V().
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We notice that 6; 1 = 0}, + 9? 1. Using new notation, we get that Ep_; implies

-1 -1
Br = Z Q41 <9?+1 + 9?+1777t Z at+1 ||9t+1 + 9t+1||
=0 t=0
-1 T-1 T-1 ) )
< Y e (m) + 3 ave (Gm) +2 3 adi (168l - Be [l °])
t=0 t=0 t=0
® ® ®
-1 -1
+2) af B [H@tHH }"‘220‘#1 H9t+1H : (170)
t=0 t=0
® ®

It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive
proof we need to show that ® + @ + @ + ® + ® < R? with high probability. In the subsequent parts of the proof, we
will need to use many times the bounds for the norm and second moments of 63, ; and 6° 1. First, by definition of clipping
operator, we have with probability 1 that

1084111 < 2A:. 171)

Moreover, since Er_1 implies that ||V f(2!™1)|| < M/2fort = 0,1,...,T — 1 (see (165) and (166)), then, in view of
Lemma 5.1, we have that E'r_; implies

2%

0 7 172
bl < S5 (72

Eee [||63411]

A

IN

18AZ g, (173)

Upper bound for @. By definition of 6}, ;, we have E¢: [0}, ;] = 0 and

e [orss (0 1,m)] = 0.

Next, sum @ has bounded with probability 1 terms:

(168),(171) asey  R?  der
| (031 me) | < a0l - llmell - < bawp MR = T = (174)
B
. . o def 2 w 2
The summands also have bounded conditional variances o7 = E¢t [, <9t ‘1 nt> |:
2 2 I 5 o w2
Ut < Egt [O‘t+1H9t+1H “Imell } < 90 R7Ee [H9t+1H } . (175)

In other words, we showed that {1 <6‘t ‘1 nt>}tT_01 is a bounded martingale difference sequence with bounded condi-
tional variances {o; }tT 01 Next, we apply Bernstein’s inequality (Lemma B.2) with X; = a4 <9§ﬁr1, 77t>, parameter c as

1n(174),b— R G_W

R2 fi R b2 3
P<|@ — d 2 V<o —_ | = —.
{' > an ;Ut—mmn%}— eXp( 2G+2cb/3> 2K

Equivalently, we have

ﬁ 4 R2
> —_ = - < -
P{Es} >1 5K for FEg either Z o2 > 0 4K or |@] (176)
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In addition, E7_; implies that

=1 (175) -1 T-1
oi OR* Y o, Ee 16517 'S 162072 Y oF N
=0 =0 t=0
(156) 16200 R4—o L1 1620 R4~ T-1
S JpmapreIE 2 % = (t+2)°
o —ap2-e 4K t+1 —a apafalnl2—a 4K
302~In B t=0 302-e . 29q Lo In*" " 4
1 1620%R*“T(T 4 1)> 155  R*
S @ < : 177
- a” 60La1n2_"% ~ 150l K (177)

Upper bound for @. From Ep_1 it follows that

T-1 T-1 300{71 lno‘_l 4K T—-1

(168),(172) o o Qpqpq (156) N == N
@ < > anlfial-nl S 8R-2%00 Y0 ST S I2Re" e 3 Cal
t=0 7't t=0
3600 R2~In® " 4K T— 1 1800“R**T(T 4 1)*In“ " 4K (155 p2
B B
t+2)* < —- < —. 178
- 20¢aocLoc Z + - a® Loc - 5 ( )
Upper bound for ®. First, we have
2 U 2 u 2
e [207,, (108 ~ Be [Jloal])] = o
Next, sum @ has bounded with probability 1 terms:
202y (1ol ~ Bee [0 l”])| < 2030 (16207 + Ee [l67]])
171) (156)  R2 .
< 1607,0 < — Ee (179)
51117
2
The summands also have bounded conditional variances o2 &f Eet {4af‘+1 (H@?HHQ — K¢ {HG;‘HHQD }:
_, (79 R? 2
oy = i AK =i Bet [20‘t+1 }Hot-i—l — Eer [Het-HH }H < af 1 R%Ee [[1074]1%] (180)
B

T-1
since In % > 1. In other words, we showed that {2a§+1 (H@?HHQ — K¢ [HG,?H HQD}t:O is a bounded martingale

difference sequence with bounded conditional variances {at} . Next, we apply Bernstein’s inequality (Lemma B.2)
4
with X; = 207, (HHHIH — Eg¢t [HGH_IH D, parameter c as in (179), b = RTZ, G = 150?;“%:

R? T-1 R4 b2 i
P{|® > — and < —— <2 2 -2
{| | > 5 an ; Ot = 150111% = cexp < 2G + 2cb/3> 2K

Equivalently, we have

3 T-1 , Rt R2
P{Es}>1— —, f Es = < eith of > — Bl < — 181
{Ea} > 5K or Fg either ; o} 150111% or |®)] g (181)
In addition, E'r_; implies that
T—1 T-1 T-1
., (180) 7) R4
thz < R Z a1 Ber [10341]%] < 9R? ZatHEff (1168411 ] S BomiE (182)
t=0 t=0 t=0 N5
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Upper bound for @. From Ep_; it follows that

T-1

T-1
2 u |2 1 2 2 u 2] 920 R® R?
® = 2Zo‘t+1E£t [HotHH } < ﬁ'gR Zo‘tH]EE‘ [||9t+1|| } < m S5 (183)
t=0 t=0
Upper bound for ®. From Ep_1 it follows that
T—1 T—1 2 22a+1 . 30204720,20( 1n20¢—2 4K T-1
2 e 20+1 20 Qi1 (156) B 2a
® = QZO‘tH H9t+1H <2*tg Z N2a—2 R2a—2 Zo‘t+1
t=0 t=0 "'t t=0
9o+l 302a—2g2a o2 4K T 1 180002°T(T + 1)%* In** "2 2K 55 p2
- — PN+ < — ( )7 P 184
22aa2aL2aR2a 2 - a2a L2aR2a 2 5
t=
Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Ep_; implies
(170)
Br < RP+®4+Q@+0+®+06,
(178) R? (183) R? (184) R?
< = @< — 6 < —
— 5 b —_— 5 b) — 5 )
T-1 T—1
177) R4 (182) R4
2 ~2
Zot = iK > Zot S iK
— 150 ln T =0 150 1117
Moreover, we also have (see (176), (181) and our induction assumption)
(T-1)B s p
y>1- =" >1-— >1-—
P{Er_1}>1 7 P{Ep} >1 57 P{Es} >1 57
where
T-1
R* R?
Es = [ either 07> ——— or @< — 3,
Pt 150 1n7 5
T-1
~ R* R?
Es = ([ either G > ———= or [® < —>.
Pt 150 1n7 5
Thus, probability event Er_; N Eg N Eg implies
R> R* R? R?> R?
Br < R+—+—+—+—+4— =2R?
o= s T TE T T ’
(164)
R% < R?*+2R*<(2R)%
which is equivalent to (160) and (161) for ¢ = T, and
— S — — — — T
P{ET} > P{ET_l N Eg N E@} =1- ]P{ET_l UFEpU E@} >1- P{ET_l} — ]P){E@} - P{E@} >1-— ?

This finishes the inductive part of our proof, i.e., forall Kk = 0,1,..., K we have P{F}} > 1 — k8/k. In particular, for
k = K we have that with probability at least 1 — /3

163  6aLR?
K _ * < o
and {F} 0 (2P ) {yF}E ) € Bag(x*), which follows from (161).
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Finally, if
a—1
4K 9000(K +1)K=%In s 24K
a = max { 48600 In’ 5 ( zR 5\
then with probability at least 1 — 3
K o o _6aLR® 291600LR*In® 4K 54000 R(K + 1)K & In"s 4K
f(y )—f(l‘) = m—max K(K+3) , K(K+3)

LR21n? % oR 111C1771 %
O | max 5 , T
K K=&

To get f(y®) — f(a*) < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum
above are O(e). This leads to

[LR2 2 att st
€ ep £ B\ e
that concludes the proof. o

F.2. Strongly Convex Functions

In the strongly convex case, we consider the restarted version of clipped-SSTM (R-clipped-SSTM). The main result is
summarized below.

Algorithm 3 Restarted clipped-SSTM (R-clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point z°, number of restarts 7, number of steps of Clipped SSTM between restarts {K;}7_;, stepsize
parameters {a:}7_q, chppmg levels {\} flo e !, smoothness constant L.
1. 39 =2a°
2: fort=1,...,7do
3:  Run Cllpped SSTM (Algorithm 2) for K iterations with steps1ze parameter a;, clipping levels {\L thal, and
starting point £/~ 1. Define the output of clipped-SSTM by .
4: end for

Output: 7

Theorem F.3 (Full version of Theorem 3.3). Let Assumptions 1.1, 1.3, 1.6 with p > 0 hold for QQ = Bsg(z*), where
R > ||2° — z*||? and R-clipped-SSTM runs clipped-SSTM 7 times. Let

R 2160./LR T 4 = (4 /54 2
K, = |max 1080,/ i <5 OOSR“) In <% <75 OOSR“> ) . (185)
t t

R2_ R R2 AK,T
e = %, Riot = 5o [logQ ”2 w 1nTt > 1, (186)
s a—1
AK,+ 9000 (K, + 1 Ko nat AKr
a; = max { 48600 In2 ﬁ”, (K 2 Ri RN (187)
R
A= L (188)

3004, In 25,

fort=1,... 7. Then to guarantee f(z") — f(x*) < e with probability > 1 — 3 R-clipped-SSTM requires

oo () (o (). (D) n G (D0 (D)) o
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iterations/oracle calls. Moreover, with probability > 1 — (3 the iterates of R-clipped-SSTM ar stage t stay in the ball
Bag, (7).

Proof. We show by induction that for any ¢ = 1, ..., 7 with probability at least 1 — t8/r inequalities
! l 2 , R
f@) - f@) sa, |2 -7 < B = (190)
hold for [ = 1, ..., ¢ simultaneously. First, we prove the base of the induction. Theorem F.2 implies that with probability
atleast 1 — 8/~
1 a—
. ) 661 LR®  as) 291600LR*In® 237 54000 R(K, + 1)K In“s K17
) — f(z ————— = ma ,
f@)=f@) =< Ki(Kq1+3) * Ki(K7 +3) K1 (K71 +3)
291600LR*In® 417 54000 RIn "5 45
< max =
K2 ’ a—1
1 K. ®
(185) R2
51 — 'LL_

and, due to the strong convexity,

~1 ,CC*HQ < 2(.]0(‘%1) — f(l'*))

B <
w

= R2.

R2
2

The base of the induction is proven. Now, assume that the statement holds for some t = T" < T, i.e., with probability at
least 1 — T8/~ inequalities

A * IS * R2
F@) = f@) <a, |l 2P <R = (191)
hold for ! = 1,..., T simultaneously. In particular, with probability at least 1 —78/7 we have |7 —2*||? < R%. Applying
Theorem F.2 and using union bound for probability events, we get that with probability at least 1 — (T+1)8/>
. « 6ar+1LR2
F@TY) = fa) o
Kpp1(Kpga +3)
1 a—
asy | 291600LE; In? 2707 54000 R (K1 + 1)Kf,, In"s K007

Kri1(Kp41+3) Kpi1(Kpeq +3)

291600LR7, In %THT 54000 Rt In s 4KIT8+1T

< max
= 2 ) a—1
KT Kty
(185) uR2
< eppr=—+

4

and, due to the strong convexity,

) w2 o 2£@THY) — f(a*) _ R?
HCL‘T-H—w H2§ ( ( ) ( )) <—T=R%+1.

W -2

Thus, we finished the inductive part of the proof. In particular, with probability at least 1 — 3 inequalities

A . N » R?
f@) = f@*) < e, ||azrl—:z:|\2§312:7
hold for [ = 1,..., 7 simultaneously, which gives for [ = 7 that with probability at least 1 — /3
o " _ pRZ, puR? 030
f(x)_f(x)SET_T_2T+1§6
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It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM. We have

T T LR2 \/LR? |7 = R
ZKt O Zmax Ut i ,<0Rt 1> In T (URt 1>
t=1

—1 €t VEB €t B €t

oSl i (F) () T2 () 7))
- ol () £ () G5 7))
- o in () (B0 () - () (5(5) )5
= omeffon () (Em () () (5 ) ) )
= oo () (B (1)) ()R (2) R ()))

which concludes the proof. o
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G. Missing Proofs for clipped-SEG

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and
the missing proofs. For brevity, we will use the following notation: ﬁgf (zF) = clip (Fff (zF), /\k) and Fvgg (zF) =

clip (F£2k (Ek), )\k)-

Algorithm 4 Clipped Stochastic Extragradient (clipped-SEG) (Gorbunov et al., 2022a)

Input: starting point 2°, number of iterations K, stepsize v > 0, clipping levels {)\k}fgol
1: fork=0,...,K do

2:  Compute Fvgic (zF) = clip (Fff (zF), /\k) using a fresh sample &F ~ Dy,
32 Tk =aF— 'y}?’é{c (2%)
4:  Compute ﬁggj (z*) = clip (Ff§ (z%), /\k) using a fresh sample &5 ~ Dy,

50 aftl =gk~ Wﬁ@ (z*)
6: end for

K
. oK+ o 5K 1 ~K
Output: 2%+ or g = RiT > X

G.1. Monotone Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part
of the algorithm, the proof is the same as in the original work.

Lemma G.1 (Lemma C.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.7 and 1.8 hold for QQ = Byg(x*), where
R > ||2° — 2*| and 0 < v < V/vaL. If 2% and 3% lie in Byr(z*) forallk = 0,1,..., K for some K > 0, then for all
u € Byg(x*) the iterates produced by clipped-SEG satisfy

K
~ 2% = wl® = "~ wl® 2 2
(F(u), 75,y —u) < > 16k + 2[lwrll?)
29(K +1) K+1 ) &~
1 K
Aoy Z(xk —u—F(F*),04), (192)
T G ZK:’:E’“ (193)
avg - 9
K+1&
dej ~ ~ ~
b, £ F(@*) - Fu @), (194)
dey ~
we € F(a) - Fa ). (195)

Using this lemma we prove the main convergence result for clipped-SEG in the monotone case.
Theorem G.2 (Case 1 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.8 hold for Q = Byg(z*), where R > ||2° — z*||, and

1 20" R
1602 n 8D 108007 (K + 1)woln s U
R

M=\ = W, (197)

0<~v < min , (196)

Sfor some K > 0and 8 € (0,1] such that In (I;,Jrl) > 1. Then, after K iterations the iterates produced by clipped-SEG
with probability at least 1 — 3 satisfy

9R?

k K+1 k K+1 *
Sk {z"} 55 € Bar(a"), {7}, C Bar(a"), (198)

GapR( fvg)
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where fffvg is defined in (193). In particular, when vy equals the minimum from (196), then the iterates produced by

clipped-SEG after K iterations with probability at least 1 — 3 satisfy

LR2m % oR %

Kl

GapR(Efvg) =0 | max K g , (199)
meaning that to achieve Gapg (X, ) < € with probability at least 1 — 3 clipped-SEG requires
LR* LR®> (oR\* 1 oR
K=0|—In——o, 7t In g iterations/oracle calls. (200)
€ ep € ep

Proof. The proof follows similar steps as the proof of Theorem C.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||z —x*|| forall k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k = 0,1,..., K +1
we consider probability event E, as follows: inequalities

t—1 t—1
Jmax {lxo —ull?+27> (@ —u—yF@), 00+ (10:° + 2|wz|2)} < 9R?, 01)
WEBRLE 1=0 1=0
Ay

<R (202)

t—1
g Z 0,
1=0
hold for¢t = 0,1, ..., k simultaneously. We want to prove P{E}} > 1 —k8/(k+1) forallk = 0,1, ..., K + 1 by induction.
The base of the induction is trivial: for & = 0 we have [|z° — u? < 2[jz2° — 2*||? + 2||2* — u||? < 4R? < 9R? and
1% Zf;ol ;]| = 0 for any u € Bp(z*). Next, assume that for ¥k = T — 1 < K the statement holds: P{Ep_1} >
1 — (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 — T8/(kx+1). We start with showing that E7_; implies

R, <3Rforallt =0,1,...,T (also by induction). For ¢ = 0 this is already shown. Now, assume that ?; < 3R for all
t=20,1,...,¢ forsomet’ <T.Thenfort=0,1,...,t

[7° —a*[| = 2" — 2" = yFe (@) < 2" — 2| + ]| Fe (2")]
(197) R
< ot = o +9A < 3R+ ——qs <4R. (203)
201DT

Therefore, the conditions of Lemma G.1 are satisfied and we have that E'7_; implies

mae {22t + 1)(F(), 2y — ) + 2+ — uf?)
u€BR(z*)

t/
< max <[z —ul®?+2y Y (@ —u—yF(),0)
u€BRr(xz*) 1=0

t/
+72 ZZO (1611 + 2]jewr 1)

(201)
< 9R?,
meaning that

ot = a2 < max {290 + 1)(F(u), 7, - u) + 0"~ ull*} < 9R?,

uEBR(x*) avg
i.e., Ryy1 < 3R. In other words, we derived that probability event Er_; implies R; < 3R and

max {2y(t 4+ 1)(F(u), 2} u) + ||z —u|?} < 9R? (204)

u€BR(z*) ave
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forallt = 0,1,...,T. In addition, due to (203) Er_; also implies that ||2¢ — z*|| < 4R forall t = 0,1,...,T. Thus,
Er_; implies

_ . ,oay _ .
ot —2* —aF@)| < 2" 2| +A|FE)| < 3R+~L|z" — 2|

(203) (196)
< 3R+4R~yL < 53R, (205)
forallt =0,1,...,T. Next, we introduce random vectors

{xt —x* —yF(2t), if ||zt —2* —yF (2| <5R,
=

0, otherwise,
forallt =0,1,...,T. These vectors are bounded almost surely:
[me|l < 5R (206)

forallt = 0,1,...,T. Moreover, due to (205), probability event Er_; implies 1, = 2t — x* — yF (') for all t =
0,1,...,7T and

T-1 T-1 T—1
Ar = e {nxO L u,ol>} Ty St -0t A F @), 0) 2 S (6] + 2eal)
ucBr(z =0 1=0 =0
T-1 T-1 T-1
< AR*+2y max {<5€*_U729l>}+272<nl79l>+722(|9l|2+2l|wl“2)
u€Br(a7) 1=0 1=0 1=0
T-1 T-1 T—1
= AR RS0+ 20 S )+ 3 (10 + 2ll?)
1=0 1=0 1=0

where A7 is defined in (201).

To handle the sums appeared in the right-hand side of the previous inequality we consider unbiased and biased parts of
6‘1, Wi

u def = (A~ ™ b def 1o/~ =~

oy L Eg [ngz G )} ~Fa @), #YFE)-Eg [ngz @ )} , (207)
w def = = def =

o R [Fgi (:cl)} ~Fal)), of ¥ FEh)-Eq {ngl (:cl)] , (208)

foralll =0,...,7 — 1. By definition we have ¢; = 0} + 9%’, wy = wj' + wf’ foralll = 0,...,T — 1. Therefore, E7_1
implies

T—1 T-1 T—1
Ar < 4R?>+2vR Z 0| + 2 ZW’ o) + 2 Z@% 6
=0 =0 =0
@ @
T-1
+292 Y (g [1671P) + 2B [l 1))
=0
®
T-1
+292 Y (16712 + 2t? — Egg [16712] — 2E¢; [ 2])
=0
@
T-1
+292 > (167117 + 2l 1), (209)
=0

®
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where we also apply inequality |la + b||? < 2||al|? + 2]|b]|? holding for all a,b € R? to upper bound ||6;]|? and |jw;||2. Tt
remains to derive good enough high-probability upper-bounds for the terms 2y R HZL_OI 0, H ,0,0,0,®,6, i.e., to finish

our inductive proof we need to show that 2vR HZszBl 0, H + @+ @+ @+ ®+ ® < 5R? with high probability. In the

subsequent parts of the proof, we will need use many times the bounds for the norm and second moments of 63, ; and 0% 1
First, by definition of clipping operator we have with probability 1 that

6711 <2, flwi'l] < 2. (210)

Moreover, since Er_; implies that

D (196) R A
IF()| < Ljja' — 2" <3LR < ————— "2 2,
4071n% 2

- (11) . (203) (196) R A
|F@EY| < L3t —2*| < 4LR < 197 A

4071n% o2

fort =0,1,...,7 — 1. Then, in view of Lemma 5.1, we have that E_; implies
2% 2%
b b
ot < 25t < 25 @
2 —a_« 2 —a_«
Eg [160°] < 18320%, B [Jall’] < 183207, (212)
w2 —a _a w2 —a _«a
Eg [I6717] < 18327207, Eq [lw}’] < 183220°, 213)
foralll =0,1,...,T — 1.
Upper bound for @. By definition of ¢}, we have E¢ [0}'] = 0 and
Eey [29(m, 6;)] = 0.
Next, sum @ has bounded with probability 1 terms:
u uy (206),210) aon  R%Z g
[29(m, 61)] < 2y([ml| - 116/ = 200RA = e ¢ (214)
1B
The summands also have bounded conditional variances o? < Eg [47%(m,6})%]:
2 200 12 fouf2] ) 2 p2 w)|2
of <Eg [47*[m)?-1611%] < 100v*R*Eg [|167]]%] - (215)

In other words, we showed that {2v(n;, 6}*) ;‘F:_Ol is a bounded martingale difference sequence with bounded conditional

variances {alz}lT;Ol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2y(n;, 6}), parameter c as in (214),
b=R?,G=—d
6In

: 6(Kt1)
B
T-1
R4 b2 3

P! |®| > R? and 2o L<9 _ = ,

{' > R an l;ol - 61n—6<Kﬁ+1>}— exP( 2G+2cb/3> 3(K +1)
Equivalently, we have

B T-1 R4
P{Ep} >1— SETT) for Eg = {either > of > —wy o |0I< RQ}. (216)
1=0 6ln ===
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In addition, E7_; implies that

T-1

T—1
> of 2 1007°R* > " Eg []161]°] e 1800(K 4 1)y2R2\? g
=0 =0

9 1800(K + 1)y*0*R*~* 1% R*

B 202 n>* LD T Gy SUECEL

Upper bound for @. From Ep_; it follows that

T-1

206),21),T<K+1 10 - 2%(K + 1)yRo®
@ < QV;HWH 1671 < oo
1029 - 20" YK + 1)7%¢® In®~ 16<K+1> (196)
n ( il < RZ.

Roc2

Upper bound for ®. From Ep_1 it follows that

T-1
. 212),T<K+1 oo 197 367K +1)0®
22 Egllof®] < 36K + DA = e
= 20 In -3
2T*1 wigr CIDTSEA ) 9o o 19 T29*(K + 1)o®
4y ZEQ[H% 7] < 27K+ DA% = 2—a | 2—a 6(K+1)
= 20 In -5

(219),(220) 1
< 5 R2.

Upper bound for ®. By the construction we have

29%Egy gy (10717 + 20wl — By [I6]17] - 2By [Ji?]] =

Next, sum @ has bounded with probability 1 terms:

292|167 117 + 2llwi*1* — Egy [167]°] — 2Eg [IWIF]‘ < 220161 + 297Eg 16717

w17 + 4y Eey. [[ler'[|?]

(210)
< 4872)\2

(127) R2 def
T 6m o) ¢

The summands also have bounded conditional variances
~ def u u u u
57 £ 477y |[1671 + 21t ? ~ Bey [17] - 28 )] |

7S o Be e [[I10017 + 217 ~ By [16117] — 2Bgy (It 7]
B
272 R?

< B A7 + 207
B

T-1
In other words, we showed that {2 2 (||9“||2 +2[|wp|? ~ Eg [||9“H2] —2Eg [HwﬂH?D}l:O

(217)

(218)

(219)

(220)

(221)

(222)

(223)

is a bounded martingale

difference sequence with bounded conditional variances {07 } . Next, we apply Bernstein’s inequality (Lemma B.2)
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with X 2 (||9?||2+2||w?|\2—155; [163117] — 2B [Hw?lP]), parameter ¢ as in (222), b = 1R%, G =
___RrR* .
216 In G(Kﬁ-’_l)

) T-1 R4 b2 B
@] > R and Z"l 216 1n S0 = zex (—2G+ch/3> EEICEE

Equivalently, we have

T-1
B . s R* 1,
P{Ea} >1— ———, for Eg = { either >————— or |®<=-R;. 224
el = 1= 30 ¢ ;(’l 216 1n 2D @15 (224
In addition, E7_; implies that
_ 23) 292R2
2 w2
Zal < 3 g OKFD) ZEfl et L6711 + 2flwi'[1?]
B

(213), <§ +1 36(K+1)72R2)\2 Qg

= In 6(KB+1)

(197) 36(K +1 a Ri—a a (196) R4

< K+ LR "ot S (225)
Upper bound for ®. From Ep_; it follows that
T—1
INTSK+1 6. 2202520 (K 4 1)

® = 297> (71> + 2l 2) #2

A2a—2
=0

(197) 6. 22 . 20201—2,}/2010.201([( + 1) In2®—2 G(Kﬁ-i-l) (196) 1
0 & e (226)

Upper bound for 2vR HZIT;Ol 0, H To upper-bound this sum, we introduce new random vectors:

-1 -1
VLo ity o] <

Cl = r=0 r=0

0, otherwise

forl =1,2,...,T — 1. These vectors are bounded with probability 1:

Gl < R. (227)
Therefore, taking into account (202), we derive that ' implies
T—1 2
29R|> 6| = 2R
1=0
T—1
= 2R, |72 Z o +20° 3 <vzer, ol>
T—1 T—1
= 2R\ D162+ 27D (G0
=0 =0
@07) T—1 T—1
< 2R (@+@®+8+2y > (G0 +27 D> (G0 (228)
1=0 1=0
® @
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Similarly to the previous parts of the proof, we bound ® and @.

Upper bound for ®. By definition of ¢;', we have E¢ [0}'] = 0 and

]Esg [27<Cl79f>] =0.
Next, sum ® has bounded with probability 1 terms:

227),(210) (197) R2 def

(
29(G 00 < 2vllmll - 107 < 4vRA < W =c (229)
B

The summands also have bounded conditional variances 62 & Eg [47%(G,61)°]:

R u (227) "
6t <Eg [12Gl17 - 16717] < 4 R*Eg [1167]] - (230)

In other words, we showed that {2((;, 6}") lT;Ol is a bounded martingale difference sequence with bounded conditional

variances {67}/ ,'. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2v((;, 0}*), parameter c as in (229),
b=E g= B .

1, =, R b2 B
P{|6] > -R?and S 62 < —— L <oexp (- = .
[®1> 37 an ;UZ = 9610 2D | = eXp< 2G+zcb/3> 3(K+1)

Equivalently, we have

T—1 R4 1
Eg = { either GE>————— or |®<-R%?}. (231)
ot 3ot > S o o<

In addition, E'r_; implies that

T—1 T—1
(230) (213),T<K+1
Yoot < 4R*Y Eg [161°] < 72(K + 1)y?R2\*
1=0 1=0
apl—a o (196) 4
(197) 72(K + 1)y*“R* %o z R . (232)
20270‘ 1n2—01 6(K+1) 96 ln 6(K+1)
B B
Upper bound for @. From Ep_1 it follows that
T—1
27,1, T<K+1 201 4 1)yRo®
® < nYlal-wel 2 Sk
1=0
2041 . 901K 4 1)@ In® SEFL 46
(1s7) (K +1)y g 101 (233)

Roc72 -

Now, we have the upper bounds for 2vR H ZlT;Ol 0, H ,0,0,0,®,®. In particular, probability event E_; implies

(209) T-1
Ap < AR+ 29R|D 6|+ D+ @+ @+ @+ 6,
=0
T-1
(228)
29R||> 6| < 2RVO+@+6+ 6+,
1=0
@18) 221 (226) 233)
@ < R?, ® < %RQ, ® < %RQ, @ < ERQ,
T-1 T-1 T-1
217) R4 (225) R4 (232) R4
2 ~2 ~92
Zgl S 6(K11)’ Zal S 6(K11)° Zgl S 6(K+D)
pard 6In SED T 2161n ST 96 In 2L
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Moreover, we also have (see (216), (224), (231) and our induction assumption)

(T—-1)B
P{Er_1}>1— ——7—
{Er} = K+1 '
P{E®}>1—L P{E@}>1—L P{Ee} >1-— b
- 3(K+1) - 3(K+1) - 3(K+1)
where
T—1 R4
E@ = {either O'l2 > W or |®| S R2}7
1=0 n—p—
T—1
R* 1
E@ = {either 5[2 > o 6Kt or |@| < —R2} y
pard 216 In S 6
T—1
R* 1
Eey = {either 6 > ——emy o 6] < —RQ} :
pard 96In XL 4

Thus, probability event E7-_1 N Eg N Eg N Eg implies

1 1 1 1 1
0 < —_R2 —_R2 —_R2 —R2 _R2 — 234
7;:0[ _\/6R+6R+6R+4R+4R R, (234)
1 1 1 1 1
A<422\/—2—2—2—2—2
T R+R6R+6R+6R+4R+4R
1 1 1
2 2, Tp2 Tp2, p2
+R+R+6R+6R+6R
< 9R?% (235)

which is equivalent to (201) and (202) for t = T, and
_ _ T8
P{ET} > P{ET_l NEyNEgN E@} =1- P{ET_l UFEsUFEgU E@} >1- K—-l-l

This finishes the inductive part of our proof, i.e., forall k = 0,1, ..., K + 1 we have P{Ey} > 1 — ¥8/(k+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

Gapp(@X,) =  max {(F(u),#X,—u)}
UEBR(:E*)
1
< —— max 29(K +1 Fu,ffg —w) + 2B 2
S R D) w2 K P (), Ty — ) + | 1%}
(204) 9R2
< N - . N
T 29K +1)
Finally, if
1 205" R
v = min

1602 In S5 108007 (K + 1) e ln s S

then with probability at least 1 — 3

9R2 720LR2In 8EHD gy Ry F SUCHD

GapR(fg,g) < ———— =max B , i B __
2y (K +1) K+1 22055 (K +1)°F

LR?mE gRIn*+
K 7 K%

==

= O | max
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To get Gapg (T avg) < ¢ with probability at least 1 — /3 it is sufficient to choose K such that both terms in the maximum
above are O(e). This leads to
LR2 LR2 a1
K—o0 R Lr=, R (oR In oR
€ e B

that concludes the proof. o

G.2. Quasi-Strongly Monotone Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SEG in the quasi-strongly monotone case.

Lemma G.3 (Lemma C.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.7, 1.9 hold for Q = Bzp(z*) = {z € R? |
|z — 2*|| < 3R}, where R > ||2° — z Af 2F and 7" lie in Bsgr(z*) forallk = 0,1, ..., K for
some K > 0, then the iterates produced by clipped-SEG satisfy

K
&5 H =22 < (=) 2 — 2P = 4P ) (1 =) TH (P ("), wi)
k=0
K
+27 ) (1= ) @k — 2t — 4P (@), 0k)
k=0
WZ — ) (16811 + 4w ]1?) , (236)

where O, wy, are defined in (194), (195).

Using this lemma we prove the main convergence result for clipped-SEG in the quasi-strongly monotone case.

Theorem G.4 (Case 2 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.9, hold for @ = Bsg(z*) = {x € R? | ||z — 2*|| <
3R},

0<y

IN

. 1 1D(BK)
min { pr—— (K+1) WK+ 1) } ; (237)

2(04 1)

(K + 1)~ 12 R?

Bx = max{ 2, . 5
264600% 02 In~"% (%)1112(3;()

(238)

— O max{2, (239)

exp(—yu(l +K/2))R
e = D (240)
120v1n —5

Sor some K > 0and 8 € (0,1] such that In w > 1. Then, after K iterations the iterates produced by clipped-SEG
with probability at least 1 — 3 satisfy

a5+ — 2|2 < 2exp(—yu(K + 1))R%. (241)

In particular, when ~ equals the minimum from (237), then the iterates produced by clipped-SEG after K iterations with

probability at least 1 — (3 satisfy
52 12 (5) n? [ max { 2, Ko ptrt
pK ) : o ()

K (1) )
Lh’lF K = ‘LLQ

2% —2*||? = O [ max Rzexp< (242)
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meaning that to achieve ||z — x*||? < e with probability at least 1 — 3 clipped-SEG requires

L R2 L R2 0.2 2(;:1) 1 0.2 2(;:1) L

iterations/oracle calls, where

R2
eln (% (:—225) 2(a1))

Proof. Again, we will closely follow the proof of Theorem C.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

B. = max < 2,

Let Ry, = ||z —a*|| forall k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach £ = 0,1,..., K +1
we consider probability event E, as follows: inequalities

R? < 2exp(—yput)R? (244)

hold for ¢ = 0,1,...,k simultaneously. We want to prove P{Fy} > 1 — *8/(k+1) for all k = 0,1,..., K + 1 by

induction. The base of the induction is trivial: for k = 0 we have RZ < R? < 2R? by definition. Next, assume that for

k =T—1 < K the statement holds: P{Er_1} > 1— (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 —T8/(k+1).

Since R? < 2exp(—vyut)R? < 9R?, we have 2* € B3g(z*), where operator F' is L-Lipschitz. Thus, E7_ implies
(237),240) ),

t t * 2449
IFG))] < Lt ) < VaLexp(-m)R & 2 (245)

and

el < 2B @2 + 21 )2 <

5) (240) 2
;/\2 < M (246)

4~2
forallt = 0,1,...,7 — 1, where we use that ||a + b|? < 2||a||? + 2||b||? holding for all a,b € R.

Next, we need to prove that £ implies ||§t —z*|| < 3R and show several useful inequalities related to 6;. Lipschitzness
of I probability event Er_; implies

7 —2> = 2t =2 =y F ()] < 2laf — 277 + 297 Fe, (2]

< 2RPH AP F ()P + 4P | ?
(11)
< 2014+ 29°L2)RE + 49 |Jwil?

(237),(246)
< 7 exp(—yut)R* < 9R? (247)

and
_ _ (237),(240) )\
IF@E)| < L|3' -2 < Vilexp(—mt2) R < = (248)

2

forallt =0,1,...,T — 1. Therefore, E_; implies that z*, ¥* € Bsg(z*) forallt = 0,1,...,T — 1. Using Lemma G.3
and (1 — yu)? < exp(—yuT), we obtain that E7_; implies

T—-1
Ry < exp(—yuT)R? —4y°u Y (1 — )" HF(a'), w)
=0
T-1
+27 Y (1 =y ot — 2t =y F (@), 60)
1=0

+722 =) T (161 + 4llenl?) -
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To handle the sums above, we introduce a new notation

G = {F(xt)v if || F(2?)]| < V2L exp(—1t/2)
t = 0

. (249)
otherwise,
ot — ot —yF (@), iflla’ —2* —yF@")| < V(1 +yL) exp(—744/2)
ne = . (250)
0, otherwise,
fort =0,1 T — 1. These vectors are bounded almost surely
16l < V2Lexp(=mt/2) R, ]| < VT(1+ L) exp(=nt/2) (251)
forallt = 0,1,...,7 — 1. We also notice that E7_; implies || F'(x?)| < v/2L exp(—7#t/2) R (due to (245)) and
lo" — 2" —yF@)| < 2’ =2+ FE)
(247),(248)
V(L + L) exp(—1t/2)
fort =0,1 T — 1. In other words, Fr_q implies ¢; = F(x?) and n; = 2* — 2* —yF(2?) forallt = 0,1,...,T — 1,
meaning that from E7_; it follows that
T-1
Ry < exp(—yuT)R? —4y°u Y (1 — )" 171G, wi)
1=0
T-1
429> (1= )" o, 6
1=0

T—1
YD (=) (01 + Alen]]?)
=0
Gl,wl:

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of

o LBy [Fy (@] - Fy @), 0= FGE) —Eg [Fy @),

(252)
v CEg [ngl (! )} ~Fa(d'), SEF@)-Eq [ngl ( )} , (253)
forall [ = 0, — 1. By definition we have 6; = 0}' + 9%’, wp = wj + wf’ foralll =0 , " — 1. Therefore, F'p_1
implies
T-1 T-1
Ry < exp(—yuT)R* =49 Y (1= )" 7 HG wit) =497 Y (1 =)™ NG wp)
=0 =0
o) @
T-1 T—1
+29 > (=)™ o, 61 + 29 Y (L= )" o, 67)
=0 =0
®

@
+272z — )" (B [1671%] + 4By [t 2])

®
T-1

+292 30 (1= )™ (10712 + Al |2 — Egy [1671%] - 4Eg [Ilor')?])

=0
®
T-1
+29° > (=)™ (16717 + 4llw? 1)
=0
@

(254)
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where we also apply inequality |la + b||? < 2||al|? + 2]|b]|? holding for all a,b € R? to upper bound ||6;]|? and |jw;||2. Tt
remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, ®, @, i.e., to finish our inductive
proof we need to show that @ + @ + ® + @ + ® + ® + @ < exp(—yuT)R? with high probability. In the subsequent
parts of the proof, we will need to use many times the bounds for the norm and second moments of ¢}, ; and b 1. First,
by definition of clipping operator, we have with probability 1 that

1071 < 2M, lwill < 2. (255)

Moreover, since Er_; implies that || F(2!)|| < Mi/2 and ||F(z!)|| < Mi/2 foralll = 0,1,...,T — 1 (see (245) and (248)),
from Lemma 5.1 we also have that E7_; implies

2%0¢%

b
o< 2% et < 22 256
Ee: [||9l||2} < 18\7%0%, Eg [len } < 18A2%°, (257)
Eg [IF1P] < 1832720, Eg [t ] < 18307, (258)
foralll =0,1,...,7 — 1.
Upper bound for ©. By definition of w}’, we have E¢: [w'] = 0 and
Eg [—4v°u(1 —yu)" "G, wi)] = 0.
Next, sum @ has bounded with probability 1 terms:
| =4 =) N Gwi)] < AP uexp(=yu(T = 1= D)IG] - flwil
(251),(255) .
< 8V29uLexp(—yu(T — 1 - Y2)) RN
@37),240)  exp(—ypT)R? ger
= TpoEm 29
The summands also have bounded conditional variances o7 &ef Eg (167012 (1 — yp)*T 272G, wit)?]:
of < Ega [167°4” exp(—yp(2T — 2 = 20)[|G|1? - [lwi']?]
@s1)
< 367 L2 exp(—yp(2T — 2 = 1)) R*Eg [||w'||]
@37 42 exp(—yu(2T — 1)) R?

2809 In LD

In other words, we showed that {—4+2u(1 — yu) T =171, wi) 1o - 1 is a bounded martingale difference sequence with
bounded conditional variances {al I 1 Next, we apply Bernsteln s inequality (Lemma B.2) with X; = —4y3u(1 —

yu)T=1=H ¢, wit), parameter c as in (259), b= 1exp(—yuT)R?, G = %:

1 — exp (—2ypuT)R* b2 Jé;
P{ @] > = T)R? SRR Loy - - ,
{| > g eRCand zﬁ = T4 (ED [ = TP\ TGk ) T 3K 1)

Equivalently, we have

T-1
B ) S o7 exp(—2yuT)R* 1
]P){E@} > 1-— m, for E@ = < either — o > W or |®| < ? exp( ")/ILLT) (261)
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In addition, E7_; implies that

T—1 T-1
Z o2 (220) 4% exp(—2yuT)R? Z Eet ||W }
- 2809 In SEED = exp(—

(258), <§ +1 7242 exp(—2’y,u,T)R20a XK: )\12704
- 2809 In S — exp(—ypul)
(210) 727 exp(—2yuT)R*= 0™
- 2809 - 1202~ In®~* S

<
= —a1.3—a 6(K+1
2809 - 1202~ In®~* SEHL
oY —a aK
- 727 exp(—2yuT)R*= 20 (K + 1) exp (%)
N 2809 - 1202~ In®~* 8L
@) exp(=2yuT)R*

294 1n S

where we also show that E'r_; implies

K @ a —« aK
QRQZ N <7R4 (K + 1) exp( 225

exp(—ypl) = 12020 SEHD

Upper bound for @. From Ep_1 it follows that

T—1
@ < 4 exp(—yu(T =1 =) - |yl
=0

(251),(256) T-1 o

< 22 V2exp(—yu(T — 1)y LR
=0

Qo 2211200712 exp(—yp(T — 1))y** pLo® I S T

g
A exp(—ni/2)

27 exp(—2yuT) R %0® & l
2 exp(=2uD) R > exp(yp(a — 2)) - exp (—W;a>

f L (exp(—u(l + Y2))*
exp(—yud) ’

1

(262)

(263)

B
Roc72

- Roc72

=0

r<it1 25120071 2exp(—yu(T — 1))y* Lo In® 6(KBJrl) K
: > e

=0

B

IN

2

23t 120° 2 exp(—yu(T — 1))y T uLo® In® " M(K +1)exp (—

Ra—2
@n 1
< - exp(—yuT)R?,

where we also show that E7_; implies

120971y (K + 1) exp( 28k ) p " S

R <
7 Z AT 1exp —vulfa) Ro—2

Upper bound for ®. By definition of ¢}, we have E¢ [0}'] = 0 and

Ee [29(1 =)™, 61)] =

63

exp (—yu(1+1/2))*"

wal>

' exp(—m/2)

(264)

(265)
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Next, sum @ has bounded with probability 1 terms:
29(L =)™ 0] < 2yexp(—yu(T = 1= 1))|ml - 116}

(251),(255)
AVTy(1+ yL) exp(—yu(T — 1 = Y2))RX;
@37),240)  exp(—ypuT)R? gt

IN

: 7ln 8L (260
The summands also have bounded conditional variances 52 & Egy [47°(1 — yp)*T 22, 07)?]:
5f < By [49 exp(—yu(2T —2 = 20)|m|* - [6717]
499201+ L) exp(—ym(2T — 2 — D) R*Eg [|6F]7
" 5092 exp(—yu(2T — 1) R2Eg [16717). (267)

In other words, we showed that {2y(1 —~u)T =14 (n;, 1) }]_," is a bounded martingale difference sequence with bounded
conditional variances {512}?:_01. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2(1 — yu)T =1 (n;, 01),

exp(—=2ypT)R*
294 1n —6”‘5“) )

4 2
P{|©|>;exp( yuT)R? and Z~2_w}§2exp(— b >_3( B

parameter c as in (266), b = % exp(—yuT)R?, G =

2941 6(K+1)

Equivalently, we have
T-1

p . o exp(—2yuT)R*
]P){E@} >1- m, for E@ = [ either ; o; > W or |©| < = exp( ’}/MT) (268)

In addition, E/7_; implies that

T-1 T—1 |2
(267) E. |60
> 5 < 507* exp(—2yuT)R? M
— — exp(—yul)
K 2—«
(258), T<K+1 A
< 90072 exp(—2yuT)R*c™ —
( ) ; exp(—yul)
(263) 9007° exp(—2yuT)R*“0*(K + 1) exp(%)
- 12020 p?~* LD
(237) —2~vuT)R4
N i (269)
294 In S
Upper bound for ®. From Ep_; it follows that
i - 116211
@ < 2
< 2yexp(—y Z P E—)
T-1
(251),(256)
< 2YVTy(1 4+ yL) ex ))Ro™
< 71+ L) exp(=yil(T ZZ v 1eXp =)
cey 21207 HT9 (L L) exp(—yuT) (K + 1) exp (255 ) I SUGE
S ROL*Q
37) 1
< zexp(—pl)R (270)
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Upper bound for ®. From Ep_; it follows that

T B [16117] + 4B [llwpl1?]

® = 2y%exp(—yu(T -1
(vl 2 ; exp(—ypul)
T-1 2—a
(258) Al
< 18072 exp(—y Z pe E—

263)  180y*R*~* exp(—yu(T — ))U (K + 1) exp( 2L
1202-e I~ S

@7 1 )
< = exp(—yuT )R~ (271)

Upper bound for ®. First, we have
292(1 = 30T By g (16112 + 4l |2 — Egy [1671%] - 4Egy [lorl?] ] =
Next, sum ® has bounded with probability 1 terms:

€39 80y° exp(—ypT) )}
- exp(—yu(l+1))
(220) exp(—yuT)R?

o 71n (Kﬁﬂ)

292 (1 =) T I6F 1 + 4l ) — Eey [1167]17] — 4B [HwFIIQ]‘

= (272)

The summands also have conditional variances
o def o 2
57 LB g |41 =y 22 |32 + dllwp |2 — Bgy [16712] - 4Bgy [Ji'l?]|

that are bounded

272 2 . 9

o7 <§) 2% exp( 27MT)§K =y
Texp(—ypu(1 + 1)) In D 505

L ¢l

7eXp(—w(1+1))1n% €.}

[0 + allop 12 — gy [1671%) - 4E¢, [les )]

(11654117 + 4llew; %] - (273)

T—1
In other words, we showed that {272(1 —yp) Tl (||9}‘||2 + 4wl — Eg [1161%] — 4Eq [le“HQD}l is a
' =0
bounded martingale difference sequence with bounded conditional variances {57 ;‘F:_Ol. Next, we apply Bernstein’s in-
equality (Lemma B.2) with X; = 2+2(1 — ypu)T 1! (HGﬂP + 4l|lwi||? — Eet [1ew12] - AEq [||wz‘||2]), parameter c as

. ex 4
in (272), b = } exp(—yuT)R?, G = S22
B

1 N exp(—2yuT)R* b2 8
P |® > = T)R* and 2o T A <9 — = .
{| | > = exp(—yp *an Z = T4 (ED [ = P\ Tog 2 ) T 3K+ 1)

Equivalently, we have

P{Eg} > 1 b for Eg = { eith N 52 o SR(2T)R! ® < . T)R®Y . (274
{Ee} > —m, or FEg = < either §UZ>W or | |_?exp( WL) . (274)
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In addition, E7_; implies that

TZ_132 (223) 442 exp(—yp(2T — 1)) R? Tz_l Egg,g; [H91u||2 + 4”‘“?”2}
: - 71n S ) i exp(—ypul)
OSH.TZKHL 36042 exp(—yp(2T — 1)) R?0® i AP
- 7ln S “ exp(—yul)
(223) 3607 exp(—yu(2T — 1)) R0 (K + 1) exp(142K)
N 7-1202-0 " SEHD
@0 exp(=2yuT)R*
294 In 8L
Upper bound for @. From Ep_; it follows that
T-1
) = 292> " exp(—yu(T — 1= 1)) (J167]1 + 4]lw!||?)
=0
T-1
(256) 1
< 10- 22&'72 exp(—yu(T — 1))02a Z Sa—2
— N exp(—yul)

R2a72
=0

40 - 22 . 12020(72,720( GXP(—’}//LT) 2a 1n2a 2 6(K+1) K

: e S
40 - 22 . 12029242 exp(—yuT )02 In?* 2 %(K + 1) exp(yuaK)
S R2a—2
@37) 1
< = exp(—yuT) .

Now, we have the upper bounds for @, @, ®, ®, ®, ®, @. In particular, probability event E'p_; implies

(254)
Ri < exp(— )R>+ 0+ @+@+ @+ 6 +® + @,

264 1 ) 270) 1 )
@ < cep(—ppl)R, @ < exp(—yul)R,

@71 1 276) 1
® < cexp(—ul)R?, @ < —exp(—yul) R?,

T-1 —1

294 In 6(K+1)

- 6( K+1 6(K+1
— 2941n 294 In SEEL

1=0
Moreover, we also have (see (261), (268), (274) and our induction assumption)
(T -1)B
P{Er_ 1} >1— ———
{Era} 2 K+1 '
P{Ep} >1— L, P{Eg}>1-— L, P{Eg} >1— L,
- 3(K+1) - 3(K+1) - 3(K+1)
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(252) exp(—2yuT)R* X s (269) exp(—2yuT)R* T71A2 @75) exp(—2yuT)R*
=

(275)

T<K+1 20- 220c . 1202a72,72a exp(—vuT) 2c 1n2a 2 6(K+1) K l
< B Zexp (7#(204 -2) (1 + 5)) exp(yul)

(276)
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where
Ey = {either i % or |@ < ;exp(—wT)RQ} :
Ee = {either lz: % or [® < %GXP(—’YHT)RQ} )
Ee = {either ng % or [® < ;exp(—fylu,T)RQ} .

Thus, probability event Er_1 N Eg N Eg N Eg implies
(254)
R: < exp(-uT)R*+®+@+0@+@+60+®+@
< 2exp(—uT)R?,
which is equivalent to (244) for t = T', and

— —_ = = T
P{ET} ZP{ET71QE®QE@QE@}:1—P{ET71UE®UE®UE©}>1_—Kf1

This finishes the inductive part of our proof, i.e., forall k = 0,1, ..., K + 1 we have P{Ey} > 1 — ¥8/(k+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

a5+ — 271> < 2exp(—yu(K + 1))R>.
Finally, if
. 1 IH(BK)
= min 3 }
! 650 In SEEL " (K +1)
2(o¢ 1)
K+1 (2 R?
Bxg = max{ 2, 2(+)1
2646002 02 In~ (%)1&(3@
2(a 1)
K 2 2
= O | max\ 2, R

2=l [ 2 K2 0‘071) 2 R2
0'2 ln @ (F) ln max 2,%
2 K
(1)
2 exp(—yu(K + 1)) R?

— ORmaxlexp [ MEHD )L
650L In S /7 B

(e=1)
o2 (E) 1m? [ max 2,%
) < MK> : 75 ()
= O | max<{ R°exp | — ,

K 2(a—1)
Lln F K = ‘LLQ

then with probability at least 1 — 3

Jo H — o <

To get ||#% 1 — 2*||? < ¢ with probability at least 1 — f3 it is sufficient to choose K such that both terms in the maximum
above are O(e). This leads to

(D) () () e (3 () )
K=0|-In{— |In(—In— y In| = Ina-1 Ba )
(“ <5 wB ue B\ j2e (B:)
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where

This concludes the proof.
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H. Missing Proofs for clipped-SGDA

In this section, we provide the complete formulation of the main results for clipped-SGDA and the missing proofs. For
brevity, we will use the following notation: Fgr (2%) = clip (Fer (2%), Ai) .

Algorithm 5 Clipped Stochastic Gradient Descent Ascent (clipped-SGDA) (Gorbunov et al., 2022a)

Input: starting point 2°, number of iterations K, stepsize v > 0, clipping levels {\ k}kK:_Ol.
1: fork=0,...,K do
2: Compute Fgr(2%) = clip (Fg (2%), Ar) using a fresh sample ¥ ~ D,
30 bl =gk - '}/ﬁgk (2%)
4: end for '

K 1

_ K
avg = K+1

T

M=

Output: =%+ ora
k

0

H.1. Monotone Star-Cocoercive Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part
of the algorithm, the proof is the same as in the original work.

Lemma H.1 (Lemma D.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.8 and 1.10 hold for Q = Bsr(z*), where

R > ||2° — 2| and 0 < y < 2/u. If 2 lies in Bag(z*) forallk = 0,1, ..., K for some K > 0, then for all u € Bsgr(x*)
the iterates produced by clipped-SGDA satisfy

0 _ .12 _ ||.K+1 _ H2 K
o oy < =l R (1P
(Flu), ok, —w) < R Ty 2 (PG + el
S
k k
+K——|—1 §<x —u—yF(z"),w), 277)
kdg 1 k
ok, € K—Hzx (278)
k=0
def k = ok
wp = F(2%) — Fee(2). (279)

K

Also we need to use the following lemma to estimate the term Y || F'(«*)||? from the right hand side of (277) in the proof
k=0

of the main theorem.

Lemma H.2 (Lemma D.2 from (Gorbunov et al., 2022b)). Let Assumption 1.10 hold for Q = Bsgr(z*), where R > Ry = &
|2° — 2*|| and 0 < v < 2/e. If 2* lies in Bag(x*) forallk = 0,1, ..., K for some K > 0, then the iterates produced by
clipped-SGDA satisfy

.CCO—.CC* 2 :CKJrl T* 2 2 K
= (3- )DF e TS
k=0
P
e 2 el (280)
k=0

where wy, is defined in (279).

Using those lemmas, we prove the main convergence result for clipped-SGDA in the monotone star-cocoercive case.

Theorem H.3 (Case 1 in Theorem 4.2). Let Assumptions 1.1, 1.8, 1.10 hold for Q = Bzg(z*), where R > ||2° — z*||,
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and

1 R
17000 S5 07900 (K + 1) 0 1n*s* SUCED
R

M=)\ = W (282)

o
A

2
A

(281)

Sor some K > 0and 8 € (0, 1] such that In (I;,Jrl) > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — 3 satisfy

5R?

k K-‘rl *
KL and {z"}, " C Bsg(z"), (283)

GapR(Ié(Vg) <
where a:fvg is defined in (278). In particular, when vy equals the minimum from (281), then the iterates produced by
clipped-SGDA after K iterations with probability at least 1 — (3 satisfy

K ¢R?In % chln%1 %
Gapgr(Z5,,) = O | max K oo , (284)

meaning that to achieve Ga < e with probability at least 1 — (3 clipped-SGDA requires
g Pr(T p ty pp q

av)
g

2 2 a—1
K=0 éi In — il , ﬁ 1n UR iterations/oracle calls. (285)
€ ep € 3 €

Proof. The proof follows similar steps as the proof of Theorem D.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||z¥ —a*|| forall k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k = 0,1,..., K +1
we consider probability event E}, as follows: inequalities
t—1
o' — 2% <2R* and 5 |> w| <R (286)
1=0

hold for ¢ = 0,1,..., k simultaneously. We want to prove that P{Ey} > 1 — *8/(k+1) forall k = 0,1,..., K + 1 by
induction. The base of the induction is trivial: for & = 0 we have R(ZJ < 2R2 by definition and Zl_:lo w; = 0. Next,
assume that the statement holds for k = T' < K, i.e., we have P{Er} > 1 — T8/(x+1). Given this, we need to prove
that P{Er,1} > 1 — (T+1)8/(k+1). Since probability event Er implies R? < 2R?, we have 2! € Bag(x*) for all
t=0,1,...,T. According to this, the assumptions of Lemma H.2 hold and E7 implies (y < 1/¢)

||J?O _ I*HQ _ HxTJrl _ I*HQ
Z IFEO? <
T +1) T+1
2 T o T
t * t 2
T 2 =P 2D el (287)
t=0 t=0
and by ¢-star-cocoersivity we have
(281)(282) Y
IFE)] <t —a) S VaeR 5 (288)
forallt =0,1,...,T. Using (287), we obtain
T T
Ry SR3+2y) (2" — 2" —yF(a'),w) + 97> llw|®.
t=0 =

70



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Due to (288), we have

t * t t * t (14),(286) t *
2" —a* —yF@)| < a8 =2 +9[F@)] < 2R+yla" — 27|

(286) (281)
< 2R+4+2Rvy¢ < 3R, (289)
forallt =0,1,...,7. To handle the sum above, we introduce a new vector

2t —a* —yF(at), if |2t — 2% —yF(a)] < 3R,
N = .
0, otherwise,

forallt =0,1,...,T. This vector n; is bounded with probability 1:
]| < 3R (290)

forallt = 0,1,...,T. We also notice that probability event Er implies 1, = 2* — z* — vF(2!) forallt = 0,1,...,T
Thus, thanks to (289), E'r implies

T T

R < R*+ 2’72<nt7wt> +7° Z e 2.
t=0 t=0

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of wy:

o SR [ﬁgt (xt)} — Fa(zt), ot F(t) - Ee [ﬁft (xt)} (291)

forallt =0,...,T. Also, by definition we have w; = wy* + wf forallt =0,...,T. Therefore, Er implies

T T T

Rip < RP42y> (nnwi) +27> (ewh) +29° ) (Bee [lwpll?])
t=0 t=0 t=0

[} @ ®
T T
+29°)  (lwtl? = Bee [Jlwpl1P]) +29° D (Ilwtll?) - (292)
t=0 t=0

@ ®

We notice that the above inequality does not rely on monotonicity of F'.

According to the induction assumption, from probability event E1 we have 2! € Bag(z*) forall t = 0,1,...,T. Thus,
the assumptions of Lemma H.1 hold and probability event Er implies

T
2v(T + 1)Ga a:aTV < max 20 —u|?+2 zt —u—yF(z'),w
YT+ 1)Gapp(al,) < UEBRW{II #4203 IACOR

T
77> (IF @I + lwel®)
t=0

T
=  max {H:EO —u||2+272<x* —u,wt)}

uwEBR(x*) o
T
+2v Z(wt —z* — yF(z"), w;)
t=0

T
7Y (1P @I + [lewe®) -
=0
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As we mentioned before, B implies 1, = 2t — 2* — yF(2!) forallt = 0,1,...,T as well as (287) and v < 1/¢. Due to
that, probability event Er implies

IN

T
2v(T + 1)Gapg(z1,,) uer]glax {ll2° — u|®} + 2v emafg ){Z<x*_u,wt>}

T
D IFEIP +77 Z et |
t=0

o
)t
T
uw€EBR(z* {<x _U7§Wt>}

T T
HRZ 47> (mwi) + 297> flwe)?

AN
S
=
[\v]
+
[N}
)
g
)
M

t=0 t=0
T

< BRPA2R|D wif[+2-(+@+ @+ @+6), (293)
t=0

where we also aplly inequality ||a + b|? < 2||a||? + 2||b||? holding for all a,b € R? to upper bound ||w; ||?.

It remains to derive good enough high-probability upper-bounds for the terms @,®,®, ®, ® and 2vR HEtT:O wel|, 1.e.,

to finish our inductive proof we need to show that @ + @ + ® + @ + ® < R? and 2vR HZtT:O th < 2R? with high

probability.In the subsequent parts of the proof, we will need to use many times the bounds for the norm and second
moments of w, w?. First, by Lemma C.1, we have with probability 1 that

floop']l < 2A (294)
forallt =0,1,...,T. Moreover, due to Lemma C.1, we also have that £ implies
2%0“
et < 222, (29
Ee [||wf]’] < 183720°, (296)
Bt {Hw? HQ} < 18A* g (297)

forallt=0,1,...,T.

Upper bound for @. By definition of w}’, we have E¢t [wy'] = 0 and

Eee [2(m, wi')] = 0.
Next, the sum @ has bounded with probability 1 term:

. 1 (290),294) 2 R2 4
129(ne, wi)| < 29[Ime| - '] < 129RA < 1 SETD =c (298)
B

. . def
Moreover, these summands also have bounded conditional variances o7 = Eet [472<77t, w#}Q] :

(290)
op <Eee [49°|lme]l? - wi?] < 367°R*Eee [|lwi'l|] - (299)

In other words, we showed that {27v(n;, wi*) }+>0 is a bounded martingale difference sequence with bounded conditional
variances {07 };>0. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2v(n;,w}"), parameter c as in (298),

R2 _ R*
b=%.G= 1501n%

R < R* b? B
o § 07 < e £ <2 — = .
{|®| S5 —~ = T50m S } - exp< 2G + 2“’/3) 3(K +1)
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Equivalently, we have

T

R* R?
]P){E@} >1- 3(K+1)’ for E@ = {elther ZO’t W or |®| < —} (300)
t=0 B

In addition, £z implies that

T
(299)
< 367 R* Y Ee [[lwp]?]
t=0 t=0
297), T<K+1
< 6487?R*0* (K + 1)\*"°

(282) 6(K +1
< 6487 R0 (K + 1) In> 2 S(K +1)

- g
(281) R4
Upper bound for @. From FEr it follows that
(290),(295), T<K+1 N o
@ < 29) |l Il < 6-2%7R(K +1)y5
K +1) @) R?
@ 121200140 RZ (K + 1) In® ! % < %. (302)
Upper bound for ®. From FEr it follows that
T Q97), T<K+1
® = 222 Ee [JWP] £ 36y2AT0° (K +1)
(282) 6(K +1) @8) R2
< 367*R2%0Y(K 4+ 1) In*? % < = (303)
Upper bound for @. First, we have
29°Eg: [[|lwp|l® — Eee [lwi'll*]] =
Next, the sum @ has bounded with probability 1 terms:
2 u||2 w2 2 u||2 u||2 2% 242
292 [l |2 = Ber [t 2] < 292 (il + Eee [Jwl?]) < 1672A
(282) R2 R2 def
S i SEID = g e 304
B B
The summands also have conditional variances 52 & 4y Egt [(Hw#”z — Eee [|lwi]?] )2} that are bounded
o, B0 242 R2 4v2 R?
2 w2
op < mEﬁf [l I* = Bee [lwi1?]]] < W Ee [floi]?] - (305)

In other words, we showed that {||w}||* — E¢:[[|w;||*]}+>0 is a bounded martingale difference sequence with bounded
conditional variances {77 };>0.Next, we apply Bernstein’s inequality (Lemma B.2) with X; = ||wj‘|* — Eg[||lwi[|?].

. _ R? _ R* .
parameter c as in (304), b = = G = W.

|@] > and Z~2 7}%4 <2e b’ b
- X — = .
15010 SEED [ = TP\ T2G w2k ) T 3K+ 1)

73




High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Equivalently, we have

R4 R?
]P){E@} > 1— 3(K+1)’ for E@ = {elther ZO’t W or |@| < —} (306)
t=0 B

In addition, E'r implies that

St S ) T R D e
t = 6(K+1 v t = Tor1. 6(K+1)
= 225 In S 25In LD
282 8 _ _3 6(K+1)
< = aR4 K 1o In® 3\ T )
T (K+1)0“In 5
(281) R4
= Toom & con
B
Upper bound for ®. From FEr it follows that
2 - b2 FDILEEFL oo 2a-2,2 o>
® = 2¢9°) |wfll < 260K + 1)y
o2
B g2at1, go2a-2,2a 202 6(K +1)
= 2 - 60 K+1 5 In _
281) R2
< . (308)
5
Upper bound for v HZ;‘FIO wt H To estimate this term from above, we consider a new vector:
-1 -1
Ve it 1S <
G=1< =0 =0
0, otherwise
for! =1,2,...,T — 1.This vector is bounded almost surely:
Gl < R (309)
Thus, by (286), probability event E implies
T T 2
2wl = e
1=0 1=0
T T -1
= 722|w1||2+272<72wr,m>
1=0 1=0 r=0
T T
= 2D w2427 D (G w)
1=0 1=0
(292) T T b
< |O4+@+0+29) (Gwi)+27 D (Ghw))- (310)
=0 =0
® @

Following similar steps as before, we bound ® and @.
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Upper bound for ®. By definition of w/,, we have E¢: [wj'] = 0 and

Egt [2’7<Ct, w;‘>] =0.
Next, sum ® has bounded with probability 1 terms:

u wyy 309),(294) (282) R? def
229G, wi) < 29[Gll - lwi'll < 4yRA < o 0K ¢ (311)

The summands also have bounded conditional variances 52 & Ee. [472(Ce, wi)?]:

N w21 G99 u
7 <Eee [42)1GI7 - lwp?] < 49°R%Eee [[lwp'l|] - (312)

In other words, we showed that {27((;, w}') }+>0 is a bounded martingale difference sequence with bounded conditional
variances {07 };>0. Applying Bernstein’s inequality (Lemma B.2) with X; = 2((;, w}), parameter c as in (311), b = ;,

R4
15010 SEEDT

R? L R* b2 3
P{|®| > — and < —— V<2 - = i
{l S ;0“150111%}_ eXp( 2G+20b/3) 3(K +1)

Equivalently, we have

4 R R?
P{Eg} >1— for F¢ = < either o —— or |® << — (313)
{ } 3(K+1) ; t 150 ln 6(1(B+1) | | 5
In addition, £z implies that
T T
N (312) u
K < 4°R*Y B [||wp|?]
t=0 t=0

(297),T<K+1
<

72y R%*0™(K 4+ 1)\*

(282) K+1
< 72~yaR4*°‘aa(K+1)1na—276( ; )
(281) R4
S oD o
B
Upper bound for @. From FEr it follows that
T pr, 309,299, T<K+1 N e
o < Y lal-lefl TS T 822 RIK + D)o
6(K +1) @8) R?
2 16-1200‘_17a00‘R2_0‘(K+1)1n°‘1% < = (315)
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Now, we have the upper bounds for @, ®,®, ®, ®, ®, @. In particular, probability event E'r_; implies

R? (222)R2+®+®+®+@+®
T+1 —= ’

T
D wr

t=0

(293)
29(T + 1)Gapg(al,,) < 5R®+2yR +2-(0+@+0@+@+06),

T
D
1=0
(302) R2 (303) R2 (308) R2 (315) R?
< ®< —, &< —, @KL

(310)
< VO+®+6+6+ @,

v

?7 = 5 ) = 5 ) = ?a
(%01) (%07) (314) R*
~2
o 7, < o; < ——
Z "7 150m SR z% 150 In SCED "7 1501 OEFD
Moreover, we also have (see (300), (306), (315) and our induction assumptlon)
s
P{FE 1——
{Er} > L
P{E®}>1—L P{E@}>1—L P{E@}>1—L
- 3(K+1) - 3(K+1) - 3(K+1)
where
T
R* R?
_ : 2 s
Ey = {elther Zot > ol 6(Kﬁ+1) or |@ < z },
T
R* R?
_ : ~ . o
Esy = {elther Zcrt > oL 6(Kﬁ+l) or @ < 3 },
T
R* R?
_ : ~2 o
Eey = {elther Zcrt > oL G(KBH) or |® < 3 }

Thus, probability event E7 N Eg N Eg N Eg implies
R:., < R°4+04+@+0®+®+6 <2R?

T
VY w| < VO+r@+8+©+@ <R,
=0
T
2v(T +1)Gapp(zl,y) < 6R*+29R|) wi||+2-(D+@+ @ +@+6)
t=0

10R?,

IN

which gives (286) for ¢ = T, and

— - = = T
]P){ET+1} Z]P){ETQE@ﬁE@ﬁE@} :1—P{ETUE®UE@UE@} >1- K——fl
This finishes the inductive part of our proof, i.e., forall k = 0,1, ..., K + 1 we have P{E,} > 1 — #8/(x+1). In particular,

for k = K + 1 we have that with probability at least 1 — 3

2
apn(stSe) < o
Finally, if
— ] 1 R
T m0em TET o0 (5 1 1) ro o

76



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

then with probability at least 1 — 3

1 o
5R2 800LR?In <K+1> 5.97200a 0 RIn"a SEFD

~K
Gapgr(x < ———— =max , —
pR( avg) = (P(_i_ 1) K+1 (K—|— 1) al

ZRQIH% GRIH%%
K 7 K%

= O | max
To get Gapg( avg) < ¢ with probability at least 1 — § it is sufficient to choose K such that both terms in the maximum

above are O(e). This leads to
2 2 a1 o1
Ko 8,0 7 ok (L (oF
€ ep € B\ €

that concludes the proof. o

H.2. Star-Cocoercive Problems

Theorem H.4 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.10 hold for Q = Bag(x*), where R > ||2° — x

1 R
min I ) (316)

4(K+1)° 1 a—
170010 25 070003 (K + 1)t o ln % U
R
M= = —— 317)
WKL)
60+ In 5

o
A

)
A

Sor some K > 0and 8 € (0, 1] such that In (I;,Jrl) > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — 3 satisfy

) 2R
K—l—lZ” I < vy(K+1) (318)

In particular, when ~ equals the minimum from (316), then the iterates produced by clipped-SGDA after K iterations with
probability at least 1 — (3 satisfy

CR*In K (oRIn“% K

F(z")|]? 1
KHZII NP =0 | max § —— 75 — == : (319)

K
meaning that to achieve KL-H S ||F(2%)||? < e with probability at least 1 — 3 clipped-SGDA requires
k=0

2 2 2 2 a7 =7
K=0 i In Z—R, &T—R In l &T—R iterations/oracle calls. (320)
€ ep € B €

Proof. Again, we will closely follow the proof of Theorem D.2 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||2* — 2*| for all £ > 0. As the previous result, the proof is based on on the induction argument and showing
that the iterates do not leave some ball around the solution with high probability. More precisely, foreach k =0,..., K +1
we define probability event Ej, as follows: inequalities

|zt — z*||* < 2R?, (321)
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hold for t = 0, 1,. ..,k simultaneously. We want to prove that P{Fy} > 1 — k8/(xk+1) forall k = 0,1,..., K + 1 by
induction. One of the important things is that inequalities (287) and (292) are obtained without assuming monotonicity of
F. Thus, if we do exactly the same steps as in the proof of Theorem H.3 (up to the replacement of In w by In %),

we gain that

(292)
R, < RP+0+@+0®+®+06,
(302) R2 (303) R2 (308) R2
S gPDE DR

?7 = 57 = ?7
St e Y e
— 150 In AEEL T = 150 In 2D

Moreover, we also have (see (300), (306) and our induction assumption)

s
P{Er}>1— ——
{Er} > il
P{E®}>1—L P{E@}>1—L
- 2(K +1)’ - 2(K +1)’
where
T
R* R?
_ : 2
Ey = {elther Zat > W or |® < ?} ,
t=0 B
T
R* R?
E@ = {either Z&tz T AWK+ or |@| S —} .
— 150 In 250 5
Thus probability event Er_; N Eg N Eg implies
RZ <R+ ®+®@+0®+@+6 < 2R?,
and -
]P){ET+1} > ]P){ET N Egp N E@} =1- ]P){ET UE@ UE@} >1- —K—fl (322)

This finishes the inductive part of our proof, i.e. forall k = 0,1,..., K + 1 we have P{E},} > 1 — k¥8/(k+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

Z”F 2 <2§) (R*-R%.,) L(D+@+O+®+6)
K+1 - YK +1) YK +1)
20R?
- (K +1)
Finally, if

, 1
T Trorm 4<K+1>

=

= 1 ol 4(K+1)
97200 (K+1)aoln ™= ===
then with probability at least 1 — 3

1 o
20R? 34002R?In *USH) 9. 972003 (o RIn*F 2USHD

K
Z ||2 = - 1\ ’ a—1 v
1= v(K +1) K+1 (K +1)%%

PRI K éaRln"‘T’l%
= O [ max ,

K K%
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K
To get ﬁ kz |F(z*)||> < e with probability at least 1 — §3 it is sufficient to choose K such that both terms in the
=0

maximum above are O(e). This leads to

2 p2 2 p2 =1 asT
€ ef € B\ ¢

that concludes the proof.

H.3. Quasi-Strongly Monotone Star-Cocoercive Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SGDA in the quasi-strongly monotone case.

Lemma H.5 (Lemma D.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.9, 1.10 hold for Q = Bag(z*) = {x € R? |

|z — 2*|] < 2R}, > . If 2% lie in Bor(x*) forallk = 0,1,..., K for some K > 0,
then the iterates produced by clipped-SGDA satisfy
K
25T =22 < (=) ST 2 — 272+ 29 Y (1= ) KRN — 2t — P (a"), wi)
k=0
K
92> (1 =) Ffw)?, (323)
k=0

where wy, are defined in (279).

Using this lemma we prove the main convergence result for clipped-SGDA in the quasi-strongly monotone case.

Theorem H.6 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.9, 1.10, hold for Q = Bogr(z*) = {z € R4 | ||z — 2*| <
2R}, where R > ||2°

0<y

IN

. 1 1D(BK)
min , (324)
{4006111 D" (K + 1)}

(K + 1) 2R2
54002 02 In = (%) In*(Bg)

Bx = max{ 2,

(325)

2(04 2(a—=1)
K~ §?R?
= O | max{ 2, (326)

o2 1n2(aa71) (K)IH2 max 2,%
’ 7 (%)
14k
o exp(—yp(l +K/2))R 7 327)

120 In 2E+D

Sor some K > 0and 8 € (0, 1] such that In (I;,Jrl) > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — 3 satisfy

25T — 2*||? < 2exp(—yu(K +1))R?. (328)
In particular, when ~y equals the minimum from (324), then the iterates produced by clipped-SGDA after K iterations with

probability at least 1 — (3 satisfy
. 2(a—1)
o2 ln¥ (%) In? | max {2, £ = R 204&71,;21%2
14 ) oo (f)

g ,  (329)
{In % K¥/L2

|25 —2*||? = O | max RQeXp<
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meaning that to achieve ||z — x*||? < ¢ with probability at least 1 — [3 clipped-SGDA requires

/ R? / R? o2\ T@-D 1 [ g2\ 2D o
K—O(;m(?>ln(u—ﬁln?>’(@) 1“(3 (=) )1” (B“) 530

iterations/oracle calls, where

R2
eln (% (;—225) 2(a1))

Proof. Again, we will closely follow the proof of Theorem D.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

B. = max < 2,

Let Ry, = ||z —*|| forall £ > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k = 0,1,..., K +1
we consider probability event E, as follows: inequalities

R} < 2exp(—yut)R® (331)

hold for ¢ = 0,1,...,k simultaneously. We want to prove P{E;} > 1 — k8/(x+1) forall k = 0,1,..., K + 1 by
induction. The base of the induction is trivial: for k = 0 we have R% < R? < 2R? by definition. Next, assume that for
k=T -1 < K the statement holds: P{Er_1} > 1— (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 —T8/(k+1).
Since R? < 2exp(—vyut)R? < 2R?, we have 2' € Bag(x*), where operator F is /-star-cocoersive. Thus, Er_1 implies

(331) (324,327 )\
[F@)I < dle’ =™ < Valexp(—mtp)R < 5 (332)
and
- 332) 5, (27 exp(—~yut) R
lwell® < 2N Fe@)P +2AF )P < 5N < % (333)
forallt =0,1,...,T — 1, where we use that ||a + b||? < 2||a||? + 2||b||? holding for all a,b € R%.
Using Lemma H.5 and (1 — yu)T < exp(—~yuT), we obtain that E7_ implies
T—1
Ry < exp(—yuT)R* +2v Y (1 —yu)" o' — 2" —yF(a'),w)
t=0
T—1
92D (1= )T w2
t=0
To handle the sums above, we introduce a new notation:
_Jat —ar =y F(ah), if[la’ — 2% —yF(2)|| < V2(1 + L) exp(—/2)R, (334)
= 0, otherwise,
fort =0,1,...,7 — 1. This vector is bounded almost surely:
Inell < V2(1 + 7€) exp(—ut/2) R (335)

forallt =0,1,...,T — 1. We also notice that E7_, implies || F'(z?)|| < v/2¢ exp(—7#t/2) R (due to (332)) and
lo" — 2" —yFE < 2’ =2+ FE")]
332)
< V2(1+Af) exp(—mt/2)R
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fort =0,1,...,T — 1. In other words, E_ implies 1y = a* — 2* — yF(2!) forallt = 0,1,...,T — 1, meaning that
from E7_1 it follows that

T-1 T—1
R7 < exp(—yuT)R®+2y Y (1= )" w) + 97> (1 =) lwe?.
t=0 t=0

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of wy:

wif & Bee [Fee(a')] = Fe(a'), o} & F(a') — Bg [Fee(a')], (336)

forallt =0,...,7 — 1. By definition we have w; = w}' + wf forallt =0,...,T — 1. Therefore, E7_; implies

T—1
Ry < exp(—yuT)R* +2v Y (1 —yu)" oy, wi)
t=0
()
T—1 T—1
+29 > (A=) W) 292 > (1= )" T B [Jlwp)1?]
t=0 t=0
@ ®
T-1 T—1
+292 3 (1 =) (el = Be [lwpl1?]) 4297 D> (1 — )™ b2 (337)
t=0 t=0
@ ®

where we also apply inequality ||a + b|% < 2||a|? + 2||b/|? holding for all a,b € R? to upper bound ||w||?. Tt remains to
derive good enough high-probability upper-bounds for the terms @, @, ®, ®, ®, i.e., to finish our inductive proof we need
to show that @ + @ + ® + @ + ® < exp(—vyuT')R? with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of w and w?. First, by Lemma 5.1, we have with
probability 1 that

gl < 2. (338)

Moreover, since Er_1 implies that | F(z!)|| < At/2 and || F(z!)|| < 2¢/2 forallt = 0,1,...,T — 1 (see (332)), from
Lemma 5.1 we also have that Ep_; implies

201 (e
[Jowe || < —Xfip (339)
t
Eee [||f]’] < 183720, (340)
Ee: [JlwiI’] < 18X70°, (341)

forallt=0,1,...,7 — 1.

Upper bound for @. By definition of w}', we have E¢+ [w;'] = 0 and
Eer [27(1 — )"~ (ne,wi)] =0.
Next, sum @ has bounded with probability 1 terms:
29(L =) e wid)] < 2yexp(—u(T = 1= t))llne] - [lwi]

< AV27y(1 + y0) exp(—yu(T — 1 — t/2)) R\,
(329,627 exp(—ypuT)R? gt
SwiAE -
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The summands also have bounded conditional variances o2 & Eee [49%(1 — yp) 2T =272 (g, wit)?]:

o7 < Ee [49% exp(—ypu(2T — 2 = 2))|me||® - [|wi||?]

(335)

< 81+ y0)? exp(—yp(2T — 2 — t))R*Ege [[lwi[1?]
(324)

< 1077 exp(—yp(2T — 1)) R*Eer [||lwp]?] (343)

In other words, we showed that {29(1—yp) T4y, wi*) } - is a bounded martingale difference sequence with bounded
conditional variances {07}~ ! 0 Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2v(1 —yu)T =1~ {n;, w®),

parameter c as in (342), b = L exp(—yuT)R?, F = W.

T—
1 exp (—2ypuT)R* b? B
P|® — TR —_— 3 <2 - = .
{| = 5 eplmn Z; = T300m AED [ ST\ TR k) T 2K 1)

Equivalently, we have

B = exp(=2yuT)R* 1
Y 2 - 2
P{Ep} >1— SR for Eg= {elther ; o> D or |®] < = exp(—yuT)R } (344)
In addition, E'r_; implies that
T-1 2
(343) Eg¢:
Z o? < 10~? exp(—2yuT) R* Z M
— — exp(—yut)
K 2—a
(341), T<K+1 A
< 1802 exp(—2yuT)R*0® —t
( ) ; exp(—yut)
(327) 180y exp(—2yuT)R*= %0 (K + 1) exp(%)
- 1202— 12~ —4”;*1)
(324) exp(—2yuT)R*
< e (345)

Upper bound for @. From Ep_; it follows that

Ui w
@ < 2y exp(—v Z !Xp” ”Witt

(335),(339) -1 1

< 2MV2y(1 4+ L) exp(—yu(T — 1)) Ro™ —
; Ay~ exp(—mt/2)

G 212077129 (L 9f) exp(— T )o® (K + 1) exp (29T ) et AUGED
S ROL*Q

(324) 1

< pexp(—l)R (346)
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Upper bound for ®. From Ep_; it follows that

® = 2726Xp(—”y,u(T—1))T M
— exp(—yut)

(341) T-1

)\2—(1
< M4 exp(—yu(T —1)o™ Y ———
= exp(—yput)

@2 144y*R* % exp(—yu(T — 1))o*(K + 1) exp(%)
1202~ I~ 2D

G4 1 )
< gexp(—w,uT)R. (347)

Upper bound for @. First, we have

29 (1 = )" Bee [flwf|® — Eee [[lw|?]] =
Next, sum @ has bounded with probability 1 terms:

" 338) 1672 exp(—yuT)\?
27 (1 - ’Y:u T - }Hwt H2 ]Efr I:Hwt ||2:H S exp(—’y,u(l + t))l

G20 exp(—yuT) R?
T smiEHY

= (348)

The summands also have conditional variances

~9 def _9_ 2
57 E Ber [y (1= )72 || — Bee [Jeot1?]]”]

that are bounded

64 2~2 —2yuT)R?
5 QT eRBWOE e ([l - e (It
B

Sexp(—yu(1+1))In
4* exp(=2yuT)R?
4(K+1)
Sexp(—yu(l+1t))In ===

Eee [will?] - (349)

In other words, we showed that {272(1 —ypu)? !~ (||wt 2 — Eg: [Hw;‘HQ])}tTBl is a bounded martingale difference
sequence with bounded conditional variances {52 }t o - Next, we apply Bernstein’s inequality (Lemma B.2) with X, =

ex 4
292(1 = )71 (|2 = Bee [lwp]|?]), parameter c as in (348), b = L exp(—yuT) R?, G = S22 DIL:
B

4 2
P{|@|>éexp( yuT)R? and ZNQ_M}§2exp(— b ):2( B

Equivalently, we have

T—1
p . o exp(—=2yuT)R* 1
P{Es} >1— ————, for Eg = | either >———"—-"— or @< _-e T)R 350
{ @} - 2(K—|— 1) @ ; T 300 1n 4(1;+1) | | =% XP( T ) . ( )
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In addition, E7_; implies that

T-1 T—
Z — 49 4y% exp(—yp(2T — 1)) R? Eet [[lwf|?]
T 5 In 20D D
B t=0
(341),T<§K+1 7272 exp(—yu(2T — 1)) R?0® i Pra
- 51n % “— exp(—yut)
(3?) 727 exp(—yu(2T — 1)) R~ %0 (K + 1) exp(#)
- 51202~ p®~* AEED
(324) exp(—2yuT)R*
= o0y AT (351)
3001n ———75———
Upper bound for ®. From Ep_; it follows that
T-1
® = 292> exp(—yu(T — 1 — 1)) (||w}]?)
1=0
T—1
(339) 1
< 2 2°*9? exp(—yuT — 1)) —
; A% exp(—yut)
G T<K4+1  2-229. 1202072920 exp(—yp(T — 1))o2 In?0~2 4L+ K ¢
< a3 7N exp <w(2a -2) <1 + 5)) exp(yput)
t=0
4.920, 12020(72,720( eXp(—’}//L(T _ 3)) 2a | 2a0—2 4(1;+1) K
4 - 2221202242 exp(—yu(T — 3))o%* In?*~2 %(K + 1) exp(ypaK)
S R2a72
(324) 1
< R exp(—yuT)R2. (352)

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Er_; implies

(337)
R3 < exp(—ypT)R? + D+ @+ @+ @ + B,

(346) 1 9 347) 1 9
@ < cep(-yl)R°, @ < cexp(—yul)R,

G52 1
® < - exp(—yul)R®
r-1 (%45) exp(—2yuT)R* § — (’»50 exp( 27/LT)R4
of < — PSS e
poard 3001n 4K+1 3001n 4(K+1)

Moreover, we also have (see (344), (350) and our induction assumption)

P{Er 1} >1~ %,
__B __B
P{Es} =1 2K +1)’ P{Ea} 21 2K +1)
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where
T-1
—2yuT)R* 1
Ep = [ either Z ol > % or |® < —exp(—yuT)R?;,
Pt 300In === 5
T-1
. ~ exp(—2yuT)R* 1 5
Eg = ([ either oF > T |®] < — exp(—yuT)R* ;.
{ = "7 3001 USHD 5

Thus, probability event E7_1 N Eg N Eg implies

(337)
R: < exp(-yTRP+D+@+@+@+6®

< 2exp(—yuT)R?,
which is equivalent to (331) for ¢ = 7', and

— == T
P{Er} > P{Er 1 NEsNEs} =1 -P{Er  UBgUEa} > 1 — K_fl_

This finishes the inductive part of our proof, i.e., forall k = 0,1, ..., K + 1 we have P{E;} > 1 — #8/(kx+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

a5+ — 271> < 2exp(—yu(K + 1))R>.

Finally, if

. 1 IH(BK)
= min , R
! 100010 D (K + 1)

2(a—1)

(K+1)~« (R

Bx = max< 2, —
5400202 In" 5 (%) In*(Bg)
2(a—1)
K~ u’R?
= O | max\ 2, K’

_ 2(a—1)
2(a—1) = 2 R2
o2ln” = (%) In? | max < 2, %
02ln” « (5)

B

then with probability at least 1 — 3

[ —2*? < 2exp(—yu(K +1))R?
K+1 1
2R% max { exp —N(%j}{)l , —
400¢1n 2D )7 B

2(a—1) 2a1)
oZln” = ( ) In? (max {2, %})
K o2ln” « =
= (O | max R26Xp (— K ), 2(a—1) (B)

ik K

@l

To get |25 1 — 2*||? < ¢ with probability at least 1 — £ it is sufficient to choose /& such that both terms in the maximum
above are O(e). This leads to

Y/ R2 Y R2 0.2 ﬁ 1 0.2 ﬁ o
K=0|-In{— |In{—In— — In{-=|— In=-7 (B;) |,
<un(€>n(uﬂn€>’(u2€) n(ﬂ(uzf) )n ( )>
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where

This concludes the proof.
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