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Abstract. We consider the following class of online optimization prob-
lems with functional constraints. Assume, that a finite set of convex
Lipschitz-continuous non-smooth functionals are given on a closed set of
n-dimensional vector space. The problem is to minimize the arithmetic
mean of functionals with a convex Lipschitz-continuous non-smooth con-
straint. In addition, it is allowed to calculate the (sub)gradient of each
functional only once. Using some recently proposed adaptive methods
of Mirror Descent the method is suggested to solve the mentioned con-
strained online optimization problem with optimal estimate of accuracy.
For the corresponding non-Euclidean prox-structure the case of a set of
n-dimensional vectors lying on the standard n-dimensional simplex is
considered.

Keywords: Online Convex Optimization, Non-Smooth Constrained Op-
timization, Adaptive Mirror Descent, Non-Euclidean Prox-structure, Unit
Simplex.

1 Introduction

Online convex optimization plays a key role in solving the problems, where sta-
tistical information is being updated [12,13]. There are a lot of examples of such
problems, concerning internet network, consumer data sets or financial mar-
ket. Quite a few branches of science also face the above mentioned problems,
for example machine learning applications [14]. The important example is the
descision-making problem [13,15]. Suppose, we are given N experts and range of
admissible solutions lie on the unit simplex. Every expert gives his estimates of
losses with the possible solution and the problem is to minimize total losses from
the point view of all experts (the arithmetic mean). Therefore, in recent years,
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methods for solving online optimization problems have been actively developed
[8,9,10,11,12,13,14,16].

In problems of online convex optimization, it is required to minimize the sum
(or the arithmetic mean) of several convex Lipschitz functionals fi (i = 1, N)
given on some closed set Q ⊂ R

n. It should be noted that it is possible to
calculate the (sub)gradient ∇fi(x) of each functional fi only once. Our paper is
devoted to some optimal methods for the following type of problems







1

N

N
∑

i=1

fi(x) → min
x∈Q

s.t. g(x) ≤ 0

(1)

We assume that the functionals fi and g satisfy the Lipschitz property, i.e.
there exists a number M > 0, such that

|g(x)− g(y)| ≤ M‖x− y‖, (2)

|fi(x) − fi(y)| ≤ M‖x− y‖ ∀i = 1, N. (3)

We can explain the meaning of such formulation of the problem in the follow-
ing situation. Suppose that we are engaged in some kind of activity during the
fixed number of days. Each day can be productive or non-productive. We want
to live out N productive days (not necessarily in a row, there can be some non-
productive days within this period), so that the total nerve costs (characterized
by fi(x)) would be minimal. Note that we pay nervous expenses only in produc-
tive days, when we try to do something. In non-productive days we do nothing,
our aim is to return to the productive state, but we do not pay any costs. The
productivity of the day is determined by the condition g(xk) ≤ ε. Let’s define
index i as the number of the productive day. This day we receive feedback from
the outside world in the next form: ∇fi(x

k) and using this information we build
a strategy for the next day xk+1. In non-productive days, we get information
about how far have we gone out of the functional constraint and we try to return
to this framework. There is no point in arranging unnecessary non-productive
days. Therefore, it is also desirable to minimize the number of non-productive
days for a given N . The proposed algorithm provides a small amount of costs si-
multaneously, ensuring that the number of non-productive days will be no more
than O(N).

The optimization problems of non-smooth functionals with constraints at-
tract widespread interest in large-scale optimization and its applications [6,23].
There are various methods of solving this kind of optimization problems. Some
examples of these methods are: bundle-level method [19], penalty method [24],
Lagrange multipliers method [7]. Among them, Mirror Descent (MD) [4,18] is
viewed as a simple method for non-smooth convex optimization.

Note that a functional constraint, generally, can be non-smooth. That is why
we consider subgradient methods. These methods have a long history starting
from the method for deterministic unconstrained problems and Euclidean set-
ting in [21] and the generalization for constrained problems in [20], where the
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idea of steps switching between the direction of subgradient of the objective and
the direction of subgradient of the constraint was suggested. Non-Euclidean ex-
tension, usually referred to as Mirror Descent, originated in [17,18] and was later
analyzed in [4]. An extension for constrained problems was proposed in [18], see
also a recent version in [3].

Usually, the stepsize and stopping rule for Mirror Descent requires to know
the Lipschitz constant of the objective function and constraint, if any. Adaptive
stepsizes, which do not require this information, are considered in [5] uncon-
strained problems, and in [3] for constrained problems. Recently, in [2] optimal
algorithms of Mirror Descent for convex programming problems with Lipschitz
functional constraints with both adaptive step selection and adaptive stopping
criteria were proposed for a number of classes of problems. Also there were con-
sidered some modifications of these methods for the case of problems with many
functional constraints in [22]. In [14] authors considered adaptive algorithms for
online convex optimization problem with Constraints, but with only standard
Euclidean prox-structure.

In this paper we propose adaptive and non-adaptive algorithms for solv-
ing the problem (1). Note that we consider arbitrary proximal structure, which
seems essential for the problem of experts [10,11,12,13]. The paper consists of
Introduction and five main sections. In Section 2 we give some basic notation
concerning convex optimization problems with functional constrains and online
optimization problems. In section 3 we propose a non-adaptive algorithm of
Mirror Descent for the considered online optimization problem (1). Section 4 is
devoted to an adaptive analog of this method (Algorithm 2).

Also in section 4, by analogy with [22], we propose a modification of Al-
gorithm 2 for problems with several functional constraints (Algorithm 3). It is
shown that Algorithms 1, 2 and 3 are optimal accurate to multiplication by con-
stants under the condition of nonnegativity of the regret (see Theorems 1 and
2). In section 5 the condition of negative regret is considered. In this case we get
the optimal quality of estimation by the objective function, but the estimation
of the number of non-productive steps is worse than (19). In the last section
we consider some numerical experiments that allow us to compare the work of
Algorithms 1, 2, and 3 for certain examples.

Summing up, contributions of this paper are as follows:

– two methods (adaptive and non-adaptive) were proposed to solve the online
optimization problem for an arbitrary prox-structure;

– the number of non-productive steps isO(N) in the case of nonnegative regret;

– the number of non-productive steps is O(N2), but the accuracy by regret is
better.
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2 Problem Statement and Standard Mirror Descent

Basics

Let (E, ||·||) be a normed finite-dimensional vector space and E∗ be the conjugate
space of E with the norm:

||y||∗ = max
x

{〈y, x〉, ||x|| ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let Q ⊂ E be a (simple) closed convex set, d : Q → R be a distance

generating function (d.g.f) which is continuously differentiable and 1-strongly
convex w.r.t. the norm ‖ · ‖, i.e.

∀x, y ∈ Q 〈∇d(x) −∇d(y), x− y〉 ≥ ‖x− y‖2,

and assume that min
x∈Q

d(x) = d(0). Suppose, we have a constant Θ0 such that

d(x∗) ≤ Θ2
0 , where x∗ is a solution of (1).

Note that if there is a set of optimal points for (1) X∗ ⊂ Q, we may assume
that

min
x∗∈X∗

d(x∗) ≤ Θ2
0 .

For all x, y ∈ Q ⊂ E consider the corresponding Bregman divergence

V (x, y) = d(y)− d(x) − 〈∇d(x), y − x〉.

Standard proximal setups, i.e. Euclidean, entropy, ℓ1/ℓ2, simplex, nuclear norm,
spectahedron can be found, e.g. in [5]. Let us define the proximal mapping op-
erator standardly

Mirrx(p) = argmin
u∈Q

{

〈p, u〉+ V (x, u)
}

for each x ∈ Q and p ∈ E∗.

We make the simplicity assumption, which means that Mirrx(p) is easily com-
putable. There are well-known examples of distance generating function, let us
denote ℓp norm by ‖x‖p, and the unit simplex in R

n by

Sn(1) =

{

x ∈ R
n
+ |

n
∑

i=1

xi = 1

}

.

Consider two cases:

– if p = 1, then

d(x) = lnn+

n
∑

k=1

xk lnxk, V (x, y) =

n
∑

k=1

xk ln

(

xk

yk

)

; (4)

– if p = 2, then d(x) = 1

2
‖x‖22, V (x, y) = 1

2
‖x− y‖22.
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Let Q = B
n
p (1) = {x ∈ R

n; ‖x‖p ≤ 1} be the unit ball with lp norm. One can
note the following: if p ≥ 2, then it is optimal to choose the l2-norm and the
Euclidean prox-structure.

Define q by 1

p + 1

q = 1 and consider 1 ≤ p ≤ 2, then q ≥ 2. If in this

case q = O(lnn), then it is optimal to choose lp-norm and prox-structure with
distance generating function

d(x) =
1

2(p− 1)
‖x‖2p.

In all these cases R2 = max
x∈Q

d(x) > Θ2
0 .

For q > Ω(lnn), we choose la-norm, where

a =
2 lnn

2 lnn− 1

and prox-structure with distance generating function

d(x) =
1

2(a− 1)
‖x‖2a.

In this case
R2 = O(lnn) > Θ2

0 and Θ0 6 O(
√
lnn). (5)

Let us remind one well-known statement (see, e.g. [5]).

Lemma 1. Let f : Q → R be a convex subdifferentiable function over the convex

set Q and z = Mirry(h∇f(y)) for some h > 0, y, z ∈ Q. Then for each x ∈ Q

h〈∇f(y), y − x〉 ≤ h2

2
||∇f(y)||2∗ + V (y, x)− V (z, x). (6)

3 Online Optimization for the Case of Non-negative

Regret: Non-Adaptive Algorithm

Assume that the method producesN productive steps and each step the (sub)gradient
of exactly one functional of the objectives is calculated. Denote the number of
non-productive steps by NJ . Let’s consider the non-adaptive method for the
problem (1) with a constant step, which depends on the Lipschitz constant M .
As a result, we get a sequence {xk}k∈I (on productive steps), which can be
considered as a solution to the problem (1) with accuracy δ (see (7)).

By Lemma 1

fi(x
k)− fi(x) ≤

h

2
M2 +

V (xk, x)

h
− V (xk+1, x)

h
=

ε

2
+

V (xk, x)

h
− V (xk+1, x)

h

g(xk)− g(x) ≤ h

2
M2 +

V (xk, x)

h
− V (xk+1, x)

h
=

ε

2
+

V (xk, x)

h
− V (xk+1, x)

h
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Algorithm 1 Constrained Online Optimization: Non-Adaptive Mirror Descent
Algorithm

Require: ε,N,Θ2
0 , Q, d(·), x0

1: i := 1, k := 0;
2: repeat

3: if g(xk) 6 ε then

4: h = ε
M2 ;

5: xk+1 := Mirr[xk](h∇fi(x
k));

6: i := i+ 1;
7: k := k + 1;
8: else

9: h = ε
M2 ;

10: xk+1 := Mirr[xk](h∇g(xk));
11: k := k + 1;
12: end if

13: until i = N + 1
14: Guaranteed accuracy:

δ :=
ε

2
+

M2Θ2
0

εN
−

εNJ

2N
(7)

Taking summation over productive and non-productive steps, we get

N
∑

i=1

(fi(x
k)− fi(x

∗)) +
∑

k∈J

(g(xk)− g(x∗)) ≤

ε

2
(N +NJ) +

1

h

N+NJ−1
∑

k=0

(

V (xk, x∗)− V (xk+1, x∗)
)

=

=
ε

2
(N +NJ) +

M2

ε

N+NJ−1
∑

k=0

(

V (xk, x∗)− V (xk+1, x∗)
)

,

then
N
∑

i=1

(fi(x
k)− fi(x

∗)) ≤ ε

2
N +

M2Θ2
0

ε
− ε

2
NJ (8)

and by virtue of (7)

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≤ δ. (9)

If we assume the nonnegativity of the regret (i.e. the left side in (8)) and

δ ≤ ε =
C√
N

for some C > 0, (10)
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then we get

0 ≤ N +
2M2Θ2

0

ε2
−NJ = N +

2M2Θ2
0

C2
N −NJ ,

then

NJ ≤ N ·
(

1 +
2M2Θ2

0

C2

)

∼ O(N).

Thus, we have the following result

Theorem 1. Suppose Algorithm 1 works exactly N productive steps. After the

stopping of the Algorithm 1, the following inequality holds:

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≤ δ.

For the case (10) and

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≥ 0

there will be no more than

N ·
(

1 +
2M2Θ2

0

C2

)

∼ O(N). (11)

non-productive steps.

Remark 1. The estimate (11) is optimal for the considered class of problems [12].

Corollary 1. If Q = Sn(1) and the corresponding prox-structure is chosen as

(4), then by (5) the estimate (11) modifies into

NJ 6 N ·
(

1 +
2M2 lnn

C2

)

.

4 Adaptive Mirror Descent for the Case of Non-negative

Regret

Now, let us consider the adaptive analog of Algorithm 1 for problem (1). The
main feature is a nondecreasing stepsize with consideration of the norm of
(sub)gradient of the objective function or the constraints in a particular step.
Therefore, the proposed algorithm will work until there are exactly N productive
steps. As a result, we get a sequence {xk}k∈I on productive steps, which can be
considered as a solution to the problem (1) with accuracy δ (see (12)).

By Lemma 1

fi(x
k)− fi(x) ≤

hk

2
‖∇fi(x

k)‖2∗ +
V (xk, x)

hk
− V (xk+1, x)

hk
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Algorithm 2 Constrained Online Optimization: Adaptive Mirror Descent Al-
gorithm

Require: ε,N,Θ2
0 , Q, d(·), x0 : and sup

x,y∈Q
V (x, y) 6 Θ2

0

1: i := 1, k := 0;
2: repeat

3: if g(xk) 6 ε then

4: Mk := ‖∇fi(x
k)‖∗;

5: hk = Θ0

(

k
∑

t=0

M2
t

)−1/2

;

6: xk+1 := Mirr[xk](hk∇fi(x
k));

7: i := i+ 1;
8: k := k + 1;
9: else

10: Mk := ‖∇g(xk)‖∗;

11: hk = Θ0

(

k
∑

t=0

M2
t

)−1/2

;

12: xk+1 := Mirr[xk](hk∇g(xk));
13: k := k + 1;
14: end if

15: until i = N + 1
16: Guaranteed accuracy:

δ :=
2Θ0

N

(

N+NJ−1
∑

i=0

M
2
i

)1/2

− ε ·
NJ

N
. (12)

g(xk)− g(x) ≤ hk

2
‖∇g(xk)‖2∗ +

V (xk, x)

hk
− V (xk+1, x)

hk

Dividing each inequality by hk and summing up for k from 0 to N +NJ − 1,
and by using the definition of hk, we obtain

∑

k∈I

(

f(xk)− f(x∗)
)

+
∑

k∈J

(

g(xk)− g(x∗)
)

≤
N+NJ−1
∑

k=0

hkM
2
k

2
+

+

N+NJ−1
∑

k=0

1

hk

(

V (xk, x∗)− V (xk+1, x∗)
)

and

N+NJ−1
∑

k=0

1

hk

(

V (xk, x∗)−V (xk+1, x∗)
)

=
1

h0

V (x0, x∗)+

N+NJ−2
∑

k=0

( 1

hk+1

− 1

hk

)

V (xk+1, x∗)−

− 1

hN+NJ−1

V
(

xN+NJ , x∗
)

≤ Θ2
0

h0

+Θ2
0

N+NJ−2
∑

k=0

( 1

hk+1

− 1

hk

)

=
Θ2

0

hN+NJ−1

.
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Whence, by the definition of stepsizes hk,

N
∑

i=1

(

fi(x
k)− f(x∗)

)

+
∑

k∈J

(

g(xk)− g(x∗)
)

≤
N+NJ−1
∑

k=0

hkM
2
k

2
+

Θ2
0

hN+NJ−1

≤
N+NJ−1
∑

k=0

Θ0

2

M2
k

(

∑k
j=0

M2
j

)1/2
+Θ0

(

N+NJ−1
∑

k=0

M2
k

)1/2

≤ 2Θ0

(

N+NJ−1
∑

k=0

M2
k

)1/2

(13)

where we used inequality

N+NJ−1
∑

i=0

M2
i

(

∑i
j=0

M2
j

)1/2
≤ 2

(

N+NJ−1
∑

i=0

M2
i

)1/2

,

which can be proved by induction. Since, for k ∈ J , g(xk)− g(x∗) ≥ g(xk) > ε,
we get

N
∑

i=1

(fi(x
k)− fi(x

∗)) < εN − ε(N +NJ) + 2Θ0

(

N+NJ−1
∑

i=0

M2
i

)1/2

. (14)

and by (12)

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≤ δ. (15)

If we assume the nonnegativity of the regret (i.e. the left side in (14)) and the
accuracy is given by (10), one can get

ε(N +NJ) ≤ εN + 2Θ0

(

N+NJ−1
∑

i=0

M2
i

)1/2

≤ εN + 2MΘ0 ·
√

N +NJ ,

N2
J ≤ 4M2Θ2

0(N +NJ)

ε2
=

4M2Θ2
0(N +NJ)N

C2

Further,

N2
J

N2 +NNJ
=

(

NJ

N

)2

1 + NJ

N

≤ 4M2Θ2
0

C2

and NJ = O(N). Thus, we have come to the following result.

Theorem 2. Suppose Algorithm 2 works exactly N productive steps. After the

stopping of the Algorithm 2, the following inequality holds:

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≤ δ.
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For the case of (10) and

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≥ 0

there will be no more than O(N) non-productive steps.

Remark 2. Algorithm 2 is optimal for the considered class of problems [12].

Remark 3. Let’s consider a modification of the proposed Algorithm 2 for the
case of a set of functional constraints gm : Q → R (m = 1,K). We assume, that
all the functionals gm satisfy the Lipschitz condition:

|gm(x)− gm(y)| ≤ M ||x− y|| ∀x, y ∈ Q, m = 1,K. (16)

In this case, instead of a set of convex functional constraints {gm(·)}Km=1 we can
consider one constraint, given as g : Q → R, where

g(x) = max
m=1,K

gm(x), |g(x)− g(y)| ≤ M ||x− y|| ∀x, y ∈ Q.

This method will be also optimal, but in practice it can give better accuracy
(see Remark 4 below).

5 The Case of Negative Regret

Now we consider the situation, when after the stopping of any of the above
algorithms, it turns out that the regret is negative. In this case the following
inequality

1

N

N
∑

i=1

fi(x
k)−min

x∈Q

1

N

N
∑

i=1

fi(x) ≤ 0 (18)

holds. It is already impossible to justify the optimality of the number of non-
productive steps in view of the right-hand side of inequality (18).

Note that the set of productive steps is not empty, because for arbitrary p
steps when the inequality

p
∑

k=1

1

M2
k

≥ 2Θ2
0

ε2

is satisfied, one of these p steps will necessarily be productive (see [2,22]). If all
the other p− 1 steps are non-productive (without loss of generality let the last
step be productive), then

p−1
∑

k=1

1

M2
k

<
2Θ2

0

ε2

and

p− 1 <
2M2Θ2

0

ε2
.
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Algorithm 3 Online Optimization: Adaptive Mirror Descent Algorithm Modi-
fication for the Case of Many Constraints

Require: ε,N,Θ2
0 , Q, d(·), x0

1: i := 1, k := 0;
2: repeat

3: if g(xk) 6 ε then

4: Mk := ‖∇fi(x
k)‖∗;

5: hk = Θ0

(

k
∑

t=0

M2
t

)−1/2

;

6: xk+1 := Mirr[xk](hk∇fi(x
k));

7: i := i+ 1;
8: k := k + 1;
9: else

10: Mk := ‖∇gm(k)(x
k)‖∗ for some gm(k)(·)): gm(k)(x

k)) > ε

11: hk = Θ0

(

k
∑

t=0

M2
t

)−1/2

;

12: xk+1 := Mirr[xk](hk∇gm(k)(x
k));

13: k := k + 1;
14: end if

15: until i = N + 1
16: Guaranteed accuracy:

δ :=
2Θ0

N

(

N+NJ−1
∑

i=0

M
2
i

)1/2

− ε ·
NJ

N
. (17)

It is clear, that running the method for a sufficiently long time, it is possible
to achieve N productive steps. At the same time between each two successive

productive steps there will be no more than
2M2Θ2

0

ε2 non-productive steps, i.e.
the number of all non-productive steps will be no more than

2M2Θ2
0

ε2
N.

In comparison with the previous items, for ε = C√
N

there will be no more

than

2M2Θ2
0

ε2
N = O(N2) (19)

non-productive steps.
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6 Numerical Experiments

To compare of Algorithms 1, 2 and 3, some numerical tests were carried out.
Consider four different examples with objective function

f(x) =
1

N

N
∑

i=1

|〈ai, x〉 − bi| .

For the coefficients ai and constants bi for i = 1, . . . , N , with different values
of N . Let A ∈ R

N×11 be a matrix with entries drawn from different random
distiributions. Then aTi are rows in the matrix A′ ∈ R

N×10, which is introduced
from A, by eliminating the last column, and bi are the entries of the last column
in the matrix A. In details, entries of A drawn

– In example 1, from a normal distribution with mean (center) equalling 0 and
standard deviation (width) equalling 1.

– In example 2, from a uniform distribution over [0, 1).
– In example 3, from the standard exponential distribution with a scale pa-

rameter of 1.
– In example 4, from a Gumbel distribution with the location of the mode

equalling 1 and the scale parameter equalling 2.

For the function of constraints g(x) = max
i∈1,m

gi(x), we take m = 3 and the func-

tionals gi(x) = 〈αi, x〉, where αT
i are the rows of the matrix





1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 2 4 6 8 10 12 14 16 18





We choose standard Euclidean proximal setup as a prox-function, starting point

x0 =
(1, 1, ..., 1)√

10
, Θ0 = 3, ε = 1√

N
and

Q = {x = (x1, x2, ..., x10) ∈ R
10 |x2

1 + x2
2 + ...+ x2

10 ≤ 1}.

The results of the work of Algorithms 1, 2 and 3 are represented in Table 1,
Table 2 and Table 3 below, respectively, demonstrate the comparison between
these algorithms. The number of non-productive steps are denoted by nonprod.,
time is given in seconds and parts of the second, δ is guaranteed accuracy of the
solution approximation found (sequence {xk}k∈I on productive steps).

All experiments were implemented in Python 3.4, on computer fitted with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical
Processor(s). RAM of the computer is 8GB.

From Table 1 and Table 2 one can see, that the adaptive Algorithm 2 always
works better than non-adaptive Algorithm 1. It is clearly shown in all the ex-
amples by the number of non-productive steps, running time of the algorithms
and guaranteed accuracy δ. Where the number of non-productive steps and δ
produced by Algorithm 2 is very small compared to the Algorithm 1.



Mirror Descent and Constrained Online Optimization Problems 13

Table 1. Results of Algorithm 1.

nonprod. time δ

ex. 1, N = 3000 7041 00.444 187.473

ex. 2, N = 6000 12645 00.812 132.565

ex. 3, N = 7000 15814 00.958 122.730

ex. 4, N = 10000 24971 01.523 102.682

Table 2. Results of Algorithm 2.

nonprod. time δ

ex. 1, N = 3000 39 00.149 0.426

ex. 2, N = 6000 2821 00.404 0.223

ex. 3, N = 7000 5543 00.586 0.405

ex. 4, N = 10000 12576 01.104 0.692

From Table 3, we can see, that there is a difference between the number
of non-productive steps produced by Algorithms 2 and 3, but the guaranteed
accuracy δ and the running time produced by Algorithm 3 is smaller compared
to Algorithm 2.

Table 3. Results of Algorithm 3.

nonprod. time δ

ex. 1, N = 3000 47 00.121 0.414

ex. 2, N = 6000 2835 00.333 0.220

ex. 3, N = 7000 5563 00.454 0.394

ex. 4, N = 10000 12885 00.807 0.680

Remark 4. To show the advantages of Algorithm 3, as compared to Algorithm
2, one additional numerical test was carried out. Let’s now take the functionals
of constraints gi, i = 1, 2, 3 as follows

g1(x) =
10
∑

i=1

i · xi + 1, g2(x) =
10
∑

i=1

10i · xi, g3(x) =
10
∑

i=1

50i · xi.

with the same all previous parameters: starting point x0 =
(1, 1, ..., 1)√

10
, Θ0 = 3,

Q = {x = (x1, x2, ..., x10) ∈ R
10 |x2

1 + x2
2 + ...+ x2

10 ≤ 1},
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but with ε = 0.5. Table 4 below demonstrate the comparison between Algorithms

2 and 3, for the objective function f(x) = 1

3

3
∑

i=1

fi(x), where

f1(x) =

√

√

√

√

9
∑

i=1

(xi + xi+1)
2, f2(x) =

√

√

√

√0.1

(

10
∑

i=1

x2
i +

9
∑

i=1

xixi+1

)

, f3(x) =

√

√

√

√

10
∑

i=1

x2
i .

Table 4. Results of algorithms 2 and 3.

ex. 5, N = 3 nonprod. time δ

Algorithm 2 1 00.044 1961.954

Algorithm 3 2 00.030 9.608

From Table 4, one can see, that Algorithm 3 works better than Algorithm
2, since the difference between the non-productive steps is very small, equalling
only one, and the guaranteed accuracy δ produced by Algorithm 3 is very small
compared to the precision produced by Algorithm 2.
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