
ar
X

iv
:2

10
3.

09
34

4v
2

 [
m

at
h.

O
C

]
 1

4
Ju

n
20

21

Noname manuscript No.
(will be inserted by the editor)

On Accelerated Methods for Saddle-Point Problems with Composite

Structure

Vladislav Tominin 1
· Yaroslav Tominin 2

· Ekaterina
Borodich 3

· Dmitry Kovalev 4
· Alexander Gasnikov 5

·

Pavel Dvurechensky 6

Received: date / Accepted: date

Abstract We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear ob-
jective and different condition numbers with respect to the primal and the dual variables. First, we consider such
problems with smooth composite terms, one of which having finite-sum structure. For this setting we propose
a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature.
Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms
depending on the properties of the composite terms. When the composite terms are smooth we obtain better
complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal
algorithms which do not consider the composite structure of the problem. If the composite terms are prox-
friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing
variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity
bounds to the nearly-optimal algorithm which is designed for non-composite setting. Besides that, our algo-
rithms allow to separate the complexity bounds, i.e. estimate, for each part of the objective separately, the
number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can
have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than
cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which
may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm
for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal
mapping, which may be of independent interest as well.

1 Introduction

Saddle-point optimization problems have many applications in different areas of modelling an optimization.
The most classical example is, perhaps, two-player zero-sum games [28, 30], including differential games [20].
More recent examples include imaging problems [6] and machine learning problems [40], where primal-dual
saddle-point representations of large-scale optimization problems are constructed and primal-dual methods are

1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia. E-mail: tominin.vd@phystech.edu · 2 Moscow Institute of
Physics and Technology, Dolgoprudny, Russia. E-mail: tominin.yad@phystech.edu · 3 Moscow Institute of Physics and Technol-
ogy, Dolgoprudny, Russia. E-mail: borodich.ed@phystech.edu · 4 King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia. E-mail: dmitry.kovalev@kaust.edu.sa · 5 Moscow Institute of Physics and Technology, Dolgoprudny, Russia, and
Higher school of economics, Moscow, Russia, and Institute for Information Transmission Problems RAS, Moscow, Russia E-mail:
gasnikov@yandex.ru · 6 Weierstrass Institute for Applied Analysis and Stochastics, Berlin E-mail: pavel.dvurechensky@wias-
berlin.de

http://arxiv.org/abs/2103.09344v2

2 Vladislav Tominin 1 et al.

used. Many non-smooth optimization problems, such as ℓ∞ or ℓ1 regression admit a saddle-point representation,
which allows one to propose methods [31,35] having faster convergence than the standard subgradient scheme.
Recently saddle-point problems started to attract more attention from the machine learning community in
application to generative adversarial networks training, where the training process consists of a competition of
a generator of non-real images and a discriminator which tries to distinguish between real and artificial images.
Another application examples are equilibrium problems in two-stage congested traffic flow models [13].

From the algorithmic viewpoint the most studied setting deals with saddle-point problems having bilinear
structure [5,31,35,41], where the cross term between the primal and dual variable is linear with respect to each
variable. The extensions include bilinear problems with prox-friendly (i.e. admitting a proximal operator in
closed form) composite terms [6,21]. A related line of research studies variational inequalities [21,31] since any
convex-concave saddle-point problem can be reformulated as a variational inequality problem with monotone
operator. In this area lower bounds for first-order methods are known [32] and optimal methods exist [7,21,31,
36,46]. Notably, these works do not rely on the bilinear structure and allow to solve convex-concave saddle-point
problems with Lipschitz-continuous gradients, including differential games [12]. An alternative approach, which
mostly inspired this paper, is based on representation of a saddle-point problem minxmaxy G(x, y) as either a
primal minimization problem with an implicitly given objective g(x) = maxy G(x, y) or a dual maximization
problem with an implicitly given objective g̃(y) = minxG(x, y). This approach was used in [34,35] for problems
with bilinear structure and later extended in [18] for general saddle-point problems. Such connection with
optimization turned out to be quite productive since it allows to exploit accelerated optimization methods. In
particular, recent advances in this direction are due to an observation [3,14,19] that primal and dual problems
can have different condition numbers which opens up a possibility to obtain faster algorithms.

In this paper we focus on strongly-convex-strongly-concave saddle-point problems with different condition
numbers κx, κy of the primal and dual problems respectively. The classical upper bound Õ(κx + κy) for this
setting is achieved by the algorithm of [46]. Recently, [19] proved a lower complexity bound Ω̃(

√
κxκy) for

first-order methods, which raised a question of whether first-order methods can be accelerated for this setting.
Independently [2] proposed accelerated methods with improved, yet suboptimal complexity bounds. In [25] the
authors improved the bounds of [3] and proposed an algorithm with an optimal up to a polylogarithmic factor
complexity bound Õ(

√
κxκy). Subsequently, the logarithmic factors have been improved independently in the

papers (we cite them in chronological order) [11, 43, 45]. The listed papers consider large-scale regime when
primal and dual problem have large dimension and use gradient-type methods. If, say, the dimension of the
primal variable x is moderate, one can use cutting-plane methods [15, 16] in combination with gradient-type
methods. We also mention the following papers which are related, but consider different from ours setting of
convex-concave saddle-point problems [47], strongly-convex-concave and nonconvex-concave [42], nonconvex-
concave [38, 44].

When an optimization problem has a special structure of finite-sum, also known as empirical risk minimiza-
tion problems, variance reduction [22, 25] techniques are often exploited to reduce the complexity bounds. We
are interested also in application of such techniques for saddle-point problems. Variance reduction methods for
saddle-point problems were proposed in [39] and recently improved in [1], yet without distinguishing between
primal and dual condition numbers.

In this paper we continue the line of research [3, 11] by exploring additional structure of the problem, such
as finite-sum form and presence of composite terms. We also develop algorithms which allow to separate the
complexity bounds for different parts of the problem. The latter, in particular, means that for each part of
the objective we estimate separately the number of its gradient evaluations. This allows to obtain further
acceleration if the smoothness constants and complexities of an oracle call for different parts are different
since more expensive oracles are called less frequently than it would be required by existing methods. Next we
consider two main problem formulations which have additional structure and which we explore in the paper.
We also give detailed explanation of the difference of our setting and bounds with the literature.

Accelerated Methods for Saddle-Point Problems 3

The first problem formulation, we are interested in, is strongly-convex-strongly-concave saddle-point prob-
lem of the form

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} , h(y) :=
1

mh

mh∑

i=1

hi(y). (1.1)

where G(x, y) is convex in x and concave in y and is LG-smooth in each variable, f(x) is µx-strongly convex and
Lf -smooth, h(y) is µy-strongly convex and Lh-smooth. We refer to the functions f and h as composite terms. In
this setting it is natural to define condition numbers κx = LG/µx and κy = LG/µy for the primal minimization
and dual maximization problems respectively. As it was already mentioned, the most studied [6, 21] setting
corresponds to a particular case of mh = 1 and bilinear function G(x, y) = 〈Ax, y〉 for some linear operator A
and the functions f, g being prox-friendly, i.e. admit a tractable proximal operator [27], e.g. evaluation of the
point argminx{f(x) + 1

2‖x− x̄‖22} in the case of f . Existing algorithms [2,3,11,25,39,43,45] for problem (1.1)
with non-bilinear structure do not exploit the finite-sum structure of the function h and when it is smooth
require to calculate the gradient of the whole sum, which may be expensive when mh ≫ 1. Unlike them we
incorporate variance reduction technique to make the number of evaluations of ∇hi(y) smaller than by the
existing methods. Unlike [25,39,43,45] we separate the complexity estimates for each part of the objective, i.e.
we estimate separately a sufficient number of evaluations of ∇f(x), ∇xG(x, y), ∇yG(x, y), ∇hi(y) to achieve
a given accuracy. This allows to call each oracle less number of times than it is required by existing methods
and is important since evaluation of each gradient can have different arithmetic operations complexity, and it
is desired to call expensive oracles less often than cheap oracles. Compared to [2,3], where the complexities are
also separated, we obtain better complexity bounds for each part of the objective. Moreover, for the particular
case when f = h = 0, our bounds are the same to the best known bounds [43, 45] and are optimal up to
logarithmic factors. Otherwise, when mh > 1 and/or f, h are nonzero we obtain the best, to our knowledge
complexity bounds. We summarize comparison of ours and existing results for the case mh > 1 in Table 1 and
for the particular case mh = 1 in Table 2.

The second problem formulation, we are interested in, is strongly-convex-strongly-concave saddle-point
problem of the form

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} , G(x, y) :=
1

mG

mG∑

i=1

Gi(x, y). (1.2)

where each Gi(x, y) is convex in x and concave in y and is LiG-smooth in each variable, f(x) is µx-strongly
convex, h(y) is µy-strongly convex. In this setting it is natural to define condition numbers κx = LG/µx
and κy = LG/µy for the primal minimization and dual maximization problems respectively, where LG =
1
mG

∑mG

i=1 L
i
G. We consider this problem under three different additional assumptions: a) f(x) is Lf -smooth,

h(y) is Lh-smooth; b) f(x) is Lf -smooth, h(y) is smooth and prox-friendly; c) f(x) and h(y) are both prox-
friendly. Under assumption a) and b), similarly to [25,43,45] we do not exploit the finite-sum structure of the
function G. Yet, unlike these papers and [39], where variance reduction methods are proposed, we separate the
complexity bounds for the number of oracle calls for each part of the objective, i.e. we estimate a sufficient
number of evaluations of ∇f(x), ∇xGi(x, y), ∇yGi(x, y), ∇h(y) to achieve a given accuracy. This allows to
call each oracle less number of times than it is required by existing methods and is important since evaluation
of each gradient can have different arithmetic operations complexity, and it is desired to call expensive oracles
less often than cheap oracles. Compared to [2, 3], where the complexities are also separated, we obtain better
complexity bounds for each part of the objective. Moreover, for the particular case when f = h = 0, our bounds
are the same to the best known bounds [43, 45].

Under assumption c), similarly to [39], we exploit the finite-sum structure of the function G and propose an
accelerated variance reduction method for problem (1.2). The authors of [39] considered smooth µx-strongly
convex and µy-strongly concave saddle-point problems in the form minx∈Rdx maxy∈R

dy G(x, y)+M(x, y), where
M(x, y) is prox-friendly in both variables. Under an additional assumption that µx = µy = µ, i.e. κx = κy = κ

4 Vladislav Tominin 1 et al.

Referenses Complexity
Variance

reduction

Complexity

separation

∇f : Õ
(
κ
(f+G)
x + κ

(G+h)
y

)
∇xG : Õ

(
κ
(f+G)
x + κ

(G+h)
y

)

[46]

∇hi : Õ
(
mhκ

(f+G)
x +mhκ

(G+h)
y

)
∇yG : Õ

(
κ
(f+G)
x + κ

(G+h)
y

) ✗ ✗

∇f : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)
∇xG : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)

[25, 43, 45]

∇hi : Õ
(
mh

√
κ
(f+G)
x κ

(G+h)
y

)
∇yG : Õ

(√
κ
(f+G)
x κ

(G+h)
y

) ✗ ✗

∇f : Õ

(√
κ
(f)
x

)
∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)

[3]

∇hi : Õ
(
mh

√
κ
(G)
x κ

(G)
y κ

(h)
y

)
∇yG : Õ

(
κ
(G)
y

√
κ
(G)
x

) ✗ ✓

∇f : Õ

(√
κ
(f)
x κ

(G)
y

)
∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 6) ∇hi : Õ
(√

mhκ
(G)
x κ

(h)
y

)
∇yG : Õ

(√
κ
(G)
x κ

(G)
y

) ✓ ✓

Table 1: Comparison of gradient complexities for problem (1.1) with mh > 1, i.e. the number of corresponding
gradient evaluations, to find an ε-saddle point with probability at least 1 − σ. Notation Õ(X) hides constant

and polylogarithmic in ε−1 and σ−1 factors. For a function F , we denote κ
(F)
x = LF /µx, κ

(F)
y = LF /µy. The

results of Theorem 6 are obtained under additional assumptionsmh(4LG+µy) ≤ Lh, 2LG+µx ≤ Lf , µy ≤ LG,
µx ≤ LG.

they obtain complexity Õ(
√
mGκ). Based on a combination of the Catalyst framework [23] and the algorithm

of [39], we propose a variance reduction algorithm with a better bound Õ(
√
mGκxκy). Moreover, this composite

setting is not covered by other existing algorithms [25, 43, 45] even in the case of mG = 1. We summarize
comparison of ours and existing results in Table 3.

1.1 Our approach

To solve the described saddle-point problems under different assumptions we first propose a general frame-
work and then specialize it to problem (1.1) or problem (1.2). Our approach to saddle-point problems is based
on considering them as minimization problems with objective implicitly given as a solution to a maximization
problem. Thus, to develop our general framework, we first consider optimization problem of the form

min
x∈Rd

{F (x) := ϕ (x) + ψ (x)}, (1.3)

and develop a novel inexact accelerated gradient method (Algorithm 1) which uses inexact first-order informa-
tion on ϕ and ψ and inexact proximal steps. Then we note that the problems (1.1) or (1.2) can be rewritten
as

min
x∈Rdx

{F (x) := f(x) + max
y∈R

dy

{G(x, y)− h(y)}
︸ ︷︷ ︸
g(x)=G(x,y∗(x))−h(y∗(x))

}, (1.4)

Accelerated Methods for Saddle-Point Problems 5

Referenses Complexity Assumptions CS

∇f : Õ
(
κ
(f+G)
x + κ

(G+h)
y

)
∇xG : Õ

(
κ
(f+G)
x + κ

(G+h)
y

)

[46]

∇hi : Õ
(
κ
(f+G)
x κ

(G+h)
y

)
∇yG : Õ

(
κ
(f+G)
x + κ

(G+h)
y

)
f is Lf -smooth,

h is Lh-smooth

✗

∇f : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)
∇xG : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)

[25, 43, 45]

∇hi : Õ
(√

κ
(f+G)
x κ

(G+h)
y

)
∇yG : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)
f is Lf -smooth,

h is Lh-smooth

✗

∇f : Õ

(√
κ
(f)
x

)
∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)

[3]

∇hi : Õ
(√

κ
(G)
x κ

(G)
y κ

(h)
y

)
∇yG : Õ

(
κ
(G)
y

√
κ
(G)
x

)
f is Lf -smooth,

h is Lh-smooth

✓

∇f : Õ

(√
κ
(f)
x κ

(G)
y

)
∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)
This paper

(Corollary 4) ∇h : Õ

(
max

{√
κ
(G)
x κ

(h)
y ,

√
κ
(G)
x κ

(G)
y

})
∇yG : Õ

(√
κ
(G)
x κ

(G)
y

)
f is Lf -smooth,

h is Lh-smooth

✓

∇f : Õ

(√
κ
(f)
x κ

(G)
y

)
∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 8) ∇h : Õ

(√
κ
(G)
y

)
∇yG : Õ

(√
κ
(G)
x κ

(G)
y

)
f is Lf -smooth,

h is Lh-smooth prox-friendly

✓

∇f : 0 ∇xG : Õ

(√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 15) ∇h : 0 ∇yG : Õ

(√
κ
(G)
x κ

(G)
y

) f , h prox-friendly ✓

Table 2: Comparison of gradient complexities for problem (1.1) with mh = 1, i.e. the number of corresponding
gradient evaluations, to find an ε-saddle point for the problem. Notation Õ(X) hides constant and polylog-

arithmic in ε−1 factors. CS stands for complexity separation. For a function F , we denote κ
(F)
x = LF /µx,

κ
(F)
y = LF /µy.

which is consistent with the problem formulation (1.3). Using this representation we can apply our Algorithm
1 with ϕ (x) = f(x) and ψ (x) = g(x) to solve this problem. In each step we need to obtain a first-order
information about the function g, which we can do inexactly by solving the inner maximization problem by the
same Algorithm 1, but now with ϕ (y) = −G(x, y) and ψ (y) = h(y). To obtain near-optimal upper complexity
bounds and separate oracle complexity for different parts of the problem (1.4) we introduce additional inner-
outer cycles, which will be described in detail below.

As said, our framework is based on the system of inner-outer loops, where in each loop an accelerated
gradient method is applied to obtain better complexity results. To implement our approach we then need a
flexible accelerated method which can be applied in a number of different situations. In some sense we need
an accelerated meta-algorithm, or an accelerated envelope, which uses any method in the lower level to solve
an auxiliary problem of the upper level and, as a result, obtain an accelerated version of the method used
in the lower level. Existing algorithms of this type [8, 23, 26] are based on accelerated proximal point method
that uses some algorithm on the lower level to implement inexact proximal mapping. Unfortunately, we can

6 Vladislav Tominin 1 et al.

Referenses Complexity Prox-f Prox-hVRCS

∇f : Õ
(
κ
(f+G)
x + κ

(G+h)
y

)
∇xGi : Õ

(
mGκ

(f+G)
x +mGκ

(G+h)
y

)

[46]

∇h : Õ
(
κ
(f+G)
x +mhκ

(G+h)
y

)
∇yGi : Õ

(
mGκ

(f+G)
x +mGκ

(G+h)
y

) ✗ ✗ ✗ ✗

∇f : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)
∇xGi : Õ

(
mG

√
κ
(f+G)
x κ

(G+h)
y

)

[25]

∇h : Õ

(√
κ
(f+G)
x κ

(G+h)
y

)
∇yGi : Õ

(
mG

√
κ
(f+G)
x κ

(G+h)
y

) ✗ ✗ ✗ ✗

∇f : Õ

(√
κ
(f)
x

)
∇xGi : Õ

(
mG

√
κ
(G)
x κ

(G)
y

)

[3]

∇h : Õ

(√
κ
(G)
x κ

(G)
y κ

(h)
y

)
∇yGi : Õ

(
mGκ

(G)
y

√
κ
(G)
x

) ✗ ✗ ✗ ✓

∇f : Õ

(√
mG

max{LG+Lf ,LG+Lh}
min{µx,µy}

)
∇xGi : Õ

(√
mG

max{LG+Lf ,LG+Lh}
min{µx,µy}

)

[1, 39]

∇h : Õ

(√
mG

max{LG+Lf ,LG+Lh}
min{µx,µy}

)
∇yGi : Õ

(√
mG

max{LG+Lf ,LG+Lh}
min{µx,µy}

) ✗ ✗ ✓ ✗

∇f : Õ

(√
κ
(f)
x κ

(G)
y

)
∇xGi : Õ

(
mG

√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 7) ∇h : Õ

(
max

{√
κ
(G)
x κ

(h)
y ,

√
κ
(G)
x κ

(G)
y

})
∇yGi : Õ

(
mG

√
κ
(G)
x κ

(G)
y

) ✗ ✗ ✗ ✓

∇f : Õ

(√
κ
(f)
x κ

(G)
y

)
∇xGi : Õ

(
mG

√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 8) ∇h : Õ

(√
κ
(G)
y

)
∇yGi : Õ

(
mG

√
κ
(G)
x κ

(G)
y

) ✗ ✓ ✗ ✓

∇f : 0 ∇xGi : Õ
(√

mGmax
{
κ
(G)
x , κ

(G)
y

})

[1, 39]

∇h : 0 ∇yGi : Õ
(√

mGmax
{
κ
(G)
x , κ

(G)
y

}) ✓ ✓ ✓ ✓

∇f : 0 ∇xGi : Õ
(√

mG

√
κ
(G)
x κ

(G)
y

)
This paper

(Theorem 15)∇h : 0 ∇yGi : Õ
(√

mG

√
κ
(G)
x κ

(G)
y

) ✓ ✓ ✓ ✓

Table 3: Comparison of gradient complexities for problem (1.2), i.e. the number of corresponding gradient
evaluations, to find ε-saddle point with probability at least 1−σ. Notation Õ(X) hides constant and polyloga-

rithmic in ε−1 and σ−1 factors. For a function F , we denote κ
(F)
x = LF /µx, κ

(F)
y = LF /µy. Prox-f (Prox-h)

stands for f (h) being prox-friendly. CS stands for complexity separation. VR stands for variance reduction.

Accelerated Methods for Saddle-Point Problems 7

not use these existing methods in our case since in our system of inner-outer loops a loop in the lower level
leads to inexact gradient information in the upper level. Moreover, if a randomized method is used in the lower
level, one obtains stochastic inexactness in the upper level. These kinds of inexactnesses of the oracles for ϕ,ψ
are not account for in the existing general acceleration frameworks [8, 23, 26]. Motivated by this gap in the
literature, we develop a generic accelerated meta-algorithm with probabilistic inexact oracles. Moreover, we
also implement an adaptive stopping criterion for the method in the lower level which guarantees appropriate
quality of the inexact proximal mapping and leads to the accelerated convergence rate on the upper level.

1.2 Contributions

To sum up, our contributions are as follows. First, we provide a general inexact accelerated meta-algorithm
(AM) listed as Algorithm 1 for convex optimization problems of the form (1.3) with inexact oracles. We
also obtain an accelerated linearly convergent version of this algorithm by employing the restart technique
with the resulting algorithm listed as Algorithm 2. We provide theoretical analysis of this algorithm under
stochastic inexactness in different parts of this algorithm, i.e. inexact oracle and inexact proximal step. Unlike
existing accelerated proximal methods we consider composite problems (1.3) and use inexact proximal step
only with respect to ϕ. Next, we use this AM to construct a new general framework to systematically obtain
new algorithms and complexity bounds for saddle-point problems with the structure (1.1) or (1.2). As a result,
we obtain new accelerated methods for general saddle-point problems, including accelerated variance reduction
methods, which leads to better complexity bounds than existing in the literature. Moreover, our algorithms
allow to separate complexity bounds for the number of oracle calls for each part of the problem formulation,
i.e., for problem (1.1) we estimate a sufficient number of evaluations of ∇f(x),∇xG(x, y), ∇yG(x, y), ∇hi(y) to
achieve given accuracy. For problem (1.2) we estimate a sufficient number of evaluations of ∇f(x), ∇xGi(x, y),
∇yGi(x, y), ∇h(y) to achieve given accuracy. This complexity separation is important since evaluation of each
gradient can have different arithmetic operations complexity, and it is desired to call expensive oracles less
often than cheap oracles.

1.3 Paper organization

In Section 2, we propose an Accelerated Meta-Algorithm and extend it for strongly convex setting with
probabilistic inexact oracle and probabilistic inexactness in the proximal step. Then, in Section 3, by sequential
applying of the Accelerated Meta-Algorithm, we obtain a general framework for solving saddle-point problems.
This framework is based on two main assumptions for a possibility to solve two optimization problems. In
Section 4 we specialize the general framework to solve problem (1.1) by showing how to satisfy its two main
assumptions, and providing the resulting algorithm. In Section 5 we consider problem (1.2) under additional
assumptions: a) f(x) is Lf -smooth, h(y) is Lh-smooth; b) f(x) is Lf -smooth, h(y) is smooth and prox-friendly.
We specialize the general framework for this setting and propose accelerated algorithms. Finally, in Section 6
we consider problem (1.2) under additional assumption c) both f(x) and h(y) are prox-friendly. In this case,
since the Accelerated Meta-Algorithm can not be applied in this case, we develop a different approach based
on a combination of the Catalyst framework [23] and the algorithm of [39].

1.4 Preliminaries

We introduce some notation which we use throughout the paper. We denote by ‖x‖ and ‖y‖ the standard
Euclidean norms for x ∈ R

dx and y ∈ R
dy respectively. This leads to the Euclidean norm on R

dx ×R
dy defined

as ‖(x1, x2)− (y1, y2)‖2 = ‖x1 − x2‖2 + ‖y1 − y2‖2, x1, x2,∈ R
dx , y1, y2 ∈ R

dy .

8 Vladislav Tominin 1 et al.

We say that a function f is Lf -smooth if it is differentiable and its gradient satisfies Lipshitz condition

‖∇f(x1)−∇f(x2)‖ ≤ Lf‖x1 − x2‖, x1, x2 ∈ domf (1.5)

for some Lf > 0. We say that a function f is µf -strongly convex if, for some µf > 0 and for any its subgradient
it holds that

f(x2) ≥ f(x1) + 〈∇f(x1), x2 − x1〉+
µf
2
‖x1 − x2‖2, x1, x2 ∈ domf. (1.6)

We say that a function f is prox-friendly if it admits a tractable proximal operator [27]. This means that the
evaluation of the point

argmin
x

{
f(x) +

1

2
‖x− x̄‖2

}
(1.7)

for some fixed x̄ can be made either in closed form or numerically very efficiently up to machine precision. Note
that if a function is prox-friendly, then the problem,

min
x

{
〈c1, x〉+ f(x) +

c2
2
‖x− x̄‖2

}
(1.8)

can be solved either in closed form or numerically very efficiently up to machine precision for any fixed c1, x̄,
and c2 > 0.

For an optimization problem minx f(x), we say that a random point x̂ is an (ε, σ)-solution to this problem
if P{f(x̂)− f∗ ≤ ε} ≥ 1− σ.

For a function ξ (ε), where ε ∈ R we write ξ (ε) = poly (ε) if ξ (·) is a polynomial function of ε. For a
function ξ (ε, σ), where ε, σ ∈ R we write ξ (ε, σ) = poly (ε, σ) if ξ (·, σ) is a polynomial function of ε and ξ (ε, ·)
is a polynomial function of σ.

2 Inexact Accelerated Meta-algorithm

As it was described above, our approach is based on an accelerated method for a general optimization
problem with the objective given as a sum of two functions

min
x∈Rdx

{F (x) := ϕ (x) + ψ (x)}. (2.1)

In this section we describe this method in the inexact oracle model, so that we can apply it in the system of
inner-outer loops to propose accelerated methods for saddle-point problems.

To motivate the study of this section, we slightly rewrite problem (1.1) in the following way:

min
x∈Rdx

{F (x) := ϕ(x) + max
y∈R

dy

{G(x, y)− h(y)}
︸ ︷︷ ︸
ψ(x):=G(x,y∗(x))−h(y∗(x))

}, (2.2)

where y∗(x) is the solution for the problem defining ψ(x) for a fixed x. In other words, we can represent problem
(1.1) as an optimization problem minx∈Rdx ϕ(x) + ψ(x) with a particular choice of ϕ,ψ:

ϕ = f(x), ψ = max
y∈R

dy

{G(x, y)− h(y)} . (2.3)

Importantly, we have no access to the exact gradients of ψ(x) since we can not solve exactly the problem defining
ψ(x). At the same time, according to Lemma 2 from [3] we can get (precise definition is given below) an inexact
(δ, 2Lψ) oracle, where δ depends on the accuracy of the solution of the problem maxy∈R

dy {G(x, y)− h(y)}.
Thus, we need to develop an accelerated algorithm for problem (2.2) which takes into account inaccuracy of
the oracles for functions ϕ(x), ψ(x) caused by inexact solution to the optimization problem defining ψ(x).

Accelerated Methods for Saddle-Point Problems 9

The situation is even more complicated if we consider problem (1.1) with mh > 1 or problem (1.2) with
mG > 1 and apply variance reduction techniques. Application of known variance reduction methods guarantees
us a solution to the problem maxy∈R

dy {G(x, y)− h(y)} only with some high probability 1 − σ. Thus, when
using the variance reduction setting we obtain an inexact oracle for ψ(x) only with some probability.

To sum up the motivation part, we need to develop a generic acceleration scheme which works with inexact
oracles including inexact oracles with high probability. The rest of this section is devoted to the precise defi-
nitions of inexact oracles, description of such an accelerated algorithm and stating its convergence properties.
Main technical proofs are deferred to the appendices. Since we believe that the proposed accelerated algorithm
with inexact oracles can be of independent interest, we spend some effort to establish more results than we
need for the main purpose of this paper. So, first we consider optimization with deterministic oracle, and then
move to the setting of probabilistic inexact oracles.

2.1 Deterministic setting

Having in mind the above motivation, we introduce necessary notation and definitions. We start with a def-
inition, which corresponds to convex functions with Lipschitz-continuous gradient and is a small generalization
of inexact oracle introduced in [10].

Definition 1 Let δ = (δ1, δ2), where δ1, δ2 > 0. Then the pair (ϕδ,L(x),∇ϕδ,L(x)) is called (δ, L)-oracle of a
convex function ϕ(x) at a point x, if

− δ1 ≤ ϕ(z)− (ϕδ,L(x) + 〈∇ϕδ,L(x), z − x〉) ≤ L

2
‖z − x‖2 + δ2 for all z ∈ R

dx . (2.4)

With a slight abuse of notation, we use the same notation (δ, L)-oracle for the case (δ1, δ2) = (0, δ).

Our Accelerated Meta-algorithm (AM) is listed below as Algorithm 1. The method generates three se-
quences, which are denoted by the same letter x with either no superscript or one of the two superscripts xt,
xmd. Since later we will use this algorithm in a system of inner-outer loops, we will change the letter to denote
the sequences, but will not change the superscripts. The idea of the algorithm is inspired by the Monteiro–
Svaiter algorithm [26], but there are several important differences. The first one is that in (2.5) we linearize
the function ϕ instead of making inexact proximal step for the whole objective F as it is done in [26]. The
second difference is that we use inexact oracles for the functions ϕ and ψ, and as a corollary inexact oracle for
F . This affects the measure of inexact solution to problem (2.5) and Step 7 of the algorithm. Thirdly, below
we introduce a more convenient in practice way to control the accuracy of the solution to the inexact proximal
step (2.5). To do that we quantify with which accuracy one needs to solve the problem (2.5) in terms of its ob-
jective residual, so that the whole Algorithm 1 outputs a solution to the problem (2.1) with a desired accuracy.
This makes it easy to apply Algorithm 1 in a system of inner-outer loops. Finally, the algorithm in [26] is not
proved to obtain accelerated linear convergence rate in the case when the objective is strongly convex. For our
algorithm we propose an extension which has accelerated linear convergence rate under additional assumption
of inexact strong convexity.

The next theorem gives the convergence rate of Algorithm 1 when applied to the problem (2.1).

Theorem 1 Assume that the starting point x0 of Algorithm 1 satisfies ‖x0 − x∗‖ ≤ R for some R > 0, and
that the parameter H is chosen to satisfy H ≥ 2Lϕ. Assume also that the algorithm uses (δ, Lϕ)-oracle of
convex function ϕ(x) and (δ, Lψ)-oracle of convex function ψ(x), and that the auxiliary subproblem (2.5) is
solved inexactly in each iteration in such a way that the inequality (2.6) holds. Then, for all k ≥ 0, the sequence
xtk generated by Algorithm 1 satisfies

F (xtk)− F (x∗) ≤ 4HR2

k2
+ 2

(
k∑

i=1

Ai

)
δ2
Ak

+ δ1 +

(
k−1∑

i=1

Ai

)
δ1
Ak

. (2.7)

10 Vladislav Tominin 1 et al.

Algorithm 1 Accelerated Meta-algorithm (AM) with inexact (δ, L)-oracles

1: Input: objective F = ϕ+ ψ where ϕ, ψ are convex, parameter H ≥ 2Lϕ, inexactness δ ≥ 0, starting point x0;
(ϕδ,Lϕ ,∇ϕδ,Lϕ) — (δ, Lϕ)-oracle of ϕ,

(ψδ,Lψ ,∇ψδ,Lψ) — (δ, Lψ)-oracle of ψ.

2: Set A0 = 0, xt0 = x0, xmd0 = x0.
3: for k = 0 to k = K − 1 do

4: Set ak+1 =
1+

√
1+8HAk
4H

, Ak+1 = Ak + ak+1.

5: Set xmdk = Ak
Ak+1

xtk +
ak+1

Ak+1
xk.

6: Find xtk+1 as an approximate solution to the minimization problem

xtk+1 ≈ argminz∈Rdx

{
ϕδ,Lϕ (x

md
k) + 〈∇ϕδ,Lϕ (xmdk), z − xmdk 〉+ ψ(x) +

H

2
‖z − xmdk ‖2

}
, (2.5)

such that

∥∥∥∇ϕδ,Lϕ (xmdk) +∇ψδ,Lψ
(
xtk+1

)
+H(xtk+1 − xmdk)

∥∥∥ ≤ H

4

∥∥∥xtk+1 − xmdk

∥∥∥− 2
√

2δ2Lϕ. (2.6)

7: xk+1 = xk − ak+1∇ϕδ,L(xtk+1)− ak+1∇ψδ,L(xtk+1).
8: end for
9: return xtK

We prove this theorem in Appendix A.
We now move further to the strongly-convex setting, which will allow us to solve strongly-convex-strongly-

concave saddle-point problems in later sections. The next definition is an extension of Definition (1) and [9]
corresponding to strongly convex functions with Lipschitz-continuous gradient.

Definition 2 Let δ = (δ1, δ2), where δ1, δ2 > 0. Then the pair (ϕδ,L,µ(x),∇ϕδ,L,µ(x)) is called (δ, L, µ)-oracle
of a convex function ϕ at a point x, if

µ

2
‖z − x‖2 − δ1 ≤ ϕ(z)− (ϕδ,L,µ(x) + 〈∇ϕδ,L,µ(x), z − x〉) ≤ L

2
‖z − x‖2 + δ2 for all z ∈ R

dx (2.8)

With a slight abuse of notation, we use the same notation (δ, L)-oracle for the case (δ1, δ2) = (0, δ).

It is straightforward that a (δ, L, µ)-oracle is also a (δ, L)-oracle, and, thus, we can use (δ, L, µ)-oracle in
Algorithm 1.

Next we consider the case when F (x) in (2.1) is convex and admits a (δ, L, µ)-oracle. Then, we use the
convergence rate result in Theorem 1 and obtain linear convergence rate by applying the restart technique.
The restarted algorithm is listed as Algorithm 2, and its convergence rate when applied to the problem (2.1)
is given in Theorem 2.

Theorem 2 Assume that the starting point z0 of Algorithm 2 satisfies ‖z0−x∗‖ ≤ R for some R > 0, and that
the parameter H is chosen to satisfy H ≥ 2Lϕ. Further, assume that (δ, L, µ)-oracle of F (x), (δ, Lϕ)-oracle of
convex function ϕ(x), (δ, Lψ)-oracle of convex function ψ(x) are available, and, in each iteration of Algorithm 1
which is used as a building block of Algorithm 2, the auxiliary subproblem (2.5) is solved inexactly in such a
way that the inequality (2.6) holds. Finally, assume that the oracle inexactness δ1, δ2 are chosen to satisfy

∀k : δ1 + δ2 + 2

(
k∑

i=1

Ai

)
δ2
Ak

+

(
k−1∑

i=1

Ai

)
δ1
Ak

≤ ε

2
, (2.10)

Accelerated Methods for Saddle-Point Problems 11

Algorithm 2 Restarted AM (R-AM)

1: Input: objective F = ϕ+ ψ admits (δ, L, µ)-oracle, parameter H ≥ 2Lϕ, inexactness δ ≥ 0, starting point z0;
(ϕδ,Lϕ ,∇ϕδ,Lϕ) — (δ, Lϕ)-oracle of convex function ϕ,

(ψδ,Lψ ,∇ψδ,Lψ) — (δ, Lψ)-oracle of convex function ψ.

2: for k = 0, to K do
3: Set

Nk = max

{⌈(
128H

µ

) 1
2

⌉
, 1

}
. (2.9)

4: Set zk+1 := xtNk
as the output of Algorithm 1 started from zk and run for Nk steps.

5: end for
6: return zK

4
√
2δ2L

µ
≤ ε/2, (2.11)

where ε is the desired accuracy of the solution to problem (2.1). Then, under the listed assumptions, Algorithm 2

with K = 2 log2
µR2

0

4ε guarantees that its output point zK is an ε-solution to problem (2.1), i.e. F (zK)−F (x∗) ≤
ε. Moreover, the total number NF of calls to inexact oracles both for ϕ and for ψ satisfies the following inequality

NF ≤
(
16

√
2

√
H

µ
+ 2

)
log2

µR2
0

ε
= Õ

(
max

{√
H

µ
, 1

})
. (2.12)

We prove this theorem in Appendix B.
As we see from the above theorems, to ensure that AM and R-AM algorithms provide an ε-solution to

problem (2.1), we need to guarantee that the oracle error δ = (δ1, δ2) is sufficiently small and that the auxiliary
problem (2.5) is solved inexactly in such a way that the inequality (2.6) is satisfied. For our purposes it is more
convenient to consider inexact solution of the problem (2.5) not in terms of the inequality (2.6), but rather
in terms of the objective residual in this problem bounded by some tolerance ε̃f . Next we provide sufficient
conditions on the values of δ and ε̃f which guarantee that the conditions of the above theorems hold and that
R-AM is guaranteed to find an ε-solution to problem (2.1).

Theorem 3 Assume that the starting point z0 of Algorithm 2 applied to problem (2.1) satisfies ‖z0− x∗‖ ≤ R
for some R > 0, and that the parameter H is chosen to satisfy H ≥ 2Lϕ. Further, assume that F (x) is
convex, (δ, L, µ)-oracle of F (x), (δ, Lϕ)-oracle of convex function ϕ(x), (δ, Lψ)-oracle of convex function ψ(x)
are available, and, in each iteration of Algorithm 1 which is used as a building block of Algorithm 2, the auxiliary
subproblem (2.5) is solved inexactly in such a way that the inexact solution xtk+1 satisfies

(
〈∇ϕδ,Lϕ(xmdk), xtk+1 − xmdk 〉+ ψ(xtk+1) +

H

2
‖xtk+1 − xmdk ‖2

)

− min
z∈Rdx

(
〈∇ϕδ,Lϕ(xmdk), z − xmdk 〉+ ψ(x) +

H

2
‖z − xmdk ‖2

)
≤ ε̃f , where (2.13)

ε̃f ≤ εµ2

8642(L+H)2
. (2.14)

Finally, assume that the oracle errors δ1, δ2 satisfy

δ1, δ2 ≤ min

{
εµ

8642Lϕ
,

εµ

8642Lψ
,

εµ2

8642(L+H)2
,

ε3/2

5
√
8HR2

}
. (2.15)

12 Vladislav Tominin 1 et al.

Then, under the listed assumptions, Algorithm 2 with K = 2 log2
µR2

0

4ε guarantees that its output point zK
is an ε-solution to problem (2.1), i.e. F (zK) − F (x∗) ≤ ε. Moreover, the total number NF of calls to inexact
oracles both for ϕ and for ψ satisfies the following inequality

NF ≤
(
16

√
2

√
H

µ
+ 2

)
log2

µR2
0

ε
= Õ

(
max

{√
H

µ
, 1

})
. (2.16)

We prove this theorem in Appendix C.
An important feature of the above bounds on δ1, δ2 and ε̃f is that they depend polynomially on the

target accuracy ε. This means that if we can control these errors by some algorithms which have complexity
logarithmically depending on δ1, δ2 and ε̃f , then the total complexity of the whole algorithm R-AM will
be logarithmic in the target accuracy ε, which makes it reasonable to apply this algorithm in a system of
inner-outer loops. In the next subsection we extend the above theory for stochastic setting.

2.2 Stochastic setting

As it was discussed at the beginning of this section, we would like to apply stochastic variance reduction
methods or other randomized methods in order to provide an inexact solution to the auxiliary problem (2.5)
and in order to obtain inexact oracle for F . In the former case inequality (2.13) can be guaranteed only with
some probability. To illustrate the latter case, we consider function ψ in (2.3) with h given in (1.1) withmh ≫ 1,
i.e.

ψ = max
y∈R

dy

{
G(x, y)− 1

mh

mh∑

i=1

hi(y)

}
. (2.17)

According to Lemma 2 from [3] we can get an inexact (δ, 2Lψ)-oracle, where δ depends on the accuracy of the
solution of this maximization problem. If we solve this maximization problem by a randomized method, we can
obtain inexact (δ, 2Lψ)-oracle only with some probability. Thus, below we give a formal generalization of the
results obtained in the previous subsection to a stochastic setting. We start with the definition of probabilistic
inexact oracle.

Definition 3 Let δ = (δ1, δ2), where δ1, δ2 > 0. Then the pair (ϕδ,L,µ(x),∇ϕδ,L,µ(x)) is called (δ, σ0, L, µ)-
oracle of a convex function ϕ at a point x, if

µ

2
‖z−x‖2− δ1 ≤ ϕ(z)− (ϕδ,L,µ(x) + 〈∇ϕδ,L,µ(x), z − x〉) ≤ L

2
‖z−x‖2+ δ2, for all ∈ R

dx w.p. 1−σ0 (2.18)

In the case of µ = 0, we say that (ϕδ,L(x),∇ϕδ,L(x)) is called (δ, σ0, L)-oracle of a function ϕ at a point x.
With a slight abuse of notation, we use the same notation (δ, σ0, L, µ)-oracle for the case (δ1, δ2) = (0, δ).
One should distinguish the following notation: the (δ, σ0, L)-oracle of a function ϕ in the sense of Definition 3
and (δ, L, µ)-oracle of a function ϕ in the sense of Definition 2.

The following is a simple lemma, which states that such defined inexact oracle is additive.

Lemma 1 Let the following assumptions hold.

1. (ϕδϕ,Lϕ,µϕ(x),∇ϕδϕ,Lϕ,µϕ(x)) is (δϕ, σϕ, Lϕ, µϕ)-oracle for a convex function ϕ,
2. (ψδψ,Lψ,µψ (x),∇ψδψ,Lψ,µψ (x)) is (δψ, σψ , Lψ, µψ)-oracle for a convex function ψ.

Then (ϕδϕ,Lϕ,µϕ(x) +ψδψ,Lψ,µψ (x),∇ϕδϕ,Lϕ,µϕ(x) +∇ψδψ,Lψ,µψ(x)) is (δϕ+ δψ , σϕ + σψ , Lϕ +Lψ, µϕ + µψ)-
oracle for ϕ+ ψ.

Accelerated Methods for Saddle-Point Problems 13

We provide the proof of this lemma in the Appendix D.
To illustrate why such inexact oracle appears to be useful in the setting of saddle-point problems, we

provide the following Lemma, which extends the results of [2, 18] to our stochastic setting and which will be
very important for the derivations in the next section. This Lemma contains some novelty in comparison with
the literature: it is proved in the stochastic setting.

Lemma 2 Let us consider the function

g(x) = max
y∈R

dy

{
Ŝ(x, y) = F (x, y)− w(y)

}
, (2.19)

where F (x, y) is convex in x, concave in y and is LF -smooth as a function of (x, y), w(y) is µy-strongly convex.

Then g(x) is Lg-smooth with Lg = LF +
2L2

F

µy
and y∗(·) is 2LF

µy
Lipschitz continuous, where the point y∗ is

defined as

y∗(x) := arg max
y∈R

dy

Ŝ(x, y) ∀x ∈ R
dx , (2.20)

Moreover, if a point ỹδ/2(x) is a (δ/2, σ)-solution to (2.19), i.e. satisfies inequality

max
y∈R

dy

{Ŝ(x, y)} − Ŝ
(
x, ỹδ/2(x)

)
≤ δ/2 w.p. 1− σ, (2.21)

then ∇xF
(
x, ỹδ/2(x)

)
is (δ, σ, 2Lg)-oracle of g.

We prove this lemma in Appendix E.
Armed with Definition 3 we can now formulate the following theorem, which is a generalization of Theorem

3, and which is the main result of this section. This theorem provides the iteration complexity of Algorithm
2 to obtain an (ε, σ)-solution of problem (2.1) in the stochastic setting under the assumptions of probabilistic
inexact oracles for ϕ, ψ in the sense of Definition 3 and also under the assumption that the auxiliary problem
(2.5), which needs to be solved many times in each iteration of Algorithm 2, is solved inexactly with accuracy
controlled in a probabilistic sense.

Theorem 4 Consider the optimization problem (2.1)

min
x∈Rdx

F (x) = ϕ(x) + ψ(x),

where F (x) is convex. Let the target accuracy ε > 0 and the target confidence level σ ∈ (0, 1) be given. Let also
be given H ≥ 2Lϕ, starting point z0 and a number R0 > 0 such that ‖z0 − x∗‖ ≤ R0, where x∗ is the solution
to (2.1). Let the following two main assumptions of this theorem hold.

1. (Inexact oracle.) Inexact (δ, σ0, L, µ)-oracle of F (x), (δ, σ0, Lϕ)-oracle of convex function ϕ(x), (δ, σ0, Lψ)-
oracle of convex function ψ(x) are available, where δ1(ε), δ2(ε) satisfy the following polynomial dependency
on ε

δ1(ε), δ2(ε) ≤ min

{
εµ

8642Lϕ
,

εµ

8642Lψ
,

εµ2

8642(L+H)2
,

ε3/2

5
√

8HR2
0

}
, (2.22)

and σ0(ε, σ) satisfy the following polynomial dependency on ε and σ

σ0(ε, σ) ≤ σ

2
(
16

√
2
√
H
µ + 2

)
log2

µR2
0

ε

. (2.23)

14 Vladislav Tominin 1 et al.

2. (Inexact solution of the auxiliary problem (2.5).) Algorithm 2 is applied to solve problem (2.1) and, in each
iteration of Algorithm 1 used as a building block in Algorithm 2, an (ε̃f , σ̃)-solution to the auxiliary problem
(2.5) is available, i.e., with probability at least 1− σ̃

(
〈∇ϕδ,Lϕ(xmdk), xtk+1 − xmdk 〉+ ψ(xtk+1) +

H

2
‖xtk+1 − xmdk ‖2

)

− min
z∈Rdx

(
〈∇ϕδ,Lϕ(xmdk), z − xmdk 〉+ ψ(x) +

H

2
‖z − xmdk ‖2

)
≤ ε̃f , (2.24)

where ε̃f (ε) and σ̃(ε, σ) satisfy the following polynomial dependencies on ε and σ

ε̃f (ε) ≤
εµ2

8642(L+H)2
, (2.25)

σ̃(ε, σ) ≤ σ

2
(
16

√
2
√
H
µ + 2

)
log2

µR2
0

ε

. (2.26)

Then, under the listed assumptions, Algorithm 2 with K = 2 log2
µR2

0

4ε guarantees that its output point zK is an
(ε, σ)-solution to problem (2.1). Moreover, the number NF of the calls to inexact oracle both for ϕ and for ψ
satisfies the following inequality

NF ≤
(
16

√
2

√
H

µ
+ 2

)
log2

µR2
0

ε
= Õ

(
max

{√
H

µ
, 1

})
, (2.27)

and the number of times the auxiliary problem (2.5) is solved is also equal to NF .

We prove this theorem in Appendix C.

Remark 1 We state the above theorem in the full generality. In the next sections we use its particular version
with δ1 = 0.

△

3 Accelerated Framework for Saddle-Point Problems

In this section we consider saddle-point problem of the following general form

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} (3.1)

and develop a general accelerated optimization framework for its solution. In the following sections we use this
general framework to develop accelerated methods for saddle-point problems in the form of problem (3.1), but
with some additional assumptions about the structure of the functions G and h. In particular, we consider
problem (1.1) in Section 4 and problem (1.2) in Section 5 As it was discussed before, our general framework
consists of several inner-outer loops, which require to solve optimization problems with some special structure.
Thus, the general framework in this section is developed under two additional assumptions on two problems
with a special structure (see Assumptions 2, 3 below), which we need to solve in two loops of the framework.
Then, in the following sections we show, how these assumptions can be satisfied, which allows to obtain the
main results as a corollary of the main theorem of this section. So, the plan of this section is, first, to introduce
the main assumptions on the problem (3.1) and two additional assumptions for the sake of generality of the
framework. Second, we discuss the structure of the problem (3.1) and slightly reformulate it in an equivalent
way. Then, we describe the main part of the framework by giving details of each loop, and finish with the main
complexity theorem.

Accelerated Methods for Saddle-Point Problems 15

3.1 Preliminaries

We start with the main assumptions, which are used to develop the general framework of this section. The
first assumption is on the functions f, G, h in problem (3.1).

Assumption 1 1. Function f is Lf -smooth, µx-strongly convex and there exists a basic oracle Of for f such
that τf calls of this basic oracle produce the gradient ∇f(x).

2. Function G(x, y) is LG-smooth, i.e. for each x = (x1, x2), y = (y1, y2) ∈ R
dx × R

dy

‖∇G(x1, x2)−∇G(y1, y2)‖ ≤ LG‖(x1, x2)− (y1, y2)‖, (3.2)

there exist a basic oracle OxG for G(·, y) such that τG calls of this basic oracle produce the gradient ∇xG(x, y).
and a basic oracle OyG for G(x, ·) such that τG calls of this basic oracle produce the gradient ∇yG(x, y).

3. Function h is Lh-smooth, µy-strongly convex and there exists a basic oracle Oh for h such that τh calls of
this basic oracle produce the gradient ∇h(y).

Remark 2 If the problem (3.1) is not strongly-convex-strongly-concave, then one can apply standard reduction
by regularization scheme, i.e. add a small strongly-convex-strongly-concave regularizer, solve the new strongly-
convex-strongly-concave problem using the methods we develop and then prove that the obtained solution also
approximates the solution of the initial convex-concave problem since the regularization was small. See the
details in [2].

△

Our plan is to apply the general framework of this section to solve, in particular, problem (1.1). This problem
formulation is not symmetric w.r.t. the variables x and y since different assumptions are imposed on function
f and function h. Our preliminary derivations, which we do not report here, showed that better complexity
bounds are obtained if we first change the order of maximization in y and minimization in x, multiply the
objective by minus one, and write the following problem which is equivalent to (3.1)

min
y∈R

dy

{
h(y) + max

x∈Rdx

{−G(x, y)− f(x)}
}
. (3.3)

This reformulation allows to solve problem (3.3) by an algorithm which consists of a series of inner-outer loops,
where in each loop Algorithm 2 is applied to solve some auxiliary problem which has the form (2.1). The above
equivalent reformulation of (3.1) naturally leads to the following definition of approximate optimality.

Definition 4 Let ε > 0 and σ ∈ (0, 1). By an ε-solution to problem (3.1) we mean a point ŷ such that

h(ŷ) + max
x∈Rdx

{−G(x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{h(y)−G(x, y)− f(x)} ≤ ε (3.4)

We say that a random point ŷ is an (ε, σ)-solution to the problem (3.1) if P{(3.4) holds True} ≥ 1− σ.

Definition 4 specifies only the y-part of an approximate solution to (3.1) and is motivated by considering
reformulation (3.3) as a minimization problem. The next Lemma 3 shows how to obtain an approximate solution
to (3.1) in more common form with both x- and y-part when a solution in the sense of Definition 4 is available.

Lemma 3 Let us consider problem (3.1) under Assumption 1. Let a pair (x̂, ŷ) satisfy

1. ŷ is an (εy, σy)-solution to the problem (3.1), i.e. (3.4) holds.
2. x̂ is an (εx, σx)-solution to problem maxx∈Rdx{−G(x, ŷ)− f(x)};

16 Vladislav Tominin 1 et al.

Then the following inequalities hold with probability 1− σy − σx

‖ŷ − y⋆‖2 ≤ 2εy
µy

, (3.5)

‖x̂− x∗‖2 ≤ 8

(
LG
µx

)2

‖ŷ − y∗‖2 + 4εx
µx

, (3.6)

max
x∈Rdx

min
y∈R

dy

{h(y)−G(x, y)− f(x)} − min
y∈R

dy

{h(y)−G(x̂, y)− f(x̂)}

≤ 2

(
Lf + LG +

2L2
G

µy

)(
εx
µx

+

(
LG
µx

)2
4εy
µy

)
, (3.7)

where (x∗, y∗) is the saddle point for problem (3.1).

Proof We let Φ(y) = maxx∈Rdx{h(y) − G(x, y) − f(x)} and note that Φ(y) is µy-strongly convex. Under
Assumption 1 the function h(y)−G(x, y)−f(x) has unique saddle point (x∗, y∗). Then, with probability 1−σy
we have

‖ŷ − y∗‖2 ≤ 2

µy

(
max
x∈Rdx

{h(ŷ)−G(x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{h(y)−G(x, y)− f(x)}
)

≤ 2εy
µy

. (3.8)

We denote x∗(ŷ) = argmaxx∈Rdx
{h(ŷ)−G(x, ŷ)−f(x)}, then according to Lemma 2 x∗(y) is 2LG/µx Lipschitz

continuous. Since {h(ŷ)−G(x, ŷ)− f(x)} is µx-strongly concave, we obtain that the inequality

‖x̂− x∗‖2 ≤ 2‖x̂− x∗(ŷ)‖2 + 2‖x∗(ŷ)− x∗(y∗)‖2 ≤ 4εx
µx

+ 8

(
LG
µx

)2

‖ŷ − y∗‖2 (3.9)

holds true with probability 1− σx − σy. By consecutive application of Lemma 1 and Lemma 2 we can obtain

that Ψ(x) = miny∈R
dy {h(y)−G(x, y)− f(x)} is concave and Lf + LG +

2L2
G

µy
-smooth. Whence,

max
x∈Rdx

min
y∈R

dy

{h(y)−G(x, y)− f(x)} − min
y∈R

dy

{h(y)−G(x̂, y)− f(x̂)} = Ψ(x∗)− Ψ(x̂) (3.10)

≤
Lf + LG +

2L2
G

µy

2
‖x̂− x∗‖2 ≤ 2

Lf + LG +
2L2

G

µy

µx
εx + 8

(
LG
µx

)2 Lf + LG +
2L2

G

µy

µy
εy,

with probability 1−σx−σy.In the first inequality we used that x∗ is the optimal point, and, hence, ∇Ψ(x∗) = 0.
⊓⊔

By exchanging the variables x and y we can obtain the useful Corollary 1 from Lemma 3, which we use
below in one of the loops of our general scheme.

Corollary 1 Let us consider the problem

min
x∈Rdx

{
f(x) + max

y∈R
dy

{F (x, y)− w(y)}
}
, (3.11)

where functions f, F, w are smooth with Lipschitz constants of the gradient being Lf , LF , Lw respectively and
functions f, w are µx, µy-strongly convex respectively. Let a pair (x̂, ŷ) satisfy

1. x̂ is an (εx, σx)-solution to the problem (3.11), i.e. inequality

f(x̂) + max
y∈R

dy

{F (x̂, y)− w(y)} − min
x∈Rdx

max
y∈R

dy

{f(x) + F (x, y)− w(y)} ≤ εx

holds with probability 1− σx.

Accelerated Methods for Saddle-Point Problems 17

2. ŷ is an (εy, σy)-solution to problem maxy∈R
dy {F (x̂, y)− w(y)}.

Then the following inequalities hold with probability 1− σy − σx

‖x̂− x⋆‖2 ≤ 2εx
µx

, (3.12)

‖ŷ − y∗‖2 ≤ 8

(
LF
µy

)2

‖x̂− x∗‖2 + 4εy
µy

, (3.13)

w(ŷ) + max
x∈Rdx

{−F (x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{w(y)− F (x, y)− f(x)} (3.14)

= max
y∈R

dy

min
x∈Rdx

{f(x) + F (x, y)− w(y)} − min
x∈Rdx

{f(x) + F (x, ŷ)− w(ŷ)} (3.15)

≤ 2

(
Lw + LF +

2L2
F

µx

)(
εy
µy

+ 4

(
LF
µy

)2
εx
µx

)
, (3.16)

where (x∗, y∗) is the saddle point for problem (3.11).

The next two assumptions are made for the sake of obtaining a general framework. In this section we assume
that two functions which are defined via auxiliary maximization problems and which appear in the loops of
our general framework, can be equipped with an inexact oracle. In the following sections in different settings
we show how to satisfy these two assumptions and apply the general framework.

Assumption 2 Let ε > 0 and σ ∈ (0, 1), and a function g be defined as

g(x) = max
y∈R

dy

{
G(x, y)− h(y)− H

2
‖y − y0‖2

}
, (3.17)

where G(x, y), h(y) satisfy Assumption 1, H > 0, and y0 is some fixed point in R
dy .

Then, we assume that, for any δ (ε) = poly (ε) and any σ0 (ε, σ) = poly (ε, σ), it is possible to evalu-

ate a (δ(ε)/2, σ0 (ε, σ))-solution to this problem and
(
δ (ε) , σ0 (ε, σ) , 2LG + 4

L2
G

µy+H

)
-oracle for the function

g in the sense of Definition 3 with δ1 = 0. Moreover, we assume that this solution can be evaluated using
N y
G (τG, H)KyG (ε, σ) calls of the basic oracle OyG of G(x, ·), Nh (τh, H)Kh (ε, σ) calls of the basic oracle Oh of

h and this inexact oracle can be evaluated using N y
G (τG, H)KyG (ε, σ) calls of the basic oracle OyG of G(x, ·),

τG calls of the basic oracle OxG of G(·, y) and Nh (τh, H)Kh (ε, σ) calls of the basic oracle Oh of h, where

KyG (ε, σ) = Õ(1) and Kh (ε, σ) = Õ(1).

Assumption 3 Let ε > 0 and σ ∈ (0, 1), and a function r be defined as

r(y) = min
x∈Rdx

{G(x, y) + f(x)} , (3.18)

where G(x, y), f(x) satisfy Assumption 1.
Then, we assume that, for any δ (ε) = poly (ε) and any σ0 (ε, σ) = poly (ε, σ), it is possible to evalu-

ate a (δ(ε)/2, σ0 (ε, σ))-solution to this problem and
(
δ (ε) , σ0 (ε, σ) , 2LG + 4

L2
G

µx

)
-oracle for the function r

in the sense of Definition 3 with δ1 = 0. Moreover, we assume that this solution can be evaluated using
N x
G (τG)KxG (ε, σ) calls of the basic oracle OxG for G(·, y), Nf (τf)Kf (ε, σ) calls of the basic oracle Of for f

and this inexact oracle can be evaluated using τG calls of the basic oracle OyG of G(x, ·), N x
G (τG)KxG (ε, σ) calls

of the basic oracle OxG for G(·, y) and Nf (τf)Kf (ε, σ) calls of the basic oracle Of for f , where KxG (ε, σ) = Õ(1)

and Kf (ε, σ) = Õ(1).

18 Vladislav Tominin 1 et al.

We use the above two assumptions to develop in this section a general algorithmic framework for problem
(3.1). In the next sections we consider more specific problem formulations (1.1) and (1.2) and show, how an
application of some particular algorithms for solving maximization problems (3.17) and (3.18) allows us to
ensure that Assumptions 2 and 3 hold. For now, let us shortly illustrate how this can be achieved by a simple
example. Assume, for simplicity, that in (3.17) h = 0 and the full gradients ∇xG(x, y), ∇yG(x, y) are available
meaning that in Assumption 1 τG = 1. Then, the objective in the maximization problem (3.17) has LG-smooth
in y part G(x, y) and H-strongly concave part −H

2 ‖y − y0‖2. Thus, if we apply accelerated gradient method
for composite optimization [37], we obtain that a δ(ε)/2-solution ỹδ(ε)/2(x) to this problem can be obtained in

O

(√
LG
H ln 1

δ(ε)

)
iterations of the accelerated method. Each iteration requires to evaluate ∇yG(x, y), which

means that the number of calls of the basic oracle OyG for G(x, ·) is O
(
τG

√
LG
H ln 1

δ(ε)

)
. Since δ (ε) = poly (ε),

we obtain that the the number of OyG calls is N y
G (τG, H)KyG (ε, σ) = O

(
τG

√
LG
H ln 1

ε

)
, i.e. KyG (ε, σ) = Õ(1).

Moreover, by Lemma 2, ∇xG
(
x, ỹδ(ε)/2(x)

)
is (δ(ε), 2LG +

2L2
G

H)-oracle for the function g, which means that
we need also τG calls of the basic oracle OxG for G(·, y). Thus, Assumption 2 holds.

3.2 General framework for saddle-point problems.

Next, we describe in detail the resulting structure of our framework which consists of three inner-outer loops.
We also summarize the steps of the algorithm in Table 4. In each loop we apply Algorithm 2 with different
value of parameter H, which defines its complexity. In the next subsection we carefully choose the value of this
parameter in each level of the loops. Later, in the next sections this allows us to obtain the desired results on
near-optimal complexity bounds for saddle-point problems (1.1) or (1.2). Further, in each loop we have a target
accuracy ε and a confidence level σ which define the required quality of the solution to an optimization problem
in this loop. These quantities define the inexactness of the oracle in this loop via inequalities (2.22) and (2.23)
and the target accuracy and confidence level for the optimization problem in the next loop via (2.25), (2.26).
Due to inexact strong convexity provided by (δ, σ, L, µ)-oracle, Algorithm 2 has logarithmic dependence of the
complexity on the target accuracy and confidence level (see Theorem 4). Since the dependencies on the target
accuracy and confidence level in (2.22), (2.23), (2.25) and (2.26) are polynomial, we obtain that the dependency
of the complexity in each loop on the target accuracy and confidence level in the first loop, i.e. target accuracy
and confidence level for the solution to problem (3.1), is logarithmic. We hide such logarithmic factors in Õ
notation.

Loop 1
The goal of Loop 1 is to find an (ε, σ)-solution of problem (3.3), which is considered as a minimization problem
in y with the objective given in the form of auxiliary maximization problem in x. Finding an (ε, σ)-solution of
this minimization problem gives an approximate solution to the saddle-point problem (3.1) which is understood
in the sense of Definition 4.

To solve problem (3.3), we would like to apply Algorithm 2 with

ϕ = 0, ψ = h(y) + max
x∈Rdx

{−G(x, y)− f(x)} . (3.19)

The function ϕ is, clearly, convex and is known exactly. What makes solving problem (3.3) not straightforward
is that the exact value of ψ is not available. At the same time we can construct an inexact oracle for this
function. First, the function h is µy-strongly convex, Lh-smooth and its exact gradient is available. Second,

thanks to Assumption 3, it is possible to construct a
(
δ(1) (ε) , σ

(1)
0 (ε, σ) , 2LG + 4

L2
G

µx

)
-oracle for the function

Accelerated Methods for Saddle-Point Problems 19

r(y) = maxx∈Rdx {−f(x)−G(x, y)} for any δ(1) (ε) = poly (ε) and σ
(1)
0 (ε, σ) = poly (ε, σ). Combining these

two parts and using Lemma 1, we obtain that we can construct a
(
δ(1) (ε) , σ

(1)
0 (ε, σ) , Lh + 2LG + 4

L2
G

µx
, µy

)
-

oracle for ψ. Thus, we can apply Algorithm 2 with parameter H = H1, which will be chosen later, to solve

problem (3.3). Moreover, since Assumption 3 requires δ(1) (ε) = poly (ε) and σ
(1)
0 (ε, σ) = poly (ε, σ), which

holds for the dependencies in (2.22) and (2.23), we can choose δ(1) (ε) and σ
(1)
0 (ε, σ) such that (2.22) and (2.23)

hold. So, the first main assumption of Theorem 4 holds. At the same time, according to Assumptions 1 and
3, constructing inexact oracle for ψ requires τh calls of the basic oracle for h, τG calls of the basic oracle of
G(x, ·), N x

G (τG)KxG (ε, σ) calls of the basic oracle for G(·, y), Nf (τf)Kf (ε, σ) calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in

each iteration of Algorithm 1, used as a building block in Algorithm 2, to find an
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-solution

to the auxiliary problem (2.5), where σ̃(1) (ε, σ) , ε̃
(1)
f (ε) satisfy inequalities (2.25), (2.26). For the particular

definitions of ϕ, ψ (3.19) in this Loop, this problem has the following form:

ytk+1 = arg min
y∈R

dy

{
h(y) + max

x∈Rdx

{−G(x, y)− f(x)}+ H1

2
‖y − ymdk ‖2

}
. (3.20)

Below, in the next paragraph ”Loop 2”, we explain how to solve this auxiliary problem to obtain its
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-

solution. To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee that

we obtain an (ε, σ)-solution of problem (3.3). This requires Õ

(
1 +

(
H1

µϕ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy

) 1
2

)
calls to the

inexact oracles for ϕ and for ψ, and the same number of times solving the auxiliary problem (3.20). Combining
this oracle complexity with the cost of calculating inexact oracles for ϕ and for ψ, we obtain that solving problem

(3.3) requires Õ

(
1 +

(
H1

µy

) 1
2

)
τh calls of the basic oracle for h, Õ

(
1 +

(
H1

µy

) 1
2

)
τG calls of the basic oracle of

G(x, ·), Õ
(
1 +

(
H1

µy

) 1
2

)
N x
G (τG)KxG (ε, σ) calls of the basic oracle forG(·, y), Õ

(
1 +

(
H1

µy

) 1
2

)
Nf (τf)Kf (ε, σ)

calls of the basic oracle for f . The only remaining thing is to provide an inexact solution to problem (3.20)
and, next, we move to the Loop 2 to explain how to guarantee this. Note that we need to solve problem (3.20)

Õ

(
1 +

(
H1

µy

) 1
2

)
times.

Loop 2
As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need many times to
find an (ε′2, σ

′
2)-solution of the auxiliary problem (3.20), where we denoted for simplicity σ′

2 = σ̃(1) (ε, σ) and

ε′2 = ε̃
(1)
f (ε). To do this, we reformulate problem (3.20) by changing the order of minimization and maximization

as follows:

min
y∈R

dy

{
h(y) +

H1

2
‖y − ymdk ‖2 + max

x∈Rdx

{−G(x, y)− f(x)}
}

(3.21)

= min
y∈R

dy

max
x∈Rdx

{
h(y)−G(x, y)− f(x) +

H1

2
‖y − ymdk ‖2

}
(3.22)

= max
x∈Rdx

min
y∈R

dy

{
h(y)−G(x, y)− f(x) +

H1

2
‖y − ymdk ‖2

}
(3.23)

= − min
x∈Rdx

{
f(x) + max

y∈R
dy

{
G(x, y)− h(y)− H1

2
‖y − ymdk ‖2

}}
(3.24)

20 Vladislav Tominin 1 et al.

and obtain an (ε′2, σ
′
2)-solution of the problem (3.20) by solving minimization problem (3.24). Assume that we

can find an (ε2, σ2)-solution x̂ of the minimization problem (3.24) in the sense of Definition 4. Then, according
to Assumption 2, we can also obtain a point ŷ which is (δ̄(ε2)/2, σ̄0(σ2))-solution to the problem

max
y∈R

dy

{
G(x, y)− h(y)− H1

2
‖y − ymdk ‖2

}
, (3.25)

where δ̄(ε2), σ̄0(σ2) satisfy the following polynomial dependencies

δ̄(ε2) ≤ H1 + µy

4µx
(
H1+µy
4LG

)2 ε2, σ̄0(σ2) ≤ σ2. (3.26)

If we choose ε2, σ2, δ̄(ε2), σ̄0(σ2) satisfying

ε2 ≤
(
H1 + µy
4LG

)2
µx

Lh +H1 + LG +
2L2

G

µx

ε′2, (3.27)

σ2 ≤ σ′
2

2
, (3.28)

σ̄0(σ2)
(3.26)

≤ σ2 ≤ σ′
2

2
, δ̄(ε2) ≤ H1 + µy

4µx
(
H1+µy
4LG

)2 ε2
(3.26)

≤ H1 + µy

4Lh + 4H1 + 4LG +
8L2

G

µx

ε′2, (3.29)

then

2
Lh +H1 + LG +

2L2
G

µx

H1 + µy
δ̄(ε2) + 8

(
LG

H1 + µy

)2 Lh +H1 + LG +
2L2

G

µx

µx
ε2 ≤ ε′2, (3.30)

σ2 + σ̄0(σ2) ≤ σ′
2. (3.31)

Thus, applying Corollary 1 to minimization problem (3.24) with F (x, y) = G(x, y), w(y) = h(y)+H1

2 ‖y−ymdk ‖2,
εx = ε2, σx = σ2, εy = δ̄(ε2), σy = σ̄0(σ2) we obtain (see (3.14), (3.16)) that ŷ satisfies inequality

h(ŷ) +
H1

2
‖ŷ − ymdk ‖2 + max

x∈Rdx

{−G(x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{h(y) + H1

2
‖y − ymdk ‖2 −G(x, y)− f(x)} ≤ ε′2

with probability σ′
2. Thus, by Definition 4 it is an (ε′2, σ

′
2)-solution of the problem (3.20). By Assumption 2,

calculation of ŷ requires N y
G (τG, H)KyG (ε2, σ2) calls of the basic oracle OyG of G(x, ·), τG calls of the basic

oracle OxG of G(·, y) and Nh (τh, H)Kh (ε2, σ2) calls of the basic oracle Oh of h.
Our next step is to provide an (ε2, σ2)-solution to minimization problem (3.24), for which we again apply

Algorithm 2, but this time with

ϕ = max
y∈R

dy

{
G(x, y)− h(y)− H1

2
‖y − ymdk ‖2

}
, ψ = f(x). (3.32)

The function ψ is µx-strongly convex, Lf -smooth and its exact gradient is available. What makes solv-
ing problem (3.24) not straightforward is that the exact value of ϕ is not available. At the same time we
can construct an inexact oracle for this function. Thanks to Assumption 2, it is possible to construct a(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , 2LG + 4

L2
G

H1+µy

)
-oracle for the function ϕ for any δ(2) (ε2) = poly (ε2) and σ

(2)
0 (ε2, σ2) =

poly (ε2, σ2). Using Lemma 1, we obtain that we can construct

Accelerated Methods for Saddle-Point Problems 21

a
(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , Lf + 2LG + 4

L2
G

H1+µy
, µx

)
-oracle for the function ϕ + ψ. Thus, we can apply Algo-

rithm 2 with parameter H = H2 ≥ 2LG + 4
L2
G

H1+µy
, which will be chosen later, to solve the problem (3.24).

Moreover, since Assumption 2 requires δ(2) (ε2) = poly (ε2) and σ
(2)
0 (ε2, σ2) = poly (ε2, σ2), which holds for

the dependencies in (2.22) and (2.23), we can choose δ(2) (ε2) and σ
(2)
0 (ε2, σ2) such that (2.22) and (2.23)

hold. So, the first main assumption of Theorem 4 holds. At the same time, according to Assumptions 1 and 2,
constructing inexact oracle for ϕ requires N y

G (τG, H1)KyG (ε2, σ2) calls of the basic oracle for G(x, ·), τG calls
of the basic oracle for G(·, y), Nh (τh, H1)Kh (ε2, σ2) calls of the basic oracle for h, and constructing exact
oracle for ψ = f requires τf calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in

each iteration of Algorithm 1, used as a building block in Algorithm 2, to find
(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution

to the auxiliary problem (2.5), where σ̃(2) (ε2, σ2) , ε̃
(2)
f (ε2) satisfy inequalities (2.25), (2.26). For the particular

definitions of ϕ, ψ (3.32) in this Loop, this problem has the following form:

xtl+1 = arg min
u∈Rdx

{〈∇ϕδ(2),2Lϕ(x
md
l), x− xmdl 〉+ ψ(x) +

H2

2
‖x− xmdl ‖22} (3.33)

= arg min
x∈Rdx

{
〈∇gδ(2),2Lg(x

md
l), x− xmdl 〉+ f(x) +

H2

2
‖x− xmdl ‖2

}
, (3.34)

where g(x) = maxy∈R
dy

{
G(x, y) + h(y)− H1

2 ‖y − ymdk ‖2
}
, Lg = LG+2

L2
G

H1+µy
. Below, in the next paragraph ”Loop 3”,

we explain how to solve this auxiliary problem to obtain its(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution.

To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it to guarantee that
we obtain an (ε′2, σ

′
2)-solution of the auxiliary problem (3.20). This requires one time to solve the prob-

lem (3.25), which, by Assumption 2 has the same cost as evaluating inexact oracle for the function ϕ. Further,

we need O

((
1 +

(
H2

µϕ+µψ

) 1
2

)
log ε−1

2

)
= O

((
1 +

(
H2

µx

) 1
2

)
log ε−1

2

)
calls to the inexact oracles for ϕ and

for ψ, and the same number of times solving the auxiliary problem (3.34). Combining this oracle complexity
with the cost of calculating inexact oracles for ϕ and for ψ, we obtain that solving problem (3.24) requires

O

((
1 +

(
H2

µx

) 1
2

)
log ε−1

2

)
τf calls of the basic oracle for f , O

((
1 +

(
H2

µx

) 1
2

)
log ε−1

2

)
N y
G (τG, H1)KyG (ε2, σ2)

calls of the basic oracle for G(x, ·), O
((

1 +
(
H2

µx

) 1
2

)
log ε−1

2

)
τG calls of the basic oracle for G(·, y),

O

((
1 +

(
H2

µx

) 1
2

)
log ε−1

2

)
Nh (τh, H1)Kh (ε2, σ2) calls of the basic oracle for h. The only remaining thing is

to provide an inexact solution to problem (3.34) and, next, we move to Loop 3 to explain how to guarantee

this. Note that we need to solve problem (3.34) O

((
1 +

(
H2

µx

) 1
2

)
log ε−1

2

)
times.

Loop 3
As mentioned in the previous Loop 2, in each iteration of Algorithm 2 in Loop 2 we need to find many times
an (ε3, σ3)-solution of the auxiliary problem (3.34), where we denoted for simplicity σ3 = σ̃(2) (ε2, σ2) and

ε3 = ε̃
(2)
f (ε2). To solve problem (3.34), we would like to apply Algorithm 2 with

ϕ = f(x), ψ = 〈∇gδ(2),2Lg(x
md
l), x− xmdl 〉+ H2

2
‖x− xmdl ‖2, (3.35)

where g(x) = maxy∈R
dy

{
G(x, y) + h(y)− H1

2 ‖y − ymdk ‖2
}
, Lg = LG + 2

L2
G

H1+µy
.

22 Vladislav Tominin 1 et al.

Goal ϕ, ψ µ in Th.4

Iteration number

of Algorithm 1

(Th. 4)

Each iteration

requires

Loop 1
(ε, σ)-solution

of problem (3.3)
(3.19) µy Õ

(
1 +

√
H1/µy

) Find (ε1, σ1)-solution of (3.20)

and calculate
(
δ(1) , Lψ

)
-oracle of ψ(y)

Loop 2
(ε1, σ1)-solution

of problem (3.24)
(3.32) µx Õ(1 +

√
H2/µx)

Find (ε2, σ2)-solution of (3.34)

and calculate
(
δ(2), Lϕ

)
-oracle of ϕ(x)

Loop 3
(ε2, σ2)-solution

of problem (3.34)
(3.35) H2 Õ(1 +

√
H3/H2) Find (ε3, σ3)-solution of (3.36)

Table 4: Summary of the three loops of the general framework described above.

The function ϕ is µx-strongly convex, Lf -smooth and its exact gradient is available. The function ψ is,
clearly,H2-strongly convex,H2-smooth and its exact gradient is available. Also we can obtain the exact gradient
for the function ϕ + ψ. Thus, we can apply Algorithm 2 with parameter H = H3 ≥ Lf , which will be chosen
later, to solve problem (3.34). The first main assumption of Theorem 4, clearly, holds. At the same time,
constructing exact oracle for ϕ = f requires τf calls of the basic oracle for f . At the same time, no calls to the
oracle for G(·, y),G(x, ·), h are needed.

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in

each iteration of Algorithm 1, used as a building block in Algorithm 2, to find
(
ε̃
(3)
f (ε3) , σ̃

(3) (ε3, σ3)
)
-solution

to the auxiliary problem (2.5), where σ̃(3) (ε3, σ3) , ε̃
(3)
f (ε3) satisfy inequalities (2.25), (2.26). For the particular

definitions of ϕ, ψ in (3.35) in this Loop, this problem has the following form:

utm+1 = arg min
u∈Rdx

{〈∇ϕ(umdm), u− umdm 〉+ ψ(u) +
H3

2
‖u− umdm ‖22}

= arg min
u∈Rdx

{〈∇f(umdm), u− umdm 〉+ 〈∇gδ(2),2Lg(x
md
l), u− xmdl 〉+ H2

2
‖u− xmdl ‖2 + H3

2
‖u− umdm ‖22}, (3.36)

where g(x) = maxy∈R
dy

{
G(x, y) + h(y)− H1

2 ‖y − ymdk ‖2
}
, Lg = LG+2

L2
G

H1+µy
. This quadratic auxiliary prob-

lem (3.36) can be solved explicitly and exactly since at the point it needs to be solved, ∇gδ(2),2Lg(xmdl) is

already calculated. Thus, the second main assumption of Theorem 4 is satisfied with σ̃(3) (ε3, σ3) = 0 and

ε̃
(3)
f (ε3) = 0, which clearly satisfy (2.22) and (2.23).

To summarize Loop 3, both main assumptions of Theorem 4 hold and we can use it to guarantee that

we obtain an (ε3, σ3)-solution of the auxiliary problem (3.34). This requires O

((
1 +

(
H3

µϕ+µψ

) 1
2

)
log ε−1

3

)
=

O

((
1 +

(
H3

H2

) 1
2

)
log ε−1

3

)
calls to the inexact oracles for ϕ and for ψ, and the same number of times solving

the auxiliary problem (3.36). Combining this oracle complexity with the cost of calculating inexact oracles for

ϕ and for ψ, we obtain that solving problem (3.34) requires O

((
1 +

(
H3

H2

) 1
2

)
log ε−1

3

)
τf calls of the basic

oracle for f .

Accelerated Methods for Saddle-Point Problems 23

3.3 Complexity of the general framework

Below we formally finalize in Theorem 5 the analysis of the general framework by carefully combining the
bounds obtained in Loop 1-Loop 3 to obtain the final bounds for the total number of oracle calls for each part
f , G, h of the objective in problem (3.1). We will use Theorem 5 in the following sections to obtain complexity
results for problems with structure as in (1.1) and (1.2).

Theorem 5 Let Assumptions 1, 2, 3 hold. Then, execution of the general optimization framework described
in Loop 1-Loop 3 with

H1 = 2LG, H2 = 2

(
LG +

2L2
G

µy +H1

)
, H3 = 2Lf

generates an (ε, σ)-solution to the problem (3.1) in the sense of Definition 4. Moreover, for the number of basic
oracle calls it holds that

Number of calls of basic oracle Of for f is :

Õ

((
1 +

√
LG
µy

)(
Nf (τf) +

(
1 +

√
LG
µx

)(
1 +

√
Lf
LG

)
· τf
))

, (3.37)

Number of calls of basic oracle Oh for h is :

Õ

((
1 +

√
LG
µy

)(
τh +

(
1 +

√
LG
µx

)
Nh (τh, 2LG)

))
, (3.38)

Number of calls of basic oracle OxG for G(·, y) is :

Õ

((
1 +

√
LG
µy

)(
N x
G (τG) +

(
1 +

√
LG
µx

)
τG

))
, (3.39)

Number of calls of basic oracle OyG for G(x, ·) is :

Õ

((
1 +

√
LG
µy

)(
τG +

(
1 +

√
LG
µx

)
N y
G (τG, 2LG)

))
. (3.40)

Proof By construction, as an output of Loop 1 we obtain an (ε, σ)-solution to the problem (3.1) according to
Definition 4.

We prove the estimates for the numbers of oracle calls in two steps. The first step is to formally prove that
in each loop the dependence of the number of oracle calls on the target accuracy ε and a confidence level σ
is logarithmic. The second step is to multiply the estimates for the number of oracle calls between loops and
choose the parameters H1, H2, H3.

Step 1. Polynomial dependence. The goal of this technical step is to prove that

εi(ε) = poly (ε) , σi (ε, σ) = poly (ε, σ) , σ̃(i) (ε, σ) = poly (ε, σ) , σ
(i)
0 (ε, σ) = poly (ε, σ) , (3.41)

ε̃
(i)
f (ε) = poly (ε) , δ(i) (ε) = poly (ε) , ε′2 = poly (ε) , σ′

2 = poly (ε, σ) , δ̄(ε2) = poly (ε) , σ̄0(σ2) = poly (ε, σ)

where i = 1, 2, 3. For i = 1, according the polynomial dependencies (2.22), (2.23), (2.25), (2.26) we obtain the
polynomial dependencies

ε1(ε) = poly (ε) , σ1 (ε, σ) = poly (ε, σ) , σ̃(1) (ε, σ) = poly (ε, σ) , σ
(1)
0 (ε, σ) = poly (ε, σ) ,

ε̃
(1)
f (ε) = poly (ε) , δ(1) (ε) = poly (ε) .

24 Vladislav Tominin 1 et al.

Now using that ε′2 = ε̃
(1)
f , σ′

2 = σ̃(1) and (3.27), (3.28) we have that ε2 (ε) = poly (ε) , σ2 (ε, σ) = poly (ε, σ).

Further, by (3.26), δ̄(ε) = poly (ε) , σ̄0 (ε, σ) = poly (ε, σ). Using the same argument as for i = 1, according
the polynomial dependencies (2.22), (2.23), (2.25), (2.26) we obtain the polynomial dependencies

ε2(ε) = poly (ε) , σ2 (ε, σ) = poly (ε, σ) , σ̃(2) (ε, σ) = poly (ε, σ) , ε̃
(2)
f (ε) = poly (ε) ,

δ(2) (ε) = poly (ε) , σ
(2)
0 (ε, σ) = poly (ε, σ) .

Taking into account that ε3 = ε̃
(2)
f , σ3 = σ̃(2), the polynomial dependencies (2.22), (2.23), (2.25),(2.26) we

obtain

ε3(ε) = poly (ε) , σ3 (ε, σ) = poly (ε, σ) , σ̃(3) (ε, σ) = poly (ε, σ) , σ
(3)
0 (ε, σ) = poly (ε, σ) ,

ε̃
(3)
f (ε) = poly (ε) , δ(3) (ε) = poly (ε) .

This finishes the proof of polynomial dependence. Thus, due to (3.41) in each loop when Assumptions 2, 3
are applied, the dependencies KyG,Kh,KxG,Kf have only logarithmic dependence on the target accuracy ε and
confidence level σ, i.e.

KyG (ε, σ) = Õ(1), Kh (ε, σ) = Õ(1), KxG (ε, σ) = Õ(1), Kf (ε, σ) = Õ(1),

O(log ε−1
1) = Õ(1), O(log ε−1

2) = Õ(1), O(log ε−1
3) = Õ(1).

Step 2. Final estimates. We have already counted the number of oracles calls for each oracle in each loop
Loop 1-Loop 3, see the last paragraph of the description of each loop. We start with the number of basic oracle
calls of f , which is called in each step of all the three loops. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
Nf (τf)Kf (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
τf

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

))
·
(
Õ

(
1 +

(
H3

H2

) 1
2

)
τf

)

= Õ

((
1 +

√
H1

µy

)(
Nf (τf) +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
· τf
))

,

where we used that Kf (ε, σ) = Õ(1).
The basic oracle of h is called in each step of Loop 1 and Loop 2. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τh + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
Nh (τh, H1)Kh (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)
Nh (τh, H1)

))
,

where we used that Kh (ε, σ) = Õ(1).

Accelerated Methods for Saddle-Point Problems 25

The basic oracle of G(·, y) is called in each step of Loop 1 and Loop 2. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
N x
G (τG)KxG (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
τG

)

= Õ

((
1 +

√
H1

µy

)(
N x
G (τG) +

(
1 +

√
H2

µx

)
τG

))
,

where we used that KxG (ε, σ) = Õ(1).
Finally, the basic oracle of G(x, ·) is called in each step of Loop 1 and Loop 2. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τG + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
N y
G (τG, H1)KyG (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)
N y
G (τG, H1)

))
,

where we used that KyG (ε2, σ2) = Õ(1).
The final estimates are obtained by substituting the constants H1, H2, H3 given by

H1 = 2LG, H2 = 2

(
LG +

2L2
G

µy +H1

)
≤ 2

(
LG +

2L2
G

H1

)
= 4LG, H3 = 2Lf .

4 Accelerated Method for Saddle-Point Problems

In this section, we consider problem (1.1) which is problem (3.1) with a specific finite-sum structure of the
function h and our goal is to obtain its (ε, σ)-solution. To get the final estimates for the number of oracles
calls, we need to satisfy Assumptions 1, 2, 3 which are formulated in Section 3 where we construct our general
framework. So, the plan of this section is first to prove Lemma 4 and Corollary 2, which guarantee that
Assumptions 2, 3 hold. To satisfy Assumption 2 we use a two-loop procedure with Algorithm 2 and stochastic
variance reduction method to solve problem (3.17) in order to use the finite-sum structure of the function h
and avoid expensive calculation of the gradient of the whole sum in each iteration. As a corollary, we also show
how to satisfy Assumption 3. Then, we obtain final estimates for the setting of this section by combining the
complexities to satisfy Assumptions 2, 3 with the estimates in Theorem 5.

4.1 Problem statement

In this section we consider optimization problem of the form (1.1):

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} , h(y) :=
1

mh

mh∑

i=1

hi(y) (4.1)

and develop accelerated optimization methods for its solution under the following assumptions.

Assumption 4 1. Function f(x) is Lf -smooth and µx-strongly convex.

26 Vladislav Tominin 1 et al.

2. Function G(x, y) is LG-smooth, i.e. for each (x1, x2), (y1, y2) ∈ R
dx × R

dy

‖∇G(x1, x2)−∇G(y1, y2)‖ ≤ LG‖(x1, x2)− (y1, y2)‖. (4.2)

3. mh ≥ 1 and each function hi(x), i ∈ 1, . . . ,mh is Lih-smooth and convex, function h(y) is µy-strongly
convex. We also define Lh = 1

mh

∑mh

i=1 L
i
h in this case.

To fit Assumption 1 we consider the full gradient oracles ∇xG(x, y), ∇yG(x, y), ∇f(x) as the basic oracles
OxG, O

y
G, Of respectively, and the stochastic gradient oracle ∇hi(y) as the basic oracle Oh. Then Assumption 4

guarantees that Assumption 1 holds with

τf = τG = 1, τh = mh. (4.3)

4.2 Preliminaries

We start with two auxiliary results, which show how Assumptions 2, 3 can be satisfied in the setting of
this section. The first lemma provides complexity for inexact solution of maximization problem (3.17) and the
complexity of finding an inexact oracle for function g defined in the same equation.

Lemma 4 Let the function g be defined via maximization problem in (3.17), i.e.

g(x) = max
y∈R

dy

{
G(x, y)− h(y)− H

2
‖y − y0‖2

}
, (4.4)

where G(x, y), h(y) are according to (4.1) and satisfy Assumption 4, y0 ∈ R
dy . Assume also that that mh(H +

2LG + µy) ≤ Lh and H + µy ≤ 4LG. Then, organizing computations in two loops and applying Algorithm 2
in the outer loop and accelerated variance reduction method L-SVRG from [29] in the inner loop, we guarantee
Assumption 2 with τG = 1 basic oracle calls for G(·, y) and the following estimates for the number of basic
oracle calls for G(x, ·) and h respectively

N y
G (τG, H) = O

(
1 +

√
LG/(H + µy)

)
, (4.5)

Nh (τh, H) = O
(√

τhLh/(H + µy)
)
. (4.6)

Proof To satisfy Assumption 2 we need to provide an (δ (ε) /2, σ0 (ε, σ))-solution to the problem (4.4) and
(δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g in (4.4), where Lg = LG + 2L2

G/(µy +H).
By Lemma 2 with F (x, y) = G(x, y), w(y) = h(y) + H

2 ‖y − y0‖2, δ = δ (ε) and σ0 = σ0 (ε, σ) applied to the
problem (4.4), if we find a (δ/2, σ0)-solution ỹδ/2(x) of the problem (4.4), then ∇xG

(
x, ỹδ/2(x)

)
is (δ, σ0, 2Lg)-

oracle of g and its calculation requires τG = 1 calls of the oracle ∇xG(·, y). To finish the proof, we now focus
on obtaining a (δ/2, σ0)-solution ỹδ/2(x) of the problem (4.4), for which we construct a two-loop procedure
described below.

Loop 1
The goal of Loop 1 is to find an (δ (ε) /2, σ0 (ε, σ))-solution of problem (4.4) as a maximization problem in y.
To obtain such an approximate solution, we change the sign of this optimization problem and apply Algorithm
2 with

ϕ = −G(x, y), ψ = h(y) +
H

2
‖y − y0‖2. (4.7)

Function ϕ is convex and has LG-Lipschitz continuous gradient, function ψ is H + µy-strongly convex and
has Lh +H-Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and parameter

Accelerated Methods for Saddle-Point Problems 27

H1 ≥ 2LG, which will be chosen later, to solve problem (4.4). To satisfy the conditions of Theorem 4, which
gives the complexity of Algorithm 2, we, first, observe that the oracles of ϕ and ψ are exact and, second,
observe that we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to find an(
ε̃
(1)
f (δ/2) , σ̃(1) (δ/2, σ0)

)
-solution to the auxiliary problem (2.5), which in this case has the following form:

ztk+1 = arg min
z∈R

dy

{〈∇ϕ(zmdk), z − zmdk 〉+ ψ(z) +
H1

2
‖z − zmdk ‖22}

= arg min
z∈R

dy

{−〈∇zG(x, zmdk), z − zmdk 〉+ h(z) +
H

2
‖z − y0‖2 + H1

2
‖z − zmdk ‖22}, (4.8)

where σ̃(1) (δ/2, σ0) , ε̃
(1)
f (δ/2) need to satisfy inequalities (2.25), (2.26). Below, in the paragraph ”Loop 2”, we

explain how to solve this auxiliary problem by a variance reduction method in such a way that these inequalities
hold.

To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee that we
obtain an (δ/2, σ0)-solution of problem (4.4). Due to polynomial dependencies δ (ε) = poly (ε), σ0 (ε, σ) =

poly (ε, σ) this requires Õ

(
1 +

(
H1

µϕ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls to the (exact) oracles for ϕ and

for ψ, and the same number of times solving the auxiliary problem (4.8). Combining this oracle complexity
with the cost of calculating (exact) oracles for ϕ and for ψ, we obtain that solving problem (4.4) requires

Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls of the basic oracle for G(x, ·) and Õ

(
mh +mh

(
H1

µy+H

) 1
2

)
of the basic oracles for

h, i.e. stochastic gradients ∇hi. The only remaining thing is to provide an inexact solution to problem (4.8)
and, next, we move to Loop 2 to explain how to guarantee this. Note that we need to solve problem (4.8)

Õ

(
1 +

(
H1

µy+H

) 1
2

)
times.

Loop 2
We solve problem (4.8) by the algorithm L-SVRG proposed in [29], which complexity is stated in Lemma 18,
see Appendix D. As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need
many times to find an (ε2, σ2)-solution of the auxiliary problem (4.8), where for simplicity we denote σ2 =

σ̃(1) (δ/2, σ0) and ε2 = ε̃
(1)
f (δ/2).

To obtain such an approximate solution, we apply L-SVRG from [29] with (see Lemma 18 from Appendix D)

ϕ =
1

mh

mh∑

i=1

(
hi(z) +

H

2
‖z − y0‖2 + H1

2
‖z − zmdk ‖22

)

︸ ︷︷ ︸
ϕi(z)

, ψ = −〈∇zG(x, zmdk), z − zmdk 〉. (4.9)

Functions ϕi are convex and have Lih +H +H1-Lipschitz continuous gradient for all i = 1, . . . ,mh, function ψ
is convex, 0-smooth and prox-friendly. Also function ϕ is µy+H+H1-strongly convex. Thus, all the conditions
of Lemma 18 from Appendix D are satisfied and we can apply L-SVRG from [29] to solve problem (4.8). From

this lemma we get an estimate Õ
(
mh +

√
mh(Lh+H+H1)
µy+H+H1

)
for the number of calls of the basic oracle for h.

To summarize Loop 2, the assumptions of Lemma 18 from Appendix D hold and we can use it to guarantee
that we obtain an (ε2, σ2)-solution of problem (4.8). According to the polynomial dependences (2.25), (2.26)
we obtain that

σ2 = σ̃(1) (δ/2, σ0) = poly(δ/2, σ0), ε2 = ε̃
(1)
f (δ/2, σ0) = poly(δ/2, σ0).

28 Vladislav Tominin 1 et al.

Using conditions δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) in the formulation of Asumption 2 we obtain that the
dependencies

σ2 (ε, σ) , σ̃
(1) (ε, σ) , ε2 (ε, σ) , ε̃

(1)
f (ε, σ)

are polynomial. Then, we can use notation Õ(·) without specifying what precision we mean and implying that
the logarithmic part depends on the initial ε, σ. Finally, according to Lemma 18 from Appendix D an (ε2, σ2)-

solution of problem (4.8) requires Õ
(
mh +

√
mh(Lh+H+H1)
µy+H+H1

)
calls of the basic oracle for h, i.e. stochastic

gradients ∇hi, and the same number of times solving the auxiliary problem of the form argminy{ψ(y) +
1
2α‖y − ȳ‖22}. This problem is solved explicitly since ψ(y) is a linear function.

Combining the estimates of both loops
Combining the estimates of the above paragraph ”Loop 1” and paragraph ”Loop 2” we see that, finding a point
ỹδ/2(x) which is an (δ (ε) /2, σ0 (ε, σ))-solution to the problem (4.4) requires the following number of calls of
the basic oracles of G(x, ·) and h respectively

Õ
(
1 +

√
H1/(H + µy)

)
, (4.10)

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2) (4.11)

= Õ

(
mh +mh

√
H1/(H + µy) +

(
1 +

√
H1/(H + µy)

)(
mh +

√
mh(Lh +H +H1)

µy +H +H1

))
.

Finding (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g by calculating ∇xG
(
x, ỹδ/2(x)

)
requires additionally τG = 1 calls of

the basic oracle for G(·, y). Since in Assumption 2 we denote the dependence on the target accuracy ε and
confidence level σ by a separate quantities denoted by K(ε, σ) and in this case it is logarithmic, choosing
H1 = 2LG we get the final estimates for N y

G and Nh to guarantee that Assumption 2 holds:

N y
G = O

(
1 +

√
LG/(H + µy)

)
, (4.12)

Nh = O

(
mh +

(
1 +

√
2LG/(H + µy)

)(
mh +

√
mh(Lh +H + 2LG)

µy +H + 2LG

))
=

O

(
mh +

(
1 +

√
2LG/(H + µy)

)(
mh +

√
mhLh

µy +H + 2LG
+

√
mh(H + 2LG)

µy +H + 2LG

))
=

O

(
mh +

(
1 +

√
2LG/(H + µy)

)(
mh +

√
mhLh

µy +H + 2LG

))
=

O

(
mh +

√
2LG/(H + µy)

√
mhLh
2LG

)
=

O

(
mh +

√
mhLh
H + µy

)
= O

(√
mhLh/(H + µy)

)
, (4.13)

where we used that, by the assumptions of this Lemma, 1 ≤ 4LG/(H + µy), mh(H + 2LG + µy) ≤ Lh and
∀a, b ≥ 0

√
a+ b ≤ √

a+
√
b. ⊓⊔

By changing the variables x and y in Lemma 4 and choosing H = 0 we obtain the simple Corollary 2 which
ensures Assumption 3.

Accelerated Methods for Saddle-Point Problems 29

Corollary 2 Let the function r be defined via maximization problem in (3.18), i.e.

r(y) = min
x∈Rdx

{G(x, y) + f(x)} , (4.14)

where G(x, y), f(y) are according to (4.1) and satisfy Assumption 4. Assume also that 2LG+µx ≤ Lf and µx ≤
4LG. Then, organizing computations in two loops and applying Algorithm 2 in the outer loop and accelerated
variance reduction method L-SVRG from [29] in the inner loop, we guarantee Assumption 3 with τG = 1 basic
oracle calls for G(x, ·) and the following estimates for the number of basic oracle calls for G(·, y), f respectively

N x
G (τG) = O

(
1 +

√
LG/µx

)
, (4.15)

Nf (τf) = O

(√
Lf/µx

)
. (4.16)

4.3 Final estimates

We are now in a position to state the final result of this section for the complexity estimates when solving
problem (4.1). Assumption 4 with (4.3) guarantee that Assumption 1 holds. Lemma 4 and Corollary 2 guarantee
that Assumptions 2, 3 hold. Thus, all the conditions of Theorem 5 are satisfied and we obtain the following
result for solving problem (4.1) with our system of inner-outer loops.

Theorem 6 Assume that for problem (4.1) Assumption 4 holds and additionally mh(4LG+µy) ≤ Lh, 2LG+
µx ≤ Lf , µy ≤ LG, µx ≤ LG. Then the described in Section 3 general framework combined with the algorithms
described in the previous subsection find an (ε, σ)-solution to problem (4.1) with the following number of basic
oracle calls

∇f -oracle calls : Õ

(√
LGLf
µxµy

)
, (4.17)

∇hi-oracle calls : Õ

(√
mhLGLh
µxµy

)
, (4.18)

∇xG-oracle calls : Õ

(√
L2
G

µxµy

)
, (4.19)

∇yG-oracle calls : Õ

(√
L2
G

µxµy

)
. (4.20)

Proof Assumption 4 with (4.3) guarantee that Assumption 1 holds. Further, assumption µy ≤ LG and the
choice H = 2LG guarantee that µy +H ≤ 4LG. This inequality, assumption that mh(4LG+µy) ≤ Lh and the
choice H = 2LG allow to apply Lemma 4 and conclude that Assumption 2 holds with the number of oracle calls
given by (4.5) and (4.6). Assumptions 2LG+µx ≤ Lf and µx ≤ LG by Corollary 2 guarantee that Assumption
3 holds with the number of oracle calls given by (4.15) and (4.16). Applying Theorem 5 and combining its
complexity estimates, we obtain the final complexity bounds as follows.

Number of basic oracle calls of f :

Õ

((
1 +

√
LG
µy

)(√
Lf
µx

+

(
1 +

√
LG
µx

)(
1 +

√
Lf
LG

)))
= Õ

((√
LG
µy

)(√
Lf
µx

+

(√
LG
µx

)(√
Lf
LG

)))

= Õ

((√
LfLG
µxµy

))
,

30 Vladislav Tominin 1 et al.

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx and 1 ≤ Lf/LG.
Number of basic oracle calls of h:

Õ

((
1 +

√
LG
µy

)(
mh +

(
1 +

√
LG
µx

)√
mhLh

2LG + µy

))
= Õ

((√
LG
µy

)(
mh +

(√
LG
µx

)(√
mhLh

2LG + µy

)))
=

Õ

max

mh

√
LG
µy

︸ ︷︷ ︸
=Õ

(√
mhLh/µy

)

,

√
mhLGLh
µxµy

= Õ

(√
mhLGLh
µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx and

mh(4LG + µy) ≤ Lh ⇒
√
mhLG ≤

√
Lh

Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG
µy

)(
1 +

√
LG
µx

+

(
1 +

√
LG
µx

)))
= Õ

(√
L2
G

µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx.
Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG
µy

)(
1 +

(
1 +

√
LG
µx

)(
1 +

√
LG

2LG + µy

)))

= Õ

((
1 +

√
LG
µy

)(
1 +

√
LG
µx

))
= Õ

(√
L2
G

µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx. ⊓⊔

An important particular case, for which we state the following corollary, is when does not have the finite-
sum, i.e. mh = 1.

Corollary 3 (Particular case mh = 1) Let the assumptions of Theorem 6 hold and additionally mh = 1.
Then the described in Section 3 general framework combined with the algorithms described in the previous
subsection find an (ε, σ)-solution to problem (4.1) with the following number of basic oracle calls

∇f -oracle calls : Õ

(√
LGLf
µxµy

)
, (4.21)

∇h-oracle calls : Õ

(√
LGLh
µxµy

)
, (4.22)

∇xG-oracle calls : Õ

(√
L2
G

µxµy

)
, (4.23)

∇yG-oracle calls : Õ

(√
L2
G

µxµy

)
. (4.24)

Accelerated Methods for Saddle-Point Problems 31

5 Accelerated Methods for Saddle-Point Problems with Finite-Sum Structure

In this section, we consider problem (1.2), which is problem (3.1) with a specific finite-sum structure of
the function G. The algorithms in this section are, in fact, deterministic, i.e. correspond to confidence levels
σ = 0. Thus, our goal is to obtain an ε-solution of problem (1.2). As in the previous section, we use the general
framework described in Section 3, but in a simpler setting of all the confidence levels σ being equal to zero. To
obtain the final estimates for the number of basic oracles calls, we need to satisfy Assumptions 1, 2, 3 which
are formulated in Section 3, where we construct our general framework. The proof that these assumptions hold
and the proof of the resulting complexity bounds follow mostly the same lines as for the case of problem (4.1)
under Assumption 4 in the previous section, but are rather technical. Thus, in this section we only state the
main results and the proofs are deferred to Appendix F and Appendix G.

5.1 Problem statement

In this section we consider optimization problem of the form (1.2):

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} , G(x, y) :=
1

mG

mG∑

i=1

Gi(x, y). (5.1)

and develop accelerated optimization methods for its solution under the following assumptions.

Assumption 5 1. Function f(x) is µx-strongly convex, and function h(y) is µy-strongly convex.
2. mG ≥ 1 and each function Gi(x, y), i ∈ 1, . . . ,mG is convex in x and concave in y, and LiG-smooth, i.e.

for each x = (x1, x2), y = (y1, y2) ∈ R
dx × R

dy

‖∇Gi(x1, x2)−∇Gi(y1, y2)‖ ≤ LiG‖(x1, x2)− (y1, y2)‖. (5.2)

We also define LG = 1
mG

∑mG

i=1 L
i
G.

3. One of the following three statements holds for the functions f(x), h(y)
(a) Function f(x) is Lf -smooth and function h(y) is Lh-smooth;
(b) Function f(x) is Lf -smooth, function h(y) is Lh-smooth and prox-friendly;

Under Assumption 5.2 it is easy to see that the function G(x, y) in problem (5.1) is LG-smooth. Indeed,

‖∇G(x1, x2)−∇G(y1, y2)‖ ≤ 1

mG

mG∑

i=1

‖∇Gi(x1, x2)−∇Gi(y1, y2)‖

≤ 1

mG

mG∑

i=1

LiG‖(x1, x2)− (y1, y2)‖ = LG‖(x1, x2)− (y1, y2)‖.

where x = (x1, x2), y = (y1, y2) ∈ R
dx × R

dy . To further fit Assumption 1 we consider the full gradient
oracles ∇h(y), ∇f(x) as the basic oracles Oh, Of respectively, and the stochastic gradient oracle ∇xGi(x, y),
∇yGi(x, y) as the basic oracles OxG, O

y
G respectively. Then Assumption 5 guarantees that Assumption 1 holds

with

τf = τh = 1, τG = mG. (5.3)

32 Vladislav Tominin 1 et al.

5.2 Complexity estimates

In this section we consider problem (5.1) under one of the two different Assumptions 5.3(a) or (b) and
mostly follow the lines of derivations described in Section 4 with appropriate changes caused by the different
problem statement. In particular, we change the order of the loops in the general framework described in the
Section 3 as well as in the proof of Lemma 4 and Corollary 2 depending on which is larger Lh or LG and Lf
or LG. This eventually allows to avoid assumptions of the form 4LG + µy ≤ Lh, 2LG + µx ≤ Lf , which are
used in Theorem 6. The proof of the resulting complexity bounds follows mostly the same ideas as for the case
of problem (4.1) under Assumption 4, but is rather technical. Thus, in this section we only state the result
and the proofs are deferred to appendices. In Appendix F we propose a variation of the general framework
described in Section 3, but with the change of the order of Loop 2 and Loop 3. As a result, we prove Theorem
17 which is a counterpart of Theorem 5. In Appendix G we prove Lemma 19 and Corollary 7, which generalize
Lemma 4 and Corollary 2 in two aspects. First, we consider the function G given in (5.1). Second, we do not
use the assumption mh(H + 2LG + µy) ≤ Lh of Lemma 4 and 2LG + µx ≤ Lf of Corollary 2.

We start with considering problem (5.1) under Assumption 5.1,2,3(a). This assumption combined with (5.3)
guarantees that Assumption 1 holds. Lemma 19 and Corollary 7 guarantee that Assumptions 2, 3 hold. This
allows to combine Lemma 19 and Corollary 7 with either Theorem 5 if Lf ≥ LG, or Theorem 17 if Lf ≤ LG.
The resulting complexity estimates for solving problem (5.1) with our system of inner-outer loops are given in
the next theorem which is proved in Appendix G. Notice that in this case the algorithm is fully deterministic
and we find an ε-solution to problem (5.1).

Theorem 7 Assume that for problem (5.1) Assumption 5.1,2,3(a) holds and additionally µx ≤ LG, µx ≤ Lf
and µy ≤ LG. Then using general framework from Section 3, general framework from Appendix F, Lemma 19
and Corollary 7 for each relation between Lh, LG and Lf , LG respectively we provide an algorithm, which finds
an ε-solution to problem (5.1) with the following number of basic oracle calls

∇f -oracle calls : Õ

(√
LGLf
µxµy

)
, (5.4)

∇h-oracle calls : Õ

(
max

{√
LGLh
µxµy

,

√
L2
G

µxµy

})
, (5.5)

∇xGi-oracle calls : Õ

(
mG

√
L2
G

µxµy

)
, (5.6)

∇yGi-oracle calls : Õ

(
mG

√
L2
G

µxµy

)
. (5.7)

We prove this theorem in Appendix G.
We would like to emphasize that even though we do not use variance reduction techniques in the algorithm

described in Theorem 7, under assumption 5.1,2,3(a) our bounds are better than the bounds obtained by
variance reduction method proposed in [39]. To solve the problem (5.1) by the algorithm of [39], we need to
restate this problem as

min
x∈Rdx

max
y∈R

dy

{
1

mG

mG∑

i=1

(
G̃i(x, y) := f(x) +Gi(x, y)− h(y)

)}

with the objective being LG̃ = max{LG+Lf , LG+Lh}-smooth. The algorithm in [39] does not propose a way
to separate the complexities for different parts of the objective and the resulting number of oracle calls for each

Accelerated Methods for Saddle-Point Problems 33

part is the same

∇f,∇h,∇xGi,∇yGi-oracle calls : Õ

(√
mG

LG̃
min{µx, µy}

)
. (5.8)

Comparing these estimates with the estimates of Theorem 7, we make two important observations.

– Due to our approach with complexity separation the estimates from Theorem 7 on the number of oracle
calls for f and h are always better than the corresponding estimates in (5.8) at least by a factor

√
mG.

– At first sight, the estimates on the number of calls of ∇xGi and ∇yGi from Theorem 7 seem worse than the
corresponding estimates in (5.8) due to the additional factor

√
mG. However, this is not the case, for example,

when Lf or Lh are large enough leading to LG̃ ≫ LG. This can be demonstrated by taking mGLG ≤ Lf ,

then the estimates on the number of calls of ∇xGi and ∇yGi in Theorem 7 become
√
L2
f/µxµy, which is

smaller than the estimates in (5.8).

An interesting open question is whether we can improve the complexity bounds in Theorem 7 by applying
variance reduction methods to ensure Assumptions 2, 3. We conjecture that it is possible to improve the

bounds (5.6) and (5.7) to Õ

(√
mGL

2
G

µxµy

)
.

As a particular case of problem (5.1) we can consider problem (4.1) with mh = 1. This allows to relax the
assumptions mh(4LG + µy) ≤ Lh, 2LG + µx ≤ Lf , µy ≤ LG made in Corollary 3 and obtain the following
corollary of the previous theorem. Notice that again in this case the algorithm is fully deterministic and we
find an ε-solution to problem (4.1).

Corollary 4 Assume that for problem (4.1) Assumption 4 holds and additionally mh = 1, µx ≤ LG, µx ≤ Lf
and µy ≤ LG. Then, using the general framework from Section 3, the general framework from Appendix F and
Lemma 19 with Corollary 7 for each relation between Lh, LG and Lf , LG respectively, we provide an algorithm,
which finds an ε-solution to problem (4.1) with the following number of basic oracle calls

∇f -oracle calls : Õ

(√
LGLf
µxµy

)
, (5.9)

∇h-oracle calls : Õ

(
max

{√
LGLh
µxµy

,

√
L2
G

µxµy

})
, (5.10)

∇xG-oracle calls : Õ

(√
L2
G

µxµy

)
, (5.11)

∇yG-oracle calls : Õ

(√
L2
G

µxµy

)
. (5.12)

We now turn to the problem (5.1) under Assumption 5.1,2,3(b). This assumption combined with (5.3)
guarantees that Assumption 1 holds. The part 3(b) allows a simple construction, which is given in the proof of
Lemma 20 in Appendix G, to guarantee Assumption 2. The main difference with Lemma 19 is that due to the
prox-friendliness of h the second loop is not needed and it is sufficient to apply just Algorithm 2 to solve problem
(3.17) in Assumption 2. Corollary 7 guarantees that Assumptions 3 holds. This allows to combine Lemma 20
and Corollary 7 with either Theorem 5 if Lf ≥ LG, or Theorem 17 if Lf ≤ LG. The resulting complexity
estimates for solving problem (5.1) with our system of inner-outer loops are given in the next theorem which
is proved in Appendix G. Notice that in this case the algorithm is fully deterministic and we find an ε-solution
to problem (5.1).

34 Vladislav Tominin 1 et al.

Theorem 8 Assume that for problem (5.1) Assumption 5.1,2,3(b) holds and additionally µx ≤ LG, µx ≤ Lf
and µy ≤ LG. Then, using the general framework from Section 3, the general framework from Appendix F and
Lemma 20 with Corollary 7 for each relation between Lh, LG and Lf , LG respectively, we provide an algorithm,
which finds an ε-solution to problem (5.1) with the following number of basic oracle calls

∇f -oracle calls : Õ

(√
LGLf
µxµy

)
, (5.13)

∇h-oracle calls : Õ

(√
LG
µy

)
, (5.14)

∇xGi-oracle calls : Õ

(
mG

√
L2
G

µxµy

)
, (5.15)

∇yGi-oracle calls : Õ

(
mG

√
L2
G

µxµy

)
. (5.16)

We prove this theorem in Appendix G.

Remark 3 In this remark using the results from [41] we show how we can utilise our approach to solve the
problems of structured nonsmooth convex finite-sum optimization that appears widely in machine learning
applications, including support vector machines and least absolute deviation.

We consider large-scale regularized nonsmooth convex empirical risk minimization (ERM) of linear predic-
tors in machine learning. Let bi ∈ R

n
x , i = 1, 2, . . . n, be sample vectors with n typically large; fi : R → R,

i = 1, 2, . . . n, be possibly nonsmooth convex loss functions associated with the linear predictor 〈bi, x〉. The
problem we study is:

min
x∈Rdx

max
y∈R

dy

{
1

n

n∑

i=1

fi(〈bi, x〉) +G(x, y)− h(y)

}
. (5.17)

We require that the convex conjugates of the functions fi, defined by f∗
i (zi) := maxξi(ξizi − fi(ξi)), admit

efficiently computable proximal operators. Thus, we can rewrite the function 1
n

∑n
i=1 fi(〈bi, x〉) in the following

way:

1

n

n∑

i=1

fi(〈bi, x〉) = 1

n

n∑

i=1

max
zi

(zi〈bi, x〉 − f∗
i (zi)) = max

z∈Rn

{
〈z,Bx〉 − 1

n

n∑

i=1

f∗
i (zi)

}
(5.18)

where y = (y1, . . . , yn), B = 1
n [b1, . . . , bn]

T . Then by substitution of the equation (5.18) into the problem
(5.17), we obtain:

min
x∈Rdx

{
max
y∈R

dy

{G(x, y)− h(y)}+ max
z∈Rn

{
〈z,Bx〉 − 1

n

n∑

i=1

f∗
i (zi)

}}
. (5.19)

We can use another notation η = (y, z) and rewrite the problem (5.19) as follow:

min
x∈Rdx

{
max

η=(y,z)∈R
dy+n

{
G(x, y)− h(y) + 〈z,Bx〉 − 1

n

n∑

i=1

f∗
i (zi)

}}
, (5.20)

which we can solve using the general framework from Section 3 under the differences assumptions. It is worth
mentioning that the function f∗(z) = 1

n

∑n
i=1 f

∗
i (zi) is separable and admits an efficiently computable proximal

operator. Thus primal-dual problem (5.18) has significantly lower complexity than the saddle-point problem
(5.17). That means we can use primal-dual approach with no care that the saddle-problem (5.20) become more
complex.

△

Accelerated Methods for Saddle-Point Problems 35

6 Accelerated Proximal Variance-Reduction Method for Saddle-Point Problems

In this section we consider problem (1.2) (which is problem (5.1)), but under assumption that f and h are
prox-friendly. This does not allow us to use Algorithm 2 since it requires to evaluate inexact gradients for f and
h (see step 7 of this algorithm). Thus, we exploit that f and h are prox-friendly and utilize proximal variance
reduction methods to avoid calculation of the gradients for these two functions. We start with describing two
building blocks for our algorithm: the Catalyst framework [23] adapted and slightly generalized for our setting
and variance reduction algorithm SAGA proposed in [39], which we also adapt to our setting. The former
algorithm is an optimization algorithm, the latter is designed for saddle-point problems, and we use these
algorithms in the system of inner-outer loops as in the previous sections. Thus, we need to connect the output
of these algorithms with the requirements of outer loops. To do this we prove several technical lemmas. Finally
in the last subsection we collect all the pieces together and describe the loops of our algorithm as well as present
its complexity theorem.

6.1 Problem statement

In this section we consider problem (5.1) under the following assumption.

Assumption 6 1. f(x) is µx-strongly convex, h(y) is µy-strongly convex.
2. Each functions Gi(x, y), i ∈ 1, . . . ,mG is convex-concave and LiG-smooth, i.e. for each (x1, x2), (y1, y2) ∈

R
dx × R

dy

‖∇Gi(x1, x2)−∇Gi(y1, y2)‖ ≤ LiG‖(x1, x2)− (y1, y2)‖. (6.1)

3. f(x), h(y) are prox-friendly (smoothness is not required).

We also use slightly different, more convenient for the setting of this section, and more classical definition
of an inexact solution to problem (5.1).

Definition 5 A point (x̂, ŷ) is called an (ε, σ) solution to the saddle-point problem (5.1), if with probability
at least 1− σ, the following inequality is true

max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} ≤ ε. (6.2)

Note that since the saddle-point problem is strongly-convex-strongly-concave, the quantity in the l.h.s. of (6.2)
is correctly defined.

6.2 Algorithmic Building Blocks

In this subsection we consider the algorithms are used in general algorithm to find an (ε, σ) solution to the
problem (5.1) under the Assumption 6. In each paragraph we describe the problem is solved by this algorithm
with certain assumptions and formulate convergence rate and complexity theorems.

The Catalyst metaalgorithm [23,24]. Let us consider the problem

min
x∈Rdx

{F (x) := ϕ(x) + ψ(x)} (6.3)

under the following assumption:

Assumption 7 1. ϕ(x) is convex;
2. ϕ(x) has Lipschitz continuous derivatives with constant L;

36 Vladislav Tominin 1 et al.

3. ψ(x) is µ-strongly convex (may not be differentiable).

To solve the problem (6.3) under the Assumption 7 we can apply the Catalyst algorithm from [23, 24]. In the
Theorem 13 we show how (εk)k≥0 or (δk)k≥0 are chosen to get optimal complexity of finding an (ε, σ) solution
to this problem which is understood in the sense of Definition 5.

Algorithm 3 Catalyst [23, 24]

1: Input: Initial estimate x0 ∈ Rdx , smoothing parameter H, strong convexity parameter µ, optimization method M and a
stopping criterion based on a sequence of accuracies (εk)k≤0, or (δk)k≤0, or a fixed budget T .

2: Initialize q = µ
µ+H

, xmd0 = x0, α0 =
√
q;

3: while the desired accuracy is not achieved do
4: Find an approximate solution of the following problem using M

xk ≈ argmin
x∈Rdx

{
Sk(x) := ϕ(x) + ψ(x) +

H

2
‖x− xmdk−1‖22

}

using one of the following stopping criteria:

1. absolute accuracy : find xk such that Sk(xk)− Sk(x
∗
k) ≤ εk, where x∗k = arg min

x∈Rdx

Sk(x);

2. relative accuracy : find xk such that Sk(xk)− Sk(x
∗
k) ≤

Hδk
2

‖xk − xmdk−1‖22, where x∗k = arg min
x∈Rdx

Sk(x);

3. fixed budget : run M for T iterations and output xk.

5: Update αk ∈ (0, 1) from equation α2
k = (1 − αk)α

2
k−1 + qαk ;

6: Compute xmdk with Nesterov’s extrapolation step

xmdk = xk + βk(xk − xk−1) with βk =
αk−1(1 − αk−1)

α2
k−1 + αk

7: end while
8: Output: xk (final estimate).

Theorem 9 (Theorem 3.1 from [23])
Choose

εk =
2

9
(F (x0)− F (x∗))(1− ρ)k with ρ ≤ √

q (6.4)

Then, the Catalyst algorithm (Algorithm 3) with absolute accuracy generate iterates (xk)k≥0 such that

F (xk)− F (x∗) ≤ C(1− ρ)k+1(F (x0)− F (x∗)) with C =
8

(
√
q − ρ)2

. (6.5)

Theorem 10 (Proposition 8 from [24])
Choose

δk =

√
q

2−√
q

(6.6)

Then, the Catalyst algorithm (Algorithm 3) with relative accuracy generate iterates (xk)k≥0 such that

F (xk)− F (x∗) ≤ 2

(
1−

√
q

2

)k (
F (x0)− F (x∗)

)
. (6.7)

Accelerated Methods for Saddle-Point Problems 37

Corollary 5 Choose

εk =
2

9
(F (x0)− F (x∗))(1− ρ)k with ρ = 0.9

√
q (6.8)

in the Catalyst algorithm (Algorithm 3) with absolute accuracy, or

δk =

√
q

2−√
q

(6.9)

in the Catalyst algorithm (Algorithm 3) with relative accuracy. Then, after the number of iterations

N = Õ

(
max

{
1,

√
H

µ

})
(6.10)

of the Catalyst algorithm (Algorithm 3) we get xN such that F (xN)− F (x∗) ≤ ε

Proof 1. Absolute accuracy.

By the Theorem 9 the number of iterations N of the Catalyst algorithm (Algorithm 3) with absolute
accuracy to guarantee an accuracy of ε needs to satisfy

F (xk)− F (x∗) ≤ C(1− ρ)N+1(F (x0)− F (x∗)) ≤ C(1− ρ)e−ρN (F (x0)− F (x∗)) ≤ ε, (6.11)

which gives

N =

⌈
1

ρ
ln
C(1− ρ)(F (x0)− F (x∗))

ε

⌉
=

⌈
1

ρ
ln

8(1− ρ)(F (x0)− F (x∗))
(
√
q − ρ)2ε

⌉
(6.12)

Choose ρ = 0.9
√
q

N =

⌈
1

0.9
√
q
ln

8(1− 0.9
√
q)(F (x0)− F (x∗))

(0.1
√
q)2ε

⌉
=

⌈√
µ+H

0.9
√
µ

ln
8(1− 0.9

√
µ/(µ+H))(F (x0)− F (x∗))(H + µ)

0.01µε

⌉
=

Õ

(√
1 +

H

µ

)
= Õ

(
max

{
1,

√
H

µ

})
(6.13)

2. Relative accuracy. By the Theorem 10 the number of iterationsN of the Catalyst algorithm (Algorithm
3) with relative accuracy to guarantee an accuracy of ε needs to satisfy

F (xk)− F (x∗) ≤ 2

(
1−

√
q

2

)N
(F (x0)− F (x∗)) ≤ 2e−

√
q

2
N (F (x0)− F (x∗)) ≤ ε, (6.14)

which gives

N =

⌈
2√
q
ln

2(F (x0)− F (x∗))
ε

⌉
=

⌈
2
√
H + µ√
µ

ln
2(F (x0)− F (x∗))

ε

⌉
=

Õ

(√
1 +

H

µ

)
= Õ

(
max

{
1,

√
H

µ

})
(6.15)

38 Vladislav Tominin 1 et al.

In each iteration of the Catalyst algorithm we need to solve the problem

min
x∈Rdx

Sk(x) = min
x∈Rdx

{
F (x) +

H

2
‖x− xmdk−1‖2

}
(6.16)

where F (x) := ϕ(x) + ψ(x), with an inner method M.
Assume that M is linearly convergent for strongly convex problems with parameter τM according to

S(zt)− S(z∗) ≤ CM(1− τM)t(S(z0)− S(z∗)), (6.17)

in the deterministic case or according to

E[S(zt)− S(z∗)] ≤ CM(1− τM)t(S(z0)− S(z∗)), (6.18)

in the randomized case.

Theorem 11 (Lemma 11 from [24]) Assume further that (εk)k≥0 in the Catalyst algorithm (Algorithm 3)
with absolute accuracy are chosen according to the Corollary 5. At iteration k of this algorithm we consider
the following function (6.16), which we minimize with M, producing a sequence (zt)t≥0. Then, the complexity
Tk = inf{t ≥ 0, Sk(zt)− Sk(z

∗) ≤ εk} satisfies

1. If M is deterministic and satisfies (6.17), we have

Tk(εk) ≤
1

τM
ln

(
CMCk
εk

)
, where Ck = (Sk(z0)− Sk(z

∗
k)). (6.19)

2. If M is randomized and satisfies (6.18), we have

E[Tk(εk)] ≤
1

τM
ln

(
CMCk
εk

)
+ 1, where Ck =

2(Sk(z0)− Sk(z
∗
k))

τM
. (6.20)

Theorem 12 (Corollary 16 from [24]) Assume further that (δk)k≥0 in the Catalyst algorithm (Algorithm
3) with relative accuracy are chosen according to the Corollary 5. At iteration k of this algorithm we consider
the following function (6.16), which we minimize with M, producing a sequence (zt)t≥0. Then, the complexity
Tk = inf{t ≥ 0, Sk(zt)− Sk(z

∗) ≤ Hδk
2 ‖zt − xmdk ‖22} is satisfies

1. If M is deterministic and satisfies (6.17), we have

Tk(δk) ≤
1

τM
ln

(
CMCk
δk

)
where Ck =

4(L+H)

H
. (6.21)

2. If M is randomized and satisfies (6.18), we have

E[Tk(δk)] ≤
1

τM
ln

(
CMCk
δk

)
+ 1, where Ck =

8(L+H)

τMH
. (6.22)

Corollary 6 Assume further that (εk)k≥0 or (δk)k≥0 in the Catalyst algorithm (Algorithm 3) with absolute
or relative accuracy are chosen according to the Corollary 5. At iteration k of this algorithm we consider the
following function (6.16), which we minimize with an randomized method M, producing a sequence (zt)t≥0.
Then, after

1. Absolute accuracy case:

Tk(εkσk) = O

(
1

τM
ln
CMCk
εkσk

)
, (6.23)

where Ck is the constant defined in (6.20).

Accelerated Methods for Saddle-Point Problems 39

2. Relative accuracy case:

Tk(δkσk) = O

(
1

τM
ln
CMCk
δkσk

)
, (6.24)

where Ck is the constant defined in (6.22).

iterations of the randomized method M we get an (εk, σk) solution to the problem (6.16) which is understood
in the sense of Definition 5.

Proof To solve the problem (6.16) we apply an randomized method M.

1. Absolute accuracy.

By the Theorem 11 after Tk(εk) = O
(

1
τM

ln CMCk
εk

)
iterations of the randomized method M we obtain

that we can find zTk(εk) such that

E(Sk(zTk(εk))− Sk(z
∗)) ≤ εk (6.25)

Since Sk(zTk(εk))− Sk(z
∗) ≥ 0, with an arbitrary σk ∈ (0, 1) we can apply Markov inequality:

P(Sk(zTk(εkσk))− Sk(z
∗) ≤ εk) ≥ 1− E(Sk(zTk(εk))− Sk(z

∗))
εk

≥ 1− σk, (6.26)

where
E(Sk(zTk(εk))− Sk(z

∗))
εk

≤ σk → E(Sk(zTk(εk))− Sk(z
∗)) ≤ εkσk. (6.27)

Then, after Tk(εkσk) = O
(

1
τM

ln CMCk
εkσk

)
iterations of the randomized method M we can find (εk, σk)

solution of the problem (6.16) with absolute accuracy.
2. Relative accuracy.

By the Theorem 12 after Tk(δk) = O
(

1
τM

ln CMCk
δk

)
iterations of the randomized method M we obtain

that we can find zTk(δk) such that

E(Sk(zTk(δk))− Sk(z
∗)) ≤ δkH

2
‖zTk(δk)− xmdk−1‖22 (6.28)

Since Sk(zTk(δk))− Sk(z
∗) ≥ 0, with an arbitrary σk ∈ (0, 1) we can apply Markov inequality:

P

(
Sk(zTk(δkσk))− Sk(z

∗) ≤ δkH

2
‖zTk(δkσk)− xmdk−1‖22

)
≥ 1− 2E(Sk(zTk(δkσk))− Sk(z

∗))
δkH‖zTk(δkσk)− xmdk−1‖22

≥ 1− σk,

(6.29)
where

2E(Sk(zTk(δkσk))− Sk(z
∗))

δkH‖zTk(δkσk)− xmdk−1‖22
≤ σk → E(Sk(zTk(δkσk))−Sk(z∗)) ≤

δkσkH

2
‖zTk(δkσk)−xmdk−1‖22 (6.30)

Then, after Tk(δkσk) = O
(

1
τM

ln CMCk
δkσk

)
iterations of the randomized method M we can find an (εk, σk)

solution of the problem (6.16) with relative accuracy, where εk = δkH
2 ‖zTk(δkσk)− xmdk−1‖22.

⊓⊔

Theorem 13 Choose

40 Vladislav Tominin 1 et al.

1.

εk =
2

9
(F (x0)− F (x∗))(1− ρ)k with ρ = 0.9

√
q (6.31)

and

σk ≤
ln 1

1−σ
√
µ+H

0.9
√
µ ln

8(1−0.9
√
µ/(µ+H))(F (x0)−F (x∗))(H+µ)

0.01µε

(6.32)

in the absolute accuracy case.
2.

δk =

√
q

2−√
q

(6.33)

and

σk ≤
ln 1

1−σ
2
√
H+µ√
µ ln 2(F (x0)−F (x∗))

ε

(6.34)

in the relative accuracy case.

Then, after

N = Õ

(
max

{
1,

√
H

µ

})
(6.35)

the number of iterations of the Catalyst algorithm (Algorithm 3) with absolute or relative accuracy, we find
an (ε, σ) solution to the original problem (6.3) under the Assumption 7 which is understood in the sense of
Definition 5.

Proof In each iterations of the Catalyst algorithm we need to solve the problem (6.16) with absolute or relative
accuracy. To solve this problem, we apply an randomized method M and by Corollary 6 we get an (εk, σk)
solution of the problem (6.16). Then, by Corollary 5, after

N =

⌈√
µ+H

0.9
√
µ

ln
8(1− 0.9

√
µ/(µ+H))(F (x0)− F (x∗))(H + µ)

0.01µε

⌉
(6.36)

the number of iterations of the Catalyst algorithm (Algorithm 3) with absolute accuracy or after

N =

⌈
2
√
H + µ√
µ

ln
2(F (x0)− F (x∗))

ε

⌉
(6.37)

the number of iterations of the Catalyst algorithm (Algorithm 3) with relative accuracy, we solve the original

problem with probability
N∏
i=1

(1− σi). Choose σ1 = · · · = σN = σM then, we solve the original problem with

probability

1− σ ≤ (1− σM)N ≤ e−NσM → σM ≤
ln 1

1−σ
N . (6.38)

If we choose (εk)k≥0 according to the Corollary 5 and

σk ≤
ln 1

1−σ
√
µ+H

0.9
√
µ ln

8(1−0.9
√
µ/(µ+H))(F (x0)−F (x∗))(H+µ)

0.01µε

(6.39)

Accelerated Methods for Saddle-Point Problems 41

in the Catalyst algorithm (Algorithm 3) with absolute accuracy or (δk)k≥0 according to the Corollary 5 in the
Catalyst algorithm (Algorithm 3) with relative accuracy and

σk ≤
ln 1

1−σ
2
√
H+µ√
µ ln 2(F (x0)−F (x∗))

ε

. (6.40)

Then, after

N = Õ

(
max

{
1,

√
H

µ

})
(6.41)

the number of iterations of the Catalyst algorithm (Algorithm 3) with absolute or relative accuracy, we find
an (ε, σ) solution of the original problem (6.3) which is understood in the sense of Definition 5. ⊓⊔

The SAGA algorithm. Let us consider the problem

min
x∈Rdx

max
y∈R

dy

{K(x, y) +M(x, y)} . (6.42)

under the following assumption

Assumption 8 1. M is (µx, µy)-strongly convex-concave. Moreover, we assume that we may compute the
proximal operator of M :

proxλM (x′, y′) = arg min
x∈Rdx

max
y∈R

dy

{
λM(x, y) +

µx
2
‖x− x′‖22 −

µy
2
‖y − y′‖22

}
; (6.43)

2. K is convex-concave and has Lipschitz-continuous gradients;
3. The vector-valued function B(x, y) = (∇xK(x, y),−∇yK(x, y)) ∈ R

dx+dy may be split into a family of
vector-valued functions as B =

∑
i∈J

Bi, where the only constraint is that each Bi is Lipschitz-continuous

(with constant Li).

To solve the problem (6.42) under the Assumption 8 we can apply the SAGA algorithm from [39].

Algorithm 4 SAGA: Online Stochastic Variance Reduction for Saddle Points [39]

1: Input: Functions (Ki)i≥0, probabilities (πi)i≥0, smoothness L̄(π) and L, iterate (x0, y0), number of iterations t, number
of updates per iteration (mini-batch size) m.

2: Set λ =
(
max

{
3|J |
2m

− 1, L2 + 3L̄2

m

})−1
;

3: Initialize wi = Bi(x0, y0) for all i ∈ J and W =
∑
i∈J

wi;

4: for l = 1 to t do
5: Sample i1, . . . , im ∈ J from the probability vector (πi)i≥0 with replacement;
6:

(xl, yl) = proxλM

{
(xl−1, yl−1)− λ

(1
µx

0

0 1
µy

)(
W +

1

m

m∑

k=1

{
1

πik
vk − 1

πik
wik

})}
; (6.44)

7: (optional) Sample i1, . . . , im ∈ J uniformly with replacement;
8: (optional) Compute vk = Bik (xl, yl) for k ∈ {1, . . . ,m};
9: Replace W =W −∑m

k=1{wik − vk} and wik = vk for k ∈ {1, . . . , m}.
10: end for
11: Output: Approximate solution (xt, yt).

42 Vladislav Tominin 1 et al.

Theorem 14 (Theorem 2 from [39], Appendix D.2) Under the Assumption 8. After t iterations of the
SAGA algorithm (Algorithm 4) (with the option of resampling when using non-uniform sampling), we have

E‖zt − z∗‖2 ≤ 2

(
1− 1

4

(
max

{
3|J |
2m

, 1 +
L2

µ2
+

3L̄2

mµ2

})−1
)t

‖z0 − z∗‖2

Remark 4 The constants L, L̄, µ depend on the type of the problem. For more details see Appendix A, D of
the Article [39]. We will define these constants for our problem below.

△

Lemma 5 Let us consider the following special case to the problem (6.42) withM(x, y) = f(x)−h(y),K(x, y) =
1
mG

∑mG

i=1Gi(x, y):

min
x∈Rdx

max
y∈R

dy

{
f(x) +

1

mG

mG∑

i=1

Gi(x, y)− h(y)

}
, (6.45)

under the Assumption 6. This problem is satisfy to the Assumption 8.

Proof 1. f(x) is µx-strongly convex, −h(y) is µy-strongly concave, then M(x, y) is (µx, µy) strongly convex-
concave.

proxλM(x′, y′) = arg min
x∈Rdx

max
y∈R

dy

{
λM(x, y) +

µx
2
‖x− x′‖22 −

µy
2
‖y − y′‖22

}
=

arg min
x∈Rdx

max
y∈R

dy

{
λ(f(x)− h(y)) +

µx
2
‖x− x′‖22 −

µy
2
‖y − y′‖22

}
=

(
arg min

x∈Rdx

{
λf(x) +

µx
2
‖x− x′‖22

}
, arg max

y∈R
dy

{
−λh(y)− µy

2
‖y − y′‖22

})
=
(
proxλf (x

′), proxλh(y
′)
)

f(x), h(y) are proximal-friendly, then
(
proxλf (x

′), proxλh(y
′)
)
is easy to compute, then proxλM (x′, y′) is easy

to compute. We have shown that Assumption 8.1 is fulfilled.
2. K(x, y) = 1

mG

∑mG

i=1Gi(x, y) is convex-concave. We have shown that Assumption 8.2 is fulfilled.
3.

B(x, y) = (∇xK(x, y),−∇yK(x, y)) =

(
∇x

1

mG

mG∑

i=1

Gi(x, y),−∇y
1

mG

mG∑

i=1

Gi(x, y)

)
=

1

mG

mG∑

i=1

(∇xGi(x, y),−∇yGi(x, y))

B(x, y) =
∑mG

i=1Bi(x, y) where Bi =
1
mG

(∇xGi(x, y),−∇yGi(x, y)) =
1
mG

∇Gi(x, y).
For each (x1, x2), (y1, y2):

‖Bi(x1, x2)−Bi(y1, y2)‖2 =
1

mG
‖∇Gi(x1, x2)−∇Gi(y1, y2)‖2 ≤ Li

mG
‖(x1, x2)− (y1, y2)‖2

Then, for each i ∈ {1,mG}, Bi(x, y) is Lipschitz-continuous with constant Li
mG

. We have shown that As-
sumption 8.3 is fulfilled.

⊓⊔

In Lemma 6 we show how the number of iterations in the SAGA algorithm (Algorithm 4) is chosen to find
an (ε, σ) solution to the problem (6.45) which is understood in the sense of Definition 5 .

Accelerated Methods for Saddle-Point Problems 43

Lemma 6 Choose

ε′ ≤ min

ε,

ε(
4LG +

4L2
G

µy
+

4L2
G

µx

) , ε4

4(M − f(x∗)− h(y∗))2

 , σ′ ≤ σ

where

sup{f(x) + h(y) : (x, y) ∈ B2((x
∗, y∗), ε)} ≤M (M is finite), LG =

1

mG

mG∑

i=1

LiG.

After

N = O

(
mG +

L2
G

(min{µx, µy})2
ln

2‖z0 − z∗‖22
ε′σ′

)
(6.46)

the number of iterations of the SAGA algorithm (Algorithm 4) (with m = 1, πi =
LiG∑mG
i=1 L

i
G

and the option of

resampling when using non-uniform sampling), we have an (ε, σ) solution to the saddle-point problem (6.45)
under the Assumption 6 which is understood in the sense of Definition 5.

Proof 1. Let us define the constants L, L̄, µ for the problem (6.45). This constants are used in Appendix A, D.2
of the article [39]. For beginning, let us define the operators A(x, y), B(x, y), which used in the Appendix
A of the article [39]. When we compute the proxλM (x′, y′) =

(
proxλf (x

′), proxλh(y
′)
)
, we find (x∗, y∗) such

that:

λ∂f(x∗) + µx‖x∗ − x′‖ = 0 ⇒ λ

µx
∂f(x∗) + ‖x∗ − x′‖ = 0,

−λ∂h(y∗)− µy‖y∗ − y′‖ = 0 ⇒ λ

µy
∂h(y∗) + ‖y∗ − y′‖ = 0.

Then,

(x∗, y∗) = (I + λA)−1(x′, y′), where A =

(
1

µx
∂f(x),

1

µy
∂h(y)

)
.

Let us define the operator B(x, y):

B(x, y) =

(
1

µx
∇xG(x, y),− 1

µy
∇yG(x, y)

)
.

B(x, y) =
1

mG

mG∑

i=1

(
1

µx
∇xGi(x, y),− 1

µy
∇yGi(x, y)

)
=

mG∑

i=1

Bi(x, y),

where Bi(x, y) =
1
mG

(
1
µx

∇xGi(x, y),− 1
µy

∇yGi(x, y)
)
.

Let us define the constants µ,L, L̄:
(a) µ is monotones constant of the operator A. Using that f(x) is µx-strongly convex, h(y) is µy)-strongly

convex, we have:

(A(z)−A(z′))T (z − z′) =
1

µx
(∂f(x)− ∂f(x′))(x− x′) +

1

µy
(∂h(y)− ∂h(y′))(y − y′) ≥

‖x− x′‖22 + ‖y − y′‖22 ≥ ‖z − z′‖22.

Then, A(x, y) is µ-monotone with µ = 1.

44 Vladislav Tominin 1 et al.

(b) L is Lipschitz constant of B(x, y) with respect to the Euclidean norm, z = (x, y), z′ = (x′, y′) ∈ R
dx+dy :

‖B(x, y)−B(x′, y′)‖2 ≤
1

mG

mG∑

i=1

(
1

µx

∥∥∇xGi(x, y)−∇xGi(x
′, y′)

∥∥
2
+

1

µy

∥∥∇yGi(x, y)−∇yGi(x
′, y′)

∥∥
2

)

≤ 1

mG

mG∑

i=1

LiG

(
1

µx
+

1

µy

)∥∥z − z′
∥∥
2
= LG

(
1

µx
+

1

µy

)
≤ 2LG

min{µx, µy}
.

Then, L ≤ 2LG
min{µx,µy} .

(c) z = (x, y), z′ = (x′, y′) ∈ R
dx+dy :

L̄2 = sup
z,z′∈R

dx+dy

1

‖z − z′‖22

mG∑

i=1

1

πi

∥∥Bi(x, y)−Bi(x
′, y′)

∥∥2
2
=

sup
z,z′∈R

dx+dy

1

‖z − z′‖22

mG∑

i=1

∑mG

i=1 L
i
G

LiG

∥∥Bi(x, y)−Bi(x
′, y′)

∥∥2
2
=

sup
z,z′∈R

dx+dy

1

‖z − z′‖22

mG∑

i=1

∑mG

i=1 L
i
G

m2
GL

i
G

(
1

µ2
x

∥∥∇xGi(x, y)−∇xGi(x
′, y′)

∥∥2
2
+

1

µ2
y

∥∥∇yGi(x, y)−∇yGi(x
′, y′)

∥∥2
2

)

≤ sup
z,z′∈R

dx+dy

1

‖z − z′‖22
LG
mG

mG∑

i=1

LiG

(
1

µ2
x
+

1

µ2
y

)
‖z − z′‖22 ≤ 2L2

G

min{µx, µy}2
.

Then, L̄2 ≤ 2L2
G

min{µx,µy}2 .

2. By the Lemma 5, the problem (6.45) under the Assumption 6 is satisfy to the Assumption 8. Then, by
Theorem 14, after t iteration of the SAGA algorithm (Algorithm 4) with m = 1, πi =

1
mG

and the option
of resampling when using non-uniform sampling, we have

E‖zt − z∗‖22 ≤ 2

(
1− 1

4

(
max

{
3|J |
2

, 1 +
L2

µ2
+

3L̄2

µ2

})−1
)t

‖z0 − z∗‖22,

where |J | = mG and µ,L, L̄ are defined above.
Let us define η:

η =

(
max

{
3|J |
2

, 1 +
L2

µ2
+

3L̄2

µ2

})−1

=

(
max

{
3mG

2
,

3L̄2
G

min{µx, µy}2
})−1

.

Then,

E‖zt − z∗‖22 ≤ 2
(
1− η

4

)t
‖z0 − z∗‖22 ≤ 2e−

η

4
t‖z0 − z∗‖22 ≤ ε′

Then, after

N =

⌈
4

η
ln

2‖z0 − z∗‖22
ε′

⌉

iterations of the SAGA algorithm (Algorithm 4) with parameters, which was defined above, we get ẑ = (x̂, ŷ):

E‖ẑ − z∗‖22 = E

(
‖x̂− x∗‖22 + ‖ŷ − y∗‖22

)
≤ ε′.

Accelerated Methods for Saddle-Point Problems 45

‖ẑ − z∗‖22 ≥ 0, we can apply Markov’s inequality:

P(‖ẑ − z∗‖22 ≤ ε′) ≥ 1− E‖ẑ − z∗‖22
ε′

≥ 1− σ′,

where
E‖ẑ − z∗‖22

ε′
≤ σ′ ⇒ E‖ẑ − z∗‖22 ≤ ε′σ′.

Then, after

N =

⌈
4

η
ln

2‖z0 − z∗‖22
ε′σ′

⌉
= O

(
mG +

L2
G

min{µx, µy}2
ln

2‖z0 − z∗‖22
ε′σ′

)

iterations of the SAGA algorithm (Algorithm 4) we can find ẑ = (x̂, ŷ) with probability at least 1− σ′ such
that E‖ẑ − z∗‖22 = E

(
‖x̂− x∗‖22 + ‖ŷ − y∗‖22

)
≤ ε′. Let us suppose ε ≥ ε′

3. Then, with probability 1− σ′, ẑ ∈ B2(z
∗, ε), where

B2(z
∗, ε) =

{
z ∈ R

dx+dy : ‖z − z∗‖22 ≤ ε
}
.

Then, with probability 1− σ′ by Theorem 3.1.8 from [33] and using that f(x), h(y) are convex, we have:

f(x̂)− f(x∗) + h(ŷ)− h(y∗) = |f(x̂) + h(ŷ)− f(x∗)− h(y∗)| ≤ M − f(x∗)− h(y∗)
ε

‖ẑ − z∗‖2, (6.47)

where
sup{f(x) + h(y) : (x, y) ∈ B2((x

∗, y∗), ε)} ≤M (M is finite.)

Let us define
g(x) = max

y∈R
dy

{G(x, y)− h(y)},

which is LG +
2L2

G

µy
-smooth (Lemma 2) and

w(y) = − min
x∈Rdx

{f(x) +G(x, y)} = max
x∈Rdx

{−f(x)−G(x, y)},

which is LG + 2LG
µx

-smooth (Lemma 2). Then, with probability 1− σ′:

max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} = max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)}−

{f(x∗) +G(x∗, y∗)− h(y∗)}+ {f(x∗) +G(x∗, y∗)− h(y∗)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} =

f(x̂)− f(x∗) + g(x̂)− g(x∗) + h(ŷ)− h(y∗) + w(ŷ)− w(y∗) ≤
M − f(x∗)− h(y∗)

ε
‖ẑ − z∗‖2 +

(
LG +

2L2
G

µy

)
‖x̂− x∗‖22 +

(
LG +

2L2
G

µx

)
‖ŷ − y∗‖22 ≤

M − f(x∗)− h(y∗)
ε

‖ẑ − z∗‖2 +
(
2LG +

2L2
G

µy
+

2L2
G

µx

)
‖ẑ − z∗‖22 ≤

M − f(x∗)− h(y∗)
ε

√
ε′ +

(
2LG +

2L2
G

µy
+

2L2
G

µx

)
ε′

Choose

ε′ ≤ min

ε,

ε(
4LG +

4L2
G

µy
+

4L2
G

µx

) , ε4

4(M − f(x∗)− h(y∗))2

 , σ ≤ σ′,

46 Vladislav Tominin 1 et al.

ε′ is satisfy the inequality ε′ ≤ ε. Then, with probability 1− σ′ ≥ 1− σ

M − f(x∗)− h(y∗)
ε

√
ε′ +

(
2LG +

2L2
G

µy
+

2L2
G

µx

)
ε′ ≤

M − f(x∗)− h(y∗)
ε

ε2

2(M − f(x∗)− h(y∗))
+

(
2LG +

2L2
G

µy
+

2L2
G

µx

)
ε′ =

ε

2
+

(
2LG +

2L2
G

µy
+

2L2
G

µx

)
ε′ ≤

ε

2
+

(
2LG +

2L2
G

µy
+

2L2
G

µx

)
ε

2
(
2LG +

2L2
G

µy
+

2L2
G

µx

) = ε

We have shown that after

N = O

(
mG +

L2
G

min{µx, µy}2
ln

2‖z0 − z∗‖22
ε′σ′

)

iterations of the SAGA algorithm we get ẑ = (x̂, ŷ)), which is (ε, σ) solution to the problem (6.45) which is
understood in the sense of Definition 5. ⊓⊔

6.3 Preliminaries

In this subsection we formulate three theorems about equivalent optimization problem are used in the loops
of general algorithm of this section.

We can rewrite the problem (5.1)

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} = min
x∈Rdx

{
f(x) + max

y∈R
dy

{G(x, y)− h(y)}
}
. (6.48)

In the following lemma we show that if we find x̂ is an (εx, σx)-solution to the problem (6.48) which is
understood in the sense of Definition 4 and ŷ is an (εy, σy)-solution to the problem maxy∈R

dy {G(x̂, y)− h(y)}
then (x̂, ŷ) is an (ε, σ) solution to the problem (5.1) which is understood in the sense of Definition 5 where
dependencies εx(ε), εy(ε), σx(σ), σy(σ) are polynomial.

Lemma 7 Let us consider the problem (6.48) under the Assumption 6. Let a pair (x̂, ŷ) satisfy

1. x̂ is an (εx, σx)-solution to the problem (6.48), i.e. (3.4) holds.
2. ŷ is an (εy, σy)-solution to the problem maxy∈R

dy {G(x̂, y)− h(y)},
with

εy ≤ min

µyε

8
,

ε4µy

72 (Mh − h(y∗))2
,

εµy

24
(
LG +

2L2
G

µx

)

 , εx ≤ min

{
εyµxµy
4L2

G

,
ε

3

}
, σx ≤ σ

2
, σy ≤ σ

2
,

where sup{h(y) : y ∈ B2(y
∗, ε)} ≤Mh, Mh is finite.

Then, (x̂, ŷ) is (ε, σ)-solution to the problem (5.1) under the Assumption 6, i.e. (6.2) holds.

Proof We let Ψ(x) = maxy∈R
dy {f(x) + G(x, y) − h(y)} and note that Ψ(x) is µx-strongly convex. Under

Assumption 6 the function f(x)+G(x, y)−h(y) has unique saddle point (x∗, y∗). Then, with probability 1−σx
we have

‖x̂− x∗‖22 ≤ 2

µx

(
max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)}
)
≤ 2εx

µx
.

Accelerated Methods for Saddle-Point Problems 47

We denote y∗(x̂) = argmaxy∈R
dy {f(x̂)+G(x̂, y)−h(y)}, then according to Lemma 2 y∗(x) is 2LG/µy Lipschitz

continuous. Since {f(x̂) +G(x̂, y)− h(y)} is µy-strongly concave, we obtain that the inequality

‖ŷ − y∗‖22 ≤ 2‖ŷ − y∗(x̂)‖22 + 2‖y∗(x̂)− y∗(x∗)‖22 ≤ 4εy
µy

+ 8

(
LG
µy

)2

‖x̂− x∗‖2

holds true with probability 1− σx − σy . The function f(x) is convex and

‖ŷ − y∗‖22 ≤ 4εy
µy

+ 8

(
LG
µy

)2

‖x̂− x∗‖2 ≤ 4εy
µy

+ 16

(
LG
µy

)2
εx
µx

≤ ε⇒ ŷ ∈ B2(y
∗, ε),

under assumption
4εy
µy

+ 16
(
LG
µy

)2
εx
µx

≤ ε. Then, by lemma 3.1.8 from [33] h(y) is locally Lipschitz continuous

and:

h(ŷ)− h(y∗) ≤ Mh − h(y∗)
ε

‖ŷ − y∗‖2,

where sup{h(y) : y ∈ B2(y
∗, ε)} ≤ Mh, Mh is finite. By Lemma 2, w(y) = −minx∈Rdx{f(x) + G(x, y)} is

LG +
2L2

G

µx
-smooth. Let us define Φ(y) = minx∈Rdx{f(x) +G(x, y)− h(y)}:

Φ(y∗)− Φ(ŷ) = h(ŷ)− h(y∗) + w(ŷ)− w(y∗) ≤ Mh − h(y∗)
ε

‖ŷ − y∗‖2 +
(
LG +

2L2
G

µx

)
‖ŷ − y∗‖22

Whence,

min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} = Φ(y∗)− Φ(ŷ) ≤

Mh − h(y∗)
ε2

‖ŷ − y∗‖2 +
(
LG +

2L2
G

µx

)
‖ŷ − y∗‖22 ≤

Mh − h(y∗)
ε

√
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

+

(
LG +

2L2
G

µx

)(
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

)
,

with probability 1− σx − σy. Then,

max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} = max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)}−

{f(x∗) +G(x∗, y∗)− h(y∗)}+ {f(x∗) +G(x∗, y∗)− h(y∗)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} ≤

εx +
Mh − h(y∗)

ε

√
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

+

(
LG +

2L2
G

µx

)(
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

)

Choose

εy ≤ min

µyε

8
,

ε4µy

72 (Mh − h(y∗))2
,

εµy

24
(
LG +

2L2
G

µx

)

 , εx ≤ min

{
εyµxµy
4L2

G

,
ε

3

}
, σx ≤ σ

2
, σy ≤ σ

2
.

48 Vladislav Tominin 1 et al.

Then, with probability 1− σx − σy ≥ 1− σ:

εx +
Mh − h(y∗)

ε

√
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

+

(
LG +

2L2
G

µx

)(
4εy
µy

+ 16

(
LG
µy

)2
εx
µx

)
≤

ε

3
+
Mh − h(y∗)

ε

√
4εy
µy

+ 16

(
LG
µy

)2
εyµxµy
4L2

Gµx
+

(
LG +

2L2
G

µx

)(
4εy
µy

+ 16

(
LG
µy

)2
εyµxµy
4L2

Gµx

)
=

ε

3
+
Mh − h(y∗)

ε

√
8εy
µy

+

(
LG +

2L2
G

µx

)(
8εy
µy

)
≤

ε

3
+
Mh − h(y∗)

ε

√
8ε4µy

µy72(Mh − h(y∗))2
+

(
LG +

2L2
G

µx

)
 8εµy

µy24
(
LG +

2L2
G

µx

)

 = ε.

In the first inequality, we use εx ≤ εyµxµy
4L2

G

, εx ≤ ε
3 , in the second inequality we use that εy ≤ ε4µy

72(Mh−h(y∗))2
,

εy ≤ εµy

24

(
LG+

2L2
G

µx

) .

4εy
µy

+ 16

(
LG
µy

)2
εx
µx

≤ 8εy
µy

≤ ε.

Then the assumption
4εy
µy

+ 16
(
LG
µy

)2
εx
µx

≤ ε is true. ⊓⊔

We can rewrite the problem (6.48)

min
x∈Rdx

{
f(x) + max

y∈R
dy

{G(x, y)− h(y)}
}

= min
x∈Rdx

max
y∈R

dy

{f(x) +G(x, y)− h(y)} =

min
x∈Rdx

− min
y∈R

dy

{−f(x)−G(x, y) + h(y)} = − max
x∈Rdx

min
y∈R

dy

{h(y)−G(x, y)− f(x)} =

− min
y∈R

dy

{
h(y) + max

x∈Rdx

{−G(x, y)− f(x)}}
}

(6.49)

In the following lemma we show that if we find ŷ is an (εy, σy)-solution to the problem (6.49) which is
understood in the sense of Definition 4 and x̂ is an (εx, σx)-solution to the problem maxx∈Rdx{−G(x, ŷ)−f(x)}
then x̂ is an

(
ε′x, σ

′
x

)
solution to the problem (6.48) which is understood in the sense of Definition 4 and ŷ is

an
(
ε′y, σ

′
y

)
solution to the problem maxy∈R

dy {G(x̂, y)−h(y)} where dependencies εx (εx), εy
(
ε′x, ε

′
y

)
, σx

(
σ′
x

)
,

σy
(
σ′
x, σ

′
y

)
are polynomial.

Lemma 8 Let us consider the problem miny∈R
dy {h(y) + maxx∈Rdx {−f(x)−G(x, y)}} under the Assumption

6. Let a pair (x̂, ŷ) satisfy

1. ŷ is an (εy, σy)-solution to this problem, i.e. (3.4) holds.
2. x̂ is an (εx, σx)-solution to the problem maxx∈Rdx{−f(x)−G(x, ŷ)},
with

εx ≤ min

µxε

′
x

8
,

ε′4x µx
32 (Mf − f(x∗))2

,
ε′xµx

16
(
LG +

2L2
G

µy

)

 , εy ≤ min

{
µyε

′
y

2
,
εxµxµy
4L2

G

,
ε′4y µy

8 (Mh − h(y∗))2
,
ε′yµy
2LG

}
,

Accelerated Methods for Saddle-Point Problems 49

σx ≤ σ′
x

2
, σy ≤ min

{
σ′
x

2
, σ′
y

}
.

where sup{f(x) : x ∈ B2(x
∗, ε′x)} ≤Mf and sup{h(y) : y ∈ B2(y

∗, ε′y)} ≤Mh, Mf ,Mh are finite.
Then, x̂ is (ε′x, σ

′
x)-solution to the problem (6.48) and ŷ is (ε′y, σ

′
y)-solution to the problem maxy∈R

dy {G(x̂, y)−
h(y)}.

Proof We let Φ(y) = maxx∈Rdx{h(y) − G(x, y) − f(x)} and note that Φ(y) is µy-strongly convex. Under
Assumption 6 the function h(y)−G(x, y)−f(x) has unique saddle point (x∗, y∗). Then, with probability 1−σy
we have

‖ŷ − y∗‖22 ≤ 2

µy

(
max
x∈Rdx

{h(ŷ)−G(x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{h(y)−G(x, y)− f(x)}
)

≤ 2εy
µy

.

We denote x∗(ŷ) = argmaxx∈Rdx{h(ŷ)−G(x, ŷ)−f(x)}, then according to Lemma 2 x∗(y) is 2LG/µx Lipschitz
continuous. Since {h(ŷ)−G(x, ŷ)− f(x)} is µx-strongly concave, we obtain that the inequality

‖x̂− x∗‖22 ≤ 2‖x̂− x∗(ŷ)‖22 + 2‖x∗(ŷ)− x∗(y∗)‖22 ≤ 4εx
µx

+ 8

(
LG
µx

)2

‖ŷ − y∗‖22

holds true with probability 1− σy − σx. The function f(x) is convex and

‖x̂− x∗‖22 ≤ 4εx
µx

+ 8

(
LG
µx

)2

‖ŷ − y∗‖22 ≤ 4εx
µx

+ 16

(
LG
µx

)2
εy
µy

≤ ε′x ⇒ x̂ ∈ B2(x
∗, ε′x).

under the assumption 4εx
µx

+ 16
(
LG
µx

)2 εy
µy

≤ ε′x.Then, by lemma 3.1.8 from [33] f(x) is locally Lipschitz con-

tinuous and:

f(x̂)− f(x∗) ≤ Mf − f(x∗)
ε′x

‖x̂− x∗‖2,

where sup{f(x) : x ∈ B2(x
∗, ε′x)} ≤ Mf , Mf is finite. By Lemma 2, g(x) = maxy∈R

dy {G(x, y) − h(y)} is

LG +
2L2

G

µy
-smooth. Let us define Ψ(x) = maxy∈R

dy {f(x) +G(x, y)− h(y)}:

Ψ(x̂)− Ψ(x∗) = f(x̂)− f(x∗) + g(x̂)− g(x∗) ≤ Mf − f(x∗)
ε′x

‖x̂− x∗‖2 +
(
LG +

2L2
G

µy

)
‖x̂− x∗‖22

Whence,

max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − max
y∈R

dy

min
x∈Rdx

{f(x) +G(x, y)− h(y)} = Ψ(x̂)− Ψ(x∗)

≤ Mf − f(x∗)
ε′x

√
4εx
µx

+ 16

(
LG
µx

)2
εy
µy

+

(
LG +

2L2
G

µy

)(
4εx
µx

+ 16

(
LG
µx

)2
εy
µy

)
,

with probability 1− σx − σy. The function h(y) is convex and

‖ŷ − y∗‖22 ≤ 2εy
µy

≤ ε′y ⇒ ŷ ∈ B2(y
∗, ε′y)

with probability 1 − σy and under the assumption
2εy
µy

≤ ε′y. Then, by Lemma 3.1.8 from [33] h(y) is locally

Lipschitz continuous:

h(ŷ)− h(y∗) ≤ Mh − h(y∗)
ε′y

‖ŷ − y∗‖2,

50 Vladislav Tominin 1 et al.

where sup{h(y) : y ∈ B2(y
∗, ε′y)} ≤Mh, Mh is finite. G(x, y) is LG-smooth. Then,

(
G(x̂, y∗)− h(y∗)

)
− (G(x̂, ŷ)− h(ŷ)) = h(ŷ)− h(y∗) +G(x̂, y∗)−G(x̂, ŷ) ≤

Mh − h(y∗)
ε′y

‖ŷ − y∗‖2 + LG
2

‖ŷ − y∗‖22 ≤ Mh − h(y∗)
ε′y

√
2εy
µy

+
LG
2

2εy
µy

with probability 1− σy.
Choose

εx ≤ min

µxε

′
x

8
,

ε′4x µx
32 (Mf − f(x∗))2

,
ε′xµx

16
(
LG +

2L2
G

µy

)

 , εy ≤ min

{
µyε

′
y

2
,
εxµxµy
4L2

G

,
ε′4y µy

8 (Mh − h(y∗))2
,
ε′yµy
2LG

}
,

σx ≤ σ′
x

2
, σy ≤ min

{
σ′
x

2
, σ′
y

}
.

Then, with probability at least 1− σx − σy ≥ 1− σ′
x:

Mf − f(x∗)
ε′x

√
4εx
µx

+ 16

(
LG
µx

)2
εy
µy

+

(
LG +

2L2
G

µy

)(
4εx
µx

+ 16

(
LG
µx

)2
εy
µy

)
≤

Mf − f(x∗)
ε′x

√
4εx
µx

+ 16

(
LG
µx

)2
εxµyµx
4L2

Gµy
+

(
LG +

2L2
G

µy

)(
4εx
µx

+ 16

(
LG
µx

)2
εxµyµx
4L2

Gµy

)
=

Mf − f(x∗)
ε′x

√
8εx
µx

+

(
LG +

2L2
G

µy

)(
8εx
µx

)
≤

Mf − f(x∗)
ε′x

√
8ε′4x µx

µx32(Mf − f(x∗))2
+

(
LG +

2L2
G

µy

)
 8ε′xµx

µx16
(
LG +

2L2
G

µy

)

 = ε.

In the first inequality, we use εy ≤ εxµxµy
4L2

G

, in the second inequality we use that εx ≤ ε′4x µx

32(Mf−f(x∗))
2 , εx ≤

ε′xµx

16

(
LG+

2L2
G

µy

) .

4εx
µx

+ 16

(
LG
µx

)2
εy
µy

≤ 8εx
µx

≤ ε′x.

Then the assumption 4εx
µx

+ 16
(
LG
µx

)2 εy
µy

≤ ε′x is true.

With probability 1− σy ≥ 1− σ′
y :

Mh − h(y∗)
ε′y

√
2εy
µy

+ LG
εy
µy

≤ Mh − h(y∗)
ε′y

√
2ε′4y µy

µy8(Mh − h(y∗))2
+ LG

ε′yµy
2LGµy

= ε′y

in this inequality we use that εy ≤ ε′4y µy

8(Mh−h(y∗))2
, εy ≤ ε′yµy

2LG
.

2εy
µy

≤ 2ε′yµy
2µy

= ε′y,

Then, the assumption
2εy
µy

≤ ε′y is true. ⊓⊔

Accelerated Methods for Saddle-Point Problems 51

In the following lemma we show that if we find (x̂, ŷ) is an (ε, σ) solution to the problem (5.1) which is
understood in the sense of Definition 5 then ŷ is an (εy, σy)-solution to the problem (6.49) which is understood
in the sense of Definition 4 and x̂ is an (εx, σx)-solution to the problem maxx∈Rdx {−G(x, ŷ) − f(x)} where
dependencies ε(εx, εy), σ(σx, σy) are polynomial.

Lemma 9 If (x̂, ŷ) is (ε, σ)-solution to the saddle point problem (5.1) under the Assumption 6 which is un-
derstood in the sense of Definition 5, with

ε ≤ min

{
εy,

εxµx
2

,
εxµx
2LG

,
ε4xµx

8(Mf − f(x∗))2

}
, σ ≤ min {σx, σy}

where sup{f(x) : x ∈ B2(x
∗, εx)} ≤Mf , Mf is finite.

Then,

1. ŷ is (εy, σy)-solution to the problem miny∈R
dy {h(y) + maxx∈Rdx{−G(x, y)− f(x)}};

2. x̂ is (εx, σx)-solution to the problem maxx∈Rdx{−G(x, ŷ)− f(x)}.

Proof (x̂, ŷ) is (ε, σ)-solution to the saddle point problem (5.1) which is understood in the sense of Definition
5, then:

max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} = max
y∈R

dy

{f(x̂) +G(x̂, y)− h(y)}−

{f(x∗) +G(x∗, y∗)− h(y∗)}+ {f(x∗) +G(x∗, y∗)− h(y∗)} − min
x∈Rdx

{f(x) +G(x, ŷ)− h(ŷ)} ≤ ε,

with probability 1− σ, where (x∗, y∗) is a saddle point of this problem. We have shown, that

1. x̂ is (ε, σ)-solution to the problem minx∈Rdx{f(x) + maxy∈R
dy {G(x, y)− h(y)}};

2. ŷ is (ε, σ)-solution to the problem maxy∈R
dy {−h(y) + minx∈Rdx {f(x) +G(x, y)}}.

Choose ε ≤ εy, σ ≤ σy. Then, with probability 1− σ ≥ 1− σy :

h(ŷ) + max
x∈Rdx

{−G(x, ŷ)− f(x)} − min
y∈R

dy

{h(y) + max
x∈Rdx

{−G(x, y)− f(x)}} =

max
x∈Rdx

{h(ŷ)−G(x, ŷ)− f(x)}+ max
y∈R

dy

{−h(y)− max
x∈Rdx

{−G(x, y)− f(x)}} =

− min
x∈Rdx

{−h(ŷ) +G(x, ŷ) + f(x)}+ max
y∈R

dy

{−h(y) + min
x∈Rdx

{G(x, y) + f(x)}} =

{f(x∗) +G(x∗, y∗)− h(y∗)} − {−h(ŷ) + min
x∈Rdx

{f(x) +G(x, ŷ)}} ≤ ε ≤ εy

we have shown that ŷ is (εy, σy)-solution to the problem miny∈R
dy {h(y) + maxx∈Rdx{−G(x, y)− f(x)}}.

x̂ is (ε, σ)-solution to the problem minx∈Rdx{f(x) + maxy∈R
dy {G(x, y) − h(y)}} and under assumption 6

this problem is µx strongly convex. Then, with probability 1− σ

‖x̂− x∗‖22 ≤ 2

µx

(
{f(x̂) + max

y∈R
dy

{G(x̂, y)− h(y)}} − min
x∈Rdx

{f(x) + max
y∈R

dy

{G(x, y)− h(y)}}
)
≤ 2ε

µx
≤ εx

under the Assumption 2ε
µx

≤ εx. Then, x̂ ∈ B2(x
∗, εx). The function f(x) is convex and by Lemma 3.1.8

from [33] f(x) is locally Lipschitz continuous:

f(x̂)− f(x∗) ≤ Mf − f(x∗)
εx

‖x̂− x∗‖2,

52 Vladislav Tominin 1 et al.

where sup{f(x) : x ∈ B2(x
∗, εx)} ≤Mf , Mf is finite. Using that G(x, y) is LG-smooth, we get:

{
−G(x∗, ŷ)− f(x∗)

}
− {−G(x̂, ŷ)− f(x̂)} = f(x̂)− f(x∗) +G(x̂, ŷ)−G(x∗, ŷ) ≤

Mf − f(x∗)
εx

‖x̂− x∗‖2 + LG
2

‖x̂− x∗‖22 ≤ Mf − f(x∗)
εx

√
2ε

µx
+
LG
2

2ε

µx

Choose

ε ≤ min

{
εy,

εxµx
2

,
εxµx
2LG

,
ε4xµx

8(Mf − f(x∗))2

}
, σ ≤ min{σx, σy} .

2ε

µx
≤ 2εxµx

2µx
= εx,

then the assumption 2ε
µx

≤ εx is true. Then, with probability 1− σ ≥ 1− σx:

Mf − f(x∗)
εx

√
2ε

µx
+ LG

ε

µx
≤ Mf − f(x∗)

εx

√
2ε4xµx

8µx(Mf − f(x∗))2
+ LG

εxµx
2LGµx

= εx,

in this inequality we use that ε ≤ εxµx
2LG

, ε ≤ ε4
x
µx

8(Mf−f(x∗))2 . We have shown that x̂ is (εx, σx)-solution to the

problem maxx∈Rdx {−G(x, ŷ)− f(x)}. ⊓⊔

6.4 Accelerated Proximal Method for Saddle-Point Problems

In this subsection we describe in detail the resulting structure of our algorithm for the setting of this section
which consists of three loops. In the first two loops we apply the Catalyst algorithm (Algorithm 3) with different
value of parameter H (H1 and H2 respectively) which defines its complexity. In the third loop we apply the
SAGA algorithm (Algorithm 4) and we choose the number of iterations which depends on H1 and H2. In the
end of this subsection we choose the value of these parameters. Further, in each loop we have a target accuracy
ε and a confidence level σ which defines the required quality of the solution to an optimization problem in this
loop. These quantities define the target accuracy and confidence level for an equivalent optimization problem
in the next loop using lemmas and theorems were proved in the two previous subsections. Our algorithm in this
section has logarithmic dependence of the complexity on the target accuracy and confidence level (see Theorem

15). We hide such logarithmic factors in Õ notation. We conclude this section with the main Theorem 15 which
gives the complexity estimates of the proposed algorithm.

Loop 1. The goal of the Loop 1 is to find an (ε, σ)-solution to the problem (5.1) under the Assumption 6,
which is understood in the sense of the Definition 4. By Lemma 7 we find an (ε, σ)-solution to this saddle

problem, if we find x̂, which is
(
ε
(1)
x , σ

(1)
x

)
-solution to the minimization problem

min
x∈Rdx

{
f(x) + max

y∈R
dy

{G(x, y)− h(y)}
}

(6.50)

under the Assumption 6 and ŷ, which is
(
ε
(1)
y , σ

(1)
y

)
-solution to the problem

max
y∈R

dy

{G(x̂, y)− h(y)} (6.51)

Accelerated Methods for Saddle-Point Problems 53

under the Assumption 6, we choose
(
ε
(1)
x , σ

(1)
x

)
= (poly(ε),poly(σ)),

(
ε
(1)
y , σ

(1)
y

)
= (poly(ε),poly(σ)) which

satisfy the following inequalities:

ε(1)y ≤ min

µyε

8
,

ε4µy

72 (Mh − h(y∗))2
,

εµy

24
(
LG +

2L2
G

µx

)

 , ε(1)x ≤ min

{
ε
(1)
y µxµy
4L2

G

,
ε

3

}
, σ(1)

x ≤ σ

2
, σ(1)

y ≤ σ

2
,

where sup{h(y) : y ∈ B2(y
∗, ε)} ≤ Mh, Mh is finite. To solve the problem (6.50) under the Assumption 6, we

would like to apply the Catalyst algorithm (Algorithm 3) with

ϕ(x) = max
y∈R

dy

{G(x, y)− h(y)} , ψ(x) = f(x). (6.52)

By Lemma 2, the function ϕ(x) is convex and has LG +
2L2

G

µy
-Lipschitz continuous gradients, where LG =

1
mG

∑mG

i=1 L
i
G and the function ψ(x) is µx strongly convex. Then, these functions are satisfy the Assumption

7. This allows us to apply the Catalyst algorithm (Algorithm 3) to solve the minimization problem (6.50).
We apply this algorithm with absolute accuracy and parameters H = H1, which will be chosen later, µ =

µx,
(
ε
(1)
xk

(
ε
(1)
x

)
, σ

(1)
xk

(
ε
(1)
x , σ

(1)
x

))

k≥0
according to the Theorem 13, where ε

(1)
xk = poly

(
ε
(1)
x

)
and σ

(1)
xk =

poly
(
ε
(1)
x , σ

(1)
x

)
. We need to find x̂k is an

(
ε
(1)
xk

(
ε
(1)
x

)
, σ

(1)
xk

(
ε
(1)
x , σ

(1)
x

))
-solution to the inner problem with

the inner method M in each iteration of the Catalyst algorithm. For the particular definitions of ϕ,ψ (6.52)
in this Loop, this inner problem has the following form:

xk = arg min
x∈Rdx

{
f(x) + max

y∈R
dy

{G(x, y)− h(y)}+ H1

2
‖x− xmdk−1‖22

}
. (6.53)

Below, in the next paragraph ”Loop 2”, we explain how to solve this auxiliary problem to obtain an(
ε
(1)
xk

(
ε
(1)
x

)
, σ

(1)
xk

(
ε
(1)
x , σ

(1)
x

))
solution to the problem (6.53) and an

(
ε
(1)
y , σ

(1)
y

)
-solution to the problem (6.51).

To summarize the Loop 1, the Assumption 7 holds and
(
ε
(1)
xk

(
ε
(1)
x

)
, σ

(1)
xk

(
ε
(1)
x , σ

(1)
x

))

k≥0
are satisfy to

(6.31) and (6.32). Due to polynomial dependencies ε
(1)
x = poly(ε), σ

(1)
x = poly(σ) we can use the notation

Õ(·) in the number of iterations of the Catalyst algorithm (Algorithm 3). Then, we can use the Theorem 13

to guarantee that we find
(
ε
(1)
x , σ

(1)
x

)
-solution to the problem (6.50) in N1 = Õ

(
max

{
1,
√
H1

µx

})
number of

iterations of the Catalyst algorithm (Algorithm 3).

Loop 2. The goal of the Loop 2 is to find an
(
ε
(1)
xk

(
ε
(1)
x

)
, σ

(1)
xk

(
ε
(1)
x , σ

(1)
x

))
-solution to the problem (6.53) and

an
(
ε
(1)
y , σ

(1)
y

)
-solution to the problem (6.51). By Lemma 8, to find these solutions, we need to find ŷ is an

(
ε
(2)
y , σ

(2)
y

)
-solution to the problem

min
y∈R

dy

{
h(y) + max

x∈Rdx

{
−f̂(x)−G(x, y)

}}
(6.54)

where f̂(x) = f(x) + H1

2 ‖x− xmdk−1‖22 under the Assumption 6 and x̂ is an
(
ε
(2)
x , σ

(2)
x

)
-solution to the problem

max
x∈Rdx

{
−f̂(x)−G(x, ŷ)

}
, (6.55)

54 Vladislav Tominin 1 et al.

under the Assumption 6, we choose
(
ε
(2)
x , σ

(2)
x

)
=
(
poly(ε′x),poly(σ

′
x)
)
,
(
ε
(2)
y , σ

(2)
y

)
=
(
poly(ε′y, ε

′
x),poly(σ

′
x, σ

′
y)
)

which satisfy the following inequalities:

ε(2)x ≤ min

(µx +H1)ε
′
x

8
,

ε′4x (µx +H1)

32
(
Mf̂ − f̂(x∗)

)2 ,
ε′x(µx +H1)

16
(
LG +

2L2
G

µy

)

,

ε(2)y ≤ min

{
µyε

′
y

2
,
ε
(2)
x (µx +H1)µy

4L2
G

,
ε′4y µy

8 (Mh − h(y∗))2
,
ε′yµy
2LG

}
,

σ(2)
x ≤ σ′

x

2
, σ(2)

y ≤ min

{
σ′
x

2
, σ′
y

}
,

(
ε′x, σ

′
x

)
=
(
ε(1)xk

(
ε(1)x

)
, σ(1)
xk

(
ε(1)x , σ(1)

x

))
,
(
ε′y, σ

′
y

)
=
(
ε(1)y , σ(1)

y

)
,

where sup{f̂(x) : x ∈ B2(x
∗, ε′x)} ≤Mf̂ and sup{h(y) : y ∈ B2(y

∗, ε′y)} ≤Mh, Mf ,Mh are finite.

To solve the problem (6.54) under the Assumption 6 we apply the Catalyst algorithm (Algorithm 3) with

ϕ(y) = max
x∈Rdx

{
−f(x)−G(x, y)− H1

2
‖x− xmdk−1‖22

}
, ψ(y) = h(y). (6.56)

By the Lemma 2, the function ϕ(y) is convex and hasH1+LG+
2L2

G

µx
-Lipschitz continuous gradients, where LG =

1
mG

∑mG

i=1 L
i
G and the function ψ(y) is µy strongly convex. Then, these functions are satisfy the Assumption

7. This allows us to apply the Catalyst algorithm (Algorithm 3) to solve the minimization problem (6.54).
We apply this algorithm with absolute accuracy and parameters H = H2, which will be chosen later, µ =

µy,
(
ε
(2)
yk

(
ε
(2)
y

)
, σ

(2)
yk

(
ε
(2)
y , σ

(2)
y

))

k≥0
according to the Theorem 13, where ε

(2)
yk = poly

(
ε
(2)
y

)
and σ

(2)
yk =

poly
(
ε
(2)
y , σ

(2)
y

)
. We need to find an

(
ε
(2)
yk

(
ε
(2)
y

)
, σ

(2)
yk

(
ε
(2)
y , σ

(2)
y

))
-solution to the inner problem with the

inner method M in each iteration of the Catalyst algorithm. For the particular definitions of ϕ,ψ (6.56) in this
Loop, this inner problem has the following form:

yk = arg min
y∈R

dy

{
h(y) + max

x∈Rdx

{
−G(x, y)− f(x)− H1

2
‖x− xmdk−1‖22

}
+
H

2
‖y − ymdk−1‖22

}
. (6.57)

Below, in the next paragraph ”Loop 3”, we explain how to solve this auxiliary problem to obtain an(
ε
(2)
yk

(
ε
(2)
y

)
, σ

(2)
yk

(
ε
(2)
y , σ

(2)
y

))
solution to the problem (6.57) and an

(
ε
(2)
x , σ

(2)
x

)
-solution to the problem (6.55).

To summarize the Loop 2, the Assumption 7 holds and
(
ε
(2)
yk

(
ε
(2)
y

)
, σ

(2)
yk

(
ε
(2)
y , σ

(2)
y

))

k≥0
are satisfy to

(6.31) and (6.32), due to ε
(1)
xk = poly

(
ε
(1)
x

)
= poly (ε), σ

(1)
xk = poly

(
ε
(1)
x , σ

(1)
x

)
= poly (ε, σ) and ε

(1)
y =

poly(ε), σ
(1)
y = poly(σ) dependencies ε

(2)
y (ε, σ), σ

(2)
y (ε, σ) are polynomial and we can use the notation Õ(·)

in the number of iterations of the Catalyst algorithm (Algorithm 3). Then, we can use the Theorem 13 to

guarantee that we find
(
ε
(2)
y , σ

(2)
y

)
-solution to the problem (6.54) in N2 = Õ

(
max

{
1,
√
H2

µy

})
iterations of

the Catalyst algorithm (Algorithm 3).

Accelerated Methods for Saddle-Point Problems 55

Loop 3 The goal of the Loop 3 is to find an
(
ε
(2)
yk

(
ε
(2)
y

)
, σ

(2)
yk

(
ε
(2)
y , σ

(2)
y

))
-solution to the problem (6.57) and

an
(
ε
(2)
x , σ

(2)
x

)
-solution to the problem (6.55). By Lemma 9, to find these solutions, we need to find (x̂, ŷ) is

an (ε(3), σ(3))-solution to the saddle problem

min
x∈Rdx

max
y∈R

dy

{
f̂(x) +G(x, y)− ĥ(y)

}
, (6.58)

under the Assumption 6, where

f̂(x) = f(x) +
H1

2
‖x− xmdk−1‖22, ĥ(y) = h(y) +

H2

2
‖y − ymdk−1‖22,

we choose
(
ε(3), σ(3)

)
= (poly(εx, εy),poly(σx, σy)), which satisfy the following inequalities:

ε(3) ≤ min

{
εy,

εx(µx +H1)

2
,
εx(µx +H1)

2LG
,

ε4x(µx +H1)

8(Mf̂ − f̂(x∗))2

}
, σ ≤ min{σx, σy}

(εx, σx) =
(
ε(2)x , σ(2)

x

)
, (εy, σy) =

(
ε(2)yk

(
ε(2)y

)
, σ(2)
yk

(
ε(2)y , σ(2)

y

))
,

where sup{f̂(x) : x ∈ B2(x
∗, εx)} ≤Mf̂ , Mf̂ is finite.

To solve the problem (6.58) we apply the SAGA algorithm (Algorithm 4) with:

M(x, y) = f̂(x)− ĥ(y), K(x, y) = G(x, y). (6.59)

f̂(x) is µx +H1-strongly convex, ĥ(y)) is µy +H2 strongly convex. Then, the Assumption 6 is true for this
problem. By Lemma 5 the Assumption 8 is true for this problem, this allow us to apply the SAGA algorithm
(Algorithm 4) to solve the problem (6.58). We apply this algorithm with parameters:

Ki(x, y) =
1

mG
Gi(x, y), πi =

LiG∑mG

i=1 L
i
G

, L̄ = L =
2LG

min{µx +H1, µy +H2}
, m = 1,

where LG = 1
mG

∑mG

i=1L
i
G and number of iterations

N3 =

⌈
4

η
ln

2‖z0 − z∗‖22
ε′σ′

⌉
= O

(
mG +

L2
G

min{µx +H1, µy +H2}2
ln

2‖z0 − z∗‖22
ε′σ′

)
,

where

η =

(
max

{
3mG

2
,

3L2
G

min{µx +H1, µy +H2}2
})−1

.

Choosing (ε′, σ′) according to the Lemma 6, where (ε, σ) =
(
ε(3), σ(3)

)
and ε′ = poly(ε), σ′ = poly(σ).

To summarize the Loop 3, the Assumption 8 holds and
(
ε′
(
ε(3)

)
, σ′
(
σ(3)

))
are satisfy to (6) and (6.32),

due to ε
(2)
x = poly (ε, σ), σ

(2)
x = poly (ε, σ), ε

(2)
yk = poly(ε

(2)
y) = poly(ε, σ),σ

(2)
yk = poly(ε

(2)
y , σ

(2)
y) =

poly(ε, σ) and ε
(3)
y = poly

(
ε
(2)
x , ε

(2)
yk

)
, σ

(3)
y = poly

(
σ
(2)
x , σ

(2)
yk

)
dependencies ε

(3)
y (ε, σ), σ

(3)
y (ε, σ) are poly-

nomial and we can use the notation Õ(·) in the number of iterations of the SAGA algorithm (Algorithm 4).

Then, we can use the Lemma 6 to guarantee that we find
(
ε(3), σ(3)

)
-solution to the problem (6.58) in

N3 = Õ

(
mG +

L2
G

(min{µx +H1, µy +H2})2
)

56 Vladislav Tominin 1 et al.

iterations of the SAGA algorithm (Algorithm 4). In each iteration of the SAGA algorithm (Algorithm 4) we
make no more thanmN3 = N3 the number of oracle calls of ∇xG(x, y), ∇yG(x, y) and calculations of proximal
operator for the functions f̂(x), ĥ(y).

To summarize these 3 loops we can formulate the following main theorem of this section:

Theorem 15 Suppose saddle problem of the form (5.1) under the Assumption 6 and supposition that µx
√
mG ≤

LG and µy
√
mG ≤ LG . Then we can find the (ε, σ)-solution to the problem (1.2) and evaluate the number of

oracle calls. Namely, after 3 loops of Algorithm from Section 6.2 one can obtain next estimates on the number
of oracles calls of ∇xG(x, y), ∇yG(x, y) and calculations of (1.8) for functions f(x) and h(y):

Õ

(√
mGL2

G

µxµy

)
. (6.60)

Proof Step 1. Polynomial dependence. In Loop 1 we find x̂ is
(
ε
(1)
x , σ

(1)
x

)
solution to the problem (6.50),

where
(
ε
(1)
x , σ

(1)
x

)
= (poly(ε),poly(σ)). We solve this problem with Catalyst algorithm and by Theorem 13

we can find x̂ after

N1 = O

(
max

{
1,
H1

µx

}
ln

1

ε
(1)
x

)
= O

(
max

{
1,
H1

µx

}
ln

1

ε

)
= Õ

(
max

{
1,
H1

µx

})

the number of iterations of the Catalyst algorithm (Algorithm 3) we find x̂ is
(
ε
(1)
x , σ

(1)
x

)
solution to the

problem (6.50).

In Loop 2 we find ŷ is
(
ε
(2)
y , σ

(2)
y

)
solution to the problem (6.54), where

(
ε(2)y , σ(2)

y

)
=
(
poly

(
ε(1)xk , ε

(1)
y

)
,poly

(
σ(1)
xk , σ

(1)
y

))
.

.

ε(1)xk = poly
(
ε(1)x

)
= poly (ε) , σ(1)

xk = poly
(
ε(1)x , σ(1)

x

)
= poly (ε, σ)

ε(1)y = poly(ε), σ(1)
y = poly(σ).

Then, dependencies ε
(2)
y (ε, σ), σ

(2)
y (ε, σ) are polynomial. We solve this problem with Catalyst algorithm and

by Theorem 13 we can find ŷ after

N2 = O

(
max

{
1,
H2

µy

}
ln

1

ε
(2)
y

)
= O

(
max

{
1,
H2

µ2

}
ln

1

εσ

)
= Õ

(
max

{
1,
H2

µy

})

the number of iterations of the Catalyst algorithm (Algorithm 3) we find ŷ is
(
ε
(2)
y , σ

(2)
y

)
solution to the

problem (6.54).

In Loop 3 we find (x̂, ŷ) is
(
ε(3), σ(3)

)
solution to the problem (6.58), where

(
ε(3), σ(3)

)
=
(
poly

(
ε(2)x , ε(2)yk

)
,poly

(
σ(2)
x , σ(2)

yk

))
.

.

ε(2)yk = poly
(
ε(2)y

)
= poly (ε, σ) , σ(2)

yk = poly
(
ε(2)y , σ(2)

y

)
= poly (ε, σ)

Accelerated Methods for Saddle-Point Problems 57

ε(2)x =)poly
(
ε(1)xk , σ

(1)
xk

)
= poly

(
ε(1)x , σ(1)

x

)
= poly (ε, σ) ,

σ(2)
x = poly(σ(1)

xk) = poly
(
ε(1)x , σ(1)

x

)
=) = poly (ε, σ) .

Then, dependencies ε(3)(ε, σ), σ(3)(ε, σ) are polynomial. We solve this problem with Catalyst algorithm and
by Lemma 6 we can find (x̂, ŷ) after

N3 = O

(
mG +

L2
G

(min{µx +H1, µy +H2})2
ln

1

ε
(3)
y σ

(3)
y

)
=

O

(
mG +

L2
G

(min{µx +H1, µy +H2})2
ln

1

εσ

)
= Õ

(
mG +

L2
G

(min{µx +H1, µy +H2})2
)

the number of iterations of the SAGA algorithm (Algorithm 4) we find (x̂, ŷ) is
(
ε
(3)
y , σ

(3)
y

)
solution to the

problem (6.58).
Step 2. Final estimates. We make oracle calls of ∇xG(x, y), ∇yG(x, y) and calculations of proximal

operator for the functions f̂(x), ĥ(y) only in Loop 3 and we make it no more than mN3 = N3 times in each
iteration of the SAGA algorithm (Algorithm 4). Then, after 3 loops of Algorithm from Section 6.2 one can
obtain next estimates on the number of oracles calls of ∇xG(x, y), ∇yG(x, y) and calculations of proxλ

f̂
(x′),

proxλ
ĥ
(y′):

Õ

(
max

{
1,

√
H1

µx

})
· Õ
(
max

{
1,

√
H2

µy

})
· Õ
(
mG +

L2
G

min(H1 + µx, H2 + µy)2

)
.

Choose H1 = max
{
µx,

LG√
mG

}
, H2 = max

{
µy,

LG√
mG

}
then:

Õ

(
max

{
1,

√
H1

µx

})
· Õ
(
max

{
1,

√
H2

µy

})
· Õ
(
mG +

L2
G

min(H1 + µx, H2 + µy)2

)
≤

Õ

(
max

{
1,

√
LG

µx
√
mG

})
· Õ
(
max

{
1,

√
LG

µy
√
mG

})
· Õ
(
mG + L2

Gmax

(
1

H1
,
1

H2

)2
)

≤

Õ

(
max

{
1,

√
LG

µx
√
mG

})
· Õ
(
max

{
1,

√
LG

µy
√
mG

})
· Õ
(
mG + L2

G
mG

L2
G

)
=

Õ

(
max

{
1,

√
LG

µx
√
mG

})
· Õ
(
max

{
1,

√
LG

µy
√
mG

})
· Õ (mG) =

Õ

(
max

{
mG,m

3
4

G

√
LG
µx

,m
3
4

G

√
LG
µy

,
LG

√
mG√

µxµy

})
= Õ

(√
mGL2

G

µxµy

)

In the second inequality we used that 1
H1
, 1
H2

≤
√
mG

LG
, in the last equality we used that µx

√
mG ≤ LG and

µy
√
mG ≤ LG.
To compute

proxλ
f̂
(x′) = arg min

x∈Rdx

{
λ

(
f(x) +

H1

2
‖x− x′‖22

)
+
H1 + µx

2
‖x− x′‖22

}
=

arg min
x∈Rdx

{
f(x) +

(
H1

2
+
H1 + µx

2λ

)
‖x− x′‖22

}
,

58 Vladislav Tominin 1 et al.

and

proxλ
ĥ
(y′) = arg max

y∈R
dy

{
λ

(
−h(y)− H2

2
‖y − y′‖22

)
− H2 + µy

2
‖y − y′‖22

}
=

arg min
y∈R

dy

{
h(y) +

(
H2

2
+
H2 + µy

2λ

)
‖y − y′‖22

}

we should compute (1.8) for the function f(x) with c1 = 0, c2 = H1

2 + H1+µx
2λ and (1.8) for the function h(y)

with c1 = 0, c2 = H2

2 +
H2+µy

2λ Then, after 3 loops of Algorithm from Section 6.2 one can obtain next estimates
on the number of oracles calls of ∇xG(x, y), ∇yG(x, y) and calculations of (1.8) for functions f(x) and h(y):

Õ

(√
mGL2

G

µxµy

)
.

7 Conclusions

References

1. Alacaoglu, A., Malitsky, Y.: Stochastic variance reduction for variational inequality methods. arXiv preprint
arXiv:2102.08352 (2021)

2. Alkousa, M., Dvinskikh, D., Stonyakin, F., Gasnikov, A., Kovalev, D.: Accelerated methods for composite non-bilinear
saddle point problem (2019)

3. Alkousa, M., Gasnikov, A., Dvinskikh, D., Kovalev, D., Stonyakin, F.: Accelerated methods for saddle-point problem.
Computational Mathematics and Mathematical Physics 60(11), 1787–1809 (2020)

4. Bubeck, S., Jiang, Q., Lee, Y.T., Li, Y., Sidford, A.: Near-optimal method for highly smooth convex optimization. In:
Conference on Learning Theory, pp. 492–507 (2019)

5. Carmon, Y., Jin, Y., Sidford, A., Tian, K.: Variance reduction for matrix games. In: Advances in Neural Information
Processing Systems, pp. 11381–11392 (2019)

6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of
Mathematical Imaging and Vision 40(1), 120–145 (2011)

7. Chen, Y., Lan, G., Ouyang, Y.: Accelerated schemes for a class of variational inequalities. Mathematical Programming
165(1), 113–149 (2017)

8. d’Aspremont, A., Scieur, D., Taylor, A.: Acceleration methods. arXiv:2101.09545 (2021)
9. Devolder, O.: Exactness, inexactness and stochasticity in first-order methods for large-scale convex optimization. Ph.D.

thesis, PhD thesis, ICTEAM and CORE, Université Catholique de Louvain (2013)
10. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inex-

act oracle. Mathematical Programming 146(1), 37–75 (2014). DOI 10.1007/s10107-013-0677-5. URL
http://dx.doi.org/10.1007/s10107-013-0677-5

11. Dvinskikh, D., Kamzolov, D., Gasnikov, A., Dvurechensky, P., Pasechnyk, D., Matykhin, V., Chernov, A.: Accelerated
meta-algorithm for convex optimization. arXiv preprint arXiv:2004.08691 (2020)

12. Dvurechensky, P., Nesterov, Y., Spokoiny, V.: Primal-dual methods for solving infinite-dimensional games. Journal of
Optimization Theory and Applications 166(1), 23–51 (2015)

13. Gasnikov, A.: Searching equillibriums in large transport networks (2016)
14. Gasnikov, A., Dvurechensky, P., Nesterov, Y.: Stochastic gradient methods with inexact oracle. Proceedings of Moscow

Institute of Physics and Technology 8(1), 41–91 (2016). In Russian, first appeared in arXiv:1411.4218
15. Gladin, E., Kuruzov, I., Stonyakin, F., Pasechnyuk, D., Alkousa, M., Gasnikov, A.: Solving strongly convex-concave com-

posite saddle point problems with a small dimension of one of the variables. arXiv preprint arXiv:2010.02280 (2020)
16. Gladin, E., Sadiev, A., Gasnikov, A., Dvurechensky, P., Beznosikov, A., Alkousa, M.: Solving smooth min-min and min-max

problems by mixed oracle algorithms. arXiv:2103.00434 (2021)
17. Grapiglia, G.N., Nesterov, Y.: On inexact solution of auxiliary problems in tensor methods for convex optimization. Opti-

mization Methods and Software pp. 1–26 (2020)
18. Hien, L.T.K., Zhao, R., Haskell, W.B.: An inexact primal-dual smoothing framework for large-scale non-bilinear saddle

point problems (2020)
19. Ibrahim, A., Azizian, W., Gidel, G., Mitliagkas, I.: Linear lower bounds and conditioning of differentiable games. In:

International Conference on Machine Learning, pp. 4583–4593. PMLR (2020)

http://dx.doi.org/10.1007/s10107-013-0677-5

Accelerated Methods for Saddle-Point Problems 59

20. Isaacs, R.: Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization.
Courier Corporation (1999)

21. Lan, G.: Lectures on optimization. methods for machine learning. H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA (2019)

22. Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer (2020)

23. Lin, H., Mairal, J., Harchaoui, Z.: A universal catalyst for first-order optimization. Proceedings of 29th International
conference Neural Information Processing Systems (NIPS) (2015)

24. Lin, H., Mairal, J., Harchaoui, Z.: Catalyst acceleration for first-order convex optimization: from theory to practice.
arXiv:1712.05654 (2017)

25. Lin, T., Jin, C., Jordan, M.I.: Near-optimal algorithms for minimax optimization. In: J. Abernethy, S. Agarwal (eds.)
Proceedings of Thirty Third Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 125, pp.
2738–2779. PMLR (2020). URL http://proceedings.mlr.press/v125/lin20a.html

26. Monteiro, R., Svaiter, B.: An accelerated hybrid proximal extragradient method for convex optimization and its implica-
tions to second-order methods. SIAM Journal on Optimization 23(2), 1092–1125 (2013). DOI 10.1137/110833786. URL
https://doi.org/10.1137/110833786

27. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France 93, 273–299
(1965). DOI 10.24033/bsmf.1625. URL www.numdam.org/item/BSMF_1965__93__273_0/

28. Morgenstern, O., Von Neumann, J.: Theory of games and economic behavior. Princeton university press (1953)

29. Morin, M., Giselsson, P.: Sampling and update frequencies in proximal variance reduced stochastic gradient methods. arXiv
preprint arXiv:2002.05545 (2020)

30. Nash Jr, J.F.: The bargaining problem. Econometrica: Journal of the econometric society pp. 155–162 (1950)

31. Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone
operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization 15(1), 229–251 (2004)

32. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. J. Wiley & Sons, New York
(1983)

33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer (2004)

34. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM Journal on Optimization 16(1), 235–249
(2005)

35. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Programming 103(1), 127–152 (2005)

36. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Mathematical
Programming 109(2-3), 319–344 (2007). First appeared in 2003 as CORE discussion paper 2003/68

37. Nesterov, Y.: Gradient methods for minimizing composite functions. Mathematical Programming 140(1), 125–161 (2013).
First appeared in 2007 as CORE discussion paper 2007/76

38. Ostrovskii, D.M., Lowy, A., Razaviyayn, M.: Efficient search of first-order nash equilibria in nonconvex-concave smooth
min-max problems. arXiv preprint arXiv:2002.07919 (2020)

39. Palaniappan, B., Bach, F.: Stochastic variance reduction methods for saddle-point problems. In: D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates,
Inc. (2016). URL https://proceedings.neurips.cc/paper/2016/file/1aa48fc4880bb0c9b8a3bf979d3b917e-Paper.pdf

40. Shalev-Shwartz, S., Zhang, T.: Accelerated proximal stochastic dual coordinate ascent for regularized loss min-
imization. In: E.P. Xing, T. Jebara (eds.) Proceedings of the 31st International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 32, pp. 64–72. PMLR, Bejing, China (2014). URL
http://proceedings.mlr.press/v32/shalev-shwartz14.html. First appeared in arXiv:1309.2375

41. Song, C., Wright, S.J., Diakonikolas, J.: Variance reduction via primal-dual accelerated dual averaging for nonsmooth
convex finite-sums. arXiv preprint arXiv:2102.13643 (2021)

42. Thekumparampil, K.K., Jain, P., Netrapalli, P., Oh, S.: Efficient algorithms for smooth minimax opti-
mization. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (eds.)
Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). URL
https://proceedings.neurips.cc/paper/2019/file/05d0abb9a864ae4981e933685b8b915c-Paper.pdf

43. Wang, Y., Li, J.: Improved algorithms for convex-concave minimax optimization. arXiv preprint arXiv:2006.06359 (2020)

44. Xu, Z., Zhang, H., Xu, Y., Lan, G.: A unified single-loop alternating gradient projection algorithm for nonconvex-concave
and convex-nonconcave minimax problems. arXiv preprint arXiv:2006.02032 (2020)

45. Yang, J., Zhang, S., Kiyavash, N., He, N.: A catalyst framework for minimax optimization. Advances in Neural Information
Processing Systems 33 (2020)

46. Yurii Nesterov, L.S.: Solving strongly monotone variational and quasi-variational inequalities (2011). DOI 10.3934/dcds.
2011.31.1383. URL http://aimsciences.org//article/id/c56b63d5-74a5-4546-96ab-dbffbff61c9c

47. Zhu, Y., Liu, D., Tran-Dinh, Q.: Accelerated primal-dual algorithms for a class of convex-concave saddle-point problems
with non-bilinear coupling term. arXiv preprint arXiv:2006.09263 (2020)

http://proceedings.mlr.press/v125/lin20a.html
https://doi.org/10.1137/110833786
www.numdam.org/item/BSMF_1965__93__273_0/
https://proceedings.neurips.cc/paper/2016/file/1aa48fc4880bb0c9b8a3bf979d3b917e-Paper.pdf
http://proceedings.mlr.press/v32/shalev-shwartz14.html
https://proceedings.neurips.cc/paper/2019/file/05d0abb9a864ae4981e933685b8b915c-Paper.pdf
http://aimsciences.org//article/id/c56b63d5-74a5-4546-96ab-dbffbff61c9c

60 Vladislav Tominin 1 et al.

A Proof of Theorem 1

In this Appendix A we rename the sequence of points (xmdk , xtk, xk) (see listing of the Algorithm 1) to (x̃k, yk, xk). We use
the following definition to simplify calculations.

Definition 6 Let (ϕδ,Lϕ (x),∇ϕδ,Lϕ (x)) be a (δ, Lϕ) - oracle of function ϕ at a point x, then Ω1,δ,Lϕ (ϕ, z, x) is the following
linear function of z:

Ω1,δ,Lϕ (ϕ, x, z) = ϕδ,Lϕ (x) + 〈∇ϕδ,Lϕ (x), z − x〉 (A.1)

To prove the Theorem 1, we need the following Theorem 16, which is based on Theorem 2.1 from [4].

Theorem 16 Let (yk)k≥1 — be a sequence in Rd, and (λk)k≥1 — a sequence in R+. Define (ak)k≥1 such that λkAk = a2k
and Ak =

∑k
i=1 ai. Define also for any k ≥ 0, xk = x0 −∑k

i=1 ai(∇ϕδ,Lϕ (yi) +∇ψδ,Lψ (yi)) and x̃k :=
ak+1

Ak+1
xk + Ak

Ak+1
yk.

Finally assume if for some σ ∈ [0, 1]

‖yk+1 − (x̃k − λk+1(∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)))‖ ≤ σ · ‖yk+1 − x̃k‖ , (A.2)

then one has for any x ∈ R
d,

F (yk)− F (x) ≤ ‖x− x0‖2
2Ak

+ 2

(
k∑

i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑

i=1

Ai

)
δ1/Ak , (A.3)

To prove this Theorem we introduce auxiliaries Lemmas based on lemmas 2.2-2.5 and 3.1 from [4].
Consider a linear combination of gradients:

xk = x0 −
k∑

i=1

ai(∇ϕδ,Lϕ (yi) +∇ψδ,Lψ (yi))

where coefficients (ai)i≥1 ≥ 0 and points (yi)i≥1 is not defined yet. A key observation for such a linear combination of gradients
is that it minimizes the approximate lower bound of F .

Lemma 10 Let ξ0(x) =
1
2
‖x− x0‖2 and define by induction ξk(x) = ξk−1(x) + ak

(
Ω1,δ,Lϕ (ϕ, yk, x) +Ω1,δ,Lψ (ψ, yk, x)

)
=

ξk−1(x) + akΩ1,2δ,Lϕ+Lψ (F, yk, x). Then xk = x0 −∑k
i=1 ai(∇ϕδ,Lϕ (yi) +∇ψδ,Lψ (yi)) is the minimizer of ξk, and ξk(x) ≤

AkF (x) + 1
2
‖x− x0‖2 +Akδ1, where Ak =

∑k
i=1 ai.

Proof Since ξk(x) is strongly convex and smooth then expression

∇ξk(x) = 0 (A.4)

is the criterion of minimum.
The sequence xk is satisfied

∇ξk(xk) = ∇
([

k∑

i=1

aiΩ1,2δ,Lϕ+Lψ (F, yk, x)

]
+

1

2
‖xk − x0‖2

)
= (A.5)

=

[
k∑

i=1

ai

(
∇ϕδ,Lϕ (yi) +∇ψδ,Lψ (yi)

)]
+ xk − x0 = 0. (A.6)

Therefore, xk is a minimizer of the function ξk. Let us prove now that

Ω1,2δ,Lϕ+Lψ (F, yk, x) ≤ F (x) + δ1. (A.7)

From the definition of Ω1,2δ,Lϕ+Lψ (F, yk, x) we obtain

Ω1,2δ,Lϕ+Lψ (F, yk, x) = F2δ,Lϕ+Lψ (yi) + 〈∇F2δ,Lϕ+Lψ (yi), x− yi〉 ≤ F (x) + δ1. (A.8)

Using ξk(x) =
[∑k

i=1 aiΩ1,2δ,Lϕ+Lψ (F, yk, x)
]
+ 1

2
‖x− x0‖2 we obtain the statement of the theorem. ⊓⊔

Accelerated Methods for Saddle-Point Problems 61

The next idea is to produce a control sequence (zk)k≥1 demonstrating that ξk is not too far below AkF . From this we can
directly yield a convergence rate for zk.

Lemma 11 Let (zk) be a sequence such that

ξk(xk)− AkF (zk) ≥ −2

(
k∑

i=1

Ai

)
δ2 −

(
k−1∑

i=1

Ai

)
δ1 . (A.9)

Then one has for any x,

F (zk) ≤ F (x) +
‖x− x0‖2

2Ak
+ 2

(
k∑

i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑

i=1

Ai

)
δ1/Ak . (A.10)

Proof Using Lemma 10 we obtain

AkF (zk) ≤ ξk(xk) + 2

(
k∑

i=1

Ai

)
δ2 +

(
k−1∑

i=1

Ai

)
δ1 ≤ ξk(x) + 2

(
k∑

i=1

Ai

)
δ2 +

(
k−1∑

i=1

Ai

)
δ1 (A.11)

≤ AkF (x) +
1

2
‖x− x0‖2 + 2

(
k∑

i=1

Ai

)
δ2 +

(
k−1∑

i=1

Ai

)
δ1 + Akδ1 . (A.12)

⊓⊔

Our aim now to get sequences (ak , yk, zk), satisfying (A.9).

Lemma 12 One has for any x, zk ∈ R
d and k ∈ N

ξk+1(x)− Ak+1F (yk+1)− (ξk(xk) −AkF (zk))

≥ Ak+1〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1),
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1〉+

1

2
‖x− xk‖2 − 2Ak+1δ2 − Akδ1 .

Proof Firstly from H(ξk) = I using that xk is a minimizer of ξk(x) we get

ξk(x) = ξk(xk) +
1

2
‖x− xk‖2,

and

ξk+1(x) = ξk(xk) +
1

2
‖x− xk‖2 + ak+1Ω1,2δ,Lϕ+Lψ (F, yk+1, x) ,

we can rewrite this as follows

ξk+1(x)− ξk(xk) = ak+1Ω1,2δ,Lϕ+Lψ (F, yk+1, x) +
1

2
‖x− xk‖2 . (A.13)

Now using (2.4):

Ω1,2δ,Lϕ+Lψ (F, yk+1, zk) = F2δ,Lϕ+Lψ (yk+1) + 〈∇F2δ,Lϕ+Lψ (yk+1), zk − yk+1〉 ≤ F (zk) + δ1 (A.14)

we obtain:

62 Vladislav Tominin 1 et al.

ak+1Ω1,2δ,Lϕ+Lψ (F, yk+1, x) = Ak+1Ω1,2δ,Lϕ+Lψ (F, yk+1, x)

− AkΩ1,2δ,Lϕ+Lψ (F, yk+1, x) = Ak+1Ω1,2δ,Lϕ+Lψ (F, yk+1, x)

− Ak〈∇F2δ,Lϕ+Lψ (yk+1), x− zk〉 − AkΩ1,2δ,Lϕ+Lψ (F, yk+1, zk)

= Ak+1Ω1,2δ,Lϕ+Lψ

(
F, yk+1, x− Ak

Ak+1
(x− zk)

)
−AkΩ1,2δ,Lϕ+Lψ (F, yk+1, zk)

= Ak+1F2δ,Lϕ+Lψ (yk+1) + Ak+1〈∇F2δ,Lϕ+Lψ (yk+1),

(
x− Ak

Ak+1
(x− zk)

)
− yk+1〉

− AkΩ1,2δ,Lϕ+Lψ (F, yk+1, zk)
(A.14)

≥ Ak+1F2δ,Lϕ+Lψ (yk+1)−AkF (zk)− Akδ1

+ Ak+1〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1),
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1〉

(2.4)

≥ Ak+1F (yk+1)− 2Ak+1δ2 −AkF (zk)− Akδ1

+ Ak+1〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1),
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1〉 ,

which concludes the proof. ⊓⊔

Lemma 13 Denoting

λk+1 :=
a2k+1

Ak+1
(A.15)

and x̃k :=
ak+1

Ak+1
xk + Ak

Ak+1
yk, one has:

ξk+1(xk+1)− Ak+1F (yk+1)− (ξk(xk)− AkF (yk)) ≥
Ak+1

2λk+1

(
‖yk+1 − x̃k‖2 − ‖yk+1 − (x̃k − λk+1(∇ϕδ,Lϕ (yk+1)) +∇ψδ,Lψ (yk+1))‖2

)
− 2Ak+1δ2 − Akδ1 .

In particular, we have in light of (A.2)

ξk(xk)− AkF (yk) ≥
1− σ2

2

k∑

i=1

Ai

λi
‖yi − x̃i−1‖2 − 2

(
k∑

i=1

Ai

)
δ2 −

(
k−1∑

i=1

Ai

)
δ1.

Proof We apply Lemma 12 with zk = yk and x = xk+1 , and note that (with ζ̃ :=
ak+1

Ak+1
x+ Ak

Ak+1
yk):

〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1),
ak+1

Ak+1
x+

Ak

Ak+1
yk − yk+1〉 +

1

2Ak+1
‖x− xk‖2

= 〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1), ζ̃ − yk+1〉+
1

2Ak+1

∥∥∥∥
Ak+1

ak+1

(
ζ̃ − Ak

Ak+1
yk

)
− xk

∥∥∥∥
2

= 〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1), ζ̃ − yk+1〉+
Ak+1

2a2k+1

∥∥∥∥ζ̃ −
(
ak+1

Ak+1
xk +

Ak

Ak+1
yk

)∥∥∥∥
2

.

This yields, using (A.15):

ξk+1(xk+1)− Ak+1F (yk+1)− (ξk(xk)− AkF (yk))

≥ Ak+1 · 〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)), ζ̃ − yk+1)〉+
Ak+1

2λk+1
‖ζ̃ − x̃k‖2 − 2Ak+1δ2 − Akδ1

≥ Ak+1 · min
x∈Rd

{
〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1), x− yk+1〉+

1

2λk+1
‖x− x̃k‖2

}
− 2Ak+1δ2 − Akδ1 .

Accelerated Methods for Saddle-Point Problems 63

The value of the minimum is easy to compute. Due to the strong convexity of the minimized function and its continuous
differentiability, achieving a minimum is equivalent to the condition

0 = ∇
[
〈∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1), x− yk+1〉+

1

2λk+1
‖x− x̃k‖2

]
=

= (∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)) +
1

λk+1
(x− x̃k)

Then

x∗ = x̃k − λk+1(∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1))

Substituting into the last inequality we obtain the statement of the theorem. ⊓⊔
Proof of the Theorem 16

Using Lemma 13 we get

ξk(xk)− AkF (yk) ≥
1− σ2

2

k∑

i=1

Ai

λi
‖yi − x̃i−1‖2 − 2

(
k∑

i=1

Ai

)
δ2 −

(
k−1∑

i=1

Ai

)
δ1

≥ −2

(
k∑

i=1

Ai

)
δ2 −

(
k−1∑

i=1

Ai

)
δ1.

Applying Lemma 11 for zk = yk one has for any x ∈ R
d:

F (yk)− F (x) ≤ ‖x− x0‖2
2Ak

+ 2

(
k∑

i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑

i=1

Ai

)
δ1/Ak , (A.16)

⊓⊔
that conclude the proof.

Now one will formulate the sufficient condition (2.6) for the accuracy of solving auxiliary problems (2.5). Let us assume,
that auxiliary problems (2.5) can not be solved exactly. Let the algorithm only have an inaccurate solution yk+1 satisfying

(2.6) :‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖

≤ H

4
‖yk+1 − x̃k‖ − 2

√
2δ2Lϕ

in this case:

Lemma 14 Assume that ϕ(x) has (δ, Lϕ) -oracle, ψ(x) has (δ, Lψ) -oracle and the auxiliary subproblem (2.5) is solved
inexactly in such a way that the inequality (2.6) holds. If

H ≥ 2Lϕ

then equation (A.2) holds true with σ = 7/8 for (2.5). In the case p = 1 one can consider λk+1 = λ = 1
2H

.

Proof Using that ϕ is equipped with a (δ, Lϕ) -oracle and Corollary 4.2. from [9] one obtains:

‖∇ϕδ,Lϕ (y) −∇yΩ1,δ,Lϕ (ϕ, x, y)‖ ≤ Lϕ‖y − x‖+ 2
√

2Lϕδ2 . (A.17)

By (2.6) and (A.17) we can get next inequalities:

‖yk+1 − (x̃k − λk+1(∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)))‖
= ‖yk+1 ± λk+1∇yΩ1,δ,Lϕ (ϕ, x̃k, yk+1) ±Hλk+1(yk+1 − x̃k)

− (x̃k − λk+1(∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)))‖ ≤ (1 −Hλk+1)‖(yk+1 − x̃k)‖
+ λk+1‖∇yΩ1,δ,Lϕ (ϕ, x̃k, yk+1) +H(yk+1 − x̃k) +∇ψδ,Lψ (yk+1)‖

+ λk+1‖∇ϕδ,Lϕ (yk+1)−∇yΩ1,δ,Lϕ (ϕ, x̃k, yk+1)‖
(2.6),(A.17)

≤ (1−Hλk+1)‖yk+1 − x̃k‖

+ λk+1
H

4
‖yk+1 − x̃k‖ − 2λk+1

√
2Lϕδ2 + λk+1

(
Lϕ‖yk+1 − x̃k‖+ 2

√
2Lϕδ2

)

≤
(
5

8
+
Lϕ

2H

)
‖yk+1 − x̃k‖ ≤ 7

8
‖yk+1 − x̃k‖

64 Vladislav Tominin 1 et al.

that ends the proof. ⊓⊔

Recall from Lemma 11 that the rate of convergence of AM-1 is ‖x0−x∗‖/Ak+2
(∑k

i=1Ai
)
δ2/Ak+δ1+

(∑k−1
i=1 Ai

)
δ1/Ak.

We now finally give an estimate of Ak:

Lemma 15 Suppose H ≥ 2Lϕ. Then one has, with c1 = 4,

Ak ≥ k2

c1H
(A.18)

Proof In case, when p = 1 λk+1 are defined as

λk+1 =
1

2H
.

Inequality (A.18) holds when k = 1.
Let us proof that if (A.18) holds for k then it holds for k + 1. Using the definition of Ak

ak+1 =
λk+1 +

√
λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1,

we obtain

Ak+1 ≥ k2

2c1Lϕ
+

1

8Lϕ

1 +

√

1 +
16k2

c1

 ≥ (k + 1)2

2c1Lϕ
.

Proof of the Theorem 1
To prove the Theorem 1 it suffices to combine Lemmas 14,15 with Theorem 16.

B Proof of Theorem 2

In this Appendix B we rename the sequence of points (xmdk , xtk, xk) (see listing of the Algorithm 1) to (x̃k, yk, xk).

Proof Firstly, let us choose δ according to (2.10):

∀k : δ1 + δ2 + 2

(
k∑

i=1

Ai

)
δ2/Ak + 2

(
k−1∑

i=1

Ai

)
δ1/Ak ≤ ε

2
,

where ε is solution accuracy in terms of F (x)− F (x∗) ≤ ε.
Then, as ε/2 ≤ c1HR2/k2 with c1 = 4, next inequality holds true

∀k : δ1 + δ2 + 2

(
k∑

i=1

Ai

)
δ2/Ak + 2

(
k−1∑

i=1

Ai

)
δ1/Ak ≤ c1HR2

k2
.

From (δ, L, µ) - oracle definition (2.8) we get

µ

2
‖z − x∗‖2 − δ1 ≤ F (z)−

(
Fδ,L,µ(x∗) +

〈
∇Fδ,L,µ(x∗), z − x∗

〉)
= (B.1)

= (F (z)− Fδ,L,µ(x∗)) +
〈
∂F (x∗)−∇Fδ,L,µ(x∗), z − x∗

〉
− 〈∂F (x∗), z − x∗〉 ≤

≤ (F (z)− F (x∗) + δ2) +
√

2δ2L‖z − x∗‖.

Therefore µ

2
‖z − x∗‖2 −

√
2δ2L‖z − x∗‖ ≤ (F (z)− F (x∗) + δ1 + δ2).

If δ2 is small enough such that
4
√
2δ2L

µ
≤ ε/2,

Accelerated Methods for Saddle-Point Problems 65

then taking into account that ∀k : ε/2 ≤ ‖zk+1 − x∗‖ we obtain

∀k :
µ

4
‖zk+1 − x∗‖2 ≥

√
2δ2L‖zk+1 − x∗‖, (B.2)

which implies the following inequality

µ

4
‖zk − x∗‖2 ≤ (F (zk)− F (x∗) + δ1 + δ2). (B.3)

Finally, we can conclude that Rk decreases as a geometric progression:

Rk+1 = ‖zk+1 − x∗‖
(B.3)

≤
(
4 (F (zk+1)− F (x∗) + δ1 + δ2)

µ

) 1
2

(2.7)

≤

4

(
c1HR

2
k

N2
k

+ 2
(∑k

i=1Ai
)
δ1/Ak + 2

(∑k−1
i=1 Ai

)
δ2/Ak + δ1 + δ2

)

µ

1
2

(2.10)

≤

4

(
2c1HR

2
k

N2
k

)

µ

1
2

=

(
8c1HR2

k

µN2
k

) 1
2 (2.9)

≤
(
R2
k

22

) 1
2

=
Rk

2
.

Which in turn guarantees that

F (zK)− F (x∗) ≤
µR2

0

4 · 4K . (B.4)

It is sufficient to choose K = 2 log2
µR2

0
4ε

in order that F (zk) − F (x∗) ≤ ε.
Now we compute the total number of AM steps.

K∑

k=0

Nk ≤
K∑

k=0

(
32c1H

µ

) 1
2

+K ≤
K∑

k=0

(
32c1H

µ

) 1
2

+K

=

(
32c1H

µ

) 1
2

K +K =

(√
128H

µ
+ 1

)
· 2 log2

µR2
0

4ε
≤
(
16

√
2

√
H

µ
+ 2

)
log2

µR2
0

ε

⊓⊔

C Proof of Theorem 3 and Theorem 4

The Theorem 3 show that the fulfillment of condition (2.6) keep the linear rate of convergence when solving the auxiliary
problems (2.5). Also in this Appendix C we rename the sequence of points (xmdk , xtk, xk) (see listing of the Algorithm 1) to
(x̃k, yk, xk).
Firstly, based on (2.6) we try to relate the accuracy ε̃ we need to solve (2.5) in terms of the following criteria:

‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ ≤ ε̃. (C.1)

For this we prove the auxiliary lemma for (δ, Lϕ) -oracle of ϕ and (δ, Lψ) -oracle of ψ, that is based on the Lemma 2.1 from [17]
.

Lemma 16 Let x̃k ∈ Rd, H,Θ > 0.
Assume that ϕ(x) admits (δ, Lϕ) -oracle, ψ(x) admits (δ, Lψ) -oracle. If inquality

‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ (C.2)

≤ min

{
1

2
,

Θ

2 [Lϕ +H]

}(
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

)
(C.3)

66 Vladislav Tominin 1 et al.

holds true, then yk+1 satisfies

‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ (C.4)

≤ Θ‖yk+1 − x̃k‖+
2Θ

[Lϕ +H]

√
2Lϕδ2 (C.5)

Proof Using that ϕ is equipped with a (δ, Lϕ) -oracle and Corollary 4.2. from [9] one obtains:

‖∇ϕδ,Lϕ (y) −∇yΩ1,δ,Lϕ (ϕ, x, y)‖ ≤ Lϕ‖y − x‖+ 2
√

2Lϕδ2 . (C.6)

Combining (C.2) and (C.6) we obtain

‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖
≤ ‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1)−∇ψδ,Lψ (yk+1)−∇Ω1,δ,Lϕ (ϕ, x̃k, yk+1) ‖

+ ‖∇Ω1,δ,Lϕ (ϕ, x̃k, yk+1)±∇ψδ,Lψ (yk+1)−∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
‖

+ ‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖

(C.6),(C.2)

≤
(
Lϕ‖yk+1 − x̃k‖+ 2

√
2Lϕδ2

)
+H‖yk+1 − x̃k‖+

1

2
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖.

Thus,
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

2
≤ [Lϕ +H] ‖yk+1 − x̃k‖+ 2

√
2Lϕδ2 (C.7)

which gives
Θ

2 [Lϕ +H]
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖ ≤ Θ‖yk+1 − x̃k‖+

2Θ

[Lϕ +H]

√
2Lϕδ2 (C.8)

Finally, (C.4) follows directly from the (C.2) and (C.8). ⊓⊔

Lemma 17 Assume that H ≥ 2Lϕ, ϕ(x) admits (δ, Lϕ)-oracle, ψ(x) admits (δ, Lψ)-oracle, F (x) admits (2δ, Lϕ + Lψ , µ)-

oracle; yk+1, x̃k ∈ Rd and ε ∈ (0, 1). If inequalities

ε ≤ F2δ,Lϕ+Lψ,µ(y) − min
x∈Qf

F (x) (C.9)

δ2 ≤ εµ

642 · Lϕ
, (C.10)

are satisfied then inequality (2.6) holds true if one solve the auxiliary problem (2.5) with the accuracy TODO: Correct this
part, hard to understand and put here precise dependence ε̃ =

√
2εµ/64???

ε̃ =

√
εµ

72
(C.11)

in terms of criteria (C.1).

Proof According to the conditions of the lemma, the problem (2.5) is solved with the accuracy

(C.1) : ‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ ≤ ε̃

To prove the lemma, it suffices to show the following chain of inequalities

ε̃ ≤ min{1
2
,

H

8 [Lϕ +H]
}
(
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

)
−
(
2 +

H

2 [Lϕ +H]

)√
2δ2Lϕ

≤ H

4
‖yk+1 − x̃k‖ − 2

√
2δ2Lϕ (C.12)

Accelerated Methods for Saddle-Point Problems 67

Lemma 16 for Θ = H
4

guarantee that if the next inequality holds true

‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ (C.13)

≤ min{1
2
,

H

8 [Lϕ +H]
}
(
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

)
−
(
2 +

H

2 [Lϕ +H]

)√
2δ2Lϕ

then the equation (2.6) is satisfied.
If (C.13) is sufficient condition for (2.6), it means that right-hand sides of (C.13) less the right-hand sides of (2.6). From this
consequence the next inequality

1

12

(
‖∇F2δ,Lϕ+Lψ (yk+1)‖

)
− 5

2

√
2δ2Lϕ =

1

12

(
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

)
− 5

2

√
2δ2Lϕ (C.14)

≤ min{1
2
,

H

8 [Lϕ +H]
}
(
‖∇ϕδ,Lϕ (yk+1) +∇ψδ,Lψ (yk+1) ‖

)
−
(
2 +

H

2 [Lϕ +H]

)√
2δ2Lϕ (C.15)

≤ H

4
‖yk+1 − x̃k‖ − 2

√
2δ2Lϕ (C.16)

The second inequality of the equation (C.12) is satisfied, let us prove the first one.
The fact that F has (2δ, Lϕ + Lψ , µ) -oracle guarantee

µ

2
‖x− y‖2 +

(
F2δ,Lϕ+Lψ,µ(y) +

〈
∇F2δ,Lϕ+Lψ,µ(y), x− y

〉)
≤ F (x) for all x ∈ Qf (C.17)

Let us minimize the right-hand and left-hand sides of (C.17) with respect to x independently

F ∗ = min
x∈Qf

F (x)
(C.17)

≥ F2δ,Lϕ+Lψ,µ(y) + min
x∈Qf

{µ
2
‖x− y‖2 +

〈
∇F2δ,Lϕ+Lψ,µ(y), x− y

〉}

= F2δ,Lϕ+Lψ,µ(y) −
1

2µ
‖∇F2δ,Lϕ+Lψ,µ(y)‖2

Then obtain

ε
(C.9)

≤ F2δ,Lϕ+Lψ,µ(y) − F ∗ ≤ 1

2µ
‖∇F2δ,Lϕ+Lψ,µ(y)‖

2 (C.18)

Inequality (C.18) guarantee that

1

2

√
εµ

18
− 5

2

√
2δ2Lϕ ≤ 1

12
‖∇F2δ,Lϕ+Lψ,µ(y)‖ − 5

2

√
2δ2Lϕ (C.19)

In case of (C.10) inequality (C.19) give us guarantees that the first inequality of the equation (C.12) holds true

ε̃ =

√
εµ

72

(C.10)

≤ 1

2

√
εµ

18
− 5

2

√
2δ2Lϕ

(C.19)

≤ 1

12
‖∇F2δ,Lϕ+Lψ,µ(y)‖ − 5

2

√
2δ2Lϕ (C.20)

Finally, combine the equations (C.16) and (C.20) obtain the required chain of inequalities (C.12). ⊓⊔

Let us prove the Theorem 3 using Lemma 17:

Proof Firstly, let us collect all restrictions on δ1, δ2 and auxiliary problem precision for obtaining convergence of outer Algorithm-
2 and fulfillment of the Lemma 17 together:

(C.1) :‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖ ≤ ε̃,

(C.10) :δ2 ≤ εµ

642 · Lϕ
,

(2.10) :∀k : δ1 + δ2 + 2

(
k∑

i=1

Ai

)
δ2/Ak +

(
k−1∑

i=1

Ai

)
δ1/Ak ≤ ε

2
,

(2.11) :
4
√
2δ2L

µ
≤ ε/2.

68 Vladislav Tominin 1 et al.

Let us have a look at (C.1). We need obtain the sufficient condition for it in terms of the criterion (2.13).

‖∇
(
Ω1,δ,Lϕ (ϕ, x̃k, yk+1) +

H

2
‖yk+1 − x̃k‖2

)
+∇ψδ,Lψ (yk+1) ‖

≤‖∇Ω1,δ,Lϕ (ϕ, x̃k, yk+1)± ∂ϕ(x̃∗)‖+H‖yk+1 − x̃k‖+ ‖∇ψδ,Lψ (yk+1)± ∂ψ(x̃∗)‖

≤Lϕ‖x̃k − x∗‖+ 2
√
Lϕδ2 +H‖yk+1 − x̃k‖+ Lψ‖yk+1 − x∗‖+ 2

√
Lψδ2

≤(Lϕ + Lψ +H)max {‖x̃k − x∗‖, ‖yk+1 − x∗‖} + 2
√
Lϕδ2 + 2

√
Lψδ2

(B.3)

≤ (Lϕ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lϕδ2 + 2

√
Lψδ2.

Then, according to (C.1), the sufficient condition for (2.6) holds true is

(Lϕ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lϕδ2 + 2

√
Lψδ2 ≤

√
εµ

72
.

Next, under the assumption δ1 ≤ δ2, (2.10) is converting into more simple sufficient condition

δ2 ≤ ε

2 (1 + 4N)
≤ ε

2
(
1 + 4

(∑k
i=1Ai

)
/Ak

) (C.21)

where N is the number of outer steps. There was used the fact that Ai ≤ Ai+1. Finally, if δ2 satisfies the inequality

δ2 ≤ ε3/2

5
√

2c1HR2

then (C.21) holds true.
If we choose δ1, δ2, ε̃f such that:

δ1, δ2 = min

{
εµ

8642Lϕ
,

εµ

8642Lψ
,

εµ2

8642(Lϕ + Lψ +H)2
,

ε3/2

5
√

2c1HR2

}
,

ε̃f ≤ εµ2

8642(Lϕ + Lψ +H)2
,

then all required inequalities are satisfied:

(Lϕ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lϕδ2 + 2

√
Lψδ2 ≤

√
εµ

72
,

δ2 ≤ εµ

642 · Lϕ
,

δ2 ≤ ε3/2

5
√

2c1HR2
,

4
√
2δ2L

µ
≤ ε/2.

Also dependences δ1(ε), δ2(ε), ε̃f (ε) are polynomial. ⊓⊔
Let’s prove the Theorem 4 using Theorem 3:

Proof
Suppose that at each iteration of the Algorithm 2 one have:
1. inexact (δ, σ0, µϕ, Lϕ), (δ, σ0, µψ , Lψ)-oracles of ϕ,ψ;
2. the (ε, σ0)-solution of auxiliary problem.
Let us estimate the probability P with which inexact (δ, µϕ, Lϕ), (δ, µψ , Lψ)-oracles of ϕ, ψ and the ε-solution of auxiliary
problem will be available at all iterations (2.27) of the Algorithm 2

P = (1− σ0)
N(ε)(1− σ̃)N(ε) ≥ 1−N(ε) (σ0 + σ̃)

(2.23),(2.26),(2.27)

≥ 1− σ (C.22)

Hence with probability (C.22) the conditions of the Theorem 3 are satisfied which ends the proof. ⊓⊔

Accelerated Methods for Saddle-Point Problems 69

D L-SVRG

In this Appendix D we reformulate the convergence results of Algorithm L-SVRG from [29] in terms of large deviations.

Lemma 18 (Corollary 5.6 from [29]) We consider the problem

min
x∈Rd

F (x) = ϕ(x) + ψ(x) (D.1)

where ϕ is of finite sum form

ϕ(x) =
1

n

n∑

i=1

ϕi(x)

and ψ is Lψ-smooth, convex and prox-friendly. The function ϕi is convex and Li-smooth for all i = 1, . . . , n. The function ϕ

is convex, L-smooth with L ≤ 1
n

∑n
i=1 Li an µ-strongly convex. Then L-SVRG [29] achieves an (ε, σ)-solution of (D.1), i.e.

P{F (xk)− F (x∗) ≥ ε} ≤ σ (D.2)

within

O

√

n+

√

2DL
L̄

µ

2

log
1

ǫσ

iterations where L̄ = 1
n

∑n
i=1 Li, DL = 4− 3 µ

L̄
and x∗ is solution of (D.1). We note that 1 ≤ DL ≤ 4.

Proof According to Corollary 5.6 from [29] we obtain that after O

((√
n+

√
2DL

L̄
µ

)2
log 1

ǫ′

)
steps L-SVRG [29] gives ε′

accurate solution, i.e.

E

∥∥∥xk − x∗
∥∥∥
2
≤ ǫ′, (D.3)

holds true. For arbitrary ε, σ > 0 let us take xk, ε
′ = 2εσ/LF accurate solution in terms of (D.3). Then from LF = L + Lψ-

smoothness of F we have

E[F (xk)− F (x∗)] ≤ E

[
LF

2
‖xk − x∗‖2

]
≤ εσ. (D.4)

Using Markov inequality and (D.4) we obtain that

P{F (xk)− F (x∗) ≥ ε} ≤ E[F (xk) − F (x∗)]
ε

≤ σ. (D.5)

In other words, after

O

√

n+

√

2DL
L̄

µ

2

log
1

ǫ′

 = O

√

n+

√

2DL
L̄

µ

2

log
1

ǫσ

Algorithm L-SVRG from [29] gives random point xk such as (D.5) holds true. In other words, xk is (ε, σ)-solution of (D.1). ⊓⊔

E Proof of Lemma 1 and Lemma 2

Let us proof Lemma 1

70 Vladislav Tominin 1 et al.

Proof Using the Deffinition 3 for function ϕ and ψ, we can obtain:

µϕ

2
‖x− y‖2 ≤ ϕ(x)−

(
ϕδϕ,Lϕ,µϕ(y) +

〈
∇ϕδϕ,Lϕ,µϕ (y), x− y

〉)
≤ Lϕ

2
‖x− y‖2 + δϕ w.p. 1− σϕ (E.1)

µψ

2
‖x− y‖2 ≤ ψ(x) −

(
ψδψ,Lψ ,µψ (y) +

〈
∇ψδψ,Lψ ,µψ (y), x− y

〉)
≤ Lψ

2
‖x− y‖2 + δψ w.p. 1− σψ (E.2)

Let us sum this equations:

µϕ

2
‖x− y‖2 +

µψ

2
‖x− y‖2 ≤ ϕ(x) + ψ(x) −

(
ϕδϕ,Lϕ,µϕ (y) + ψδψ ,Lψ,µψ (y) +

〈
∇ϕδϕ,Lϕ,µϕ (y) +∇ψδψ ,Lψ,µψ (y), x− y

〉)

≤Lϕ
2

‖x− y‖2 +
Lψ

2
‖x− y‖2 + δϕ + δψ w.p. 1− σϕ − σψ (E.3)

The equation (E.3) means that the pair
(
ϕδϕ,Lϕ,µϕ(y) + ψδψ,Lψ ,µψ (y),∇ϕδϕ,Lϕ,µϕ (y) +∇ψδψ,Lψ,µψ (y)

)
is (δϕ + δψ , σϕ +

σψ , Lϕ + Lψ , µϕ + µψ)-oracle for ϕ+ ψ. ⊓⊔

Let us proof Lemma 2

Proof The function Ŝ(x, ·) is µy-strongly concave, and Ŝ(·, y) is differentiable. Therefore, by Demyanov–Danskin’s theorem, for
any x ∈ R

dx , we have
∇g(x) = ∇xS̃(x, y∗(x)) = ∇xF (x, y∗(x)). (A1)

To prove that g(·) has an L–Lipschitz gradient for L = LF +
2L2
F

µy
, let us prove the Lipschitz condition for y∗(·) with a

constant, the function y∗ is defined as:
y∗(x) := arg max

y∈R
dy

Ŝ(x, y) ∀x ∈ R
dx , (E.4)

Since Ŝ(x1, ·) is µy-strongly concave, for arbitrary x1, x2 ∈ R
dx :

‖y∗(x1)− y∗(x2)‖22 ≤ 2

µy

(
Ŝ(x1, y

∗(x1)) − Ŝ(x1, y
∗(x2))

)
. (A2)

On the other hand, Ŝ(x2, y∗(x1))− Ŝ(x2, y∗(x2)) ≤ 0, since y∗(x2) affords the maximum to Ŝ(x2, .) on R
dy . We have

Ŝ(x1, y
∗(x1))− Ŝ(x1, y

∗(x2)) ≤ Ŝ(x1, y
∗(x1))− Ŝ(x1, y

∗(x2)) − Ŝ(x2, y
∗(x1)) + Ŝ(x2, y

∗(x2)) =

from (2.19)
= (F (x1, y

∗(x1))− F (x1, y
∗(x2))) − (F (x2, y

∗(x1)) − F (x2, y
∗(x2))) =

=

∫ 1

0
〈∇xF (x1 + t(x2 − x1), y

∗(x1))−∇xF (x1 + t(x2 − x1), y
∗(x2)), x2 − x1〉dt ≤

≤ ‖∇xF (x1 + t(x2 − x1), y
∗(x1)) −∇xF (x1 + t(x2 − x1), y

∗(x1))‖2 · ‖x2 − x1‖2 ≤
≤ LF ‖y∗(x1)− y∗(x2)‖2 · ‖x2 − x1‖2.

(A3)

Thus, (A2) and (A3) imply the inequality

‖y∗(x2)− y∗(x1)‖2 ≤ 2LF

µy
‖x2 − x1‖2, (A4)

i.e., the function y∗(·) satisfies the Lipschitz condition with a constant 2LF
µy

. Next, from (A1), we obtain

‖∇g(x1)−∇g(x2)‖2 = ‖∇xF (x1, y
∗(x1))−∇xF (x2, y

∗(x2))‖2 =

= ‖∇xF (x1, y
∗(x1)) −∇xF (x1, y

∗(x2)) +∇xF (x1, y
∗(x2)) −∇xF (x2, y

∗(x2))‖2 ≤
≤ ‖∇xF (x1, y

∗(x1)) −∇xF (x1, y
∗(x2))‖2 + ‖∇xF (x1, y

∗(x2)) −∇xF (x2, y
∗(x2))‖2 ≤

≤ LF ‖y∗(x1)− y∗(x2)‖2 + LF ‖x2 − x1‖2 =

from (A4)
=

(
LF +

2L2
F

µy

)
‖x2 − x1‖2.

Accelerated Methods for Saddle-Point Problems 71

This means that g(·) has an L–Lipschitz gradient with L = LF +
2L2
F

µy
.

Let us now prove that ∇xF
(
x, ỹδ/2(x)

)
is (δ, 2Lg)-oracle of g, i.e.:

0 ≤ g(z)−
[{
F (x, ỹδ/2(x)) − w(ỹδ/2(x))

}
+ 〈∇xF (x, ỹδ/2(x)), z − x〉

]
≤ 2L

2
‖z − x‖22 + δ, (E.5)

First, we prove that, for any δ ≥ 0 and x ∈ R
dx

‖∇xŜ(x, ỹδ/2(x)) −∇g(x)‖2 ≤ LF

√
δ

µy
. (A5)

For any x ∈ Rdx , , it is true that ∇xŜ(x, ỹδ/2(x)) = ∇xF (x, ỹδ/2(x)). Then,

‖∇xŜ(x, ỹδ/2(x)) −∇g(x)‖22 = ‖∇xF (x, ỹδ/2(x)) −∇xF (x, y∗(x))‖22 ≤
≤ L2

F ‖y∗(x)− ỹδ/2(x)‖22 ≤
from (A2)

≤ 2L2
F

µy

(
Ŝ(x, y∗(x))− Ŝ(x, ỹδ/2(x))

)
≤

from (2.21)

≤ δL2
F

µy
,

which justifies inequality (A5).

Now , due to the µx-strong convexity of Ŝ(·, ỹδ/2(x)) on Rdx , for arbitrary x, z ∈ Rdx it is true that

g(z)
from (2.19)

≥ Ŝ(z, ỹδ/2(x)) ≥ Ŝ(x, ỹδ/2(x)) + 〈∇xŜ(x, ỹδ/2(x)), z − x〉.

Thus,
0 ≥ Ŝ(x, ỹδ/2(x)) − g(z) + 〈∇xŜ(x, ỹδ/2(x)), z − x〉,

which proves the left-hand side of (E.5). To prove the right-hand side of (E.5), note that g is convex and has an L–Lipschitz
gradient on Rdx . Therefore, for arbitrary x, z ∈ Rdx , we have

g(z) ≤ g(x) + 〈∇g(x), z − x〉+ L

2
‖z − x‖22 ≤

from (2.21)

≤ Ŝ(x, ỹδ/2(x)) + δ/2 +
L

2
‖z − x‖22 + 〈∇g(x), z − x〉+ 〈∇xŜ(x, ỹδ/2(x)), x− z〉−

− 〈∇xŜ(x, ỹδ/2(x)), x− z〉 =
= Ŝ(x, ỹδ/2(x)) + δ/2 + 〈∇xŜ(x, ỹδ/2(x)), z − x〉+ 〈∇xŜ(x, ỹδ/2(x)) −∇g(x), x− z〉+

+
L

2
‖z − x‖22 ≤

from (A5)

≤ Ŝ(x, ỹδ/2(x)) + δ/2 + 〈∇xŜ(x, ỹδ/2(x)), z − x〉+ LF

√
δ

µy
· ‖z − x‖2 +

L

2
‖z − x‖22.

However,

LF

√
δ

µy
· ‖z − x‖2 =

√
L2
F

µy
‖z − x‖22 · δ ≤ L2

F

2µy
‖z − x‖22 + δ/2

due to the classical inequality between the arithmetic and geometric mean. Therefore,

g(z) ≤ Ŝ(x, ỹδ/2(x)) + δ + 〈∇xŜ(x, ỹδ/2(x)), z − x〉+ L2
F

µy
‖z − x‖22 +

L

2
‖z − x‖22,

and since L = LF +
2L2
F

µy
, we have

L2
F
µy

≤ L
2
;therefore,

g(z) ≤ Ŝ(x, ỹδ/2(x)) + 〈∇xŜ(x, ỹδ/2(x)), z − x〉+ δ + L‖z − x‖22.

72 Vladislav Tominin 1 et al.

Thus, we have

g(z)− Ŝ(x, ỹδ/2(x)) − 〈∇xŜ(x, ỹδ/2(x)), z − x〉 ≤ L‖z − x‖22 + δ,

which implies the left-hand side of inequality (E.5).
In the statement of Lemma 2 only (δ/2, σ)-solution to (2.19) is available. In this case the inequality (E.5) will be satisfied

with probability 1− σ. Then ∇xF
(
x, ỹδ/2(x)

)
is (δ, σ, 2Lg)-oracle of g. ⊓⊔

F A Variant of Accelerated Framework for Saddle-Point Problems.

In this appendix we consider saddle-point problem under the same assumptions as in Section 3. We describe in detail
the structure of a general framework for solving such problems which consists of three inner-outer loops. The only difference
compared with the general framework in Section 3 is that the order of the Loop 2 and Loop 3 has been reversed. We also
summarize the steps of the algorithm in Table 5. In each loop we apply Algorithm 2 with different value of parameter H
which defines its complexity. In the subsection after description of the loops we carefully choose the value of this parameter in
each level of the loops. Later, in the next Appendix G we use this general framework in the proof of Theorems 7 and 8 with
complexity estimates for problem (5.1) under Assumption 5, as well as Corollary 4 with complexity estimates for problem (4.1)
with mh = 1.

F.1 Main loops of the framework

In each of the three loops of the general framework we have a target accuracy ε and a confidence level σ which define the
required quality of the solution to an optimization problem in this loop. These quantities define the inexactness of the oracle in
this loop via inequalities (2.22) and (2.23) and the target accuracy and confidence level for the optimization problem in the next
loop via (2.25), (2.26). Due to inexact strong convexity provided by (δ, σ, L, µ)-oracle, Algorithm 2 has logarithmic dependence
of the complexity on the target accuracy and confidence level (see Theorem 4). Since the dependencies on the target accuracy
and confidence level in (2.22), (2.23), (2.25) and (2.26) are polynomial, we obtain that the dependency of the complexity in
each loop on the target accuracy and confidence level in the first loop, i.e. target accuracy and confidence level for the solution

to problem (3.1), is logarithmic. We hide such logarithmic factors in Õ notation.
For convenience, we summarize the main details of the loops in Table 5.

Loop 1
The goal of Loop 1 is to find an (ε, σ)-solution of problem (3.3), which is considered as a minimization problem in y with the
objective given in the form of auxiliary maximization problem in x. Finding an (ε, σ)-solution of this minimization problem
gives an approximate solution to the saddle-point problem (3.1) which is understood in the sense of Definition 4.

To solve problem (3.3), we would like to apply Algorithm 2 with

ϕ = 0, ψ = h(y) + max
x∈Rdx

{−G(x, y)− f(x)} . (F.1)

The function ϕ is, clearly, convex and is known exactly. What makes solving problem (3.3) not straightforward is that the
exact value of ψ is not available. At the same time we can construct an inexact oracle for this function. First, the function
h is µy-strongly convex, Lh-smooth and its exact gradient is available. Second, thanks to Assumption 3, it is possible to

construct a

(
δ(1) (ε) , σ

(1)
0 (ε, σ) , 2LG + 4

L2
G
µx

)
-oracle for the function r(y) = maxx∈Rdx

{−f(x) −G(x, y)} for any δ(1) (ε) =

poly (ε) and σ
(1)
0 (ε, σ) = poly (ε, σ). Combining these two parts and using Lemma 1, we obtain that we can construct a(

δ(1) (ε) , σ
(1)
0 (ε, σ) , Lh + 2LG + 4

L2
G
µx

, µy

)
-oracle for ψ. Thus, we can apply Algorithm 2 with parameter H = H1, which will

be chosen later, to solve problem (3.3). Moreover, since Assumption 3 requires δ(1) (ε) = poly (ε) and σ
(1)
0 (ε, σ) = poly (ε, σ),

which holds for the dependencies in (2.22) and (2.23), we can choose δ(1) (ε) and σ
(1)
0 (ε, σ) such that (2.22) and (2.23) hold.

So, the first main assumption of Theorem 4 holds. At the same time, according to Assumptions 1 and 3, constructing inexact
oracle for ψ requires τh calls of the basic oracle for h, τG calls of the basic oracle of G(x, ·), Nx

G (τG)KxG (ε, σ) calls of the basic

oracle for G(·, y), Nf
(
τf
)
Kf (ε, σ) calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in each iteration

of Algorithm 1, used as a building block in Algorithm 2, to find an
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-solution to the auxiliary problem

Accelerated Methods for Saddle-Point Problems 73

(2.5), where σ̃(1) (ε, σ) , ε̃
(1)
f (ε) satisfy inequalities (2.25), (2.26). For the particular definitions of ϕ, ψ (F.1) in this Loop, this

problem has the following form:

ytk+1 = arg min
y∈R

dy

{
h(y) + max

x∈Rdx

{−G(x, y)− f(x)} +
H1

2
‖y − ymdk ‖2

}
. (F.2)

Below, in the next paragraph ”Loop 2”, we explain how to solve this auxiliary problem to obtain its
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-

solution. To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain

an (ε, σ)-solution of problem (3.3). This requires Õ

(
1 +

(
H1

µϕ+µψ

) 1
2

)
= Õ

(
1 +

(
H1
µy

) 1
2

)
calls to the inexact oracles for ϕ

and for ψ, and the same number of times solving the auxiliary problem (F.2). Combining this oracle complexity with the cost

of calculating inexact oracles for ϕ and for ψ, we obtain that solving problem (3.3) requires Õ

(
1 +

(
H1
µy

) 1
2

)
τh calls of the

basic oracle for h, Õ

(
1 +

(
H1
µy

) 1
2

)
τG calls of the basic oracle of G(x, ·), Õ

(
1 +

(
H1
µy

) 1
2

)
Nx
G (τG)KxG (ε, σ) calls of the basic

oracle for G(·, y), Õ
(
1 +

(
H1
µy

) 1
2

)
Nf
(
τf
)
Kf (ε, σ) calls of the basic oracle for f . The only remaining thing is to provide an

inexact solution to problem (F.2) and, next, we move to the Loop 2 to explain how to guarantee this. Note that we need to

solve problem (F.2) Õ

(
1 +

(
H1
µy

) 1
2

)
times.

Loop 2
As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need many times to find an (ε′2, σ

′
2)-solution

of the auxiliary problem (F.2), where we denoted for simplicity σ′2 = σ̃(1) (ε, σ) and ε′2 = ε̃
(1)
f (ε). To do this, we reformulate

problem (F.2) by changing the order of minimization and maximization as follows:

min
y∈R

dy

{
h(y) +

H1

2
‖y − ymdk ‖2 + max

x∈Rdx

{−G(x, y) − f(x)}
}

(F.3)

= min
y∈R

dy

max
x∈Rdx

{
h(y)−G(x, y) − f(x) +

H1

2
‖y − ymdk ‖2

}
(F.4)

= max
x∈Rdx

min
y∈R

dy

{
h(y)−G(x, y) − f(x) +

H1

2
‖y − ymdk ‖2

}
(F.5)

= − min
x∈Rdx

{
f(x) + max

y∈R
dy

{
G(x, y) − h(y) − H1

2
‖y − ymdk ‖2

}}
(F.6)

and obtain an (ε′2, σ
′
2)-solution of the problem (F.2) by solving minimization problem (F.6). Assume that we can find an

(ε2, σ2)-solution x̂ of the minimization problem (F.6) in the sense of Definition 4. Then, according to Assumption 2, we can
also obtain a point ŷ which is (δ̄(ε2)/2, σ̄0(σ2))-solution to the problem

max
y∈R

dy

{
G(x, y)− h(y) − H1

2
‖y − ymdk ‖2

}
, (F.7)

where δ̄(ε2), σ̄0(σ2) satisfy the following polynomial dependencies

δ̄(ε2) ≤
H1 + µy

4µx
(
H1+µy
4LG

)2 ε2, σ̄0(σ2) ≤ σ2. (F.8)

If we choose ε2, σ2, δ̄(ε2), σ̄0(σ2) satisfying

ε2 ≤
(
H1 + µy

4LG

)2 µx

Lh +H1 + LG +
2L2
G

µx

ε′2, (F.9)

σ2 ≤ σ′2
2
, (F.10)

σ̄0(σ2)
(F.8)

≤ σ2 ≤ σ′2
2
, δ̄(ε2) ≤

H1 + µy

4µx
(
H1+µy
4LG

)2 ε2
(F.8)

≤ H1 + µy

4Lh + 4H1 + 4LG +
8L2
G

µx

ε′2, (F.11)

74 Vladislav Tominin 1 et al.

then

2
Lh +H1 + LG +

2L2
G

µx

H1 + µy
δ̄(ε2) + 8

(
LG

H1 + µy

)2 Lh +H1 + LG +
2L2
G

µx

µx
ε2 ≤ ε′2, (F.12)

σ2 + σ̄0(σ2) ≤ σ′2. (F.13)

Thus, applying Corollary 1 to minimization problem (F.6) with F (x, y) = G(x, y), w(y) = h(y) + H1
2
‖y − ymdk ‖2, εx = ε2,

σx = σ2, εy = δ̄(ε2), σy = σ̄0(σ2) we obtain (see (3.14), (3.16)) that ŷ satisfies inequality

h(ŷ) +
H1

2
‖ŷ − ymdk ‖2 + max

x∈Rdx

{−G(x, ŷ)− f(x)} − min
y∈R

dy

max
x∈Rdx

{h(y) + H1

2
‖y − ymdk ‖2 −G(x, y)− f(x)} ≤ ε′2

with probability σ′2. Thus, by Definition 4 it is an (ε′2, σ
′
2)-solution of the problem (F.2). By Assumption 2, calculation

of ŷ requires N y
G (τG,H)KyG (ε2, σ2) calls of the basic oracle OyG of G(x, ·), τG calls of the basic oracle OxG of G(·, y) and

Nh (τh,H)Kh (ε2, σ2) calls of the basic oracle Oh of h.
Our next step is to provide an (ε2, σ2)-solution to minimization problem (F.6), for which we again apply Algorithm 2, but

this time with

ϕ = f(x), ψ = max
y∈R

dy

{
G(x, y)− h(y)− H1

2
‖y − ymdk ‖2

}
. (F.14)

The function ϕ is µx-strongly convex, Lf -smooth and its exact gradient is available. What makes solving problem (F.6) not
straightforward is that the exact value of ψ is not available. At the same time we can construct an inexact oracle for this function.

Thanks to Assumption 2, it is possible to construct a

(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , 2LG + 4

L2
G

H1+µy

)
-oracle for the function ψ for

any δ(2) (ε2) = poly (ε2) and σ
(2)
0 (ε2, σ2) = poly (ε2, σ2). Using Lemma 1, we obtain that we can construct

a

(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , Lf + 2LG + 4

L2
G

H1+µy
, µx

)
-oracle for the function ϕ + ψ. Thus, we can apply Algorithm 2 with

parameter H = H2 ≥ 2Lf , which will be chosen later, to solve the problem (F.6). Moreover, since Assumption 2 requires

δ(2) (ε2) = poly (ε2) and σ
(2)
0 (ε2, σ2) = poly (ε2, σ2), which holds for the dependencies in (2.22) and (2.23), we can choose

δ(2) (ε2) and σ
(2)
0 (ε2, σ2) such that (2.22) and (2.23) hold. So, the first main assumption of Theorem 4 holds. At the same time,

according to Assumptions 1 and 2, constructing inexact oracle for ψ requires N y
G (τG,H1)KyG (ε2, σ2) calls of the basic oracle

for G(x, ·), τG calls of the basic oracle for G(·, y), Nh (τh,H1)Kh (ε2, σ2) calls of the basic oracle for h, and constructing exact
oracle for ϕ = f requires τf calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in each iteration

of Algorithm 1, used as a building block in Algorithm 2, to find
(
ε̃
(2)
f (ε2) , σ̃(2) (ε2, σ2)

)
-solution to the auxiliary problem (2.5),

where σ̃(2) (ε2, σ2) , ε̃
(2)
f (ε2) satisfy inequalities (2.25), (2.26). For the particular definitions of ϕ, ψ (F.14) in this Loop, this

problem has the following form:

xtl+1 = arg min
x∈Rdx

{
〈∇f(xmdl), x− xmdl 〉

+ max
y∈R

dy

{
G(x, y) + h(y) − H1

2
‖y − ymdk ‖2

}
+
H2

2
‖x− xmdl ‖2

}
, (F.15)

Below, in the next paragraph ”Loop 3”, we explain how to solve this auxiliary problem to obtain its(
ε̃
(2)
f (ε2) , σ̃(2) (ε2, σ2)

)
-solution.

To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an
(ε′2, σ

′
2)-solution of the auxiliary problem (F.2). This requires one time to solve the problem (F.7), which, by Assumption

2 has the same cost as evaluating inexact oracle for the function ψ. Further, we need O

((
1 +

(
H2

µϕ+µψ

) 1
2

)
log ε−1

2

)
=

O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
calls to the inexact oracles for ϕ and for ψ, and the same number of times solving the auxiliary prob-

lem (F.15). Combining this oracle complexity with the cost of calculating inexact oracles for ϕ and for ψ, we obtain that solving

problem (F.6) requiresO

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
τf calls of the basic oracle for f ,O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
N y
G (τG,H1)KyG (ε2, σ2)

Accelerated Methods for Saddle-Point Problems 75

calls of the basic oracle for G(x, ·), O
((

1 +
(
H2
µx

) 1
2

)
log ε−1

2

)
τG calls of the basic oracle for G(·, y),

O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
Nh (τh,H1)Kh (ε2, σ2) calls of the basic oracle for h. The only remaining thing is to provide an

inexact solution to problem (F.15) and, next, we move to Loop 3 to explain how to guarantee this. Note that we need to solve

problem (F.15) O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
times.

Loop 3
As mentioned in the previous Loop 2, in each iteration of Algorithm 2 in Loop 2 we need to find many times an (ε3, σ3)-solution

of the auxiliary problem (F.15), where we denoted for simplicity σ3 = σ̃(2) (ε2, σ2) and ε3 = ε̃
(2)
f (ε2). To solve problem (F.15),

we would like to apply Algorithm 2 with

ϕ = max
y∈R

dy

{
G(x, y)− h(y)− H1

2
‖y − ymdk ‖2

}
, ψ = 〈∇f(xmdl), x− xmdl 〉+ H2

2
‖x− xmdl ‖2. (F.16)

The function ψ is, clearly, H2-strongly convex, H2-smooth and its exact gradient is available. What makes solving problem
(F.15) not straightforward is that the exact value of ϕ is not available. At the same time, we can construct an inexact oracle

for this function. Thanks to Assumption 2, it is possible to construct a

(
δ(3) (ε3) , σ

(3)
0 (ε3, σ3) , 2LG + 4

L2
G

H1+µy

)
-oracle for the

function ϕ for any δ(3) (ε3) = poly (ε3) and σ
(3)
0 (ε3, σ3) = poly (ε3, σ3). Using Lemma 1, we obtain that we can construct

a

(
δ(3) (ε3) , σ

(3)
0 (ε3, σ3) ,H2 + 2LG + 4

L2
G

H1+µx
, H2

)
-oracle for the function ϕ + ψ. Thus, we can apply Algorithm 2 with

parameter H = H3 ≥ 2LG + 4
L2
G

H1+µy
, which will be chosen later, to solve problem (F.15). Moreover, since Assumption 2

requires δ(3) (ε3) = poly (ε3) and σ
(3)
0 (ε3, σ3) = poly (ε3, σ3), which holds for the dependencies in (2.22) and (2.23), we can

choose δ(3) (ε3) and σ
(3)
0 (ε3, σ3) such that (2.22) and (2.23) hold. So, the first main assumption of Theorem 4 holds. At the

same time, according to Assumptions 1 and 2, constructing inexact oracle for ϕ requires N y
G (τG, H1)KyG (ε3, σ3) calls of the

basic oracle for G(x, ·), τG calls of the basic oracle for G(·, y), Nh (τh, H1)Kh (ε3, σ3) calls of the basic oracle for h. At the same
time, no calls to the oracle for f are needed.

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption holds, we need in each iteration

of Algorithm 1, used as a building block in Algorithm 2, to find
(
ε̃
(3)
f (ε3) , σ̃(3) (ε3, σ3)

)
-solution to the auxiliary problem (2.5),

where σ̃(3) (ε3, σ3) , ε̃
(3)
f (ε3) satisfy inequalities (2.25), (2.26). For the particular definitions of ϕ, ψ in (F.16) in this Loop, this

problem has the following form:

utm+1 = arg min
u∈Rdx

{〈∇ϕδ(3),2Lϕ (u
md
m), u− umdm 〉+ ψ(u) +

H3

2
‖u− umdm ‖22}

= arg min
u∈Rdx

{〈∇ϕδ(3),2Lϕ (u
md
m), u− umdm 〉+ 〈∇f(xmdl), u− xmdl 〉 + H2

2
‖u− xmdl ‖22 +

H3

2
‖u− umdm ‖22}, (F.17)

where Lϕ = LG +
L2
G

H1+µx
. This quadratic auxiliary problem (F.17) can be solved explicitly and exactly since at the point it

needs to be solved, ∇ϕδ(3),2Lϕ (u
md
m) is already calculated. Thus, the second main assumption of Theorem 4 is satisfied with

σ̃(3) (ε3, σ3) = 0 and ε̃
(3)
f (ε3) = 0, which clearly satisfy (2.22) and (2.23).

To summarize Loop 3, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an

(ε3, σ3)-solution of the auxiliary problem (F.15). This requires O

((
1 +

(
H3

µϕ+µψ

) 1
2

)
log ε−1

3

)
= O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)

calls to the inexact oracles for ϕ and for ψ, and the same number of times solving the auxiliary problem (F.17). Combining this
oracle complexity with the cost of calculating inexact oracles for ϕ and for ψ, we obtain that solving problem (F.15) requires

O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)
N y
G (τG, H1)KyG (ε3, σ3) calls of the basic oracle for G(x, ·), O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)
τG calls

of the basic oracle for G(·, y) and O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)
Nh (τh,H1)Kh (ε3, σ3) calls of the basic oracle for h.

76 Vladislav Tominin 1 et al.

Goal ϕ, ψ µ in Th.4

Iteration number

of Algorithm 1

(Th. 4)

Each iteration

requires

Loop 1
(ε, σ)-solution

of problem (3.3)
(F.1) µy Õ

(
1 +

√
H1/µy

) Find (ε1, σ1)-solution of (F.2)

and calculate
(
δ(1) , Lψ

)
-oracle of ψ(y)

Loop 2
(ε1, σ1)-solution

of problem (F.6)
(F.14) µx Õ(1 +

√
H2/µx)

Find (ε2, σ2)-solution of (F.15)

and calculate
(
δ(2), Lψ

)
-oracle of ψ(x)

Loop 3
(ε2, σ2)-solution

of problem (F.15)
(F.16) H2 Õ(1 +

√
H3/H2)

Find (ε3, σ3)-solution of (F.17)

and calculate
(
δ(3) , Lϕ

)
-oracle of ϕ(x)

Table 5: Summary of the three loops of the framework described in this Appendix.

F.2 Complexity of the framework

Below we formally finalize in Theorem 17 the analysis of the framework by carefully combining the bounds obtained in
Loop 1-Loop 3 to obtain the final bounds for the total number of oracle calls for each part f , G, h of the objective in problem
(3.1). In the next Appendix G, we apply Theorem 17 to obtain complexity bounds for our framework applied to problem (4.1)
in the case mh = 1.

Theorem 17 Let Assumptions 1, 2, 3 hold. Then, execution of the optimization framework described in Loop 1-Loop 3 with

H1 = 2LG, H2 = 2Lf ,H3 = 2

(
LG +

2L2
G

µy +H1

)

generates an (ε, σ)-solution to the problem (3.1) in the sense of Definition 4. Moreover, for the number of basic oracle calls it
holds that

Number of calls of basic oracle Of for f is :

Õ

((
1 +

√
LG

µy

)(
Nf
(
τf
)
+

(
1 +

√
Lf

µx

)
· τf
))

, (F.18)

Number of calls of basic oracle Oh for h is :

Õ

((
1 +

√
LG

µy

)(
τh +

(
1 +

√
Lf

µx

)(
1 +

√
LG

Lf

)
Nh (τh, 2LG)

))
, (F.19)

Number of calls of basic oracle OxG for G(·, y) is :

Õ

((
1 +

√
LG

µy

)(
Nx
G (τG) +

(
1 +

√
Lf

µx

)(
1 +

√
LG

Lf

)
τG

))
, (F.20)

Number of calls of basic oracle OyG for G(x, ·) is :

Õ

((
1 +

√
LG

µy

)(
τG +

(
1 +

√
Lf

µx

)(
1 +

√
LG

Lf

)
N y
G (τG, 2LG)

))
. (F.21)

Proof By construction, as an output of Loop 1 we obtain an (ε, σ)-solution to the problem (3.1) according to Definition 4.
We prove the estimates of for the numbers of oracle calls in two steps. The first step is to formally prove that in each loop

the dependence of the number of oracle calls on the target accuracy ε and a confidence level σ is logarithmic. The second step
is to multiply the estimates for the number of oracle calls between loops and choose the parameters H1, H2, H3.

Accelerated Methods for Saddle-Point Problems 77

Step 1. Polynomial dependence. Proof of this part is equivalent to the proof of the Theorem 5.

Step 2. Final estimates.

We have already counted the number of oracles calls for each oracle in each loop Loop 1-Loop 3, see the last paragraph of
the description of each loop. We start with the number of basic oracle calls of f , which is called in each step of Loop 1 and
Loop 2. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
Nf
(
τf
)
Kf (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
τf

)

= Õ

((
1 +

√
H1

µy

)(
Nf
(
τf
)
+

(
1 +

√
H2

µx

)
· τf
))

,

where we used that Kf (ε, σ) = Õ(1).

The basic oracle of h is called in each step of all the three loops. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τh + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
Nh (τh,H1)Kh (ε2, σ2)

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

))
·
(
Õ

(
1 +

(
H3

H2

) 1
2

)
Nh (τh,H1)Kh (ε3, σ3)

)

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)(
Nh (τh, H1) +

(
1 +

√
H3

H2

)
· Nh (τh,H1)

)))

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
Nh (τh,H1)

))
,

where we used that Kh (ε, σ) = Õ(1).

The basic oracle of G(·, y) is called in each step of all the three loops. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
Nx
G (τG)KxG (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
τG

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

))
·
(
Õ

(
1 +

(
H3

H2

) 1
2

)
τG

)

= Õ

((
1 +

√
H1

µy

)(
Nx
G (τG) +

(
1 +

√
H2

µx

)(
τG +

(
1 +

√
H3

H2

)
τG

)))

= Õ

((
1 +

√
H1

µy

)(
Nx
G (τG) +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
τG

))
,

where we used that KxG (ε, σ) = Õ(1).

78 Vladislav Tominin 1 et al.

Finally, the basic oracle of G(x, ·) is called in each step of all the three loops. Thus, the total number is

of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τG + Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

)
N y
G (τG, H1)KyG (ε2, σ2)

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·
(
Õ

(
1 +

(
H2

µx

) 1
2

))
·
(
Õ

(
1 +

(
H3

H2

) 1
2

)
N y
G (τG, H1)KyG (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)(
N y
G (τG,H1) +

(
1 +

√
H3

H2

)
N y
G (τG,H1)

)))

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
N y
G (τG, H1)

))
,

where we used that KyG (ε2, σ2) = Õ(1).
The final estimates are obtained by substituting the constants H1,H2,H3 given by

H1 = 2LG, H2 = 2Lf , H3 = 2

(
LG +

2L2
G

µy +H1

)
≤ 2

(
LG +

2L2
G

H1

)
= 4LG.

G Proof of Theorem 7 and Theorem 8

In this appendix we prove Theorems 7, 8 and Corollary 4 and construct algorithms for problem (5.1) using the results of
Section 3, in particular, Theorem 5, for the case Lf ≥ LG, and the results of the previous Appendix, in particular, Theorem 17.
To use these theorems we need to satisfy Assumptions 2, 3, which is done in the first subsection. Then, in the next subsections,
we combine the building blocks to obitan the final results.

G.1 Algorithms to guarantee Assumptions 2, 3

We start with two auxiliary results, that show how to satisfy Assumptions 2, 3 algorithmically. The first lemma provides
complexity for inexact solution of the maximization problem (3.17) and the complexity of finding an inexact oracle for function
g defined in the same equation, thereby proving that Assumption 2 holds. We underline that the algorithm which guarantees
Assumption 2 depends on whether Lh ≥ LG or Lh ≤ LG. After that we provide a simple corollary to show that Assumption 3
also holds.

Lemma 19 Let the function g be defined via maximization problem in (3.17), i.e.

g(x) = max
y∈R

dy

{
G(x, y) − h(y) − H

2
‖y − y0‖2

}
, (G.1)

where G(x, y), h(y) are according to (5.1) and satisfy Assumption 5.1,2,3(a), y0 ∈ R
dy . Then, for each of two cases Lh ≥ LG

and Lh ≤ LG we organize computations in two loops and apply Algorithm 2, so that Assumption 2 holds with τG basic oracle
calls for G(·, y) and the following estimates for the number of basic oracle calls for G(x, ·) and h respectively

N y
G (τG, H) = O

(
τG + τG

√
LG/(H + µy)

)
, (G.2)

Nh (τh,H) = O

(
τh + τh

√
Lh/(H + µy)

)
. (G.3)

We name these algorithms ”Sliding Lh ≥ LG” and ”Sliding Lh ≤ LG”.

Accelerated Methods for Saddle-Point Problems 79

Proof To satisfy Assumption 2 we need to provide an (δ (ε) /2, σ0 (ε, σ))-solution to the problem (G.1) and (δ (ε) , σ0 (ε, σ) , 2Lg)-
oracle of g in (G.1), where Lg = LG + 2L2

G/(µy +H).

By Lemma 2 with F (x, y) = G(x, y), w(y) = h(y) + H
2
‖y − y0‖2, δ = δ (ε) and σ0 = σ0 (ε, σ) applied to the problem (G.1), if

we find a (δ/2, σ0)-solution ỹδ/2(x) of the problem (G.1), then ∇xG
(
x, ỹδ/2(x)

)
is (δ, σ0, 2Lg)-oracle of g and its calculation

requires τG calls of the oracle ∇xG(·, y). To finish the proof, we now focus on obtaining a (δ/2, σ0)-solution ỹδ/2(x) of the
problem (G.1). For this we consider two cases Lh ≥ LG and Lh ≤ LG and for each one we construct a two-loop procedure
described below. We begin with the case Lh ≥ LG.

Sliding for Lh ≥ LG, Loop 1
The goal of Loop 1 is to find an (δ (ε) /2, σ0 (ε, σ))-solution of problem (G.1) as a maximization problem in y. To obtain such
an approximate solution, we change the sign of this optimization problem and apply Algorithm 2 with

ϕ = −G(x, y), ψ = h(y) +
H

2
‖y − y0‖2. (G.4)

Function ϕ is convex and has LG-Lipschitz continuous gradient, function ψ is H+µy-strongly convex and has Lh+H-Lipschitz
continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and parameter H1 ≥ 2LG, which will be chosen later,
to solve problem (G.1). To satisfy the conditions of Theorem 4, which gives the complexity of Algorithm 2, we, first, observe
that the oracles of ϕ and ψ are exact and, second, observe that we need in each iteration of Algorithm 1, used as a building

block in Algorithm 2, to find an
(
ε̃
(1)
f (δ/2) , σ̃(1) (δ/2, σ0)

)
-solution to the auxiliary problem (2.5), which in this case has the

following form:

ztk+1 = arg min
z∈R

dy

{〈∇ϕ(zmdk), z − zmdk 〉+ ψ(z) +
H1

2
‖z − zmdk ‖22}

= arg min
z∈R

dy

{−〈∇zG(x, zmdk), z − zmdk 〉+ h(z) +
H

2
‖z − y0‖2 +

H1

2
‖z − zmdk ‖22}, (G.5)

where σ̃(1) (δ/2, σ0) , ε̃
(1)
f (δ/2) need to satisfy inequalities (2.25), (2.26). Below, in the Loop 2, we explain how to solve this

auxiliary problem in such a way that these inequalities hold.
To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an

(δ/2, σ0)-solution of problem (G.1). Due to polynomial dependencies δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) this requires

Õ

(
1 +

(
H1

µϕ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls to the (exact) oracles for ϕ and for ψ, and the same number of times solving

the auxiliary problem (G.5). Combining this oracle complexity with the cost of calculating (exact) oracles for ϕ and for ψ, we ob-

tain that solving problem (4.4) requires Õ

(
1 +

(
H1

µy+H

) 1
2

)
τG calls of the basic oracle forG(x, ·) and Õ

(
τh

(
1 +

(
H1

µy+H

) 1
2

))

of the basic oracles for h. The only remaining thing is to provide an inexact solution to problem (G.5) and, next, we move to

Loop 2 to explain how to guarantee this. Note that we need to solve problem (G.5) Õ

(
1 +

(
H1

µy+H

) 1
2

)
times.

Sliding for Lh ≥ LG, Loop 2
As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need to find many times an (ε2, σ2)-solution

of the auxiliary problem (G.5), where we denoted for simplicity σ2 = σ̃(1) (δ/2, σ0) and ε2 = ε̃
(1)
f (δ/2). To solve problem (G.5),

we would like to apply Algorithm 2 with

ϕ = h(z), ψ = −〈∇zG(x, zmdk), z − zmdk 〉+ H

2
‖z − y0‖2 +

H1

2
‖z − zmdk ‖22. (G.6)

Function ϕ is µy-strongly convex and has Lh-Lipschitz continuous gradient, function ψ is H + H1-strongly convex and has
H + H1-Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and parameter H2 ≥ 2Lh, which
will be chosen later, to solve problem (G.5). To satisfy the conditions of Theorem 4, which gives the complexity of Algorithm
2, we, first, observe that the oracles of ϕ and ψ are exact and, second, observe that we need in each iteration of Algorithm 1,

used as a building block in Algorithm 2, to find an
(
ε̃
(2)
f (ε2) , σ̃(2) (ε2, σ2)

)
-solution to the auxiliary problem (2.5), which in

this case has the following form:

utm+1 = arg min
u∈Rdx

{〈∇ϕ(umdm), u− umdm 〉 + ψ(u) +
H2

2
‖u− umdm ‖22}

= arg min
u∈Rdx

{〈∇h(umdm), u− umdm 〉 − 〈∇zG(x, zmdk), u− zmdk 〉+ H

2
‖u− y0‖2 +

H1

2
‖u− zmdk ‖22 +

H2

2
‖u− umdm ‖22}. (G.7)

80 Vladislav Tominin 1 et al.

This quadratic auxiliary problem (G.7) can be solved explicitly and exactly. Thus, the second main assumption of Theorem 4

is satisfied with σ̃(2) (ε2, σ2) = 0, ε̃
(2)
f (ε2) = 0, which clearly satisfy (2.22) and (2.23).

To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an (ε2, σ2)-

solution of the auxiliary problem (G.5). This requires O

((
1 +

(
H2

µϕ+µψ

) 1
2

)
log ε−1

2

)
= O

((
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)

calls to the (exact) oracles for ϕ and for ψ, and the same number of times solving the auxiliary problem (G.7). Combining this
oracle complexity with the cost of calculating (exact) oracles for ϕ and for ψ, we obtain that solving problem (G.5) requires

O

(
τh

(
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)
calls of the basic oracle for h. Also according to the polynomial dependencies (2.25),

(2.26) we obtain that

σ2 = σ̃(1) (δ/2, σ0) = poly(δ/2, σ0), ε2 = ε̃
(1)
f (δ/2, σ0) = poly(δ/2, σ0).

Using conditions δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) in the formulation of Assumption 2 we obtain that the dependencies

σ2 (ε, σ) , σ̃
(1) (ε, σ) , ε2 (ε, σ) , ε̃

(1)
f (ε, σ)

are polynomial. Then, we can use notation Õ(·) without specifying what precision we mean and implying that the logarithmic
part depends on the initial ε, σ.

Sliding Lh ≥ LG, combining the estimates of both loops
Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point ỹδ/2(x) that is a (δ (ε) /2, σ0 (ε, σ))-solution
to the problem (G.1) requires the following number of calls of the basic oracles of G(x, ·) and h respectively

Õ

(
τG + τG

√
H1/(H + µy)

)
, (G.8)

Õ

(
τh

(
1 +

√
H1/(H + µy)

)
+

(
1 +

√
H1/(H + µy)

)
τh

(
1 +

√
H2

µy +H +H1

))
. (G.9)

Finding (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g by calculating ∇xG
(
x, ỹδ/2(x)

)
requires additionally τG = mG calls of the basic oracle

for G(·, y). Since in Assumption 2 we denote the dependence on the target accuracy ε and confidence level σ by a separate
quantities denoted by K(ε, σ) and in this case it is logarithmic, choosing H1 = 2LG and H2 = 2Lh we get the final estimates
for N y

G and Nh to guarantee that Assumption 2 holds:

N y
G = O

(
τG + τG

√
LG

µy +H

)
,

Nh = O

(
τh

(
1 +

√
2LG/(H + µy)

)(
1 +

√
2Lh

µy +H + 2LG

))

= O

(
1 +

√
2LG

µy +H
+

√
2Lh

µy +H
+

√
2LG

H + µy

√
2Lh

µy +H + 2LG

)
τh = O

(
τh

(
1 +

√
Lh

µy +H

))
,

where we used that Lh ≥ LG
Our aim now is to obtain the same estimates on N y

G and Nh for the case when Lh ≤ LG. We do this by changing the order
of Loop 1 and Loop 2 in the construction of previous Algorithm.

Sliding for Lh ≤ LG, Loop 1
The goal of Loop 1 is to find an (δ (ε) /2, σ0 (ε, σ))-solution of problem (G.1) as a maximization problem in y. To obtain such
an approximate solution, we change the sign of this optimization problem and apply Algorithm 2 with

ϕ = h(y), ψ = −G(x, y) +
H

2
‖y − y0‖2. (G.10)

Function ϕ is µy-strongly convex and has Lh-Lipschitz continuous gradient, function ψ is H-strongly convex and has Lh +H-
Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and parameter H1 ≥ 2Lh, which will be
chosen later, to solve problem (G.1). To satisfy the conditions of Theorem 4, which gives the complexity of Algorithm 2, we,

Accelerated Methods for Saddle-Point Problems 81

first, observe that the oracles of ϕ and ψ are exact and, second, observe that we need in each iteration of Algorithm 1, used

as a building block in Algorithm 2, to find an
(
ε̃
(1)
f (δ/2) , σ̃(1) (δ/2, σ0)

)
-solution to the auxiliary problem (2.5), which in this

case has the following form:

ztk+1 = arg min
z∈R

dy

{〈∇ϕ(zmdk), z − zmdk 〉+ ψ(z) +
H1

2
‖z − zmdk ‖22}

= arg min
z∈R

dy

{〈∇zh(zmdk), z − zmdk 〉 −G(x, z) +
H

2
‖z − y0‖2 +

H1

2
‖z − zmdk ‖22}, (G.11)

where σ̃(1) (δ/2, σ0) , ε̃
(1)
f (δ/2) need to satisfy inequalities (2.25), (2.26). Below, in the Loop 2, we explain how to solve this

auxiliary problem in such a way that these inequalities hold.
To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an

(δ/2, σ0)-solution of problem (G.1). Due to polynomial dependencies δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) this requires

Õ

(
1 +

(
H1

µϕ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls to the (exact) oracles for ϕ and for ψ, and the same number of times solving

the auxiliary problem (G.11). Combining this oracle complexity with the cost of calculating (exact) oracles for ϕ and for ψ, we

obtain that solving problem (4.4) requires Õ

(
1 +

(
H1

µy+H

) 1
2

)
τG calls of the basic oracle for G(x, ·) and Õ

(
1 +

(
H1

µy+H

) 1
2

)
τh

of the basic oracles for h. The only remaining thing is to provide an inexact solution to problem (G.11) and, next, we move to

Loop 2 to explain how to guarantee this. Note that we need to solve problem (G.11) Õ

(
1 +

(
H1

µy+H

) 1
2

)
times.

Sliding for Lh ≤ LG, Loop 2
As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 2 we need to find many times an (ε2, σ2)-solution

of the auxiliary problem (G.11), where we denoted for simplicity σ2 = σ̃(1) (δ/2, σ0) and ε2 = ε̃
(1)
f (δ/2). To solve problem

(G.11), we would like to apply Algorithm 2 with

ϕ = −G(x, z), ψ = 〈∇h(zmdk), z − zmdk 〉+ H

2
‖z − y0‖2 +

H1

2
‖z − zmdk ‖22. (G.12)

Function ϕ is convex and has LG-Lipschitz continuous gradient, function ψ is H +H1 + µy-strongly convex and has H +H1-
Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and parameter H2 ≥ 2LG, which will be
chosen later, to solve problem (G.11). To satisfy the conditions of Theorem 4, which gives the complexity of Algorithm 2, we,
first, observe that the oracles of ϕ and ψ are exact and, second, observe that we need in each iteration of Algorithm 1, used as

a building block in Algorithm 2, to find an
(
ε̃
(2)
f (ε2) , σ̃(2) (ε2, σ2)

)
-solution to the auxiliary problem (2.5), which in this case

has the following form:

utm+1 = arg min
u∈Rdx

{〈∇ϕ(umdm), u− umdm 〉+ ψ(u) +
H2

2
‖u− umdm ‖22}

= arg min
u∈Rdx

{−〈∇uG(x, umdm), u− umdm 〉+ 〈∇h(zmdk), u− zmdk 〉+ H

2
‖u− y0‖2 +

H1

2
‖u− zmdk ‖22 +

H2

2
‖u− umdm ‖22}. (G.13)

This quadratic auxiliary problem (G.13) can be solved explicitly and exactly. Thus, the second main assumption of Theorem 4

is satisfied with σ̃(2) (ε2, σ2) = 0, ε̃
(2)
f (ε2) = 0, which clearly satisfy (2.22) and (2.23).

To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it to guarantee that we obtain an (ε2, σ2)-

solution of the auxiliary problem (G.11). This requires O

((
1 +

(
H2

µϕ+µψ

) 1
2

)
log ε−1

2

)
= O

((
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)

calls to the (exact) oracles for ϕ and for ψ, and the same number of times solving the auxiliary problem (G.13). Combining this
oracle complexity with the cost of calculating (exact) oracles for ϕ and for ψ, we obtain that solving problem (G.11) requires

O

((
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)
τG calls of the basic oracle for G(x, ·). Also according to the polynomial dependences (2.25),

(2.26) we obtain that

σ2 = σ̃(1) (δ/2, σ0) = poly(δ/2, σ0), ε2 = ε̃
(1)
f (δ/2, σ0) = poly(δ/2, σ0).

Using conditions δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) in the formulation of Asumption 2 we obtain that the dependencies

σ2 (ε, σ) , σ̃
(1) (ε, σ) , ε2 (ε, σ) , ε̃

(1)
f (ε, σ)

82 Vladislav Tominin 1 et al.

are polynomial. Then, we can use notation Õ(·) without specifying what precision we mean and implying that the logarithmic
part depends on the initial ε, σ.

Sliding for Lh ≤ LG, combining the estimates of both loops
Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point ỹδ/2(x) which is an (δ (ε) /2, σ0 (ε, σ))-
solution to the problem (G.1) requires the following number of calls of the basic oracles of h and G(x, ·) respectively

Õ

(
1 +

√
H1/(H + µy)

)
τh, (G.14)

Õ

(
τG + τG

√
H1/(H + µy) +

(
1 +

√
H1/(H + µy)

)(
τG + τG

√
H2

µy +H +H1

))
. (G.15)

Finding (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g by calculating ∇xG
(
x, ỹδ/2(x)

)
requires additionally τG calls of the basic oracle for

G(·, y). Since in Assumption 2 we denote the dependence on the target accuracy ε and confidence level σ by a separate quantities
denoted by K(ε, σ) and in this case it is logarithmic, choosing H1 = 2Lh and H2 = 2LG we get the final estimates for N y

G and
Nh to guarantee that Assumption 2 holds:

N y
G = O

((
1 +

√
2Lh/(H + µy)

)(
1 +

√
2LG

µy +H + 2Lh

))
τG

= O

(
1 +

√
2Lh

µy +H
+

√
2LG

µy +H
+

√
2Lh

µy +H

√
2LG

µy +H + 2Lh

)
τG = O

(
τG + τG

√
LG

µy +H

)
,

Nh = O

(
1 +

√
Lh

µy +H

)
τh,

where for the first bound we used that Lh ≤ LG.
It is important to note that the estimates on N y

G and Nh obtained in both cases Lh ≥ LG and Lh ≤ LG are exactly the
same. Thus, regardless of the relation between Lh and LG, we obtain the estimates in the statement of the Lemma. Yet, we
underline that the algorithm actually depends on whether Lh ≥ LG or Lh ≤ LG. ⊓⊔

We now obtain a simple counterpart of the previous Lemma for the case when Assumption 5.3(b) holds instead of Assump-
tion 5.3(a). In this case h is prox-friendly and there is no need to consider different cases and just one Loop is enough since the
auxiliary problem (G.5) in Loop 1 can be solved explicitly.

Lemma 20 Let the function g be defined via maximization problem in (3.17), i.e.

g(x) = max
y∈R

dy

{
G(x, y) − h(y) − H

2
‖y − y0‖2

}
, (G.16)

where G(x, y), h(y) are according to (5.1) and satisfy Assumption 5.1,2,3(b), y0 ∈ Rdy . Then, applying Algorithm 2 to this
problem, we guarantee that Assumption 2 holds with τG basic oracle calls for G(·, y) and the following estimates for the number
of basic oracle calls for G(x, ·) and h respectively

N y
G (τG, H) = O

(
τG + τG

√
LG/(H + µy)

)
, (G.17)

Nh (τh,H) = 0. (G.18)

Proof The proof is similar to the proof for the case ”Sliding Lh ≥ LG” in the proof of Lemma 19 with the only change that
the auxiliary problem (G.5) is solved explicitly thanks to h being prox-friendly. ⊓⊔

By changing the variables x and y in Lemma 19 and choosing H = 0 we obtain the following simple corollary that ensures
Assumption 3.

Accelerated Methods for Saddle-Point Problems 83

Different regimes Lh ≥ LG Lh ≤ LG

Lf ≤ LG

Framework from Appendix F (Theorem 17)

+ Sliding for Lh ≥ LG (Lemma 19)

+ Sliding for Lf ≤ LG (Corollary 7)

Framework from Appendix F (Theorem 17)

+ Sliding for Lh ≤ LG (Lemma 19)

+ Sliding for Lf ≤ LG (Corollary 7)

Lf ≥ LG

General Framework (Theorem 5)

+ Sliding for Lh ≥ LG (Lemma 19)

+ Sliding for Lf ≥ LG (Corollary 7)

General Framework (Theorem 5)

+ Sliding for Lh ≤ LG (Lemma 19)

+ Sliding for Lf ≥ LG (Corollary 7)

Table 6: Summary of the proof of Theorem 4. For each regime we apply the algorithms described in the proofs
of the corresponding results listed in the table to obtain the complexity estimates (5.9)-(5.12) for the number
of basic oracle calls for each part of the objective f , h, and G.

Corollary 7 Let the function r be defined via maximization problem in (3.18), i.e.

r(y) = min
x∈Rdx

{G(x, y) + f(x)} , (G.19)

where G(x, y), f(y) are according to (5.1) and satisfy Assumption 5.1,2,3(a).Then, for each of two cases Lf ≥ LG and Lf ≤ LG
we organize computations in two loops and apply Algorithm 2, so that Assumption 3 holds with τG basic oracle calls for G(x, ·)
and the following estimates for the number of basic oracle calls for G(·, y) and f respectively

Nx
G (τG) = O

(
τG + τG

√
LG/µx

)
, (G.20)

Nf
(
τf
)
= O

(
τf + τf

√
Lf/µx

)
. (G.21)

We name these algorithms ”Sliding Lf ≥ LG” and ”Sliding Lf ≤ LG”.

G.2 Proof of Theorem 7

Finally, we prove Theorem 7 for problem (5.1) by combining the building blocks depending on the relation between Lf
and LG and relation between Lh and LG. If Lf ≥ LG we use the general framework from the main text (see Section 3 and
Theorem 5). In the opposite case we apply the variation of this framework described in Appendix F (see Theorem 17). In both
cases we use Lemma 19 and Corollary 7 to ensure Assumptions 2, 3, but with different order of the loops described inside these
Lemma and Corollary depending on the relation between Lh and LG, i.e. we use either sliding Lh ≥ LG or sliding Lh ≤ LG
in Lemma 19 and either sliding Lf ≥ LG or sliding Lf ≤ LG in Corollary 7. For convenience, we summarize which results are
used in which case in Table 6.

Proof (of Theorem 7) Assumption 5.1,2,3(a) with (5.3) guarantee that Assumption 1 holds. Further, the choice H = 2LG in
Lemma 19 guarantee that Assumption 2 holds with the number of oracle calls given by (G.2) and (G.3). Corollary 7 guarantee
that Assumption 3 holds with the number of oracle calls given by (G.20) and (G.21). We consider two cases Lf ≥ LG and
Lf ≤ LG and, for each case, apply either the general framework from the main text or from the previous appendix. We show
that in both cases the estimates are the same and are equal to the ones in the statement of the theorem. In each case we make
the derivations with σ = 0 since all the algorithms are deterministic in this case.

We begin with the case Lf ≥ LG.

Case Lf ≥ LG
Applying Theorem 5 with τf = τh = 1 and τG = mG, Lemma 19 with H = 2LG, Corollary 7 and combining the complexity
estimates in these results, we obtain the following final complexity bounds.

Number of basic oracle calls of f :

Õ

((
1 +

√
LG

µy

)(
1 +

√
Lf

µx
+

(
1 +

√
LG

µx

)(
1 +

√
Lf

LG

)))
= Õ

((√
LG

µy

)(√
Lf

µx
+

(√
LG

µx

)(√
Lf

LG

)))

= Õ

((√
LfLG

µxµy

))
,

84 Vladislav Tominin 1 et al.

where we used that, LG ≤ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy , 1 ≤ LG/µx, 1 ≤ Lf/µx.
Number of basic oracle calls of h:

Õ

((
1 +

√
LG

µy

)(
1 +

(
1 +

√
LG

µx

)(
1 +

√
Lh

2LG + µy

)))
= Õ

((√
LG

µy

)(
1 +

(√
LG

µx

)(
1 +

√
Lh

LG

)))
=

= Õ

max

√
LGLh

µxµy
,

√
L2
G

µxµy

 ,

where we used that H = 2LG in Lemma 19 and, by the assumptions of this Theorem, 1 ≤ LG/µy , 1 ≤ LG/µx.
Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG

µy

)(
mG +mG

√
LG

µx
+mG

(
1 +

√
LG

µx

)))
= Õ

mG

√
L2
G

µxµy

 ,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx.
Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG

µy

)(
mG +mG

(
1 +

√
LG

µx

)(
1 +

√
LG

2LG + µy

)))

= Õ

(
mG

(
1 +

√
LG

µy

)(
1 +

√
LG

µx

))
= Õ

mG

√
L2
G

µxµy

 ,

where we used that H = 2LG in Lemma 19 and, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx.

Case Lf ≤ LG
Applying Theorem 17 with τf = τh = 1 and τG = mG, Lemma 19 with H = 2LG, Corollary 7 and combining the, complexity
estimates we obtain the final complexity bounds as follows.

Number of basic oracle calls of f :

Õ

((
1 +

√
LG

µy

)(
1 +

√
Lf

µx
+

(
1 +

√
Lf

µx

)))
= Õ

((√
LG

µy

)(√
Lf

µx
+

(√
Lf

µx

)))
= Õ

((√
LfLG

µxµy

))
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ Lf/µx.
Number of basic oracle calls of h:

Õ

((
1 +

√
LG

µy

)(
1 +

(
1 +

√
Lf

µx

)(
1 +

√
LG

Lf

)(
1 +

√
Lh

2LG + µy

)))

= Õ

((√
LG

µy

)(
1 +

(√
Lf

µx

)
·
(√

LG

Lf

)
·
(
1 +

√
Lh

LG

)))
= Õ

max

√
L2
G

µxµy
,

√
LGLh

µxµy

 ,

where we used that H = 2LG in Lemma 19, LG ≥ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy , 1 ≤ Lf/µx.
Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG

µy

)(
mG +mG

√
LG

µx
+mG

(
1 +

√
Lf

µx

)(
1 +

√
LG

Lf

)))

= Õ

(
mG

(√
LG

µy

)(√
LG

µx
+

(√
Lf

µx

)
·
(√

LG

Lf

)))
= Õ

(
mG

(√
LG

µy

)(√
LG

µx

))
= Õ

mG

√
L2
G

µxµy

 ,

where we used that LG ≥ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy , 1 ≤ LG/µx, 1 ≤ Lf/µx.

Accelerated Methods for Saddle-Point Problems 85

Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG

µy

)(
mG +

(
1 +

√
Lf

µx

)(
mG +mG

√
LG

2LG + µy
+

√
LG

Lf
·mG

(
1 +

√
LG

2LG + µy

))))

= Õ

(
mG

(√
LG

µy

)(
1 +

(√
Lf

µx

)
·
(√

LG

Lf

)))
= Õ

max

mG

√
LG

µy
,mG

√
L2
G

µxµy

 = Õ

mG

√
L2
G

µxµy

 ,

where we used that H = 2LG in Lemma 19, LG ≥ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy , 1 ≤ LG/µx,
1 ≤ Lf/µx.

⊓⊔

Proof (of Theorem 8) The only difference in the proof of Theorem 8 from the proof of Theorem 7 is the use of Lemma 20
instead of Lemma 19 to satisfy Assumption 2. Thus, applying expressions (G.17), (G.18) for N y

G and Nh and following the
proof of Theorem 7 without any changes we obtain the same estimates for the number of basic oracle calls of f, G(·, y), G(x, ·).
Considering Nh = 0 and using that, by the assumptions of this Theorem, 1 ≤ LG/µy , we obtain that the number of basic
oracle calls of h is

Õ

(√
LG

µy

)
.

⊓⊔

	1 Introduction
	2 Inexact Accelerated Meta-algorithm
	3 Accelerated Framework for Saddle-Point Problems
	4 Accelerated Method for Saddle-Point Problems
	5 Accelerated Methods for Saddle-Point Problems with Finite-Sum Structure
	6 Accelerated Proximal Variance-Reduction Method for Saddle-Point Problems
	7 Conclusions
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 3 and Theorem 4
	D L-SVRG
	E Proof of Lemma 1 and Lemma 2
	F A Variant of Accelerated Framework for Saddle-Point Problems.
	G Proof of Theorem 7 and Theorem 8

