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Abstract We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear ob-
jective and different condition numbers with respect to the primal and the dual variables. First, we consider such
problems with smooth composite terms, one of which having finite-sum structure. For this setting we propose
a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature.
Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms
depending on the properties of the composite terms. When the composite terms are smooth we obtain better
complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal
algorithms which do not consider the composite structure of the problem. If the composite terms are prox-
friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing
variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity
bounds to the nearly-optimal algorithm which is designed for non-composite setting. Besides that, our algo-
rithms allow to separate the complexity bounds, i.e. estimate, for each part of the objective separately, the
number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can
have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than
cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which
may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm
for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal
mapping, which may be of independent interest as well.

1 Introduction

Saddle-point optimization problems have many applications in different areas of modelling an optimization.
The most classical example is, perhaps, two-player zero-sum games [28,[30], including differential games [20].
More recent examples include imaging problems [6] and machine learning problems [40], where primal-dual
saddle-point representations of large-scale optimization problems are constructed and primal-dual methods are
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used. Many non-smooth optimization problems, such as - or ¢ regression admit a saddle-point representation,
which allows one to propose methods [31}[35] having faster convergence than the standard subgradient scheme.
Recently saddle-point problems started to attract more attention from the machine learning community in
application to generative adversarial networks training, where the training process consists of a competition of
a generator of non-real images and a discriminator which tries to distinguish between real and artificial images.
Another application examples are equilibrium problems in two-stage congested traffic flow models [13].

From the algorithmic viewpoint the most studied setting deals with saddle-point problems having bilinear
structure [Bl31L351[4T], where the cross term between the primal and dual variable is linear with respect to each
variable. The extensions include bilinear problems with prox-friendly (i.e. admitting a proximal operator in
closed form) composite terms [6}21]. A related line of research studies variational inequalities [21,31] since any
convex-concave saddle-point problem can be reformulated as a variational inequality problem with monotone
operator. In this area lower bounds for first-order methods are known [32] and optimal methods exist [7,211[31]
36,46]. Notably, these works do not rely on the bilinear structure and allow to solve convex-concave saddle-point
problems with Lipschitz-continuous gradients, including differential games [12]. An alternative approach, which
mostly inspired this paper, is based on representation of a saddle-point problem min, max, G(z,y) as either a
primal minimization problem with an implicitly given objective g(x) = maxy G(z,y) or a dual maximization
problem with an implicitly given objective §(y) = ming G(x,y). This approach was used in [34,[35] for problems
with bilinear structure and later extended in [I8] for general saddle-point problems. Such connection with
optimization turned out to be quite productive since it allows to exploit accelerated optimization methods. In
particular, recent advances in this direction are due to an observation [3}[14}[19] that primal and dual problems
can have different condition numbers which opens up a possibility to obtain faster algorithms.

In this paper we focus on strongly-convex-strongly-concave saddle-point problems with different condition
numbers Kz, ky of the primal and dual problems respectively. The classical upper bound O(//m + ky) for this
setting is achieved by the algorithm of [46]. Recently, [19] proved a lower complexity bound Q(m) for
first-order methods, which raised a question of whether first-order methods can be accelerated for this setting.
Independently [2] proposed accelerated methods with improved, yet suboptimal complexity bounds. In [25] the
authors improved the bounds of [3] and proposed an algorithm with an optimal up to a polylogarithmic factor
complexity bound O(\/m) Subsequently, the logarithmic factors have been improved independently in the
papers (we cite them in chronological order) [I1,43,[45]. The listed papers consider large-scale regime when
primal and dual problem have large dimension and use gradient-type methods. If, say, the dimension of the
primal variable z is moderate, one can use cutting-plane methods [I5,[16] in combination with gradient-type
methods. We also mention the following papers which are related, but consider different from ours setting of
convex-concave saddle-point problems [47], strongly-convex-concave and nonconvex-concave [42], nonconvex-
concave [38,/44].

When an optimization problem has a special structure of finite-sum, also known as empirical risk minimiza-
tion problems, variance reduction [22[25] techniques are often exploited to reduce the complexity bounds. We
are interested also in application of such techniques for saddle-point problems. Variance reduction methods for
saddle-point problems were proposed in [39] and recently improved in [I], yet without distinguishing between
primal and dual condition numbers.

In this paper we continue the line of research [3l[11] by exploring additional structure of the problem, such
as finite-sum form and presence of composite terms. We also develop algorithms which allow to separate the
complexity bounds for different parts of the problem. The latter, in particular, means that for each part of
the objective we estimate separately the number of its gradient evaluations. This allows to obtain further
acceleration if the smoothness constants and complexities of an oracle call for different parts are different
since more expensive oracles are called less frequently than it would be required by existing methods. Next we
consider two main problem formulations which have additional structure and which we explore in the paper.
We also give detailed explanation of the difference of our setting and bounds with the literature.
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The first problem formulation, we are interested in, is strongly-convex-strongly-concave saddle-point prob-

lem of the form
mp

min max {f(2) + Gla.y) ~ b}, hy)i= == > hiw) (1.1)

zERdz yecRy

where G(z,y) is convex in z and concave in y and is Lg-smooth in each variable, f(z) is uz-strongly convex and
L g-smooth, h(y) is py-strongly convex and Lp-smooth. We refer to the functions f and h as composite terms. In
this setting it is natural to define condition numbers s, = Lg/pe and ky = L/ py for the primal minimization
and dual maximization problems respectively. As it was already mentioned, the most studied [6,21] setting
corresponds to a particular case of my = 1 and bilinear function G(z,y) = (Az,y) for some linear operator A
and the functions f, g being prox-friendly, i.e. admit a tractable proximal operator [27], e.g. evaluation of the
point arg min, { f(z) + 1 ||z — Z||3} in the case of f. Existing algorithms [2}[3}[1TL25,[39,43,45] for problem (L))
with non-bilinear structure do not exploit the finite-sum structure of the function h and when it is smooth
require to calculate the gradient of the whole sum, which may be expensive when m;, > 1. Unlike them we
incorporate variance reduction technique to make the number of evaluations of Vh;(y) smaller than by the
existing methods. Unlike [25,[39,[43,[45] we separate the complexity estimates for each part of the objective, i.e.
we estimate separately a sufficient number of evaluations of V f(z), V. G(x,y), VyG(z,y), Vhi(y) to achieve
a given accuracy. This allows to call each oracle less number of times than it is required by existing methods
and is important since evaluation of each gradient can have different arithmetic operations complexity, and it
is desired to call expensive oracles less often than cheap oracles. Compared to [2}[3], where the complexities are
also separated, we obtain better complexity bounds for each part of the objective. Moreover, for the particular
case when f = h = 0, our bounds are the same to the best known bounds [43,45] and are optimal up to
logarithmic factors. Otherwise, when my, > 1 and/or f,h are nonzero we obtain the best, to our knowledge
complexity bounds. We summarize comparison of ours and existing results for the case my > 1 in Table [ and
for the particular case my = 1 in Table

The second problem formulation, we are interested in, is strongly-convex-strongly-concave saddle-point
problem of the form

. 1 &
Jnin max {f(z) + G(z,y) —hy)}, Glz,y) = 2= ;Gz(m,y)- (1.2)
where each G;(z,y) is convex in  and concave in y and is L&-smooth in each variable, f(z) is p-strongly
convex, h(y) is py-strongly convex. In this setting it is natural to define condition numbers kz; = La/pe
and ky = Lg/py for the primal minimization and dual maximization problems respectively, where Lg =
mLG >4 L. We consider this problem under three different additional assumptions: a) f(z) is Lg-smooth,
h(y) is Lp-smooth; b) f(x) is Ls-smooth, h(y) is smooth and prox-friendly; ¢) f(z) and h(y) are both prox-
friendly. Under assumption a) and b), similarly to [25,[43[45] we do not exploit the finite-sum structure of the
function G. Yet, unlike these papers and [39], where variance reduction methods are proposed, we separate the
complexity bounds for the number of oracle calls for each part of the objective, i.e. we estimate a sufficient
number of evaluations of Vf(x), V.Gi(x,y), VyGi(z,y), Vh(y) to achieve a given accuracy. This allows to
call each oracle less number of times than it is required by existing methods and is important since evaluation
of each gradient can have different arithmetic operations complexity, and it is desired to call expensive oracles
less often than cheap oracles. Compared to [2}[3], where the complexities are also separated, we obtain better
complexity bounds for each part of the objective. Moreover, for the particular case when f = h = 0, our bounds
are the same to the best known bounds [43/45)].

Under assumption c), similarly to [39], we exploit the finite-sum structure of the function G and propose an
accelerated variance reduction method for problem (I.2). The authors of [39] considered smooth pz-strongly
convex and piy-strongly concave saddle-point problems in the form min cga. max, cpdy G(z,y)+ M(z,y), where
M (z,y) is prox-friendly in both variables. Under an additional assumption that pg = py = p, i.€. ky = Ky = K
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Variance | Complexity
Referenses Complexity
reduction| separation
Vi O (mg; +G) + (G+h)> V.G: O ( (f+G) + (G+h))
46| X X
Vh;: O (mhnéﬁc) + mhn§G+h)> VG 16) (né +G) + (G+h))
Vf: O (\/ ng(gf+G)n§/G+h)) V.G: O (\/néf—FG)mgG-Hl))
[25[431[45] X X
Vh;: ) (mh\/ngcf+c)n§/G+}L)> VG : 1) (\/ngcf+c)n§/G+}L)>
Vf: é( wa)) V.G: O ( H<G) (G)>
3] X v
Vhi:O (mh\/nch)nz(/G)nz(/h)> VG : (H/G)\/ ))
This paper |V f: O( n(f)n(c)> V.G (1/ (&) (G))
v v
(Theorem [6)) | Vh; : [0) ( mhng;c)nzsh)> VyG : 10) ( n;G)nZSG))

Table 1: Comparison of gradient complexities for problem (IJ]) with mp > 1, i.e. the number of corresponding
gradient evaluations, to find an e- saddle point with probability at least 1 — 0. Notation O(X hides constant
and polylogarithmic in e 7" and o~ ' factors. For a function F, we denote ) =1 F/ e, K ( ) = = Lp/py. The
results of Theorem [Blare obtained under additional assumptions mp (4L +py) < Lp, 2Lg —l—uw <L, py < Lg,
M < LG-

they obtain complexity 6(\/m_gf£) Based on a combination of the Catalyst framework [23] and the algorithm
of [39], we propose a variance reduction algorithm with a better bound 6(\/W) Moreover, this composite
setting is not covered by other existing algorithms [25,[43,[45] even in the case of mg = 1. We summarize
comparison of ours and existing results in Table [3l

1.1 Our approach

To solve the described saddle-point problems under different assumptions we first propose a general frame-
work and then specialize it to problem (ILT]) or problem (L2)). Our approach to saddle-point problems is based
on considering them as minimization problems with objective implicitly given as a solution to a maximization
problem. Thus, to develop our general framework, we first consider optimization problem of the form

min{F(z) := ¢ (z) + ¥ (@)}, (1.3)

and develop a novel inexact accelerated gradient method (Algorithm [J) which uses inexact first-order informa-
tion on ¢ and 1 and inexact proximal steps. Then we note that the problems (IJ]) or (I2]) can be rewritten

Jin {F(@) = f(2) + max{G(z,y) =h(y)} } (1.4)

9(x)=G(z,y*(z))—h(y*(z))
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Referenses Complexity Assumptions CS
Vif: (n(f+G) + <G+h)> V.G : (/1( +6) + H§G+h)> f is Lg-smooth,
46] X
Vh; : (n F+6) <G+h)> v,G: O (nzf+G) + H§G+h)> h is Lp-smooth
Vf: O (\/ Ii(f+G) (G+h)> V.G : O ( n§f+c)n§,c+h)> f is Ly-smooth,
[25[431[45] X
Vhi:O (\/ Ii(f+G) (G+h)> VG 6) (\/ Ii(zf+G)I€7§G+h)> h is Lp-smooth
Vf: O ( K ”) V:G: O (\/mch)nglG)> f is Ly-smooth,
3] 4
Vh;: (\/H(G) () (h)> VG 6) (nl(/G) HSUG)> h is Lp-smooth
This paper [Vf: (\/ n(f) (G)) V.G : O (\/ngc)n(yc)> f is Lg-smooth,
v
(Corollary M) (Vh : (max {\/K;G)n(yh), K;G)n(yc) }) V4G : 6) ( K;G)n(yG)> h is Lp-smooth
This paper [Vf: O (\/ E(f) (G)) V.G: O (\/N;G)MSG)) f is Lg-smooth,
v/
(Theorem [8)) |Vh : ( K G)> VyG : 0) ( niG)n(yG)> h is Lp-smooth prox-friendly
This paper [Vf: 0 V:G: O (1/N;G)N§G)>
f, h prox-friendly v
(Theorem [I5)|Vh: 0 VyG: O (\/ (G)ﬁ(yc)>

Table 2: Comparison of gradient complexities for problem (L)) with mp = 1, i.e. the number of corresponding
gradient evaluations, to find an e-saddle point for the problem. Notation O(X) hides constant and polylog-

arithmic in €' factors. CS stands for complexity separation. For a function F, we denote //vm P = Lp/pz,
F
’“@é )= Lp/py.

which is consistent with the problem formulation (I3). Using this representation we can apply our Algorithm
0 with ¢ (z) = f(z) and ¥ (z) = g(z) to solve this problem. In each step we need to obtain a first-order
information about the function g, which we can do inexactly by solving the inner maximization problem by the
same Algorithm [I] but now with ¢ (y) = —G(x,y) and ¢ (y) = h(y). To obtain near-optimal upper complexity
bounds and separate oracle complexity for different parts of the problem (L4) we introduce additional inner-
outer cycles, which will be described in detail below.

As said, our framework is based on the system of inner-outer loops, where in each loop an accelerated
gradient method is applied to obtain better complexity results. To implement our approach we then need a
flexible accelerated method which can be applied in a number of different situations. In some sense we need
an accelerated meta-algorithm, or an accelerated envelope, which uses any method in the lower level to solve
an auxiliary problem of the upper level and, as a result, obtain an accelerated version of the method used
in the lower level. Existing algorithms of this type [8,[23}[26] are based on accelerated proximal point method
that uses some algorithm on the lower level to implement inexact proximal mapping. Unfortunately, we can
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Referenses Complexity Prox-f|Prox-hiyyR|CS
Vf: 16) (n;f+G) + H§G+h)> VaGi: O (mGHéHG) + mgm§,G+h)>
[46] X X XX
Vh:O (n;f+G) + m;Lm§,G+h)> VyG; 1) (mGHéHG) + mgm§,G+h)>
Vf: O (\/ lig(gf+G)/il(IG+h)> V.Gi: O (mgy/ligf_FG)ngG_Hl))
23] X X X |x
Vh:O (\/I{;f+c)li»(yc+h)> VyGj 1) (mgy/n(zf+c)n§,G+}L)>
vi: O ( H:(L'f)> ViGi: O (mG\/ HSUG)H;E/G)>
Bl X x x|V
Vh:O (\/I{;G)Iil(lc)lil(l}L)) VyGi: O (mGli(G) H;G)>
LA max{Lg-Q»Lf,LG-Q»Lh} A max{Lc;-l»Lf,LG-Q»Lh}
. Vf: 0 (V mG min{ gty } ) VeGi: O (\/ mG min{ g,y }
w39l X X |v|x
LA max{Lg-Q»Lf,LG-l»Lh} A max{Lg-l»Lf,LG-l»Lh}
Vh:0 (V ma min{pg,py } ) VyGi: O (V ma min{pz,py}
This paper |Vf: 0) ( ﬁgf)ﬁg(,c)) VG : 0) (mg ﬁ(G)n(G))
X X X |V
(Theorem [T)) |Vh : 6) (max {\/ﬁ;G)n(yh), \/nf%(f’) }) VyG; : 10) <m N(G)n(yc))
This paper Vf . O ( K/(f)ﬁ'/?(!G)) V(L‘Gz O (m ﬁ(G)mSG))
X v X |/
(Theorem B) [Vh : O (\/n(yc)) VyGi: O (m NQGM@G))
Vf:0 VG 16) (\/mg max {KL(ZG),I{SJG)}>
[1L139] v v v |/
Vh:0 VyGj 10) (\/mg max{n&c),néc)}>
This paper |Vf: 0 VG : 0) <\/mgy/n§cc)néc)>
v v v |/
. S (@) (@)
(Theorem [I5])|Vh : 0 VyGi: O Mgy ke 'Ky

Table 3: Comparison of gradient complexities for problem (2], i.e. the number of corresponding gradient
evaluations, to find e-saddle point with probability at least 1 — 0. Notation O(X ) hides constant and polyloga-
rithmic in ¢! and o~ factors. For a function F, we denote f@;F) =Lr/lz, @SF) = Lr/uy. Prox-f (Prox-h)
stands for f (h) being prox-friendly. CS stands for complexity separation. VR stands for variance reduction.
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not use these existing methods in our case since in our system of inner-outer loops a loop in the lower level
leads to inexact gradient information in the upper level. Moreover, if a randomized method is used in the lower
level, one obtains stochastic inexactness in the upper level. These kinds of inexactnesses of the oracles for ¢, 1
are not account for in the existing general acceleration frameworks [8}2326]. Motivated by this gap in the
literature, we develop a generic accelerated meta-algorithm with probabilistic inexact oracles. Moreover, we
also implement an adaptive stopping criterion for the method in the lower level which guarantees appropriate
quality of the inexact proximal mapping and leads to the accelerated convergence rate on the upper level.

1.2 Contributions

To sum up, our contributions are as follows. First, we provide a general inexact accelerated meta-algorithm
(AM) listed as Algorithm [ for convex optimization problems of the form (3] with inexact oracles. We
also obtain an accelerated linearly convergent version of this algorithm by employing the restart technique
with the resulting algorithm listed as Algorithm 21 We provide theoretical analysis of this algorithm under
stochastic inexactness in different parts of this algorithm, i.e. inexact oracle and inexact proximal step. Unlike
existing accelerated proximal methods we consider composite problems (3] and use inexact proximal step
only with respect to . Next, we use this AM to construct a new general framework to systematically obtain
new algorithms and complexity bounds for saddle-point problems with the structure (1)) or (L2). As a result,
we obtain new accelerated methods for general saddle-point problems, including accelerated variance reduction
methods, which leads to better complexity bounds than existing in the literature. Moreover, our algorithms
allow to separate complexity bounds for the number of oracle calls for each part of the problem formulation,
i.e., for problem () we estimate a sufficient number of evaluations of V f(z), V. G(z,y), Vy,G(z,y), Vhi(y) to
achieve given accuracy. For problem ([.2) we estimate a sufficient number of evaluations of V f(z), V.G;i(z,y),
VyGi(x,y), Vh(y) to achieve given accuracy. This complexity separation is important since evaluation of each
gradient can have different arithmetic operations complexity, and it is desired to call expensive oracles less
often than cheap oracles.

1.3 Paper organization

In Section 2, we propose an Accelerated Meta-Algorithm and extend it for strongly convex setting with
probabilistic inexact oracle and probabilistic inexactness in the proximal step. Then, in Section Bl by sequential
applying of the Accelerated Meta-Algorithm, we obtain a general framework for solving saddle-point problems.
This framework is based on two main assumptions for a possibility to solve two optimization problems. In
Section [ we specialize the general framework to solve problem (1) by showing how to satisfy its two main
assumptions, and providing the resulting algorithm. In Section [B] we consider problem (L2)) under additional
assumptions: a) f(z) is Lg-smooth, h(y) is Lp-smooth; b) f(x) is L-smooth, h(y) is smooth and prox-friendly.
We specialize the general framework for this setting and propose accelerated algorithms. Finally, in Section
we consider problem (I.2)) under additional assumption c) both f(z) and h(y) are prox-friendly. In this case,
since the Accelerated Meta-Algorithm can not be applied in this case, we develop a different approach based
on a combination of the Catalyst framework [23] and the algorithm of [39].

1.4 Preliminaries
We introduce some notation which we use throughout the paper. We denote by ||z|| and ||y|| the standard

Euclidean norms for z € R% and RS R% respectively. This leads to the Euclidean norm on R% x R% defined
as ||($17$2) - (y17y2)||2 = ||1‘1 - $2||2 + ||y1 - y2||27 z1,T2, € Rdwvylva € R%.
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We say that a function f is Lg-smooth if it is differentiable and its gradient satisfies Lipshitz condition
IVf(z1) — Vf(z2)|| < Lyllxr —x2l], x1,22 € domf (1.5)

for some Ly > 0. We say that a function f is ps-strongly convex if, for some py > 0 and for any its subgradient
it holds that

f(z2) > f(z1) +(Vf(z1), 22 — 21) + %Hxl —zo|?, z1,z2 € domf. (1.6)

We say that a function f is prox-friendly if it admits a tractable proximal operator [27]. This means that the
evaluation of the point

argin { 7(0) + 52 - 7l | (1.1

for some fixed  can be made either in closed form or numerically very efficiently up to machine precision. Note
that if a function is prox-friendly, then the problem,

min { {e1,2) + f(2) + 2|z - 7 (1.8)
z 2

can be solved either in closed form or numerically very efficiently up to machine precision for any fixed ci, Z,
and c2 > 0.

For an optimization problem min, f(z), we say that a random point & is an (g, o)-solution to this problem
(@)~ [ <c} > 1o

For a function & (g), where ¢ € R we write £ (¢) = poly (¢) if £(-) is a polynomial function of . For a
function & (g,0), where £,0 € R we write £ (¢,0) = poly (g,0) if £ (-, o) is a polynomial function of € and £ (g, -)
is a polynomial function of o.

2 Inexact Accelerated Meta-algorithm

As it was described above, our approach is based on an accelerated method for a general optimization
problem with the objective given as a sum of two functions
min {F (2) i=  (2) + 6 (2)}. (2.1)
xERx
In this section we describe this method in the inexact oracle model, so that we can apply it in the system of
inner-outer loops to propose accelerated methods for saddle-point problems.
To motivate the study of this section, we slightly rewrite problem (1)) in the following way:

min {F(z) i= () + max {G(z,y) — ()} }, (22)
xecRez yER%Y

P(@): =G (z,y*(x))—h(y*(z))

where y* () is the solution for the problem defining v (z) for a fixed x. In other words, we can represent problem
(1) as an optimization problem min,cgra. @(z) + () with a particular choice of ¢, 1):

¢ = f(x), ¥= max {G(x,y) —h(y)}. (2.3)
yER*Y

Importantly, we have no access to the exact gradients of ¢ (x) since we can not solve exactly the problem defining
(z). At the same time, according to Lemma 2 from [3] we can get (precise definition is given below) an inexact
(6,2Ly) oracle, where § depends on the accuracy of the solution of the problem max,cra, {G(z,y) — h(y)}.
Thus, we need to develop an accelerated algorithm for problem (2:2)) which takes into account inaccuracy of
the oracles for functions ¢(z), ¥ (z) caused by inexact solution to the optimization problem defining ¢ (z).
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The situation is even more complicated if we consider problem ([IIl) with mj; > 1 or problem (2)) with
me > 1 and apply variance reduction techniques. Application of known variance reduction methods guarantees
us a solution to the problem max, cge, {G(,y) — h(y)} only with some high probability 1 — . Thus, when
using the variance reduction setting we obtain an inexact oracle for 1 (z) only with some probability.

To sum up the motivation part, we need to develop a generic acceleration scheme which works with inexact
oracles including inexact oracles with high probability. The rest of this section is devoted to the precise defi-
nitions of inexact oracles, description of such an accelerated algorithm and stating its convergence properties.
Main technical proofs are deferred to the appendices. Since we believe that the proposed accelerated algorithm
with inexact oracles can be of independent interest, we spend some effort to establish more results than we
need for the main purpose of this paper. So, first we consider optimization with deterministic oracle, and then
move to the setting of probabilistic inexact oracles.

2.1 Deterministic setting

Having in mind the above motivation, we introduce necessary notation and definitions. We start with a def-
inition, which corresponds to convex functions with Lipschitz-continuous gradient and is a small generalization
of inexact oracle introduced in [10].

Definition 1 Let § = (d1,02), where 01,82 > 0. Then the pair (ps,1(z), Vs, (z)) is called (9, L)-oracle of a
convex function ¢(z) at a point z, if

L
— 01 < 9(2) — (ps,.(z) + (Vos,L(x),z — x)) < §||z — z||? + 82 for all z € R%. (2.4)

With a slight abuse of notation, we use the same notation (4, L)-oracle for the case (41, d2) = (0, 9).

Our Accelerated Meta-algorithm (AM) is listed below as Algorithm [II The method generates three se-
quences, which are denoted by the same letter z with either no superscript or one of the two superscripts z",
™4, Since later we will use this algorithm in a system of inner-outer loops, we will change the letter to denote
the sequences, but will not change the superscripts. The idea of the algorithm is inspired by the Monteiro—
Svaiter algorithm [26], but there are several important differences. The first one is that in (23) we linearize
the function ¢ instead of making inexact proximal step for the whole objective F' as it is done in [26]. The
second difference is that we use inexact oracles for the functions ¢ and v, and as a corollary inexact oracle for
F. This affects the measure of inexact solution to problem (ZI) and Step [ of the algorithm. Thirdly, below
we introduce a more convenient in practice way to control the accuracy of the solution to the inexact proximal
step (Z3). To do that we quantify with which accuracy one needs to solve the problem (23] in terms of its ob-
jective residual, so that the whole Algorithm [ outputs a solution to the problem (2] with a desired accuracy.
This makes it easy to apply Algorithm [ in a system of inner-outer loops. Finally, the algorithm in [26] is not
proved to obtain accelerated linear convergence rate in the case when the objective is strongly convex. For our
algorithm we propose an extension which has accelerated linear convergence rate under additional assumption
of inexact strong convexity.

The next theorem gives the convergence rate of Algorithm [I] when applied to the problem 21)).

Theorem 1 Assume that the starting point xo of Algorithm [ satisfies |xo — z«|| < R for some R > 0, and
that the parameter H is chosen to satisfy H > 2L,. Assume also that the algorithm wuses (9, Ly)-oracle of
convex function p(x) and (8, Ly )-oracle of convex function v (x), and that the auziliary subproblem (ZI) is
solved inexactly in each iteration in such a way that the inequality (26]) holds. Then, for all k > 0, the sequence
xt generated by Algorithm [ satisfies

F(ak) — F(z) <

AHR? ; 5 =\
2 + 2 (Z Az> A_Qk + 01 + (Z A; A_lk (27)
=1 =1
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Algorithm 1 Accelerated Meta-algorithm (AM) with inexact (9, L)-oracles

1: Input: objective F' = ¢ 4 9 where ¢, are convex, parameter H > 2L, inexactness § > 0, starting point xo;
(ps,L,> Vs L,) — (3, Ly)-oracle of ¢,
(1/’6,L¢ ) Vwa,Lw) — (8, Ly)-oracle of ).

2: Set Ag =0,af = 10716”01 = z0.
3: for k=0tok=K—1do

1++/1+8HA
4: Set Qp41 = Tk7 Ak+1 = Ak + Ap41-

. md _ _Ap .t Qft1
5: Set z** = it Tk + Apps Tk
6: Find x2+1 as an approximate solution to the minimization problem
. H
Shn ~ argmin g { 0o, D) + (T, @7, 2 = D) +9@) + G e —ap )} (25)
such that
H
V05,2, @) + Vibsy, (ah1) + Hiahy —a®)|| < T |ehis =i —2v/252Le. (2:6)

T wpgr =2k — a1 Vs, L(Th ) — ar Vs L (2] )
8: end for

. t
9: return x5

We prove this theorem in Appendix [Al

We now move further to the strongly-convex setting, which will allow us to solve strongly-convex-strongly-
concave saddle-point problems in later sections. The next definition is an extension of Definition () and [9]
corresponding to strongly convex functions with Lipschitz-continuous gradient.

Definition 2 Let § = (d1,02), where 01,2 > 0. Then the pair (¢s,1,.(x), Vs, u(x)) is called (6, L, p)-oracle
of a convex function ¢ at a point z, if

L
Blle — 2l ~ 61 < p(2) — (gonn(e) + (Vosru(@),z ) < Flle —al* +5; forall z € R (2.8)

With a slight abuse of notation, we use the same notation (§, L)-oracle for the case (1, d2) = (0,9).

It is straightforward that a (9, L, u)-oracle is also a (4, L)-oracle, and, thus, we can use (4, L, u)-oracle in
Algorithm [T

Next we consider the case when F(z) in (Z1) is convex and admits a (J, L, p)-oracle. Then, we use the
convergence rate result in Theorem [l and obtain linear convergence rate by applying the restart technique.

The restarted algorithm is listed as Algorithm [2] and its convergence rate when applied to the problem (2]
is given in Theorem

Theorem 2 Assume that the starting point zo of Algorithm[d satisfies ||z0 —x«|| < R for some R > 0, and that
the parameter H is chosen to satisfy H > 2L,. Further, assume that (9, L, p)-oracle of F(z), (0, Ly)-oracle of
convez function o(x), (0, Ly)-oracle of convex function ¥(x) are available, and, in each iteration of Algorithm[I]
which is used as a building block of Algorithm[2, the auziliary subproblem (23) is solved inezactly in such a
way that the inequality 28] holds. Finally, assume that the oracle inexactness d1,d2 are chosen to satisfy

k k—1
02 01 €
Vk:51+52+2<§ Az>_+<g Ai)—g—, (2.10)
pt Ap Ap 2

i=1
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Algorithm 2 Restarted AM (R-AM)

1: Input: objective F' = ¢ + 1) admits (6, L, u)-oracle, parameter H > 2L, inexactness § > 0, starting point zo;
(8,1, Vs,L,) — (8, Ly)-oracle of convex function ¢,
(d’é,Lw , Vwé,Lw) — (8, Ly )-oracle of convex function .

2: for k =0, to K do
128H \ 2
Nkmax{"(—> -‘ 71}. (2.9)
I

3: Set

4: Set zg41 = mﬁvk as the output of Algorithm [I] started from zj and run for Ny steps.
: end for

6: return zg

ot

Li‘m <e/2, (2.11)

where € 1s the desired accuracy of the solution to problem 21). Then, under the listed assumptions, Algorithm[2

2
with K = 2log, %l guarantees that its output point zx is an e-solution to problem [21)), i.e. F(zx)— F(z™) <
€. Moreover, the total number N of calls to inexact oracles both for ¢ and for ¢ satisfies the following inequality

Np < (16\/5\/§+ 2) log, ”TRg =0 (max{ﬁ, 1}) . (2.12)

We prove this theorem in Appendix [Bl

As we see from the above theorems, to ensure that AM and R-AM algorithms provide an e-solution to
problem (Z]), we need to guarantee that the oracle error § = (91, d2) is sufficiently small and that the auxiliary
problem (2.3) is solved inexactly in such a way that the inequality (2.6)) is satisfied. For our purposes it is more
convenient to consider inexact solution of the problem (2.3) not in terms of the inequality (2.0), but rather
in terms of the objective residual in this problem bounded by some tolerance £¢. Next we provide sufficient
conditions on the values of § and €y which guarantee that the conditions of the above theorems hold and that
R-AM is guaranteed to find an e-solution to problem 2.1J).

Theorem 3 Assume that the starting point zo of Algorithm[2 applied to problem 21) satisfies ||z0 — z«|| < R
for some R > 0, and that the parameter H is chosen to satisfy H > 2L,. Further, assume that F(x) is
convez, (0, L, u)-oracle of F(z), (0, Ly)-oracle of convex function ¢(x), (3, Ly )-oracle of convex function i (z)
are available, and, in each iteration of Algorithm[dl which is used as a building block of Algorithml[2, the auxiliary
subproblem (23)) is solved inexactly in such a way that the inexact solution xfﬁl satisfies

H
((VW,Lw(kad)@ZH — 2 + p(Thir) + §||33Z+1 - l’zndHQ)

. m m H m ~
~ min (<w6%(mk Y,z — 2y () + 5 llz =2 d||2) < &f, where (2.13)
zER%

Gro S (2.14)
7 =38642(L + H)2 '

Finally, assume that the oracle errors 41, d2 satisfy

2 3/2
81,02 < min{ el “H H = } . (2.15)

8642L,’ 8642L,, 8642(L + H)?' 5v/3HR2
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2
Then, under the listed assumptions, Algorithm [d with K = 2log, “ﬁo guarantees that its output point zx

is an e-solution to problem 2.1)), i.e. F(zx) — F(z*) < . Moreover, the total number N of calls to ineract
oracles both for ¢ and for v satisfies the following inequality

Np < (16\/5\/§+ 2) log, ”TRg =0 (max{\/g, 1}) . (2.16)

We prove this theorem in Appendix [Cl

An important feature of the above bounds on 41, d2 and £ is that they depend polynomially on the
target accuracy €. This means that if we can control these errors by some algorithms which have complexity
logarithmically depending on d1, d2 and £y, then the total complexity of the whole algorithm R-AM will
be logarithmic in the target accuracy e, which makes it reasonable to apply this algorithm in a system of
inner-outer loops. In the next subsection we extend the above theory for stochastic setting.

2.2 Stochastic setting

As it was discussed at the beginning of this section, we would like to apply stochastic variance reduction
methods or other randomized methods in order to provide an inexact solution to the auxiliary problem (2.5)
and in order to obtain inexact oracle for F. In the former case inequality (ZI3) can be guaranteed only with
some probability. To illustrate the latter case, we consider function ¢ in [Z3)) with h given in (III) with mp > 1,
i.e.

1 mMp
¥ = max {G(w,y) " ;hz(y)}- (2.17)
According to Lemma 2 from [3] we can get an inexact (d, 2L, )-oracle, where ¢ depends on the accuracy of the
solution of this maximization problem. If we solve this maximization problem by a randomized method, we can
obtain inexact (J, 2Ly )-oracle only with some probability. Thus, below we give a formal generalization of the
results obtained in the previous subsection to a stochastic setting. We start with the definition of probabilistic
inexact oracle.

Definition 3 Let § = (1, d2), where 61,02 > 0. Then the pair (¢s,,.(x), Vs,L,.(z)) is called (8,00, L, p1)-
oracle of a convex function ¢ at a point z, if

L
gHZf:EHQ — 61 < (2) = (ps,0,u(x) + (Vs.1u(x), 2 — x)) < 5||zfm||2+5g,for all e R™ w.p. 1—0p (2.18)

In the case of p = 0, we say that (vs 1(z), Vs, r(2)) is called (d, 00, L)-oracle of a function ¢ at a point .
With a slight abuse of notation, we use the same notation (4, oo, L, 1)-oracle for the case (d1,02) = (0, 9).

One should distinguish the following notation: the (§, oo, L)-oracle of a function ¢ in the sense of Definition Bl
and (8, L, p)-oracle of a function ¢ in the sense of Definition 2

The following is a simple lemma, which states that such defined inexact oracle is additive.
Lemma 1 Let the following assumptions hold.

1. (06,0, (%), Vs, L,u, (7)) is (0p, 04, Ly, ip)-oracle for a convex function ¢,
2. (Y5, Ly (2), Vs, Ly, (X)) 8 (dy, 0y, Ly, piyp)-oracle for a convex function 1.

Then (¢5¢7L¢7H¢ (m) + w&p,Lw,Mu/ (1‘), V‘Péw,LW;@, (1‘) + thsunlwnlwy (1‘)) is (650 + 61&? Op+ oy, LSO + va Mo + Mw)'
oracle for ¢ 4+ 1.
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We provide the proof of this lemma in the Appendix

To illustrate why such inexact oracle appears to be useful in the setting of saddle-point problems, we
provide the following Lemma, which extends the results of [2,[I8] to our stochastic setting and which will be
very important for the derivations in the next section. This Lemma contains some novelty in comparison with
the literature: it is proved in the stochastic setting.

Lemma 2 Let us consider the function

g(w) = max {S(z,y) = F(a,y) —w(y) }, (2.19)
yERY

where F(xz,y) is convex in x, concave in y and is Lp-smooth as a function of (x,y), w(y) is py-strongly convez.
Then g(x) is Lg-smooth with Ly = Lp + % and y*(-) is 25—; Lipschitz continuous, where the point y* is
defined as
y*(x) := arg max S(z,y) Vz € R%, (2.20)
yER%

Moreover, if a point §s;2(x) is a (§/2,0)-solution to ZI9), i.e. satisfies inequality

ynel]g(ﬁ{g(z,y)} -8 (z,7s/2(x)) <6/2 wp. 1—o0, (2.21)

then Vo F (x,7s5/2(x)) is (8,0,2Lg)-oracle of g.

We prove this lemma in Appendix [El

Armed with Definition [3] we can now formulate the following theorem, which is a generalization of Theorem
Bl and which is the main result of this section. This theorem provides the iteration complexity of Algorithm
to obtain an (g, 0)-solution of problem (2]) in the stochastic setting under the assumptions of probabilistic
inexact oracles for ¢, 1 in the sense of Definition Bl and also under the assumption that the auxiliary problem
([23), which needs to be solved many times in each iteration of Algorithm [2] is solved inexactly with accuracy
controlled in a probabilistic sense.

Theorem 4 Consider the optimization problem (Z1I)

min F(z) = ¢(z) + ¥(z),

xERx
where F(x) is convex. Let the target accuracy € > 0 and the target confidence level o € (0,1) be given. Let also
be given H > 2L, starting point zo and a number Ry > 0 such that ||zo — z«|| < Ro, where z« is the solution
to 20)). Let the following two main assumptions of this theorem hold.

1. (Inezact oracle.) Inezact (0,00, L, p)-oracle of F(z), (8,00, Ly)-oracle of convex function p(x), (8,00, Ly )-
oracle of convex function (x) are available, where §1(¢),d2(g) satisfy the following polynomial dependency
on €

2 3/2
. gl el el €
01(e),d2(e) < min , , , , 2.22
1(8), 02(e) < mi {8642L4, 8642L,, 8642(L + H)2' 5 SHRg} (2.22)

and oo(e,0) satisfy the following polynomial dependency on € and o

g
(16v2/Z +2) log, 222

oo(e,0) < (2.23)
2
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2. (Inexact solution of the auziliary problem ([23)).) Algorithm[Q is applied to solve problem (Z1)) and, in each
iteration of Algorithm[d used as a building block in Algorithm[Z, an (£¢,5)-solution to the auxiliary problem
23) is available, i.e., with probability at least 1 — &

m m H m
<<V4P6,Lv (@), whgr — %) + Y (xhpr) + §||90§c+1 — Ty d||2)

. H -
T Lewe (<V¢5,L¢<x?d>,zﬂ?d>+w<x>+5nz7m?dn2) <&y, (2.24)

where E¢(e) and 6(e,0) satisfy the following polynomial dependencies on € and o

ep?
(o)< —— 2.2
16 < eEr T mE (2.25)

G(e,0) < (2.26)

g
2(16v2\/ 2 +2) log, 121

2
Then, under the listed assumptions, Algorithm[2 with K = 2log, “42“ guarantees that its output point zx is an

(e,0)-solution to problem (2.1)). Moreover, the number Ng of the calls to inexact oracle both for ¢ and for ¢
satisfies the following inequality

Np < (16\/5\/§ + 2) log, “TRS =0 <max{\/§, 1}) : (2.27)

and the number of times the auziliary problem (23)) is solved is also equal to Np.

We prove this theorem in Appendix

Remark 1 We state the above theorem in the full generality. In the next sections we use its particular version
with ;1 = 0.
A

3 Accelerated Framework for Saddle-Point Problems

In this section we consider saddle-point problem of the following general form

min max {f(z) + G(z,y) — h(y)} (3.1)

zERIz yecRy
and develop a general accelerated optimization framework for its solution. In the following sections we use this
general framework to develop accelerated methods for saddle-point problems in the form of problem (BI), but
with some additional assumptions about the structure of the functions G and h. In particular, we consider
problem (1)) in Section @] and problem (2) in Section [l As it was discussed before, our general framework
consists of several inner-outer loops, which require to solve optimization problems with some special structure.
Thus, the general framework in this section is developed under two additional assumptions on two problems
with a special structure (see Assumptions [2] [3] below), which we need to solve in two loops of the framework.
Then, in the following sections we show, how these assumptions can be satisfied, which allows to obtain the
main results as a corollary of the main theorem of this section. So, the plan of this section is, first, to introduce
the main assumptions on the problem (3] and two additional assumptions for the sake of generality of the
framework. Second, we discuss the structure of the problem (B.I]) and slightly reformulate it in an equivalent
way. Then, we describe the main part of the framework by giving details of each loop, and finish with the main
complexity theorem.
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3.1 Preliminaries

We start with the main assumptions, which are used to develop the general framework of this section. The
first assumption is on the functions f, G, h in problem (&I).

Assumption 1 1. Function f is Ly-smooth, pg-strongly conver and there exists a basic oracle Oy for f such
that T¢ calls of this basic oracle produce the gradient V f(x).
2. Function G(z,vy) is Lg-smooth, i.e. for each x = (x1,x2),y = (y1,y2) € R% x R

VG (z1,22) — VG(y1,92)|| < Lall(w1,22) — (y1,92)ll (3.2)

there exist a basic oracle OF for G(-,y) such that Ta calls of this basic oracle produce the gradient V,G(x,y).
and a basic oracle O% for G(z,-) such that Tq calls of this basic oracle produce the gradient V,G(z,y).

3. Function h is Lp-smooth, p,-strongly convex and there exists a basic oracle Oy for h such that T, calls of
this basic oracle produce the gradient Vh(y).

Remark 2 1f the problem (3] is not strongly-convex-strongly-concave, then one can apply standard reduction
by regularization scheme, i.e. add a small strongly-convex-strongly-concave regularizer, solve the new strongly-
convex-strongly-concave problem using the methods we develop and then prove that the obtained solution also
approximates the solution of the initial convex-concave problem since the regularization was small. See the
details in [2].

A

Our plan is to apply the general framework of this section to solve, in particular, problem (I.1). This problem
formulation is not symmetric w.r.t. the variables z and y since different assumptions are imposed on function
f and function h. Our preliminary derivations, which we do not report here, showed that better complexity
bounds are obtained if we first change the order of maximization in y and minimization in x, multiply the
objective by minus one, and write the following problem which is equivalent to (3.1))

min {h(y) + max {—-G(z,y) — f(m)}} (3.3)

yERY xrERx

This reformulation allows to solve problem (3.3) by an algorithm which consists of a series of inner-outer loops,
where in each loop Algorithm[2is applied to solve some auxiliary problem which has the form ([Z1)). The above
equivalent reformulation of ([B]) naturally leads to the following definition of approximate optimality.

Definition 4 Let € > 0 and o € (0,1). By an e-solution to problem (3] we mean a point § such that

7(g) + max {=G(z,§) = f(@)} = min max {h(y) - Gla.y) — fl@)} < (3-4)

We say that a random point § is an (e, o)-solution to the problem B if P{(.4) holds True} > 1 —o.

Definition [ specifies only the y-part of an approximate solution to () and is motivated by considering
reformulation (8:3)) as a minimization problem. The next Lemma[Blshows how to obtain an approximate solution
to (BJ) in more common form with both 2- and y-part when a solution in the sense of Definition 4] is available.

Lemma 3 Let us consider problem ([BJ]) under Assumption[dl Let a pair (&,9) satisfy

1. § is an (ey, oy)-solution to the problem B, i.e. (3) holds.
2. & is an (e, 0z)-solution to problem max,cra. {—G(z,9) — f(2)};
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Then the following inequalities hold with probability 1 — oy — 04

2ey

~ 2
J—y«l|” < —, 3.5
[ [ o (3.5)
. L 2 . 4e,
6 — .| <8 (—G) g — w2 + 222 (3.6)
Ha P
max min {h(y) — G(z,y) — f(z)} — min {h(y) — G(&,y) — f(2)}
zERdz ycRYy yERY
272 - Lo\ 4
32<Lf+LG+ G) E—+<—G> v (3.7)
Hy Ha Iz Hy

where (x«,yx) s the saddle point for problem ([B.I).

Proof We let &(y) = maxgcpa. {h(y) — G(z,y) — f(z)} and note that P(y) is py-strongly convex. Under
Assumption [l the function h(y) — G(x,y) — f(z) has unique saddle point (z«, Y« ). Then, with probability 1 — oy
we have

_ 2 _ " . 2e
1917 < 2 (ma (003) ~ Glov) — @)}~ min max () ~ Glep) ~ f@)}) < 22 (39)
My \z€Rd yERM xER My
We denote z«(§) = argmax, cga, {h(9) —G(x,§) — f(x)}, then according to LemmalRlx«(y) is 2Lg/ 2 Lipschitz

continuous. Since {h(§) — G(z,§) — f(x)} is pe-strongly concave, we obtain that the inequality

~ “ N ~ deg LG 2 ~
&= el < 20 = 2. (0)]* + 2. (5) — o 00| < 2 +8(—“ ) 19— vell? (3.9)
X xT

holds true with probability 1 — o, — oy. By consecutive application of Lemma [l and Lemma 2] we can obtain
2
that ¥(z) = min, cga, {h(y) — G(x,y) — f(z)} is concave and Ly + Lg + QIf—yG—smooth. Whence,

max min {h(y) — G(z,y) - f(2)} — min {h(y) - G(&,y) - f(2)} = ¥(z.) — ¥(2) (3.10)
zeRY ycRYY yERY

2 2 2
Lj+ Lg + %< Lj+ Lg + k< 2 L;+ Lo + 22
J Py ||£fx*||2§2¥51+8([@) SPTEET

e —— —ZG
2 Kz Iz Hy

Eys
with probability 1— o, —oy.In the first inequality we used that z. is the optimal point, and, hence, V¥ (z.) = 0.
O

By exchanging the variables  and y we can obtain the useful Corollary [I] from Lemma Bl which we use
below in one of the loops of our general scheme.

Corollary 1 Let us consider the problem

miy { (@) + max (o) - w)} (3.11)

rERx

where functions f, F,w are smooth with Lipschitz constants of the gradient being Ly, Ly, Ly, respectively and
functions f,w are pg, py-strongly convex respectively. Let a pair (Z,9) satisfy

1. % is an (ez,04)-solution to the problem [B.I1), i.e. inequality

f(&) + max {F(&,y) —w(y)} — min max{f(z)+ F(z,y) —w(y)} < e
yERY zERdz yecRYy

holds with probability 1 — 0.



Accelerated Methods for Saddle-Point Problems 17

2. 9 is an (ey, oy)-solution to problem max, cga, {F(Z,y) — w(y)}

Then the following inequalities hold with probability 1 — oy — o4

o 2
1 — z]|” < o (3.12)
2
19— vel? <8 (L—F) I — ] + 22, (3.13)
oy Hy
w(@) + max {~F(z,9) - f(z)} — min max {w(y) - F(z,y) - f(2)} (3.14)
rERdz yeRdy xeRdx
— max min {£(z)+ Fz,5) — w(y)} — min {/(z) + F(z,3) - w(3)} (3.15)
y€ERdy xeRde rER
2
<2 (Lw+LF+ QLQF) (5—y+4(L—F) E—’”) (3.16)
Ha Hy Hy P

where (T«,y«) is the saddle point for problem (B1).

The next two assumptions are made for the sake of obtaining a general framework. In this section we assume
that two functions which are defined via auxiliary maximization problems and which appear in the loops of
our general framework, can be equipped with an inexact oracle. In the following sections in different settings
we show how to satisfy these two assumptions and apply the general framework.

Assumption 2 Let ¢ > 0 and o € (0,1), and a function g be defined as

o) = max { o) = )~ Gy = wl}. (3.17)

where G(z,v), h(y) satisfy Assumption[d, H > 0, and yo is some fized point in R%.

Then, we assume that, for any 6 (¢) = poly(¢) and any oo (g,0) = poly (g,0), it is possible to evalu-
ate a (6(¢)/2,00 (g,0))-solution to this problem and (5 (€),00(e,0),2L¢ +4%)-omcle for the function
g in the sense of Definition [] with 61 = 0. Moreover, we assume that this solution can be evaluated using
N (ra, H) KY (e,0) calls of the basic oracle O% of G(x,-), Ny (Th, H) K, (¢,0) calls of the basic oracle Oy, of
h and this inezact oracle can be evaluated using N& (1, H) KY (,0) calls of the basic oracle OY of G(x,-),
Te calls of the basic oracle Of of G(-,y) and Np (th, H) K (g,0) calls of the basic oracle On of h, where
KY (e,0) = O(1) and Ky, (g,0) = O(1).

Assumption 3 Let e > 0 and o € (0,1), and a function r be defined as

r(y) = min {G(z,y) + f(2)}, (3.18)

xrERx

where G(z,y), f(x) satisfy Assumption [l
Then, we assume that, for any § (¢)

poly () and any oo (¢,0) = poly(e,0), it is possible to evalu-
2

ate a (6(€)/2,00 (g,0))-solution to this problem and (5 (e),00(e,0),2Lq +4i—G)—oracle for the function r

in the sense of Definition [ with 61 = 0. Moreover, we assume that this solution can be evaluated using

NE (1¢) K& (g,0) calls of the basic oracle Og for G(-,y), Nt (14) K¢ (€,0) calls of the basic oracle Oy for f
and this inezact oracle can be evaluated using ¢ calls of the basic oracle O, of G(z,-), N& (ta) K& (¢,0) calls

of the basic oracle O for G(-,y) and Ny (14) K (£,0) calls of the basic oracle Oy for f, where K& (e,0) = O(1)
and Ky (e,0) = O(1).
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We use the above two assumptions to develop in this section a general algorithmic framework for problem
BJ). In the next sections we consider more specific problem formulations (I.I)) and (I.2) and show, how an
application of some particular algorithms for solving maximization problems ([B.I7) and (B.I8) allows us to
ensure that Assumptions 2] and [3 hold. For now, let us shortly illustrate how this can be achieved by a simple
example. Assume, for simplicity, that in (8I7) h = 0 and the full gradients V,G(z,y), VyG(z,y) are available
meaning that in Assumption[Il7¢ = 1. Then, the objective in the maximization problem ([B.I7) has Lg-smooth
in y part G(z,y) and H-strongly concave part —%Hy — yol|?. Thus, if we apply accelerated gradient method
for composite optimization [37], we obtain that a d(g)/2-solution g5 /2(z) to this problem can be obtained in

0] (, / L—If In %) iterations of the accelerated method. Each iteration requires to evaluate V,G(z,y), which
means that the number of calls of the basic oracle O% for G(z,-) is O <TG\ / L?G In ﬁ) . Since ¢ (¢) = poly (¢),

we obtain that the the number of O% calls is N (1¢, H) K% (e,0) = O (TG Len %), ie. K% (g,0) = O(1).

Moreover, by Lemma 2 V.G (m, Us(e) /2 (z)) is (6(¢),2Lg + %)—oraele for the function g, which means that

we need also 7¢ calls of the basic oracle OF for G(-,y). Thus, Assumption [2] holds.

3.2 General framework for saddle-point problems.

Next, we describe in detail the resulting structure of our framework which consists of three inner-outer loops.
We also summarize the steps of the algorithm in Table dl In each loop we apply Algorithm 2 with different
value of parameter H, which defines its complexity. In the next subsection we carefully choose the value of this
parameter in each level of the loops. Later, in the next sections this allows us to obtain the desired results on
near-optimal complexity bounds for saddle-point problems (I.T)) or (L2). Further, in each loop we have a target
accuracy € and a confidence level o which define the required quality of the solution to an optimization problem
in this loop. These quantities define the inexactness of the oracle in this loop via inequalities (2.22]) and ([2.23))
and the target accuracy and confidence level for the optimization problem in the next loop via (2:29)), (Z26).
Due to inexact strong convexity provided by (4, o, L, p)-oracle, Algorithm 2 has logarithmic dependence of the
complexity on the target accuracy and confidence level (see Theorem H]). Since the dependencies on the target
accuracy and confidence level in (2:22)), (2:23)), (2:23)) and ([2.26)) are polynomial, we obtain that the dependency
of the complexity in each loop on the target accuracy and confidence level in the first loop, i.e. target accuracy
and confidence level for the solution to problem ([B)), is logarithmic. We hide such logarithmic factors in O
notation.

Loop 1
The goal of Loop 1 is to find an (e, o)-solution of problem (3.3), which is considered as a minimization problem
in y with the objective given in the form of auxiliary maximization problem in z. Finding an (g, o)-solution of
this minimization problem gives an approximate solution to the saddle-point problem (3I) which is understood
in the sense of Definition [l

To solve problem ([B.3), we would like to apply Algorithm 2] with

©=0, ©=h(y)+ max {=G(z,y) — f(z)}. (3.19)

The function ¢ is, clearly, convex and is known exactly. What makes solving problem ([3.3) not straightforward
is that the exact value of 1) is not available. At the same time we can construct an inexact oracle for this
function. First, the function h is p-strongly convex, Lj-smooth and its exact gradient is available. Second,

thanks to Assumption 3] it is possible to construct a (6(1) (e), 0((]1) (e,0),2La + 4/6—2G)—oracle for the function
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r(y) = max, cga, {—f(x) — G(x,y)} for any 6V (¢) = poly (¢) and Uél) (e,0) = poly (g,0). Combining these
two parts and using Lemma /Il we obtain that we can construct a (5(1) (e) ,O'(()l) (e,0),Ln+2Lc + 4%‘, ,uy)—
oracle for . Thus, we can apply Algorithm ] with parameter H = Hj, which will be chosen later, to solve
problem ([33). Moreover, since Assumption [3 requires s (e) = poly (¢) and Uél) (e,0) = poly (g,0), which
holds for the dependencies in (222) and (2:23), we can choose V) (¢) and O'(()l) (e,0) such that [222) and (223)
hold. So, the first main assumption of Theorem M holds. At the same time, according to Assumptions [Il and
Bl constructing inexact oracle for i requires 7, calls of the basic oracle for h, 7g calls of the basic oracle of
G(z,-), N& (1a) K& (g,0) calls of the basic oracle for G(-,y), Ny (7¢) K¢ (€, 0) calls of the basic oracle for f.

Let us discuss the second main assumption of Theorem [l To ensure that this assumption holds, we need in
each iteration of Algorithm[I] used as a building block in Algorithm[] to find an (é(fl) (), (e, 0))—solution

to the auxiliary problem (Z3), where 51 (¢, o) ,5;1) (e) satisfy inequalities (2.20)), (2.20). For the particular
definitions of ¢, ¢ ([B.19) in this Loop, this problem has the following form:

. H m
v = arg min { (o) + ma (~Glep) — fla)}+ Gy — 17} (3.:20)
y€ERy xERx 2

Below, in the next|paragraph ” Loop 2”| we explain how to solve this auxiliary problem to obtain its (5561) (e), A (e, o')) -

solution. To summarize Loop 1, both main assumptions of Theorem [ hold and we can use it to guarantee that

1 _ 1
we obtain an (e, o)-solution of problem (3.3)). This requires O (1 + ( H, ) 2) =0 (1 + (%) 2) calls to the

Koty
inexact oracles for ¢ and for ¢, and the same number of times solving the auxiliary problem (3:20). Combining
this oracle complexity with the cost of calculating inexact oracles for ¢ and for 1), we obtain that solving problem

1 _ 1
B3) requires O (1 + (%) 2) T, calls of the basic oracle for h, O (1 + (%) 2) T calls of the basic oracle of

G(z,-),0 <1 + (f—;) 5) NE (1¢) K& (g, 0) calls of the basic oracle for G(-,y), O (1 + (f—;) 5) Ny (m5) Ky (e,0)

calls of the basic oracle for f. The only remaining thing is to provide an inexact solution to problem (3.20)
and, next, we move to the Loop 2 to explain how to guarantee this. Note that we need to solve problem (3.20)

O (1 + (f—;)%) times.

Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm 2l in Loop 1 we need many times to
find an (g5, 0% )-solution of the auxiliary problem (3:20), where we denoted for simplicity o4 = &) (g, 0) and
€h = 5;1) (€). To do this, we reformulate problem (3.20) by changing the order of minimization and maximization
as follows:

. H m
iy $n)+ 1y — I + max (-Glan) - @) (3.21)
yEeR rERx
. H m
= iy max {1(0) — Glao) — @)+ 2y (3.22)
yERY xER 2
. Hy md 2
~ max min {h(y) ~Gley) - 1)+ By -y } (3.23)
zERYz ycRy 2
. H m
~  min {f(w) + mox {G(x,w ) - By d||2}} (3.24)
xERx yERM 2
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and obtain an (g5, o5)-solution of the problem ([320) by solving minimization problem (B24)). Assume that we
can find an (g2, 02)-solution & of the minimization problem (3.24) in the sense of Definition[dl Then, according
to Assumption [2, we can also obtain a point § which is (§(e2)/2,50(02))-solution to the problem

H m
s { Gav) — 1) - Pl - i (3.25)
yER*Y

where d(e2), 50(02) satisfy the following polynomial dependencies

- H
6(62) S %62, 50(0’2) S g2. (3.26)
H1+Hy
Apz ( P )

If we choose €2, 02,3(e2), 5o(02) satisfying

H 2 z
e (M) e e (3:27)

Alc LthHlJrLGﬁLW
/
o2 < 7, (3.28)
BZ38) ! _ H BE26) H
Go(02) < 02 <2, §(es) < — My o T2 LYy o (3.29)
2 m (—Hggy) ALy, +4H; +4Lg + 25
then
212 212
Lp+Hi+ Lg+ =< _ L 2Ly +Hi+ L+ =<
te §(e +8( = ) e gy < gh, 3.30
Hi+ py (&) Hy+ py P 2= ( )
o2 + Go(02) < o5. (3.31)

Thus, applying Corollary[[lto minimization problem ([24) with F(z,y) = G(z,y), w(y) = h(y)+ %5t ly—yme||?,

Ex = €2, Oz = 02, £y = 0(€2), 0y = Fo(02) we obtain (see (B14), (BI0)) that § satisfies inequality

N Hi, . o . . H m
h(g) + 119 = yi|* + max {~G(x,9) — f(2)} — min max {h(y) + - lly — yi"|I* — Clx,y) — f(2)} < &)
zERd yER%Y zERe 2

with probability o5. Thus, by Definition [l it is an (g5, 0%)-solution of the problem (B.20). By Assumption 2]
calculation of § requires N (¢, H) K (e2,02) calls of the basic oracle OY of G(z,-), 7¢ calls of the basic
oracle O¢ of G(-,y) and N}, (1, H) Kp, (€2, 02) calls of the basic oracle Oy, of h.

Our next step is to provide an (g2, 02)-solution to minimization problem ([3.24]), for which we again apply
Algorithm 2] but this time with

o= max {(e.0) )~ By -1} v = 1o (3.82)
ye]R Yy

The function 1 is pg-strongly convex, Ljy-smooth and its exact gradient is available. What makes solv-
ing problem ([324) not straightforward is that the exact value of ¢ is not available. At the same time we
can construct an inexact oracle for this function. Thanks to Assumption B] it is possible to construct a

2
(5(2) (e2) ,0(()2) (e2,02),2L¢ + 4H1pry

poly (g2,02). Using Lemmal[l] we obtain that we can construct

)—oracle for the function ¢ for any 6 (e2) = poly (e2) and 0(()2) (e2,02) =
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a (6(2) (e2) ,0(()2) (e2,02), Ly +2Lc + 4%, ,ux)—oracle for the function ¢ + v. Thus, we can apply Algo-
v
2
rithm 2] with parameter H = Hz > 2Lg + 4HlLTG“, which will be chosen later, to solve the problem (3.24).

Moreover, since Assumption 2 requires 6¢® (e2) = poly (e2) and U(()Q) (g2,02) = poly (g2, 02), which holds for
the dependencies in (222) and ([223), we can choose §® (e2) and 0(()2) (e2,02) such that (222) and ([2:23)
hold. So, the first main assumption of Theorem [ holds. At the same time, according to Assumptions [l and 2]
constructing inexact oracle for ¢ requires N¢ (tq, H1) K% (g2, 02) calls of the basic oracle for G(z, -), ¢ calls
of the basic oracle for G(+,y), Nu (Tn, H1) Kr (€2,02) calls of the basic oracle for h, and constructing exact
oracle for ¢ = f requires 7 calls of the basic oracle for f.

Let us discuss the second main assumption of Theorem [l To ensure that this assumption holds, we need in

each iteration of Algorithm[I] used as a building block in Algorithm 2] to find (5}2) (2),6@ (e2, UQ))—SO]U.tiOH

to the auxiliary problem (ZF), where 6% (g2, 02) ,5}2) (e2) satisfy inequalities (2.25]), ([2.26). For the particular
definitions of ¢, ¢ ([332) in this Loop, this problem has the following form:

: m m H m
oty = arg min (Vg o, (o), 2 — o) +9(2) + 2o~ af3) (3.33)
. H
= arg min {<V95<2>,2L (@)@ = 2") + f (@) + |z — 907”d||2} ; (3.34)
rERx 9 2
where g(z) = max, cga, {G(z,y) + h(y) — Ly —yi*¥I?}, Ly = La+2 H1L+éuy . Below, in the next [paragraph "Loop 37}

we explain how to solve this auxiliary problem to obtain its
(5;2) (e2),6@ (ea, Ug))—SOlution.
To summarize Loop 2, both main assumptions of Theorem M hold and we can use it to guarantee that

we obtain an (g5, 05)-solution of the auxiliary problem ([@20). This requires one time to solve the prob-
lem (3.25), which, by Assumption [2 has the same cost as evaluating inexact oracle for the function ¢. Further,

1 1
we need O ((1 + (ﬂ }fw ) 2) logsgl) =0 ((1 + (%) 2) logsgl) calls to the inexact oracles for ¢ and
» p z

for ¢, and the same number of times solving the auxiliary problem ([3.34)). Combining this oracle complexity
with the cost of calculating inexact oracles for ¢ and for v, we obtain that solving problem ([B.:24]) requires

0 (<1 + (%) 5) 10g551) 7¢ calls of the basic oracle for f, O ((1 + (%) 5) 10g551) N (ra, H1) KY, (€2, 02)

1
calls of the basic oracle for G(z,-), O <<1 + (%) 2) log 82_1) T calls of the basic oracle for G(-,y),

1
0] ((1 + (%) 2) log 52_1) N (Th, H1) Kp, (€2, 02) calls of the basic oracle for h. The only remaining thing is
to provide an inexact solution to problem ([B.34) and, next, we move to Loop 3 to explain how to guarantee

1
this. Note that we need to solve problem ([3.34) O (<1 + (%) 2) log 551) times.

Loop 3
As mentioned in the previous Loop 2, in each iteration of Algorithm [2]in Loop 2 we need to find many times
an (e3,03)-solution of the auxiliary problem (334), where we denoted for simplicity o3 = &% (e2,02) and

€3 = 5(f2) (e2). To solve problem ([B.34), we would like to apply Algorithm 2] with
_ _ md md H> md |2
o= f(z), ¥v=(Vg5e 2r, (@), x — ") + 7||$ — a7, (3.35)

m L?
where g(z) = max, cga, {G(z,y) +h(y) — Gy — vy} Ly = L + 275
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Iteration number

Goal w, P win Thi of Algorithm 1]
(Th. @)

Each iteration

requires

(c. o)-solution - Find (e1, 01)-solution of ([3.20)
Loop 1 of ;;roblem . B13) Ly (0] (1 + \/T/My) and calculate
(5(1) , Ly)-oracle of (y)
Find (g2, 02)-solution of (3:34)
(e1, o1)-solution

Loop 2 B32) ta O(1 + /Hz/pz) and calculate
of problem ([3.:24) 5
((5( ),L(P)—oracle of p(z)

£2, 092)-solution ~
Loop 3 ( ) B35) Ho O(1+ +/Hs/H>) Find (g3, 03)-solution of (3.36)
of problem ([3:34)

Table 4: Summary of the three loops of the general framework described above.

The function ¢ is pg-strongly convex, L¢-smooth and its exact gradient is available. The function v is,
clearly, Ha-strongly convex, Ha-smooth and its exact gradient is available. Also we can obtain the exact gradient
for the function ¢ + 9. Thus, we can apply Algorithm [l with parameter H = H3 > Ly, which will be chosen
later, to solve problem (B.34). The first main assumption of Theorem [] clearly, holds. At the same time,
constructing exact oracle for ¢ = f requires 7 calls of the basic oracle for f. At the same time, no calls to the
oracle for G(-,y),G(z,-), h are needed.

Let us discuss the second main assumption of Theorem [l To ensure that this assumption holds, we need in

each iteration of Algorithm[I] used as a building block in Algorithm[2 to find (5;3) (e3),6® (es, Ug))—SOlution

to the auxiliary problem (ZF), where 6 (3, 03) ,5;3) (e3) satisfy inequalities ([2.25)), (2.26)). For the particular
definitions of ¢, 9 in ([B.35) in this Loop, this problem has the following form:

. H.
um = arg min {(Vp(un®), u —uin) +9(w) + 3 lu — w3}
uER 2
. md md md md Hs md |2 Hs md |2
= axg min {(V (), — uli®) + (Vg ap, '), = 2f) + 22w a4 22— a3}, (330
where g(z) = max, g4, {G(z,y) + h(y) — Ly —yi*¥I?}, Ly = La +2 HleGM . This quadratic auxiliary prob-
Y

lem (3.30) can be solved explicitly and exactly since at the point it needs to be solved, Vgse or, () is
already calculated. Thus, the second main assumption of Theorem M is satisfied with 3 (e3,03) = 0 and

5&3) (e3) = 0, which clearly satisfy (2Z22) and (Z23)).
To summarize Loop 3, both main assumptions of Theorem M hold and we can use it to guarantee that

1
we obtain an (g3, 03)-solution of the auxiliary problem (3.34). This requires O ((1 + (u fisw ) 2) log 551) =
" y

1
0] (<1 + (%) 2) log 551) calls to the inexact oracles for ¢ and for ¢, and the same number of times solving

the auxiliary problem (B.36]). Combining this oracle complexity with the cost of calculating inexact oracles for
1

¢ and for 1, we obtain that solving problem (3.34)) requires O ((1 + (%) 5) log 551) 75 calls of the basic

oracle for f.
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3.3 Complexity of the general framework

Below we formally finalize in Theorem [l the analysis of the general framework by carefully combining the
bounds obtained in to obtain the final bounds for the total number of oracle calls for each part
f, G, h of the objective in problem ([B.J]). We will use Theorem [{] in the following sections to obtain complexity
results for problems with structure as in (L)) and (L2).

Theorem 5 Let Assumptions [, [3, [ hold. Then, execution of the general optimization framework described
in [Loop 5 with

2L%
py + Hi
generates an (g, 0)-solution to the problem [B) in the sense of Definition[f] Moreover, for the number of basic
oracle calls it holds that

H1:2Lg,H2:2<LG+ ),HgZQLf

Number of calls of basic oracle Oy for f is:

o) (BB ) o

Number of calls of basic oracle Oy, for h is:

6(( \/7> Th—l— zm)Nh(Th,QLg))> (3.38)

Number of calls of basic oracle O¢ for G(-,y) is:

6(( f) NE (re) + (+\/f:)m)) (3.39)

Number of calls of basic oracle O% for G(z,") is:

9] ((1+\/%> <TG+ <1+\/i:‘j> NE (Tg,QL(;))>. (3.40)

Proof By construction, as an output of Loop 1 we obtain an (e, o)-solution to the problem (B according to
Definition [l

We prove the estimates for the numbers of oracle calls in two steps. The first step is to formally prove that
in each loop the dependence of the number of oracle calls on the target accuracy € and a confidence level o
is logarithmic. The second step is to multiply the estimates for the number of oracle calls between loops and
choose the parameters Hi, Ha, Hs.

Step 1. Polynomial dependence. The goal of this technical step is to prove that

ei(e) = poly (), 0i (,0) = poly (¢,5) ,6 (¢,0) = poly (¢, o) ,O'(()i) (e,0) = poly(g,0), (3.41)
é;i) (e) = poly (¢),6 (¢) = poly () , 5 = poly (¢) , 04 = poly (¢,0) ,8(c2) = poly (), 5o(c2) = poly (¢, 0)

where i = 1,2, 3. For i = 1, according the polynomial dependencies (2:22), (Z23)), (2:25), (Z26) we obtain the
polynomial dependencies

e1(e) = poly (¢),01 (£,0) = poly (¢,0),5") (¢,0) = poly (¢,0) , 0" (¢,0) = poly (¢, ),

&\ (e) = poly (¢) ,6") () = poly () .



24 Vladislav Tominin ! et al.

Now using that e5 = 5;1), oh =6 and B27), B28) we have that 2 () = poly (¢), 02 (¢,0) = poly (¢, 0).
Further, by (328), d(¢) = poly (¢),50 (¢,0) = poly (g,0). Using the same argument as for i = 1, according
the polynomial dependencies (2.22), (223), (225), (220) we obtain the polynomial dependencies

5(2)

e2(e) = poly (¢) 02 (¢,0) = poly (¢,0),6°" (¢,0) = poly (¢,0) , &; (2) (e) = poly (¢),

5@ (e) = poly (¢) ,0¢” (¢,0) = poly (e,0).
Taking into account that 3 = Egc) o3 = @, the polynomial dependencies ([Z22), (Z23), (Z25),(Z26) we
obtain

es(e) = poly (¢) 03 (,0) = poly (¢,0) ,® (¢,0) = poly (¢,0) , 0" (¢,0) = poly (¢, ),

£ (e) = poly ()% (e) = poly (c).

This finishes the proof of polynomial dependence. Thus, due to (341 in each loop when Assumptions 2 B
are applied, the dependencies K%, K, K&, K¢ have only logarithmic dependence on the target accuracy ¢ and
confidence level o, i.e.

KY (e,0) = O(1), Kn (,0) = O(1), K& (,0) = O(1), Ky (,0) = O(1),
(10g51 )_ () (10g52 )_ () (10g€3 )_ (1)

Step 2. Final estimates. We have already counted the number of oracles calls for each oracle in each loop
[Loop 3] see the last paragraph of the description of each loop. We start with the number of basic oracle
calls of f, which is called in each step of all the three loops. Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)
+ (# of steps in Loop 1)-(# of steps in Loop 2)-(# of calls in Loop 3)

O(1+<f;) )Nf(Tf)’Cfl(E,O')—Fé(l"—(f—;)%)'(6 <1+(%>%> Tf>
+0<1+(f;)2> (O(lJr(fj) )) <O<1+(gz) >Tf)
6((1+\/f::> (Nf(rf)+(1+ I:j) (1+ Zz>rf>>

where we used that K (g,0) = O(1).
The basic oracle of h is called in each step of [Loop 1] and [Loop 2] Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)

-0 (1 + <f—;)%) m+ 0 (1 + <f—;)%) : (5 (1 + (%f) Ni (7, H1) K, (82702)>
=0 <<1+ \/fiyl) (Th+ (1+ \/%) M, (ThaHl))> ,

where we used that K, (e, 0) = O(1).
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The basic oracle of G(+,y) is called in each step of [Loop 1] and [Loop 2] Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)

=0 (1 (2) ) st oz ior+o (1 (2)) (514 (22) ) )
=0 ((1+\/i[::> <NZ§ (te) + (1+ %) TG)) ;
where we used that KZ (¢,0) = O(1).

Finally, the basic oracle of G(z,-) is called in each step of [Loop 1] and [Loop 21 Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)

-0 (1 + (%)) e+ 0 <1+ (%)) : (5 (1 + (%)) N (ra, H1) KL, (sg,ag))
=0 ((1 + \/f::> <TG + (1 + \/%) N, (TG7H1)>> ,
where we used that K% (e2,02) = O(1).

The final estimates are obtained by substituting the constants Hi, H2, H3 given by

Hy =2Lg,Hx=2 (L +ﬁ <2(L +2L% =4Lg,Hs = 2L
1 — G, 112 = G ,U/y"—Hl = G H1 - G, 113 = f-

4 Accelerated Method for Saddle-Point Problems

In this section, we consider problem (LLI]) which is problem (B.]) with a specific finite-sum structure of the
function h and our goal is to obtain its (g, 0)-solution. To get the final estimates for the number of oracles
calls, we need to satisfy Assumptions[Il [2, Bl which are formulated in Section 3] where we construct our general
framework. So, the plan of this section is first to prove Lemma Ml and Corollary 2] which guarantee that
Assumptions 2 B hold. To satisfy Assumption[2] we use a two-loop procedure with Algorithm [2] and stochastic
variance reduction method to solve problem (BI7) in order to use the finite-sum structure of the function h
and avoid expensive calculation of the gradient of the whole sum in each iteration. As a corollary, we also show
how to satisfy Assumption Bl Then, we obtain final estimates for the setting of this section by combining the
complexities to satisfy Assumptions[2] B with the estimates in Theorem

4.1 Problem statement

In this section we consider optimization problem of the form (I)):

min max {f(z) + G(z,y) —h(y)}, h(y):=—> hi(y) (4.1)
z€Rdz yeRdy mp

and develop accelerated optimization methods for its solution under the following assumptions.

Assumption 4 1. Function f(z) is Ly-smooth and p.-strongly convex.
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2. Function G(z,y) is Lg-smooth, i.e. for each (z1,x2), (y1,y2) € R% x R%

IVG(z1,22) = VG(y1,92)|| < Lall (21, 22) = (y1,92) - (4.2)
3. mp > 1 and each function h;(z), i € 1...,mp s Lz-smooth and convez, function h(y) is py-strongly
convex. We also define Ly, = mL} Yome Ly, in this case.

To fit Assumption [I] we consider the full gradient oracles VoG(z,y), V,G(z,y), Vf(z) as the basic oracles
0%, O, Oy respectively, and the stochastic gradient oracle Vh;(y) as the basic oracle Op. Then Assumption[d
guarantees that Assumption [I] holds with

T =T =1, Th = mp. (4.3)

4.2 Preliminaries

We start with two auxiliary results, which show how Assumptions 2l Bl can be satisfied in the setting of
this section. The first lemma provides complexity for inexact solution of maximization problem (3.I7) and the
complexity of finding an inexact oracle for function g defined in the same equation.

Lemma 4 Let the function g be defined via mazimization problem in [BID), i.e.

o) = max {Gle.) ~ 1)~ Gy~ l?}. (14)

where G(x,y), h(y) are according to @) and satisfy Assumption[J, yo € R%. Assume also that that my,(H +
2Lg + py) < Lp, and H + py < 4Lg. Then, organizing computations in two loops and applying Algorithm [2
in the outer loop and accelerated variance reduction method L-SVRG from [29] in the inner loop, we guarantee
Assumption [J with T¢ = 1 basic oracle calls for G(-,y) and the following estimates for the number of basic
oracle calls for G(z,) and h respectively

N (ra, H) = O (14 Lo/ (H+ 1)), (4.5)
Ny (T, H) = O (\/Tth/(H n py)) . (4.6)

Proof To satisfy Assumption 2] we need to provide an (6 (€) /2,00 (g,0))-solution to the problem [4) and
(6 (€),00 (g,0),2Lg)-oracle of g in @), where Ly = Lg + 2L%/(11y + H).

By Lemma 2 with F(z,y) = G(z,y), w(y) = h(y) + Z|ly — yol|*, § = § () and 0o = 0o (,0) applied to the
problem ([@4), if we find a (6/2, 5¢)-solution §s,2(z) of the problem @), then V.G (z, Js/2(x)) is (6, 00,2Lg)-
oracle of g and its calculation requires 7¢ = 1 calls of the oracle V;G(-,y). To finish the proof, we now focus
on obtaining a (0/2,00)-solution gs/2(x) of the problem ([@4), for which we construct a two-loop procedure
described below.

Loop 1
The goal of Loop 1 is to find an (6 (g) /2,00 (g, 0))-solution of problem (4] as a maximization problem in y.
To obtain such an approximate solution, we change the sign of this optimization problem and apply Algorithm
with

p=—Gle), ¥ =hw)+ 2y ol (4.7)

Function ¢ is convex and has Lg-Lipschitz continuous gradient, function v is H + p,-strongly convex and
has Lj + H-Lipschitz continuous gradient. Thus, we can apply Algorithm [2] with exact oracles and parameter
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H; > 2L¢, which will be chosen later, to solve problem (4. To satisfy the conditions of Theorem [, which
gives the complexity of Algorithm 2 we, first, observe that the oracles of ¢ and 1 are exact and, second,
observe that we need in each iteration of Algorithm [T used as a building block in Algorithm ] to find an

(é;l) (6/2),5W (5/2, 00))—solution to the auxiliary problem (2.3), which in this case has the following form:

. H
zher = arg min {(Vo(=""), 2 = 20") +9(2) + |2 = 203}
z€R%Y

. m m H H .
= arg min {—~(V.G(z, z D,z =) + h(2) + 2 = ol + Sz — 213, (4.8)

where (1) (6/2,00) ,5(f1) (6/2) need to satisfy inequalities (2.25)), ([2.26). Below, in the [paragraph ” Loop 27| we
explain how to solve this auxiliary problem by a variance reduction method in such a way that these inequalities
hold.

To summarize Loop 1, both main assumptions of Theorem ] hold and we can use it to guarantee that we
obtain an (§/2,00)-solution of problem (£4). Due to polynomial dependencies ¢ (¢) = poly (¢), oo (¢,0) =

1 ~ 1
poly (e,0) this requires O (1 + ( H, )2) =0 (1 + ( H, )2) calls to the (exact) oracles for ¢ and

Mo+ Hayp Hy+H
for 1, and the same number of times solving the auxiliary problem ([£J). Combining this oracle complexity
with the cost of calculating (exact) oracles for ¢ and for v, we obtain that solving problem (£4) requires

1 _ 1
@] (1 + ( . )2) calls of the basic oracle for G(z,-) and O (mh +my ( HlH) 2) of the basic oracles for

My"rH Pyt
h, i.e. stochastic gradients Vh;. The only remaining thing is to provide an inexact solution to problem (4.8)
and, next, we move to Loop 2 to explain how to guarantee this. Note that we need to solve problem (L8]

O (1 + (uﬁ}H)g) times.

Loop 2

We solve problem (£J)) by the algorithm L-SVRG proposed in [29], which complexity is stated in Lemma [I8]
see Appendix As mentioned in the previous Loop 1, in each iteration of Algorithm [2] in Loop 1 we need
many times to find an (g2, 02)-solution of the auxiliary problem (48], where for simplicity we denote o2 =
51 (8/2,00) and e2 = &\ (5/2).

To obtain such an approximate solution, we apply L-SVRG from [29] with (see Lemma [I§ from Appendix [D))

1 & H H
0= a2 (M) + el + =), b= TGl (49)
Pi(z)
Functions ¢; are convex and have Lil + H + H;-Lipschitz continuous gradient for all ¢ = 1,...,my, function ¥

is convex, 0-smooth and prox-friendly. Also function ¢ is py + H + Hy-strongly convex. Thus, all the conditions
of Lemma [I§ from Appendix [Dlare satisfied and we can apply L-SVRG from [29] to solve problem (&8]). From

mp(Lp+H+H,y)
py+H+H;

To summarize Loop 2, the assumptions of Lemma [I8] from Appendix [Dl hold and we can use it to guarantee
that we obtain an (g2, 02)-solution of problem (4.§)). According to the polynomial dependences (2.25), (2.26])
we obtain that

this lemma we get an estimate 9] (mh + ) for the number of calls of the basic oracle for h.

o2 =5 (6/2,00) = poly(8/2,00), e2 =&Y (8/2,00) = poly(5/2,00).
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Using conditions 0 (¢) = poly (g), oo (¢,0) = poly (g, ¢) in the formulation of Asumption 2] we obtain that the
dependencies

(1) (

o2 (g,0),6"7 (e,0),e2(g,0) ,5(f1) (e,0)

are polynomial. Then, we can use notation 5() without specifying what precision we mean and implying that
the logarithmic part depends on the initial , o. Finally, according to Lemma[I8] from Appendix[Dl an (2, 02)-

solution of problem (48] requires O (mh + ,/%) calls of the basic oracle for h, i.e. stochastic
Y

gradients Vh;, and the same number of times solving the auxiliary problem of the form argminy{v¢(y) +
5|y — g||3}. This problem is solved explicitly since (y) is a linear function.

Combining the estimates of both loops

Combining the estimates of the above[paragraph ” Loop 1”|and [paragraph ” Loop 2”|we see that, finding a point
Us/2(x) which is an (d (¢) /2,00 (g, 0))-solution to the problem (&4) requires the following number of calls of
the basic oracles of G(z,-) and h respectively

) (1 + \/M) , (4.10)

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2) (4.11)
- Ln+ H + Hy)

= Hy/(H (1 VH(H ) i .
O<mh+mh 1/ (H + py) + (14 VH(H A+ py) ) |+ 1y + H +

Finding (6 (¢), 00 (g,0) ,2Lg)-oracle of g by calculating V.G (, §5/2(z)) requires additionally 7¢ = 1 calls of
the basic oracle for G(-,y). Since in Assumption [2] we denote the dependence on the target accuracy e and
confidence level o by a separate quantities denoted by K(e,0) and in this case it is logarithmic, choosing
H) = 2Lg we get the final estimates for N and N}, to guarantee that Assumption [2 holds:

4=0(1+VIc/(H+m)), (4.12)
-0 (mh (1 VI ) (s e L)) )

O

mp + 1+\/W) (mh+\/ mn L, +\/mh(H+2LG)>>:

wy +H +2Lg wy +H +2Lg

0) (mh 2Lg/(H+p,y)) (mh + /%)) -

L
O [ mp+ V2La/(H + py) mh h)

O (mh + H"L:LLL: ) =0 (\/mth/(Hery)) s (4.13)

where we used that, by the assumptions of this Lemma, 1 < 4Lg/(H + py), mn(H + 2Lg + py) < Lp, and

Ya,b>0 Va+b<a+ Vb. o

By changing the variables x and y in Lemma [ and choosing H = 0 we obtain the simple Corollary 2] which
ensures Assumption [B
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Corollary 2 Let the function r be defined via mazimization problem in [BIF), i.e.
r(y) = min {G(z,y) + f(2)}, (4.14)

where G(z,y), f(y) are according to (1) and satisfy Assumption[]] Assume also that 2Lg+pz < Ly and pe <
4L¢g. Then, organizing computations in two loops and applying Algorithm [2 in the outer loop and accelerated
variance reduction method L-SVRG from [29] in the inner loop, we guarantee Assumption [3 with 7¢ =1 basic
oracle calls for G(z,-) and the following estimates for the number of basic oracle calls for G(-,y), [ respectively

N& (16) = O (1 + «/LG/M) , (4.15)

Ny (rs) =0 (m) . (4.16)

4.3 Final estimates

We are now in a position to state the final result of this section for the complexity estimates when solving
problem ([@T]). Assumption[with (@3] guarantee that Assumption[lholds. LemmaM]and Corollary2lguarantee
that Assumptions 2 Bl hold. Thus, all the conditions of Theorem [ are satisfied and we obtain the following
result for solving problem (£1]) with our system of inner-outer loops.

Theorem 6 Assume that for problem (&) Assumption[]] holds and additionally mp(4Lg + py) < Lp, 2L +
te < Ly, py < La, pz < Lg. Then the described in Section[3 general framework combined with the algorithms
described in the previous subsection find an (e,0)-solution to problem (@Il with the following number of basic

oracle calls
~ LegL
V f-oracle calls : O =G| (4.17)
Mz fly
Vhi-oracle calls : O mnlcLn , (4.18)
Haz by

~ L2
VeG-oracle calls : O g, (4.19)
Ha by
~ L2
VyG-oracle calls : O g . (4.20)
ez fly

Proof Assumption [ with [£3]) guarantee that Assumption [I] holds. Further, assumption py, < L and the
choice H = 2L¢ guarantee that p, + H < 4Lq. This inequality, assumption that mp(4La + py) < Ly, and the
choice H = 2L¢ allow to apply Lemmal and conclude that Assumption[2holds with the number of oracle calls
given by ([{D) and (£H). Assumptions 2Lg + pe < Ly and pz < Lg by Corollary 2lguarantee that Assumption
Bl holds with the number of oracle calls given by (£I5) and ([{I6). Applying Theorem [l and combining its
complexity estimates, we obtain the final complexity bounds as follows.

Number of basic oracle calls of f:

() (5 (o (o E2)) ) o ) (i () (VD))
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where we used that, by the assumptions of this Theorem, 1 < Lg/py, 1 < Lg/pe and 1 < Ly/Lg.

Number of basic oracle calls of h:
~ Lg ( /LG) mpLp
O — mp + — _ =
(( Hy ) ( " Uz 2L + py

~ Lg LG) mpLp
O 1+ /== mn+(1+4/ (e
(( ﬂy)( " ( M 2LG+ﬂy))
~ L¢g mpLgLp mpLgLp
O | max = ;
,Uy P by P fby

vV mth/:u'u)

where we used that, by the assumptions of this Theorem, 1 < Lg/uy, 1 < Lg/uz and

mp(4Lg + py) < L = VmpLg < /Ly

Number of basic oracle calls of G(-, y):

~ L L L ~ L2
of 14,/ (1+,/—G+<1+1/ G>) =0 ¢,
Hy Haz Haz Ha fy
where we used that, by the assumptions of this Theorem, 1 < Lg/uy and 1 < La/pa.
Number of basic oracle calls of G(z, -):

(/2o 0 - )
oo )00

where we used that, by the assumptions of this Theorem, 1 < Lg/uy and 1 < La/pa. O

An important particular case, for which we state the following corollary, is when does not have the finite-
sum, i.e. mp = 1.

Corollary 3 (Particular case my = 1) Let the assumptions of Theorem [@ hold and additionally mp = 1.

Then the described in Section [3 general framework combined with the algorithms described in the previous
subsection find an (e,0)-solution to problem (@) with the following number of basic oracle calls

V f-oracle calls: O Loly , (4.21)
Ha by

Vh-oracle calls : O Leln , (4.22)
Ha fy

~ 2
V2G-oracle calls: O g, (4.23)
Kz by

~ 12
V4 G-oracle calls : O ¢ . (4.24)
Ha by
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5 Accelerated Methods for Saddle-Point Problems with Finite-Sum Structure

In this section, we consider problem (I2)), which is problem (B with a specific finite-sum structure of
the function G. The algorithms in this section are, in fact, deterministic, i.e. correspond to confidence levels
o = 0. Thus, our goal is to obtain an e-solution of problem (L.2]). As in the previous section, we use the general
framework described in Section [B] but in a simpler setting of all the confidence levels o being equal to zero. To
obtain the final estimates for the number of basic oracles calls, we need to satisfy Assumptions [ 2 [B] which
are formulated in Section Bl where we construct our general framework. The proof that these assumptions hold
and the proof of the resulting complexity bounds follow mostly the same lines as for the case of problem (1))
under Assumption [ in the previous section, but are rather technical. Thus, in this section we only state the
main results and the proofs are deferred to Appendix [[] and Appendix [Gl

5.1 Problem statement

In this section we consider optimization problem of the form (L2):

. N
Jnin max {f(@)+ Gz, y) —h(y)}, G(z,y):= e ;Gz( 2Y)- (5.1)

and develop accelerated optimization methods for its solution under the following assumptions.
Assumption 5 1. Function f(z) is pe-strongly convex, and function h(y) is py-strongly convez.

2. mg > 1 and each function G;(z,y), i € 1,...,m¢g is convex in x and concave in y, and Lé;—smooth, i.e.
for each x = (z1,22),y = (y1,y2) € R% x R%

IVGi(z1,22) = VGily,y2) || < Lo ll(@1,22) — (y1,92)]l- (5.2)
We also define Lo = mLG e L.
3. One of the following three statements holds for the functions f(x), h(y)
(a) Function f(z) is L¢-smooth and function h(y) is Lp-smooth;
(b) Function f(zx) is Ly-smooth, function h(y) is Lp-smooth and prox-friendly;

Under Assumption[B]2 it is easy to see that the function G(z,y) in problem (5.1)) is Lg-smooth. Indeed,
1 S
[VG(a1,22) = VG, o)l <=3 IVGiar,22) = VGilys, o) |
i=1
1 <,
S > Lall(@r,22) = (y1,u2)|| = Lell(@1,22) — (y1,92)].
i=1

where z = (z1,22),y = (y1,52) € R% x R%. To further fit Assumption [I] we consider the full gradient
oracles Vh(y), V f(x) as the basic oracles Oy, Oy respectively, and the stochastic gradient oracle V.G;(z,y),
VyGi(z,y) as the basic oracles Of, O% respectively. Then Assumption [l guarantees that Assumption [l holds
with

Tf:Th:LTG:m(;. (5.3)



32 Vladislav Tominin ! et al.

5.2 Complexity estimates

In this section we consider problem (G.]) under one of the two different Assumptions Bl3(a) or (b) and
mostly follow the lines of derivations described in Section [4] with appropriate changes caused by the different
problem statement. In particular, we change the order of the loops in the general framework described in the
Section Bl as well as in the proof of Lemma [l and Corollary 2l depending on which is larger Ly or Lg and Ly
or Lg. This eventually allows to avoid assumptions of the form 4Lg + py < Lp, 2Lg + pz < Ly, which are
used in Theorem [6l The proof of the resulting complexity bounds follows mostly the same ideas as for the case
of problem (4J]) under Assumption [ but is rather technical. Thus, in this section we only state the result
and the proofs are deferred to appendices. In Appendix [E]l we propose a variation of the general framework
described in Section B but with the change of the order of Loop 2 and Loop 3. As a result, we prove Theorem
7 which is a counterpart of Theorem [Bl In Appendix [Gl we prove Lemma[I9 and Corollary [Tl which generalize
Lemma [4] and Corollary [2 in two aspects. First, we consider the function G given in (G.I). Second, we do not
use the assumption mp(H + 2Lg + py) < Ly, of Lemma and 2Lg + p < Ly of Corollary 2

We start with considering problem (5.]) under Assumptionfhl1,2,3(a). This assumption combined with (53]
guarantees that Assumption [[] holds. Lemma [[9 and Corollary [7l guarantee that Assumptions 2l Bl hold. This
allows to combine Lemma [[9] and Corollary [7] with either Theorem [Blif Ly > Lg, or Theorem [[if Ly < L.
The resulting complexity estimates for solving problem (G with our system of inner-outer loops are given in
the next theorem which is proved in Appendix Notice that in this case the algorithm is fully deterministic
and we find an e-solution to problem (G.1)).

Theorem 7 Assume that for problem (5.1l Assumption[d1,2,3(a) holds and additionally p. < La, pe < Ly
and py < Lg. Then using general framework from Section[d, general framework from Appendiz[F, Lemma[I9
and Corollary[] for each relation between Ly, Lg and Ly, Le respectively we provide an algorithm, which finds
an e-solution to problem (&) with the following number of basic oracle calls

~ LgL
V f-oracle calls : O R (5.4)
Ha oy
~ LQ
Vh-oracle calls : O [ max ﬂ, —G_ , (5.5)
Ha by Ha oy
~ .2
VGi-oracle calls: O | mg G |, (5.6)
P by

_ 12
VyGi-oracle calls: O | mg g . (5.7)
Ha by

We prove this theorem in Appendix

We would like to emphasize that even though we do not use variance reduction techniques in the algorithm
described in Theorem [7] under assumption [B11,2,3(a) our bounds are better than the bounds obtained by
variance reduction method proposed in [39]. To solve the problem (BI) by the algorithm of [39], we need to
restate this problem as

min max {mLG Z ((N}'Z(m,y) = f(z) + Gi(x,y) — h(y))}

R4 d
zERY yecR%Y =1

with the objective being Ls = max{Lg + Ly, Lg + Lp, }-smooth. The algorithm in [39] does not propose a way
to separate the complexities for different parts of the objective and the resulting number of oracle calls for each
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part is the same

- I~
Vf,Vh,V.G;, V,Gs-oracle calls : O [ /m 7(;) . 5.8
/ ! < © min{pt, 1y } 58

Comparing these estimates with the estimates of Theorem [7] we make two important observations.

— Due to our approach with complexity separation the estimates from Theorem [7] on the number of oracle
calls for f and h are always better than the corresponding estimates in (5.8) at least by a factor \/mgq.

— At first sight, the estimates on the number of calls of V,G; and VG; from Theorem[7] seem worse than the
corresponding estimates in (£.8) due to the additional factor \/mq. However, this is not the case, for example,
when Ly or Ly, are large enough leading to L& > Lg. This can be demonstrated by taking mgLg < Ly,

then the estimates on the number of calls of V,G; and V4G; in Theorem [1] become |, /L?/,uw,uy, which is
smaller than the estimates in (5.8]).

An interesting open question is whether we can improve the complexity bounds in Theorem [7 by applying
variance reduction methods to ensure Assumptions 2 Bl We conjecture that it is possible to improve the

bounds (5.6) and (5.7) to O (1 / ";G}fé)

As a particular case of problem (G.I) we can consider problem (1)) with mj; = 1. This allows to relax the
assumptions mp(4Lg + py) < Lp, 2Lg + pe < Ly, by < Lg made in Corollary Bl and obtain the following
corollary of the previous theorem. Notice that again in this case the algorithm is fully deterministic and we
find an e-solution to problem (@.T]).

Corollary 4 Assume that for problem 1)) Assumption[4] holds and additionally mp =1, pz < La, pa < Ly
and py < Lg. Then, using the general framework from Section[3, the general framework from Appendiz[F and
Lemma I with Corollary[7 for each relation between Ly, Lg and L, Lg respectively, we provide an algorithm,
which finds an e-solution to problem (A1) with the following number of basic oracle calls

=~ LeL
V f-oracle calls : O =GR (5.9)
P by
~ L2
Vh-oracle calls : O [ max %, —< 5, (5.10)
Ha by Ha oy
~ L2
V+G-oracle calls : O CE (5.11)
Ha fly
~ 2
VyG-oracle calls : O g . (5.12)
P by

We now turn to the problem (&) under Assumption [B11,2,3(b). This assumption combined with (&3]
guarantees that Assumption [Ilholds. The part 3(b) allows a simple construction, which is given in the proof of
Lemma 20 in Appendix[Gl to guarantee Assumption 2l The main difference with Lemma [[9is that due to the
prox-friendliness of h the second loop is not needed and it is sufficient to apply just Algorithm[lto solve problem
BI7) in Assumption 2l Corollary [7] guarantees that Assumptions [3 holds. This allows to combine Lemma
and Corollary [ with either Theorem Bl if Ly > Lg, or Theorem [[7 if Ly < Lg. The resulting complexity
estimates for solving problem (5. with our system of inner-outer loops are given in the next theorem which
is proved in Appendix[Gl Notice that in this case the algorithm is fully deterministic and we find an e-solution

to problem (&1)).
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Theorem 8 Assume that for problem (Bl Assumption[8 1,2,3(b) holds and additionally piz < La, pe < Ly
and py < L. Then, using the general framework from Section[3, the general framework from Appendiz[F and
Lemma 20 with Corollary[7 for each relation between Ly, Lg and Ly, Lg respectively, we provide an algorithm,
which finds an e-solution to problem ([B.I) with the following number of basic oracle calls

~ LgL
V f-oracle calls : O Ze2r ) (5.13)
Ha [y
~( |Lg
Vh-oracle calls : O ( —) , (5.14)
Hy

~ L2
VGi-oracle calls: O | mg g, (5.15)
Ha by
- 12
VyGi-oracle calls : O | mg g . (5.16)
Ha fly

We prove this theorem in Appendix

Remark 8 In this remark using the results from [4I] we show how we can utilise our approach to solve the
problems of structured nonsmooth convex finite-sum optimization that appears widely in machine learning
applications, including support vector machines and least absolute deviation.

We consider large-scale regularized nonsmooth convex empirical risk minimization (ERM) of linear predic-
tors in machine learning. Let b; € RY, i = 1,2,...n, be sample vectors with n typically large; fi : R — R,
i = 1,2,...n, be possibly nonsmooth convex loss functions associated with the linear predictor (b;,z). The
problem we study is:

1 n
i =N £ (s, G(z,y) — hiy) 5. 5.17
reRis i {n 3 fil{bi ) + Gley) <y>} (5.17)
We require that the convex conjugates of the functions f;, defined by f;(2:) := maxe, (§iz: — fi(&)), admit
efficiently computable proximal operators. Thus, we can rewrite the function 2 3" | fi({b;, z)) in the following

n
way:
n

3 Fil{bisa)) = = 3" max(a(bi, o) ~ £ (2) = max {<z,Bw> - %Zmzi)} (5.18)

1
[t eR
where y = (y1,...,yn), B = L[b1,...,bn]". Then by substitution of the equation (EI8) into the problem

(BEI7), we obtain:
min { max {G(z,y) — h(y)} + max {(z, Bzx) — % Z fz*(Zz)}} . (5.19)

z€RY | yecR z€ER"

We can use another notation n = (y, z) and rewrite the problem (519) as follow:

. LS
b {U“) {G@vw M)+ (e Ba) = 0D I W}} | (5:20)
which we can solve using the general framework from Section Bl under the differences assumptions. It is worth
mentioning that the function f*(z) = % S, fi (2) is separable and admits an efficiently computable proximal
operator. Thus primal-dual problem (B.I8) has significantly lower complexity than the saddle-point problem
(5E17). That means we can use primal-dual approach with no care that the saddle-problem (5.20) become more
complex.

A
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6 Accelerated Proximal Variance-Reduction Method for Saddle-Point Problems

In this section we consider problem (2] (which is problem (&J)), but under assumption that f and h are
prox-friendly. This does not allow us to use Algorithm [Pl since it requires to evaluate inexact gradients for f and
h (see step [T of this algorithm). Thus, we exploit that f and h are prox-friendly and utilize proximal variance
reduction methods to avoid calculation of the gradients for these two functions. We start with describing two
building blocks for our algorithm: the Catalyst framework [23] adapted and slightly generalized for our setting
and variance reduction algorithm SAGA proposed in [39], which we also adapt to our setting. The former
algorithm is an optimization algorithm, the latter is designed for saddle-point problems, and we use these
algorithms in the system of inner-outer loops as in the previous sections. Thus, we need to connect the output
of these algorithms with the requirements of outer loops. To do this we prove several technical lemmas. Finally
in the last subsection we collect all the pieces together and describe the loops of our algorithm as well as present
its complexity theorem.

6.1 Problem statement

In this section we consider problem (G.1) under the following assumption.

Assumption 6 1. f(x) is pz-strongly convez, h(y) is py-strongly conve.
2. Each functions Gi(x,y), i € 1,...,mq is convez-concave and Li-smooth, i.e. for each (x1,x2), (y1,y2) €
R x R 4
IVGi(z1,22) — VGi(y1,y2)|| < Lg||(z1,22) — (y1,92)|- (6.1)

3. f(z),h(y) are proz-friendly (smoothness is not required).

We also use slightly different, more convenient for the setting of this section, and more classical definition
of an inexact solution to problem (G.I)).

Definition 5 A point (Z,§) is called an (e, 0) solution to the saddle-point problem (51), if with probability
at least 1 — o, the following inequality is true

Jnax {f(2) +G@y) —h(y)} = min {f(@)+C@,§) —h@H} <= (6.2)

Note that since the saddle-point problem is strongly-convex-strongly-concave, the quantity in the Lh.s. of (6.2)
is correctly defined.

6.2 Algorithmic Building Blocks

In this subsection we consider the algorithms are used in general algorithm to find an (g, o) solution to the
problem (B1)) under the Assumption[6l In each paragraph we describe the problem is solved by this algorithm
with certain assumptions and formulate convergence rate and complexity theorems.

The Catalyst metaalgorithm [23,[2])]. Let us consider the problem

Jnin {F(2) = ¢(z) + ()} (6.3)

under the following assumption:

Assumption 7 1. p(x) is convez;
2. p(z) has Lipschitz continuous derivatives with constant L;
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3. Y(x) is p-strongly convexr (may not be differentiable).

To solve the problem (6.3) under the Assumption [7] we can apply the Catalyst algorithm from [23,24]. In the
Theorem [[3 we show how (ex),~¢ O (0k),~( are chosen to get optimal complexity of finding an (e, o) solution
to this problem which is understood in the sense of Definition [l

Algorithm 3 Catalyst [23]24]

1: Input: Initial estimate £g € R% | smoothing parameter H, strong convexity parameter p, optimization method M and a
stopping criterion based on a sequence of accuracies (€x)<q, O (0k)p<g, Or a fixed budget T.

2: Initialize ¢ = ﬁ, 20 = zg, a0 = /G

3: while the desired accuracy is not achieved do
4: Find an approximate solution of the following problem using M
~ 3 S — E _ ..md |12
xp A argmin Sy (x) = @(z) + ¥(v) + - |lz — 2% |2
zERIz 2
using one of the following stopping criteria:
1. absolute accuracy: find xj, such that Sp(xy) — Sp(x}) < ek, where x} = arg mig Sk (z);
zER
2. relative accuracy: find xy such that Sy (x) — Sk(x)) < HT‘S’“ka - J:L”jlug, where z}, = arg mig Sk (z);
rER%x
3. fized budget: run M for T iterations and output xj.
5: Update ay, € (0,1) from equation aﬁ =(1- ak)ai_l + qag;
6: Compute :vg“i with Nesterov’s extrapolation step
_1(1 — o
at = ap, + Bk — Tp—1) with By = M
Qp_1 T ok
7: end while
8: Output: zj, (final estimate).
Theorem 9 (Theorem 3.1 from [23])
Choose
2 k .
ex = g(F(zo) = F(2"))(1—p)"  with p</q (6.4)

Then, the Catalyst algorithm (Algorithm[3) with absolute accuracy generate iterates (xi)r>0 such that

Fa) — F(z*) < C(1 — p)* Y (F(zo) — F(z*))  with C = (\/ﬁ%p)Q. (6.5)

Theorem 10 (Proposition 8 from [24])
Choose

5y = V1 (6.6)

:2_

S

Then, the Catalyst algorithm (Algorithm[3) with relative accuracy generate iterates (xy)r>0 such that

k
F(zg) — F(z*) <2 (1 — g) (F(zo) — F(z")) . (6.7)
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Corollary 5 Choose
2 * .
ek = 5(Flao) = F@))(1=p)*  with p=09vq (6:8)

in the Catalyst algorithm (Algorithm[3) with absolute accuracy, or

o= (6.9)

in the Catalyst algorithm (Algorithm[3) with relative accuracy. Then, after the number of iterations

=0 oo T)

of the Catalyst algorithm (Algorithm[3) we get xpr such that F(xpr) — F(z*) <e

Proof 1. ABSOLUTE ACCURACY.
By the Theorem [ the number of iterations A/ of the Catalyst algorithm (Algorithm [3) with absolute
accuracy to guarantee an accuracy of € needs to satisfy

F(zy) — F(z") < C(1 - p)N T (F(20) — F(z¥)) < C(1 - p)e N (F(z0) — F(z")) < e, (6.11)

which gives

_ 1, 6A =p)(F(zo) = F(z")) | _ |1, 8(L=p)(F(xo) — F(z7))
A= L}l e l L}l (Va—p)?e l (6.12)

Choose p = 0.9,/

N { 1 In 8(1 —0.9/9)(F(xo) — F(m*))-‘ _

0.9,/g (0.1,/g)2¢
WH—HIH 8(1 — 0.9v// (u+ H)) (F(xo) F(x*))(Hwﬂ _
0.9y/1 0.01ue

o) 0fom{T))

2. RELATIVE ACCURACY. By the Theorem [0l the number of iterations A of the Catalyst algorithm (Algorithm
B) with relative accuracy to guarantee an accuracy of € needs to satisfy

N
F(zy) — F(x™) <2 <1 — g) (F(xo) — F(z¥)) < 267§N(F(:D0) — F(z")) <, (6.14)

which gives

N = {%m 2(F(wo);F(x*))w _ [2\/7 In 2(F(wo);F(x*))w _

o7+ ) -0 el )
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In each iteration of the Catalyst algorithm we need to solve the problem
min Si(z) = min { F(z) + HHz — 2 (6.16)
zERdw zERdw 2

where F(z) := ¢(x) + ¢¥(x), with an inner method M.
Assume that M is linearly convergent for strongly convex problems with parameter o4 according to

S(zt) — S(2") < Cam(1 — TM)t(S(Zo) - S(z"), (6.17)
in the deterministic case or according to
E[S(z:) — S(z")] < Cm(1 — TM)t(S(Zo) - 8(2")), (6.18)
in the randomized case.

Theorem 11 (Lemma 11 from [24]) Assume further that (ex)r>0 in the Catalyst algorithm (Algorithm[3)
with absolute accuracy are chosen according to the Corollary [A At iteration k of this algorithm we consider
the following function ([618), which we minimize with M, producing a sequence (zt)t+>0. Then, the complexity
Tr = inf{t > 0, Sk(z:) — Sk(z™) < er} satisfies

1. If M is deterministic and satisfies [6.11), we have

CmCy

1
Tk(Ek) S —In (
™ €k

) ,  where Cg = (Sk(20) — Sk(z1)). (6.19)

2. If M is randomized and satisfies (6.18), we have

CmCy
€k

_ 2(Sk(20) — Sk(z1))
TM ’

E[Tk(ex)] < I ( (6.20)

)Jrl, where Cl
TM

Theorem 12 (Corollary 16 from [24]) Assume further that (6x)r>0 in the Catalyst algorithm (Algorithm
[3) with relative accuracy are chosen according to the Corollary[d. At iteration k of this algorithm we consider
the following function ([616), which we minimize with M, producing a sequence (zt)¢>o. Then, the complexity

Ty = inf{t > 0, Sk(z) — S(2") < Eo||z — (|3} is satisfies

1. If M is deterministic and satisfies (6.11), we have

Ty (0r) < L In (CMCk) where Cj = M (6.21)
TM k H
2. If M is randomized and satisfies ([GI8), we have
BT (00)] < ——1n ( CMC6) L1 where = S (6.22)
TM Ok TmH

Corollary 6 Assume further that (ex)k>0 or (0k)rk>0 in the Catalyst algorithm (Algorithm [3) with absolute
or relative accuracy are chosen according to the Corollary[A At iteration k of this algorithm we consider the
following function ([GI6), which we minimize with an randomized method M, producing a sequence (2t)¢>0-
Then, after

1. Absolute accuracy case:

Ti(erow) = O (L In M) ’

6.23
™ EkOk ( )

where Cy, is the constant defined in (6.20).
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2. Relative accuracy case:

Lo GmCr C’“) (6.24)

Tk(5k0k) =0 (— In

™  0kOk
where Cy, is the constant defined in (6.22).

iterations of the randomized method M we get an (ex,0x) solution to the problem ([GI0) which is understood
in the sense of Definition [d

Proof To solve the problem (6.16) we apply an randomized method M.

1. ABSOLUTE ACCURACY.
By the Theorem [I] after Ty (ex) = O (% In Qf}f—k) iterations of the randomized method M we obtain

that we can find z7, (ex) such that
E(Sk(21, (ek)) — Sk(2")) < ex (6.25)

Since Sk (21, (¢k)) — Sk(z*) > 0, with an arbitrary oy € (0,1) we can apply Markov inequality:

P(Sk (21, (ckok)) — Sk(2*) < ex) > 1 — ]E(S’“(zT*‘(E’;)C) i1 (6.26)
where
E(Sk(em(er) = Sk(27) E(Sk (21 (ex)) — Sk(27)) < exos. (6.27)

€k

Then, after Ty(eror) = O (% In %ﬁ%) iterations of the randomized method M we can find (eg,ok)

solution of the problem (6.16]) with absolute accuracy.
2. RELATIVE ACCURACY.
By the Theorem [I2] after Ty (dx) = O (% In Q%C’“) iterations of the randomized method M we obtain

that we can find zp, (dx) such that

kH

E(Sk (21, (0k)) — Sk(27)) < Iz (81) — 24 )13 (6.28)

Since Sk (21, (0k)) — Sk(2™) > 0, with an arbitrary o € (0,1) we can apply Markov inequality:

gy < RH e m _ 2E(Sk(z1, (Okok)) — Sk(Z*)) s

P<Sk(ZTk(5kUk)) Sk(2") < lzT, (Oror) — x5S 1||2> 21 SrH | 21, (Orow) — x4 |13 >1—oy,
(6.29)

where

Ao o) o S~ ESenBue) =507 < G e o) - (630

Then, after Ty (dror) = O ( In —M—Ck) iterations of the randomized method M we can find an (ek, o)

solution of the problem (BI6) with relative accuracy, where e, = %2 | 27, (6x0%) — x4 ||3.

O

Theorem 13 Choose
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1.
e — g(F(azo) CF@)(1—p)*  with p=09y7 (6.31)
and
< s (6.32)
o .
b= VT H 1, 8109/ (put H)) (F (o) — F(x*)) (H+ 1)
0.9/ 0.01ue
in the absolute accuracy case.
2.
Va4
Sp = 6.33
=5 (6:33)
and

1

T
Tk S G /iR 1, 20 @) —F ) (6.34)
v £

In

in the relative accuracy case.

Then, after

)

the number of iterations of the Catalyst algorithm (Algorithm [J) with absolute or relative accuracy, we find
an (e,0) solution to the original problem (6.3) under the Assumption [ which is understood in the sense of
Definition [3

Proof In each iterations of the Catalyst algorithm we need to solve the problem (6.16) with absolute or relative
accuracy. To solve this problem, we apply an randomized method M and by Corollary 6 we get an (ek, o)
solution of the problem (G.16). Then, by Corollary B after

v F//H—Hln 8(1— 0.9y/a/(a ¥ H)(F(xo) — F(m*»(mﬂ (6.36)
0.9/1 0.01ue .

the number of iterations of the Catalyst algorithm (Algorithm [B)) with absolute accuracy or after

_[2VATE | 2AF(w0) - F"))
N = { 7 1 - l (6.37)

the number of iterations of the Catalyst algorithm (Algorithm B]) with relative accuracy, we solve the original

N
problem with probability [] (1 — 03). Choose o1 = -+ = oxr = oam then, we solve the original problem with
i=1
probability
N —No In ﬁ
1l—-0c<(1—-0om)” <e Mo o < N (6.38)

If we choose (e1)r>0 according to the Corollary Bl and

In —1—

o) < Lo (6.39)
VIET 1) 80=0.9v/0/ G 1) (F (w0) = F(a*)) (H +12)
0.9/ 0.01ue




Accelerated Methods for Saddle-Point Problems 41

in the Catalyst algorithm (Algorithm[B]) with absolute accuracy or (dx)x>0 according to the Corollary Blin the
Catalyst algorithm (Algorithm B]) with relative accuracy and

In 21—

l1—0o
Tk S G /i 1, 2P —F @) (6.40)
VI €

oo T)

the number of iterations of the Catalyst algorithm (Algorithm [3) with absolute or relative accuracy, we find
an (e,0) solution of the original problem (6.3]) which is understood in the sense of Definition a

Then, after

The SAGA algorithm. Let us consider the problem

min max {K(z,y) + M(z,y)}. (6.42)
zER%z ycRYY

under the following assumption

Assumption 8 1. M is (pz, fiy)-strongly convez-concave. Moreover, we assume that we may compute the
proximal operator of M :

proais(a’,y') = arg min max {AM(z,y) + 55 |lw — /|3 = By — '3} (6.43)
zERYz ycRy 2 2

2. K s convex-concave and has Lipschitz-continuous gradients;

3. The vector-valued function B(z,y) = (VoK (z,y), —VyK(z,y)) € RE=T% may be split into a family of

vector-valued functions as B = > B, where the only constraint is that each B; is Lipschitz-continuous
€T
(with constant L;).

To solve the problem (6.42)) under the Assumption [§ we can apply the SAGA algorithm from [39].

Algorithm 4 SAGA: Online Stochastic Variance Reduction for Saddle Points [39]

1: Input: Functions (K;);>0, probabilities (7;);>0, smoothness L(m) and L, iterate (xo,yo), number of iterations t, number
of updates per iteration (mini-batch size) m.

—o 1
2: Set A = (max {—32‘;1‘ - 1,2 + %}) ;
3: Initialize w? = B;(xo,y0) for alli € J and W = 3 w?;
i€J
4: forl=1to t do
5: Sample i1,...,im € J from the probability vector (m;);>0 with replacement;
6:
N 0 1 & (1 1,
(zr,u) =proxy S (@, m1) = A L ) (W+ =] v — —w'k ; (6.44)
Hy m k=1 i Ty
7 (optional) Sample i1, ...,%m € J uniformly with replacement;
8: (optional) Compute vy, = By, (2;,y;) for k € {1,...,m};
9:  Replace W =W — 3" {w'* — vi} and w's = vy, for k € {1,...,m}.
10: end for
11: Output: Approximate solution (z¢,yt).
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Theorem 14 (Theorem 2 from [39], Appendix D.2) Under the Assumption[8. After t iterations of the
SAGA algorithm (Algorithm[4) (with the option of resampling when using non-uniform sampling), we have

_ t
. 1 3|7 2 302\ ' .
]EHZt—Z ||2§2(1—Z<max{%,l+P+mu2 IlZO_Z ||2

Remark 4 The constants L, L, u depend on the type of the problem. For more details see Appendix A, D of
the Article [39]. We will define these constants for our problem below.

A

Lemma 5 Let us consider the following special case to the problem (6.42) with M (z,y) = f(z)—h(y), K(z,y) =
LS Giley):
mg =1 T\ .

min max {f(m) + mLG Z Gi(z,y) — h(y)} , (6.45)

zERdz Ry

under the Assumption[@ This problem is satisfy to the Assumption[8.

Proof 1. f(z) is pg-strongly convex, —h(y) is uy-strongly concave, then M(z,y) is (s, y) strongly convex-
concave.

prom%/[(z/,y/) = arg min max {)\M(m,y) + &Hm — z/||§ — &Hy — y’||§} =
zERdz ycRy 2 2

arg min max {A(f(x) ~ h(y)) + 22 )le — 2’|~ B2y — ')} =
zERIr yeRYy 2 2

(argxrélﬂi@ (M@ +E e - aI13}, arg max {~any) - £y - y'll%}) = (proz} (@), prozii(y)

f(z),h(y) are proximal-friendly, then (prom}(z'),promﬁ(y')) is easy to compute, then prozy;(z’,y') is easy
to compute. We have shown that Assumption 81 is fulfilled.
2. K(z,y) = -1 Y19 Gi(x,y) is convex-concave. We have shown that Assumption [2 is fulfilled.

mg

B(z,y) = (VoK (z,y), -V, K(z,y)) = (meic ZGi(w,y)y —VymLG ZGz(m,y)> =
522]VA%@w%*W@K%W)

B(z,y) = >.i"G Bi(z,y) where B; = mLG(VwGi(m,y), —VyGi(z,y)) = mLGVGi(m,y).
For each (z1,x2), (y1,y2):

1 L;
| Bi(w1,22) — Bi(y1,y2)|l2 = —[IVGi(z1,22) — VGi(y1,y2)ll2 < —|[(z1,22) — (y1,92)||2
me me

Then, for each ¢ € {1, mg}, Bi(x,y) is Lipschitz-continuous with constant mL—; We have shown that As-
sumption B3 is fulfilled.
0O

In Lemma [6] we show how the number of iterations in the SAGA algorithm (Algorithm[]) is chosen to find
an (e,0) solution to the problem (€.45) which is understood in the sense of Definition[H].



Accelerated Methods for Saddle-Point Problems 43

Lemma 6 Choose

e <ming ¢ ° ! o <o
’ (4LG+%_'_%)’4(]\/[71”(1‘*)*]1(3;*))2 7 B
Hy Ha
where
* * . . 1 = [3
sup{f(z) + h(y) : (z,y) € B2((z",y"),e)} < M (M is finite), Lg = o ZLG'
i=1
After
Lg 2||z0 — 2"[I3
= 1 .4

N=0 (mg—i— i te, 1) n o (6.46)

the number of iterations of the SAGA algorithm (Algorithm [f]) (with m =1, m; = ZW,L%U and the option of

@ G
resampling when using non-uniform sampling), we have an (g,0) solution to the saddle-point problem (6.43)
under the Assumption [@ which is understood in the sense of Definition [A

Proof 1. Let us define the constants L, L, i for the problem (6.45)). This constants are used in Appendix A, D.2
of the article [39]. For beginning, let us define the operators A(z,y), B(z,y), which used in the Appendix
A of the article [39]. When we compute the prozy,(z’,y’) = (prom}(x/),proxﬁ(y/)), we find (z*,y") such
that:

* * A * *

AOf (") + pallz” —2'| =0 = M—af(w )+ [lz" — 2’| =0,

* * / >\ * * /
=AOh(y") —mylly” =y |=0 = M—ah(y )+ lly" =yl =0.

Yy
Then,
(@) = )@y, where 4= (Los), Lonw).
x Y

Let us define the operator B(x,y):

B@w:(iV£@wfiVﬁmw)

1 & ( 1 1 ) <
B x, = — —V.G; x, ,*_v G x, = B; z,Y),
(2,9) mC; o VeGi(,y), ==Yy Gile,y) ; (z,9)

where Bi(z,y) = = (tvai(m,y), —MiyVyGi(m,y)).
Let us define the constants u, L, L:

(a) p is monotones constant of the operator A. Using that f(x) is ug-strongly convex, h(y) is uy)-strongly
convex, we have:

(A(z) = A=) (= = =) (0f () = 0f(2"))(z — 2') + Miy(ah(y) —Oh(y)y—y) >

llz = 2'lI3 + lly = 'l > ||z — ='||3-

_1
Hax

Then, A(z,y) is y-monotone with p = 1.
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(b) L is Lipschitz constant of B(z,y) with respect to the Euclidean norm, z = (z,%), 2’ = (z/,y’) € R T4

|B(x,y) — B(z',y)||]2 <

1 <&/ 1
g 2 (i 19:6:0) = aGa@ ) + o [94Gute) ~ 936t )
1 <&, (1 1 1 1 2L
<—N"rLi —+—) —J. =L (—+—)<7, S
e ; ¢ (Mz Ky ”z - H2 ¢ pa  py) — min{ue, py}
Then, L < %Lic
min{ g,y }
(0) z=(z,9),2' = (¢, ¢/) € R%=T:
L? = sup o f € HBI(:E y) — Bi(a' y')H2 =
2,2/ ERIz+dy ||z - 2,’/”% i— T4 ’ ’ 2
T o S )~ B )

z, z’eRdw+dU

mG L’L

R ||z— 23 & Z

2,2/ €Rda+dy

1 1
(F |VGi(z,y) — VxGi(x/,y/)H; + 2 |VyGilz,y) — VyGi(2', y/)H;)
x Y

1 1 2 2L%

2,2’ ERIztdy mln{,ux, /j,y}

72 i
Then, L7 < o

2. By the Lemma [ the problem (G45]) under the Assumption [f is satisfy to the Assumption 8 Then, by
Theorem [T4] after ¢ iteration of the SAGA algorithm (Algorithm M) with m =1, m; = mLG and the option
of resampling when using non-uniform sampling, we have

_ t
. 1 317 L2 302\ " .
Ellz: — 2 ||§S2<1—Z(ma><{%,1+ﬁ+7 llz0 — 2|3,

where | 7| = mg and p, L, L are defined above.
Let us define n:

L? 2\ ! L2 -
ﬂ:(maX{M,l—l——Q—l—g—Q}) :(max{?)mc;7 . 3L 2}) )
2 p2 o op 2 " min{pe, py}

t 7
Ellze =25 <2 (1= 1) o = 2713 < 27 H )20 - 273 <

Then,

Then, after

6J

4 2 o *|]12
e
n

iterations of the SAGA algorithm (Algorithm[]) with parameters, which was defined above, we get 2 = (&, §):

Elz— 215 =E (I3 —2"13+ 13- v"I13) <e
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|2 — 2*||3 > 0, we can apply Markov’s inequality:

]E 5 %2
B -2 3 <ey > 1 - BEZEE 5y o
where )
IE 5 %
HE-le <o o mls- <
3

Then, after

4 2 %2 L2 2 K2
N: Zln ||Z0/ lz ||2 =0 ma + i G 5 In ||ZO < ||2
; Y T A=

e
iterations of the SAGA algorithm (Algorithm[]) we can find 2 = (£, ) with probability at least 1 — ¢’ such
that E[|2 — 2*[|3 = E (|2 — 2|13 + [|§ — y*[|3) < ¢&’. Let us suppose ¢ > ¢’
3. Then, with probability 1 — o', 2 € B2(2*,¢), where

Bz (z",¢e) = {z eRE=Td |z — 23 < E} .
Then, with probability 1 — ¢’ by Theorem 3.1.8 from [33] and using that f(z), h(y) are convex, we have:
M — f(=") —h(y"), .

< I

f@) = (@) + h(g) — h(y™) = [f(@) + h(g) — f(") = h(y")] . =272, (6.47)

where
sup{f(z) + h(y) : (z,y) € B2((z",y*),e)} < M (M is finite.)

Let us define
9(z) = max {G(z,y) — h(y)},
yEeR%Y

which is Lg + %é—smooth (Lemma [2) and
w(y) = — min {f(z) + G(z,y)} = max {—f(z) - G(z,y)},
zERdx zERdx
which is Lg + 25—f—smooth (Lemma (). Then, with probability 1 — o”:

Jnax {f(2) +G(@y) —h(y)} = min {f(@)+G(@,9) —h@)} = max {f(7) +C@y) —hy)} =

{f@) + G y") = Ay} +{f(7) + G",y") = A(y")} — min {f(z) +G(z,9) —h(9)} =
f@) = f(@7) +9(&) — g(") + h(§) = hly") + w(§) —w(y") <

- * 7h * ~ * 2L2 ~ * 2L ~ *
MoJ@) =MDy, ||2+(LG+ MG)ux—x ||%+(LG+ MG)uy—y I3 <
Yy T

M — f(z*) — h(y* . 2L% 2L .
O =MD s - s+ (22 + 226 4 220 a7 <
Yy x

g
M S M) s (a1 2 4 285
3 Hy Mz

Choose

4
IS £ I

2 2 ] , O S g,
(1L + L& + Z2) 40T TG") ~ by ))?

! .
e <min{ €,
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¢’ is satisfy the inequality ¢’ < e. Then, with probability 1 —¢’ > 1 — 0o

MM 5 (o 2 2B o
: <

Hy Haz
M — f(z*) — h(y*) g2 ( 2L%, QL%;) ;€ ( 2L%  2L%N
+(2Lg + +—— e =c+|2lgt—+—)e <
2 2(M — f(z*) — h(y*)) By e 2 By e
2 2
‘4 (QLG 4 Ha QLG) ———
2 e e )2 (2 + 2k 4 2i)

‘We have shown that after

L2 2 ]2
N=0 (mG+ G In ||ZO z ||2)

min{ps Y 2

iterations of the SAGA algorithm we get 2 = (&,9)), which is (g,0) solution to the problem ([G45) which is
understood in the sense of Definition [Bl ]

6.3 Preliminaries

In this subsection we formulate three theorems about equivalent optimization problem are used in the loops
of general algorithm of this section.
We can rewrite the problem (G.1)

iy max {£(2) + G(o.9) = b)) = miy { £(0) + max (Glow) — ) | (6.48)

z€Rdz yeRdy @

In the following lemma we show that if we find % is an (€4, 0z)-solution to the problem (6.48) which is
understood in the sense of Definition  and g is an (ey, oy)-solution to the problem max, e, {G(2,y) — h(y)}
then (Z,9) is an (e, o) solution to the problem (5I) which is understood in the sense of Definition [B] where
dependencies €5 (¢), ey(€), 0z (0), oy(c) are polynomial.

Lemma 7 Let us consider the problem (6.48) under the Assumptionll. Let a pair (Z,§) satisfy

1. Z is an (eq, 0z )-solution to the problem (6.4]), i.e. B4) holds.
2. 9§ is an (ey, oy)-solution to the problem max, cga, {G(Z,y) — h(y)},

with

4
S 3 . S S g
ty Hy 7 Ewgmm{m _}, <l o<

: Hy
gy <min ¢ —, ) )
8 T2(Mn — h(y)? 24 (Lo + 25) ALE '3

g
27

where sup{h(y) : y € B2(y*,€)} < My, My, is finite.
Then, (&,7) is (g,0)-solution to the problem (B under the Assumption[d, i.e. ([@2) holds.

Proof We let ¥(z) = max,cga, {f(z) + G(z,y) — h(y)} and note that ¥(x) is ps-strongly convex. Under
Assumption 6] the function f(z)+ G(z,y) — h(y) has unique saddle point (z*,y™). Then, with probability 1 — o
we have

o1 < 2 (max 176+ Gl.0) ~ h)} — iy max (5(2) + Glava) — hw)}) < 222
Mz \yeR%w zERe yeRdy Mo
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We denote y*(#) = arg max, cga, { f(2) +G(Z,y) —h(y)}, then according to LemmaRly*(z) is 2Lg /py Lipschitz
continuous. Since {f(Z) + G(&,y) — h(y)} is py-strongly concave, we obtain that the inequality

N * N %/ A * /A * ok 4e LG ~ *
1913 <200 -y @I+ 20" (@) — v () < 222 4 s (L ) & — "
Yy Y

holds true with probability 1 — o5 — oy. The function f(z) is convex and

o, 4e L . 4e Lo\’ e . .
I —v"I3 < y+s( G) i — | < y+16( G) 2 con e Baly" o),
oy My My My T

2
under assumption % + 16 (%i) %L < &. Then, by lemma 3.1.8 from [33] h(y) is locally Lipschitz continuous
and:

My, — h(y*) ” ~
g

h(9) —h(y™) < 7=y 2,

where sup{h( )ty € Ba(y*,e)} < My, My, is finite. By Lemma 2 w(y) = —mingcpa. {f(z) + G(z,y)} is
La+ ——smooth Let us define #(y) = min, cpe. {f(z) + G(z,y) — h(y)}:

Br7) = (0) = h(3) - 1) + 0(0) ~ wr7) < gy (164 228 g - )

Whence,

min max {f(z) + G(z,y) = h(y)} - win {f(2) +G(2,9) —h(H)} = 2(y") — (H) <

JJERd’:yERy
h 2L% .
Mo~ 5 - y||2+<LG+ L )ny— 12 <

— 2 2 2
M, h(y)\/4€y+l6 ) €w+(LG+2LG) 4sy+16(LG) 2
Mz Hx Hy Hy o

with probability 1 — o, — oy. Then,

Inax /(@) + G(@y) — hy)} — min {f(z) +G(x,§) — h(9)} = Inax {F(@) + G(&,y) —h(y)} -

{f@) + 6" y") = Ay} +{f(@7) + G",y") = h(y")} = min {f(2) +G(z,9) —h(®)} <

2 2
- Mh—h(y) 45y+16 ) €—x+(LG+2LG) 45y+16(Lg) =
Hy M M Ky Hy Haz

Choose

4

) pye iy ety [ eyllapiy € o o

Eygmln 9 w2 ) E;(;Smln{ _}7 O—CCS a5 Uyg a5
8 772 (Mn — h(y*))* 24 (LG + QHL—G) 2 2
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Then, with probability 1 — oz — oy > 1 —0:

Mh—h(y)\/45y+l6 )25—m+(L +2LG) 4€y+16(LG)2€_x B
Hy Ha M Hy Hy Mz |

2 2
£ My — h(y") [4ey + 16 (LG) Ey/éx.“y + (LG + 2L%;) dey + 16 (LG) 5yl;w/ly _
3 € Py ty ) AL H P Iy By ) ALGHe

My, — h(y* 2L\ (8
e M= h(y) 8&+(LG+_G> <ﬂ) <
3 € Hy Mz Hy
e My —h(y* et 2L¢ 8¢
€, Mn—h(y) iy *2+(LG+ c) LR
3 € 11y T2(Mp, — h(y*)) pe )\ 24 (LG n f)
4
In the first inequality, we use €, < %—”{y,sz < £, in the second inequality we use that e, < W,
gy < ——tv .
- 24(LG+%>
2y 416 <LG> - P
Hy Hy Hax Hy
. 4e L 2 £x .
Then the assumption — + 16 (—G) == < ¢ is true. O
fhy by ) b

We can rewrite the problem (6.48])

iy { (@) + max (G(e.9) ~ h)} ) = min max {(2) + Gl) — h(o) =

rERx zERdz yeRdy

min — min {—f(z) - G(z,y) + h(y)} = — max yrélﬂiggy {r(y) — G(z,y) — f(z)} =

zERdz  yecRy

yER*Y

= iy {0+ max (~G(en) - f@))} (649

In the following lemma we show that if we find § is an (ey, oy)-solution to the problem ([649) which is
understood in the sense of Definitiondand Z is an (g4, 04 )-solution to the problem max, cga. {—G(z, ) — f(x)}
then z is an (5;, U;) solution to the problem ([G.48) which is understood in the sense of Definition M and § is
an (g}, 0y,) solution to the problem max, cga, {G(Z,y) — h(y)} where dependencies &5 (€2), €y (€4, €y), 0z (0%),

oy (0;, 0;) are polynomial.
Lemma 8 Let us consider the problem min, cga, {h(y) + max,cga. {—f(z) — G(z,y)}} under the Assumption
[@ Let a pair (£,7) satisfy

1. g is an (ey, oy)-solution to this problem, i.e. BA) holds.
2. % is an (gz,04)-solution to the problem max,cre, {—f(z) — G(z,9)},

with

gr < min

JaEly e tha €l ) < min{uyﬁé Exllafly £y by €;uy}
9 * 27 2 b — 9 2 b * 27
580~ S 16 (L + 22) 2 ALE 3 (M, - b)) 2La
y
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! !
oz . g /
ang, aygmln{f,ay}.

where sup{ f(z) : @ € B2(z*, %)} < My and sup{h(y) : y € Ba2(y*,ey)} < My, My, My, are finite.
Then, & is (¢, 0% )-solution to the problem [B.48) and § is (ey, oy))-solution to the problem max, cgpa, {G(Z,y)—

h(y)}-

Proof We let &(y) = maxgecpa. {h(y) — G(z,y) — f(z)} and note that &(y) is py-strongly convex. Under
Assumption @l the function h(y) — G(z,y) — f(z) has unique saddle point (z*, y*). Then, with probability 1 — oy
we have

L2 2 .
1971 < 2 (s (4(0) - Go.) ~ F@)} ~ miy, max ((y) = Glawy) — F(@)) ) < 25

We denote z*(§) = arg max,ecga. {h(§) —G(z,§) — f(z)}, then according to Lemmal 2™ (y) is 2L¢ /o Lipschitz
continuous. Since {h(§) — G(x,9) — f(x)} is pz-strongly concave, we obtain that the inequality

a * N PPN * /A * 451 LG ~ *
|m—zu%smm—z<mﬁ+zw<m—z<ym2<;—+s(u) TR
holds true with probability 1 — o, — 0. The function f(z) is convex and

de, L . 4de, L . .
||z—x||2<’ui+8(’u—a) g — ||2<Mi+16( G) ;ygs;:,xe&(m,s;).
x x x Y

2
- ) Z—” < gl Then, by lemma 3.1.8 from [33] f(z) is locally Lipschitz con-

My — f(m*) ||£
€l

under the assumption f“’ + 16 (L—G
tinuous and:

_$*||27

f@) = f@@) <

where sup{f(z) : € Ba(z*,e3)} < My, My is finite. By Lemma B g(z) = max,cga, {G(z,y) — h(y)} is
La+ %—smooth. Let us define ¥(z) = max,cga, {f(z) + G(2,y) — h(y)}:
A * A * S * My — z* P * 2L2 ~ *
¥(2) - () = 18) = )+ 9(8) - ata) < LD oo 4 (L 22 o - o

x Y

Whence,

max {f(&) + G(2,y) — h(y)} — max min {f(z) + G(z,y) — h(y)} = ¥(2) - ¥(z7)

yeR% yER% wERx

2
Mf—f(x) 4€x+16 )5_y+(L +2LG) 4€w+16(Lg) v,
My % M Hax oy

with probability 1 — o — oy. The function h(y) is convex and

N " 2e N *
9 —y II§SM—"’§6; = J€Bay*,ey)
Yy

with probability 1 — o, and under the assumption Ey < gy. Then, by Lemma 3.1.8 from [33] h(y) is locally

Lipschitz continuous:
My — h(y"), .

h(9) — h(y") < = 19 —y7l2,
Yy
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where sup{h(y) : y € B2(y*,ey)} < My, My, is finite. G(z,y) is Lg-smooth. Then

(G2, y") — h(y")) — (G(&,9) — h(9) = h(G) — h(y") + G(@,y") — G(2,9) <

h My, — h(y* 2e Lg 2e
M =P g gy 4+ B g - g < MR, 280 Lo 20
& €y Hy 2 iy
with probability 1 — oy,
Choose
4
£x < min Mw€;7 5/14;“06 - E;,uw _ , e, < min { Myfgl’ ECL‘)U’CCQ)U’Z/, Eé/ Hy - E;/:uy }

/ /
(o2 . o 1
ang, aygmln{f,oy}.

Then, with probability at least 1 — oy — oy > 1 — 0,

My — . &\ ([ 4dez L
— E,f( )\/45 +16<LG> ;y+<LG+2jG)<; +16< G> E—y>§

P Hy

Mf*f(m ) 45:6 )sz/ly/lx + (LG+2 %J) 4&+16 (L_G)ng'“?hux —
Haz 4L2(;/1'y K

Haz Haz 4L2(;/1'y

Mf —fe NE (L n 2Lc) (8&) <
€z Hax Hy Ha
My — * 14 2L2 !
f /f(‘r ) 851 Hax o <LG + G) Ssm:uﬂc = —c.
& pa32(My — f(x)) ty 11216 (LG + QH—G)

v

. . Exlally - . . Ef,uw
In the first inequality, we use g4 < 2Lz, i the second inequality we use that e, < 732(1\@7““))2, ex <
€l b

T -
16( 2LG)
Hy

2
Then the assumption 4% + 16 (L—G)

I:|m
S S
I

With probability 1 —oy>1-— 0

My — h(y ) Mh - h(y ) ity Egﬂy ’
+ L =c
uﬁﬂh—h@)) N g

in this inequality we use that ¢, < W, gy < 2”;:.

2&<25€yﬂy_/
Py 2y

Then, the assumption =u < gy is true.
Hy
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In the following lemma we show that if we find (£,9) is an (g,0) solution to the problem (B.I) which is
understood in the sense of Definition[Blthen § is an (ey, oy)-solution to the problem ([6.49) which is understood
in the sense of Definition ] and & is an (g4, 05 )-solution to the problem max,cge. {—G(z,§) — f(x)} where
dependencies e(ez, ey), 0(04,0y) are polynomial.

Lemma 9 If (£,9) is (¢,0)-solution to the saddle point problem (B under the Assumption [8 which is un-
derstood in the sense of Definition[d, with

4
. Exlx Exlhx Exlha .
sgmm{sy, 5 2Lg’8(Mff(m*))2}’ o <min{osz, 0y}

where sup{ f(z) : € B2(z",e2)} < My, My is finite.
Then,

1. 9 is (ey, oy)-solution to the problem min, cpa, {h(y) + max,epa. {—G(z,y) — f(z)}};
2. & is (eg,0z)-solution to the problem max,cpi. {—G(z,§) — f(x)}.

Proof (&,9) is (e,0)-solution to the saddle point problem (B.I)) which is understood in the sense of Definition
Bl then:

Jax {f(2) + G@y) = hy)} = min {f(@) + G(@,§) —h(H)} = max{f(@) + @ y) —hy)}-

{f@) +GE"y") = hy)} +{f(@7) + G",y") = h(y")} = min {f(z) +CG(z,9) — h(@)} <e,

with probability 1 — o, where (z*,y™) is a saddle point of this problem. We have shown, that

1. & is (g, 0)-solution to the problem min, cga. { f(z) + max, e, {G(z,y) — h(y)}};
2. 7 is (e,0)-solution to the problem max,cga, {—h(y) + mingepa. { f(z) + G(z,y)}}.

Choose € < €y,0 < 0y. Then, with probability 1 —o > 1 — gy:

M) + max {=G(@,§) = f(@)} = min {h(y) + max {=CGlw.y) - f@)}} =
max {h(§) — G(z,9) = f(2)} + max {~h(y) — max {-G(z,y) - f(2)}} =
rERdz y€ERy rERdz

— i {=h(@) + Gl 9) + f@)} + max{=h(y) + min {G(z,y) + fl@)}} =

{f(@) + G2 y") = hy")} = {=h(g) + min {f(z) + G(z,9)}} Se < ey

we have shown that § is (ey, oy)-solution to the problem min, cga, {h(y) + max,cga. {—G(z,y) — f(z)}}.
% is (g, 0)-solution to the problem min,cga. { f(z) + max, cga, {G(z,y) — h(y)}} and under assumption
this problem is p, strongly convex. Then, with probability 1 — o

. ¥ 2 . . . 2e
o~ < 2 (0) + max (Go) ~ A}~ miy (7o) + max (Gla) ~ ) ) < 2 <,
Ha yERM rERx yERM Hax
under the Assumption 2—5 < &z. Then, & € Ba(z",e5). The function f(z) is convex and by Lemma 3.1.8
from [33] f(x) is locally Lipschitz continuous:
My — f(=), .«
=g — e,
x

f@) = f@@7) <
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where sup{f(z) : € B2(z",ez)} < My, My is finite. Using that G(z,y) is Lg-smooth, we get:

{=G",9) = f(a")} = {-G(&,9) - f(@)} = (&) - f(z") + G(2,9) — G(z",7) <
Loys oo < Mo S [2e | Lo 22

M — f(z*), . N
Mﬂx—m ll2 +
Ex Ex Ha 2 Ha
Choose
4
: ExMz Exla ExHa .
€ < min q &y, , , , < min , .
= { VT2 LG 8(Mf—f(x*))2} o < min{os, oy}
% < 2oalta = €z,
Mz bz

then the assumption z—i < gz is true. Then, with probability 1 —o > 1 — g,

My — f(z¥) [2¢ L Lel < My — f(z¥) 2e4 o b LSt
Ex Hx bz Ex Sﬂw(Mf - f(m*))Q 2Lg iz ’
4
in this inequality we use that ¢ < Z—TL“%,E < W_‘% We have shown that & is (e, 0z)-solution to the
problem max,cga. {—G(z,9) — f(z)}. ' O

6.4 Accelerated Proximal Method for Saddle-Point Problems

In this subsection we describe in detail the resulting structure of our algorithm for the setting of this section
which consists of three loops. In the first two loops we apply the Catalyst algorithm (Algorithm[3]) with different
value of parameter H (H; and Ha> respectively) which defines its complexity. In the third loop we apply the
SAGA algorithm (Algorithm M) and we choose the number of iterations which depends on Hi and Hs. In the
end of this subsection we choose the value of these parameters. Further, in each loop we have a target accuracy
€ and a confidence level o which defines the required quality of the solution to an optimization problem in this
loop. These quantities define the target accuracy and confidence level for an equivalent optimization problem
in the next loop using lemmas and theorems were proved in the two previous subsections. Our algorithm in this
section has logarithmic dependence of the complexity on the target accuracy and confidence level (see Theorem
[I5). We hide such logarithmic factors in O notation. We conclude this section with the main Theorem [[5 which
gives the complexity estimates of the proposed algorithm.

Loop 1. The goal of the Loop 1 is to find an (e, 0)-solution to the problem (5.} under the Assumption [@]
which is understood in the sense of the Definition fl By Lemma [{] we find an (g, 0)-solution to this saddle

problem, if we find &, which is (5&1), 0;1))—solution to the minimization problem

zER4x

min {f(z) + max (Gavy) - h(y)}} (6.50)

under the Assumption [l and ¢, which is (5,(,1), oél))—solution to the problem

ma (G(,y) ~ h(y) (6.51)
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under the Assumption [6] we choose (sg ), 0;1)) = (poly(¢), poly(o)), (8731), aél)) = (poly(e), poly(c)) which
satisfy the following inequalities:

4 (1)
6;1) < min { H¥% € Hy - Ely — o e < min %75 o dW<Z <1> <Z
8 " 72(My, — h(y*))* 24 (LG + TG) ALg, '3

where sup{h(y) : y € B2(y*,e)} < My, My, is finite. To solve the problem (G.50) under the Assumption [@] we
would like to apply the Catalyst algorithm (Algorithm B]) with

p(r) = tnax {G(z,y) —h(y)}, ()= f(2). (6.52)

2
By Lemma 2] the function ¢(z) is convex and has Lg + EG -Lipschitz continuous gradients, where Lo =

mlG dome LG and the function ¢(x) is psz strongly convex. Then these functions are satisfy the Assumption
[[l This allows us to apply the Catalyst algorithm (Algorithm B to solve the minimization problem (6.50).
We apply this algorithm with absolute accuracy and parameters H = Hi, which will be chosen later, u =

L (8&1) (5&1)) Uglk) (ES),JS)))DO according to the Theorem [I3] where egk) = poly( (1 )) and 0(1)

poly (s&l), aél)) We need to find g is an (Eglk) (E&l)) ,0&) (5&1), U;I)))—solution to the inner problem with

the inner method M in each iteration of the Catalyst algorithm. For the particular definitions of ¢, (6.52)
in this Loop, this inner problem has the following form:

. H
Zr = arg min {f(m) + max {G(z,y) — h(y)} + —1||x Tt 1||2} (6.53)
rERx yERM 2

Below, in the next [paragraph ”Loop 2’| we explain how to solve this auxiliary problem to obtain an
(eglk) (5&1)) ,O‘;lk) (s&l), ogl))) solution to the problem ([6.53) and an (s,(,l), 0751)) solution to the problem (G.51)).
To summarize the the Assumption [7 holds and (sfclk) (5(1)) ,J(? (5&1),05(81))) are satisfy to
k>0
631) and ([632). Due to polynomial dependencies eV = poly(e),o M = = poly(o) we can use the notation
O(+) in the number of iterations of the Catalyst algorithm (AlgorlthmIEI) Then, we can use the Theorem [I3]
to guarantee that we find (5&1), ot )) solution to the problem (E50) in N7 = (max {1 1/%}) number of
iterations of the Catalyst algorithm (Algorithm [3).

Loop 2. The goal of the Loop 2 is to find an (eglk) (s&”) ,O‘;lk) (s&l), 0;1)))—solution to the problem (6.53) and

an (8751),0751)) -solution to the problem (6.51]). By Lemma[8 to find these solutions, we need to find ¢ is an

( (2) _(2)

€y ,0y ) -solution to the problem

min {h( ) + max {—f(x) —G(m,y)}} (6.54)

yERY rERx
where f(z) = f(z) + &)z — 27"% |3 under the Assumption B and Z is an (55(82), 0;2)) -solution to the problem
max {—f(ac) - G(z, g)} , (6.55)
zERz
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under the Assumption[G we choose (5&2),0;2)) = (pOIy(e;),poly(U;)), (5,82),0752)) = (pOIy(Eg,Eg),poly(oﬁc,aé))
which satisfy the following inequalities:

(e + Hr)ely e (pa + Hi) ey (pe + Hi)

5&2) < min

) ) f 2 212 )
32 (M; — fan))" 16 (L + %)

? < min HyEy Ef)(uz + Hi)py 5;4“1/ Eylty

v 27 AL, "8(Mp —h(y*))? 2L [’

/ /
o . [o
af) < 79”, 052) < mln{ z a;},

(h, ) = (Egclk) (E:(cl)) Lol (8561)’09(61))) (o) = (51(11)7‘73(/1)) ’

where sup{f(z) : z € Ba(z*,e%)} < M; and sup{h(y) : y € Ba(y*,ey)} < My, My, My, are finite.
To solve the problem ([6.54) under the Assumption [6] we apply the Catalyst algorithm (Algorithm [B)) with

o) = max {=10) ~ Glep) - o418} wie) = 1) (6.56)

zER4x

2
By the Lemmal[2] the function ¢(y) is convex and has Hq +LG+25—EG—Lipschitz continuous gradients, where Lg =

mLG >ore L& and the function v (y) is 1ty strongly convex. Then, these functions are satisfy the Assumption
[[l This allows us to apply the Catalyst algorithm (Algorithm [B) to solve the minimization problem (6.54]).
We apply this algorithm with absolute accuracy and parameters H = Ha, which will be chosen later, u =

Ly s (5&) (55,2)) ,aéi) (53(,2),03(,2))) according to the Theorem [[3] where 5&) = poly (55,2)) and ag(li) =
k>0

poly (53(12), 03(,2)). We need to find an (sgﬁc) (55,2)) ,aéi) (53(12), 05,2)))—solution to the inner problem with the
inner method M in each iteration of the Catalyst algorithm. For the particular definitions of ¢, (6.50) in this
Loop, this inner problem has the following form:

. H H
Yk = arg min {h(y) + ma {—G(z,y) — flz) — =z — xL”:ﬁH%} + =y — yz”:ﬁu%} . (6.57)
yeR% xrERx 2 2

Below, in the next [paragraph ”Loop 3’| we explain how to solve this auxiliary problem to obtain an
(eﬁ) (5,82)) ,U,(j,) (8732), 0752))) solution to the problem ([6.57) and an (5&2), 0;2))—solution to the problem (G.55).

To summarize the the Assumption [7] holds and (sgﬁc) (5&2)) Lol (5&2),03(,2)))k> are satisfy to
0

©31) and ([©32), due to e = poly (5&1)) = poly (¢), oft) = poly (5&1),0;1)) = poly (¢,0) and 55,1) =
poly(e), 03(,1) = poly(o) dependencies 55,2)(5,0), 0352)(5,0) are polynomial and we can use the notation 6()
in the number of iterations of the Catalyst algorithm (Algorithm B]). Then, we can use the Theorem to
guarantee that we find (87(42),0732))—501uti0n to the problem (654) in Ny = 19) (max {1, \/ ZI—;}) iterations of

the Catalyst algorithm (Algorithm []).
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Loop 3 The goal of the Loop 3 is to find an (E,SE,) (8732)) ,U,(j,) (8732), U,(f)))—solution to the problem (6.57) and
an (85(62),0'9(52)) -solution to the problem ([G.55). By Lemma [ to find these solutions, we need to find (&, ) is

an (€®),6)-solution to the saddle problem

min max {f(m) + G(z,y) — ﬁ(y)} , (6.58)

z€Re yecRYY

under the Assumption [6] where
sN Hy md 2 3
f(x)—f($)+7||$—$k—1||27 h(y )—h(y)+—||y i3,

we choose (5(3), 0(3)) = (poly(ez, ey), poly(os, 0y)), which satisfy the following inequalities:

e® < minle €olta + H1) ealpta + H1) Ei(MerHl) o <min{oz,0y}
ST 2 T 2e sy ezt T T
!
o) = (2.02) . (epon) = (2 () .ol (.017))

where sup{f(z) : z € Ba(a*,e)} < M;, M; is finite.
To solve the problem (6.58) we apply the SAGA algorithm (Algorithm M) with:

M(z,y) = f(z) = h(y), K(zy) = G(z,y). (6.59)

f(x) is puz + Hi-strongly convex, B(y)) is py + Ha strongly convex. Then, the Assumption [(]is true for this
problem. By Lemma [ the Assumption B is true for this problem, this allow us to apply the SAGA algorithm
(Algorithm []) to solve the problem (6.58]). We apply this algorithm with parameters:

L, _ 2L

Kia:, :—Gia:, ; T, = rery , L=L= " ; m:1,
(@) (@,y) S’ L min{us + Hi, pry + Ha}
where Lg = mG yome LG and number of iterations
4 2l|z0 — 2"|I3 L 2]lz0 — 2"|3
N = —1 _— = O 1 5
3 "17 n e'o’ me + min{pa + H1, piy + Ha}? n e'o’

where

B (max {Bmg 3L% })‘1
= 2 7min{l‘m+H17ﬂy+H2}2 '
Choosing (¢’,0’) according to the Lemma[Bl where (g,0) = (5(3), 0(3)) and ¢ = poly(¢), o’ = poly(o).

To summarize the [Coop 3] the Assumption [§ holds and (5/ (8(3)) o' (0(3))) are satisfy to (B) and (IE{ZI)

due to ef?) = poly (g,0), o = poly (e, 0), eg(,i) = poly(e (2)) = poly(e, o), Ug(li) = poly(sy , 0y )) =

poly(e,o) and 5( ) = = poly (5&2),5&)), 3 — = poly (a; ),aék)) dependencies 5( )(5,0), 03(13)(
nomial and we can use the notation O() in the number of iterations of the SAGA algorithm (Algorithm []).

Then, we can use the Lemma[f] to guarantee that we find (5(3), 0(3))—solution to the problem (G58) in

-~ 12
Nz=0 & )
’ @m+@mM+mwwﬂm2

g,0) are poly-
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iterations of the SAGA algorithm (Algorithm M]). In each iteration of the SAGA algorithm (Algorithm @) we
make no more than mA3 = A3 the number of oracle calls of V.G(z,y), VyG(z,y) and calculations of proximal
operator for the functions f(z), h(y).

To summarize these 3 loops we can formulate the following main theorem of this section:

Theorem 15 Suppose saddle problem of the form (Bl under the Assumption[d and supposition that prer/ma <
Lg and py/ma < Lg . Then we can find the (e, 0)-solution to the problem [(L2) and evaluate the number of
oracle calls. Namely, after 8 loops of Algorithm from Section[6.2 one can obtain next estimates on the number
of oracles calls of VoG(x,y), VyG(x,y) and calculations of (L) for functions f(x) and h(y):

~ mgL%
0] (’/—uxuy ) . (6.60)

Proof Step 1. Polynomial dependence. In we find Z is (55(81), J;(cl)) solution to the problem (6.50),

where (55(81), 0;1)) = (poly(¢), poly(c)). We solve this problem with Catalyst algorithm and by Theorem [[3]

we can find & after

Ni=0 (max{l,ﬂ}ln %) =0 <max{1, &}lnl) =0 (max{l,ﬂ})
Ha g;) Ha € Ha

the number of iterations of the Catalyst algorithm (Algorithm B) we find Z is (E&l),aél)) solution to the

problem (G50).
In [Coop 2 we find § is (8732), U,(f)) solution to the problem (6.54), where

(5,82), 0,32)) = (poly (sgjlk),sgl)) ,poly (a&),aél))) .

=) = poly (=67) = poly () o) = poly (=1, 04") = poly (=,0)

eV = poly(e), o) = poly(a).

Then, dependencies 5,(,2)(5, o), U,(f)(s, o) are polynomial. We solve this problem with Catalyst algorithm and

by Theorem [I3] we can find § after

Na=0 max{l,é}lni2 =0 (max{l,é}lni) =0 (max{l,ﬂ})
Hy 5,3) H2 €o Hy

the number of iterations of the Catalyst algorithm (Algorithm [B) we find ¢ is (8732)70752)) solution to the

problem (G.54]).
In [Coop 3| we find (£, §) is (5(3), 0(3)) solution to the problem (6.58), where

(5(3), 0(3)) = (poly (5&2),5?(3) ,poly (af),aﬁ))) .

séi) = poly (5732)) = poly (¢,0), aﬁ) = poly (5732), 0732)) = poly (¢,0)
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) =)poly (5;1,3, Uéi)) = poly( M) él)) = poly (¢,0),

“%aé”)

ot = poly(al})) = poly (< =) =poly (e, 0).

Then, dependencies £ (e,0), 0(® (g, ) are polynomial. We solve this problem with Catalyst algorithm and
by Lemma [6] we can find (Z,g) after

L% 1
N3 =0 |mg+ =
’ ( N (min{pe + Hi, Hy"‘HQ})Q 5&3)03(/3)
- In— ) =0(mag+ -
(min{pz + Hi,py + Ha})? - €0 ¢ (min{pe + Hi, 1y + Ha})?

O<mg—|—

the number of iterations of the SAGA algorithm (Algorithm [)) we find (&, 9) is (5753), 0,53)) solution to the
problem ([G.58]).

Step 2. Final estimates. We make oracle calls of V,G(z,y), VyG(z,y) and calculations of proximal
operator for the functions f(x) h( ) only in [Loop 3] and we make it no more than mA3 = A3 times in each
iteration of the SAGA algorithm (Algorithm H]). Then, after 3 loops of Algorithm from Section one can
obtain next estimates on the number of oracles calls of V.G(z,y), VyG(z,y) and calculations of prox;\;(m'),

prox;(y'):
- H\\ = He 5 Le
O(max{l7 E})-O(max{l, M_y}) 'O<mG+min(H1+,ux,H2+,uy)2)'

Choose Hi = max {pm, \/m_c} H; = max {py, Lnfc} then:
0 <max{ }) 0 1 Lit] O (mg+ Lé ) <
Vo oy T min(Hy + o, Ha + )2 ) =

~ La ~ 1 1)?
) 1. /=& U}, L <
O(max{ , My\/m_G}> O(mGJr Gmax(H1 Hg) )_
Lg ( 2 mc)
max{ 1, ——— O (m + L =
( { Hy /e }) R
- La ~
. max<{ 1, ——— -O(mg) =
~ 3 3 Lo/ ~ 2
O | max{ ma, mk L_G7mé L_GycimG -0 melg
Ha Hy  y/Hz by K by

<Y n;G, in the last equality we used that pz/mqg < Lg and

In the second inequality we used that

Hyv/ma < La.

To compute
. H H @
proxj‘g(m/) = arg min {)\ <f(x) + 71||x - x/||§) ! +M |z gc/||§} =
©€Rda

€Rd
. H Hy +

11
Hy Hy
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and

HQ H2 +
proz},(y') = arg max {A <—h(y) -5y - y'||§> i By |y — ?/II%} =
yER

. Hy  Ha+ py 2
arg min, {h(y) + <7 t= | ly =yl

we should compute (L8] for the function f(z) with ¢; =0, c2 = % + LQ';”—T and (L.8) for the function h(y)

with ¢1 =0, c2 = % + % Then, after 3 loops of Algorithm from Section [6.2] one can obtain next estimates
on the number of oracles calls of V,G(x,y), VyG(z,y) and calculations of (L8] for functions f(x) and h(y):

6 'ITLGL%
P by

7 Conclusions
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A Proof of Theorem (1]

In this Appendix [A] we rename the sequence of points (z?d, zz, x) (see listing of the Algorithm [ to (Zx, yx, k). We use
the following definition to simplify calculations.

Definition 6 Let (506,%; (z), Ves,L, (z)) be a (9, L) - oracle of function ¢ at a point x, then 21,51, (¢, z, ) is the following
linear function of z:

2151, (p,7,2) = w51, () + (Vs L, (2),2 — ) (A1)
To prove the Theorem [I] we need the following Theorem [[6, which is based on Theorem 2.1 from [4].
Theorem 16 Let (yi)r>1 — be a sequence in RY, and (Ax)k>1 — a sequence in Ry. Define (ag)p>1 such that A\ Ay = a2

and Ay = Zle a;. Define also for any k > 0,z = xg — Zf:l ai(Veos,L, (¥i) + Vibs 1, (yi) and Ty, := Z’:rll Tk + ﬁyk.

Finally assume if for some o € [0, 1]
k1 = @ = Me+1(Ves,, Wrt1) + Vs,L, et O < 0 llyk1 — Zxll, (A.2)

then one has for any x € RY,

k k-1
Flu) — Flo) < 2= 20l <Z Ai> 82/ Ay + 61 + (Z A¢> 51/A , (A.3)

245 i=1 i=1
To prove this Theorem we introduce auxiliaries Lemmas based on lemmas 2.2-2.5 and 3.1 from [4].

Consider a linear combination of gradients:

k
oy =0 — > ai(Ves L, (vi) + Vs L, ()

=1

where coefficients (a;);>1 > 0 and points (y;);>1 is not defined yet. A key observation for such a linear combination of gradients
is that it minimizes the approximate lower bound of F'.

Lemma 10 Let &(x) = §llo — o||* and define by induction & (x) = &—1(x) +ax (2151, (0,98, 7) + Pisn, (b y, 7)) =

Ek—1(2) + ap 1,25, L, + L, (F, Yk, ). Then oy = z0 — S ai(Vesr, (vi) + Vs, L, (yi)) is the minimizer of &, and §x(x) <
AR F(z) + %Ha} — xo|2 + Apd1, where Ay = Zle a;.

Proof Since & (x) is strongly convex and smooth then expression

Vén(z) =0 (A4)
is the criterion of minimum.
The sequence xj, is satisfied
b 1
Ve (o) =V <[Z @i821,26, L+ Ly, (B Yk, @) | + S lloe — $0||2> = (A.5)
i=1
k
= {Z a; (Vﬁoé,Lw(yi) + Vs, (yi)) +zp — w0 = 0. (A.6)
i=1
Therefore, xj, is a minimizer of the function &;. Let us prove now that
91’26’L<P+L1/1 (F7 Yk, Z‘) S F(Z‘) + 61' (A7)
From the definition of 91,26,L¢,+L¢ (F,yk,z) we obtain
.25, +Ly (B Uk, @) = Fas, 41, (W) + (VE2s 0,41, (Ui), T — ys) < F(z) + 61 (A.8)

Using & (z) = [Zle aif21,26,L,+L,, (F, yk,z)] + %Hz — z9]||? we obtain the statement of the theorem. O
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The next idea is to produce a control sequence (zx)x>1 demonstrating that £ is not too far below AgF. From this we can
directly yield a convergence rate for zj.

Lemma 11 Let (zx) be a sequence such that

i=

k k=1
E(zr) — ApF(21) 2 =2 (Z&) b2 — <Z Ai> 1. (A.9)
1 =1

Then one has for any x,

_ 2 k k—1
F(z) < F(z) + % +2 (Z A¢> 82/ Ap + 61 + <Z Ai> 51 /Ay . (A.10)
k i=1 i=1

Proof Using Lemma [[0] we obtain

i=1 i=1

k k—1
1 2
< ApF (@) + 5 llz = wol|* +2 (2_; A¢> 5o + <2_; Ai> 81 + Apdy . (A.12)

k—1 k—1
ARF(21) < &lap) +2 (Z Ai> d2 + <Z Ai> 61 < &(x) +2 <Z Ai> d2 + <Z A,-> 5 (A11)
i=1 i=1

Our aim now to get sequences (ax, Yk, 2% ), satisfying (A9).

Lemma 12 One has for any x,z;, € R and k € N

Ekt1(®) — App1 F(yry1) — (E(zr) — ApF(2x))

Ak+1 T+
Agia Agia

1
> Ar+1(Ves,L, Wet1) + Vs L, (Uk+1), 2k — Ykt1) + 5||z —ap||? = 2431182 — Apdy .

Proof Firstly from H (&) = I using that xj is a minimizer of £ (z) we get

4(2) = &ulan) + 5 llo — i,

and
1
Se+1(2) = & (2p) + S llw — ok ll® + arr1 21250+ L, (Fy Yk 41, )

we can rewrite this as follows
1 2
Ek+1(2) — &k (@k) = ap+1921,25, L, +L,, (F) Y41, @) + 5|IJ»‘ -zl (A.13)

Now using (2.4):
225,00 +Ly (B Ykt1,26) = Fos,n,+ L, Wkt1) + (V25 Lo+ L, (Ykt1)s 2 — Ypt1) < F(zx) + 01 (A.14)

we obtain:
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191,26, Lo+ Ly, (F Y41, @) = App11,25,0,+ L, (Fy Ykt 1, @)
— Apf126,,+L, (FYkt1,®) = Akp181,25, 0, + 1, (F) k41, @)
— A(VFas,,4L, Wt1),® — 21) — ApS1,25, L+ Ly, (Fy Yk, 2)

Apg
= Ap4191,26,L,+L,, (F,ykﬂwa

. (z— Zk)) — Apf1,265, L+ Ly, (B Ukt1, 21)

Agia

(x - Zk)) — Yk+1)

= App1F250,4L, Wkt1) + Aer1(VFos, 0,4+, (Ukt1), (93

(r:we!)
ApSh 26, Lp+L, (F Ykt1,28) 2 App1Fosno4n, (Wkt1) — ApF(zr) — Agdy

Ap41

k
+ Ar+1{Ves L, Wr+1) + V5,1, (Yr+1), 2k — Yk+1)
+ Lo Ukt v Wet) 2 Apit +
D
> Api1F(Yr+1) — 2Ak4102 — ApF(21) — Ardr
ag+1
+ Aep1(Ves L, (Urt1) + Vs L, (rt1), 7 + 2k = Yk+1)
Agt1 Ag1
which concludes the proof. O
Lemma 13 Denoting
2
a
Aot o= Akﬂ (A.15)
k+1

Qi1
Agt1

- A
and Ty = T + Tilyk, one has:

Skr1(Tht1) — Apr1 F (Yer1) — G (zr) — ApF(yx)) 2

Apg 5 5
ﬁ (||yk+1 — &l1? = vk 1 — @ — A1 (Vs L, (Wkt1)) + Vs L, (yk+1))||2) — 2Ap4102 — Adr .
+1

In particular, we have in light of (A2)

2 k

A, k k=1
> - a2 (o) o= (T4 o
v i=1 i=1

€ on) — ApF(yp) > =

=1

Proof We apply Lemma [[2 with zj, = y), and @ = 2,1 , and note that (with ¢ := Z’;—ﬂx + AI:«,L Yk):

2
llz — 2l

Qg1 k 1
Yk — Yk+1) +
Apt1 Agy1 2441

Sl (¢o Ry ) -
Qg1 Agy1

- ap41 Apg
¢— ( T + yk)
Apg1 Apg1

(Veos,L, Wet1) + Vs L, (Ukt1),

2

= (Ves,n, Wkt1) + Vs, Wkt1),C — yky1) +

24k41

2
Agi1

2
2ak+1

= (Vs Ly Wkt1) + Vs L, (Wkt1),C — Yrp1) +

This yields, using (AI5):
Eht1(@k+1) — Apr1F Wrt1) — Ex(zx) — ApF (yx))

- A I
> Apgr - (Vs L, (Wht1) + V5L, (Wrs1)) € — Ukg1)) + —zfl € — &kl|? — 2451182 — Ayby
+1

> Aggr - n;]iknd {(V%,% (Wr+1) + Vs, L, (Y1), @ — yrt1) + [l — ’ikll2} — 2Ag 4102 — Ayl .
T

2A k41
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The value of the minimum is easy to compute. Due to the strong convexity of the minimized function and its continuous
differentiability, achieving a minimum is equivalent to the condition

0=V [{Ves,L, Wk+1) + Vs 1, (Uk+1), T — Y1) + o — & =
22X k41
= (Ves.L, Wht1) + V5.1, (k1)) + — (2 — Tk)
k+1
Then
T =T — Aet1(Vos o, (Wkt1) + VoL, (Ykt1))
Substituting into the last inequality we obtain the statement of the theorem. [}

Proof of the Theorem
Using Lemma [[3] we get

2 k

) k—1
> %llyi — &> -2 <Z Al-) J2 — <Z Ai> 61
1 - -

=1

€on) — AuF(yp) > =

Applying Lemma [[T] for zj = yz one has for any = € R%:
2 — ol - S
F(yy) — F(z) < T+2 ZAi 02 /Ag + 61 + ZAi 61/Ak, (A.16)
k i=1 i=1
O

that conclude the proof.
Now one will formulate the sufficient condition (28] for the accuracy of solving auxiliary problems (ZI)). Let us assume,
that auxiliary problems (2.) can not be solved exactly. Let the algorithm only have an inaccurate solution yi11 satisfying

- H -
@9 :|Iv (91,5,% (0, Zr, Y1) + 5 lyg+1 — xk||2) + V5,0, Wet1) |l

lyk+1 — Tkl — 24/202 L

<

el

in this case:

Lemma 14 Assume that ¢(x) has (6,Ly) -oracle, y(z) has (8, Ly) -oracle and the auziliary subproblem X)) is solved
inezactly in such a way that the inequality (Z8) holds. If

H > 2L,
then equation (A2) holds true with o = 7/8 for ). In the case p =1 one can consider Ap11 = A = %
Proof Using that ¢ is equipped with a (8, L) -oracle and Corollary 4.2. from [J] one obtains:
IVes,,(¥) = Vyis L, (02 9)l < Lolly — 2 +21/2Ly02 . (A.17)

By 38) and (AI7) we can get next inequalities:

lye+1 — (@r — A1 (Vs L, Wrt1) + Vs, L, (Ye+1)))|]

= lYk+1 £ M4 1Vy 1,5, (0 i, Yrr1) £ HApr1 (k1 — Tie)

= @k — Me1(Veos,L, Wkt1) + Vs,0, e+ 1) < (1 = HApp )l (Wr1 — Zi)ll

+ Mt 1lVy 216,10, (0, T, Ykt 1) + H(yrrr — L) + Vbs,n,, (Urt1)ll

@9, (&1D
<

+ M1l Vs L, (Wrt+1) — Vy$1,5 L, (0, Tre, Y1) (1 = H \pr ) yrg1 — Zxll

H N -
+ Ak+11 lvk+1 — Zrll = 2Ak11v/2Lp02 + Apy1 <L<P||yk+1 — Il + 2\/2L(p62>

5 Ly, 7
< (2422 — < -
< (8 + 2H) lye+1 — Zell < 8||yk+1 Z||
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that ends the proof. ]

Recall from Lemmal[ITlthat the rate of convergence of AM{Ilis ||zo —z*|| /A +2 ( le Ai) d2/Ak+61+ (Zf;ll Ai> 61/Ag.
We now finally give an estimate of Ay:
Lemma 15 Suppose H > 2L,. Then one has, with c1 =4,

k2
A >
c1H

(A.18)

Proof In case, when p =1 Ap4 are defined as

1

Aes1 = 37

Inequality (AI8) holds when k = 1.
Let us proof that if (AZI8) holds for k then it holds for k + 1. Using the definition of Ay

Met1 + 4/ Ahpq 414

2

k2 1 16k2 (k+1)2
Apg1 > ot [T 14— ) >
b+l = 201L(p 8L(p c1 - 201L(p
Proof of the Theorem [1I

To prove the Theorem [I] it suffices to combine Lemmas [T4I[T5] with Theorem

41 = y A1 = Ap + ag1,

we obtain

B Proof of Theorem

In this Appendix [Bl we rename the sequence of points ($Z7’d, $}i, xy) (see listing of the Algorithm[) to (Zx, yk, Tk)-

Proof Firstly, let us choose ¢ according to (Z10):

k k—1
Vk: 8y + 0n +2 (ZA,) 82 /Ay, + 2 (Z Ai> 81 /Ax < %

i=1 i=1

where ¢ is solution accuracy in terms of F(z) — F(z«) < e.
Then, as £/2 < c1 HR? /k? with ¢1 = 4, next inequality holds true

k k—1 qHRQ
Vk:o1+0a+2 (> A | 02/Ar+2( D A ) 61/Ax < ot

i=1 i=1

From (4, L, p) - oracle definition (Z8) we get

Bl 2l = 81 < F() — (Fop(ea) + (Vs e 2~ 2.)) = (B.1)
= (F(2) — Fs,1,, u(2+)) + {OF (x+) — VEs 1,1, (T+), 2 — T2) — (OF (24), 2 — T) <
< (F(2) = F@2) + 62) + V3Rl — ]l
Therefore " 9
“ 0l ~ VIRLNz 2l < (F() — F(aa) + 01 4 02).
If 6 is small enough such that

4+/202 L
SVEEE <),
“w
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then taking into account that V& : e/2 < ||zx4+1 — @«|| we obtain

Vk %sz_,_l — z|? > V202 L 2011 — ], (B.2)
which implies the following inequality
Ellzn = a2 < (F(21) = F(22) + 61 + 82). (B.3)

Finally, we can conclude that Ry decreases as a geometric progression:

4(F(zpy1) — F(zs) + 61+ 62) ) 3

E3)
Rit1 = |lzk41 — o+l < "

c1HR? _
e (4 ( SRR (Zle Ai> 81 /Ay, + 2 (25:11 Ai> 82 /Ay, + 61 + 52)
<

o

4 2c1HRS 2 1 1
@I N7 _ <SCIHR§>2 @ <R§>2 Ry,

" uNZ2 22

Which in turn guarantees that

pR3
Fzx) = Flex) < - (B.4)
2
It is sufficient to choose K = 2log, ”4—120 in order that F(zp) — F(z«) <e.
Now we compute the total number of AM steps.
K K 1 K 1
32c1H \ 2 32c1H\ 2
Sy (B ar ey (B Lk
k=0 k=0 K k=0 K
1
32c1H\ 2 128H R2 H R2
- (L)z K+ K= (1/— +1> 2log, B0 < <16\@F+2> log, X0
o o 4e o €
O

C Proof of Theorem [3l and Theorem []
The Theorem [Bl show that the fulfillment of condition (2.6]) keep the linear rate of convergence when solving the auxiliary

problems (ZH)). Also in this Appendix [C] we rename the sequence of points (zﬁ”d,z};,x;ﬂ) (see listing of the Algorithm [I) to
(Zk, Y» The)-

Firstly, based on (Z6]) we try to relate the accuracy € we need to solve ([ZH) in terms of the following criteria:

- H - -
v (ﬂl,a,% (6,30, yns1) + 5 s — mﬁ) + Vs, (1) | < & (C.1)

For this we prove the auxiliary lemma for (d, L) -oracle of ¢ and (6, L,;) -oracle of ¢, that is based on the Lemma 2.1 from [17]

Lemma 16 Let &, € R%, H,0 > 0.
Assume that @(x) admits (6, Ly) -oracle, (x) admits (3, Ly,) -oracle. If inquality

- H -
v (91,6,@, (¢, Tk, Y1) + > k41 — xk||2) + V¢6,Lw (Yr+1) 1l (C.2)
(1 ©
<min{ 35 F (90 ) + T, () 1) (©3)
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holds true, then yi4+1 satisfies

- H -
v (91,5,@, (0, Zpes Y1) + 5 MYk = l“k||2) +Vs,L, Wet1) |l (C.4)

2
© V2L ,62 (C.5)

<6 — g+ ——
< Olvers — 24l +

Proof Using that ¢ is equipped with a (d, L) -oracle and Corollary 4.2. from [9] one obtains:
IVes.L, (¥) = Vy s, (02 9)ll < Lelly — 2l +2/2L02. (C.6)
Combining ([C2) and (CH) we obtain

IVes, L, Wrt1) + Vs, (Yet1) |l
< IVes,L, (et1) + Vs L, We1) = Vs, Wk+1) — V24,60, (0, Tk, Y1) |l

~ ~ H -
+IV215L, (0%, Yet1) £ Vs, Wkt1) =V (91,5,@, (0, Tk, Y1) + 5 Y41 — Ik||2) Il

- H -
IV (@ (080 msa) + G Iois =50l ) + T, ) |

[, @2 ) o
< <L<P||yk+l — &gl +2+/ 2L<p52) + Hllyrr1 = Tl + S1Ves Lo, Y1) + VoL, (yer1) Il

Thus,
IVes, L, Wk+1) + Vbs,L, (i) |l N
e W) VVn Ly < [Ly + H) lyns1 — 3ull+2/2L502 (©7)
which gives
e 20
— ||V v <e —x ——/2L,4 C.8
STL, T ] IVes, L, Wr+1) + Vs, (Wet1) | < Ollyptr — Tkl + Lo+ Ve (C.8)
Finally, (C4) follows directly from the (C.2)) and (C3). O

Lemma 17 Assume that H > 2L, o(x) admits (6, Ly)-oracle, 1(x) admits (0, Ly )-oracle, F(x) admits (20, Ly + Ly, pt)-
oracle; yr41,%y € RY and € € (0,1). If inequalities

<F — min F :
€< FosLgtLy,u(y) Join (2) (C.9)
ep
6o < — C.10
®= 642 L, (G-10)

are satisfied then inequality (28) holds true if one solve the auziliary problem (Z3) with the accuracy TODO: Correct this
part, hard to understand and put here precise dependence & = \/2ep /64929

Ve

g=Y"
72

(C.11)
in terms of criteria (CIJ).

Proof According to the conditions of the lemma, the problem (23] is solved with the accuracy
- H -2 -
@3 : IV { 21,50, (0 Tk Y1) + o k1 = Zxll” ) + VisL, (ves1) | <€
To prove the lemma, it suffices to show the following chain of inequalities
: } (I8, (i) + V5.0, WreD) 1) = (24 50— ) /252D
5’ 8[L¢+H] P8, L, \Yk+1 5,Ly \Yk+1 Q[Lw +H} 2Ly

H -
< et = Zell = 2¢/202 Ly (C.12)

& < min{
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Lemma [T6] for © = % guarantee that if the next inequality holds true

- H -
IV (Pus, (ornvin) + G lones = 30l ) + Vi, (i) | (©13)
1 H H
< min{-, —— \Y% \% (24 —— 252 L
< min{3, g} (9.0 ) + Vo, et ) = (24 57y ) V2L

then the equation ([2:6)) is satisfied.
If ([C13) is sufficient condition for ([Z6)), it means that right-hand sides of (C.I3)) less the right-hand sides of ([Z8]). From this
consequence the next inequality

1 5 1 5
= (VP22 esdl) = 3 V202 L0 = = (V5.2 Wisn) + Vs, ) ) = 5v/202Le (C14)
<min{}, Y (Vs 1, hr) + Vs o, e ) — (24 o) V2B (C.15)
min{~, ————— — _— .
> 2'8 [Lso +H] Ps,L, \Yk+1 5,Ly, \Yk+1 2 [Lso I H] 2 L
H -
< Tl - 2l - 212521, (C.16)
The second inequality of the equation (CI12)) is satisfied, let us prove the first one.
The fact that F has (29, Ly, + Ly, p) -oracle guarantee
Bllz —y)? + (F () + (VF W),z —y)) < Fz) forall z € Q (€.17)
QT =y 26,L+Ly (Y 26,Ly+Ly,u(¥),T—Y)) < f(z) for all © ! .

Let us minimize the right-hand and left-hand sides of (CI7) with respect to x independently

F* = min F(z) > Fasr,+L,..(y)+ min {H||J:—y||2+<VF25L +L, 1Y) J:—y>}
IEQf = b P ZEQf 2 sl P )

1
=Fo50,4+Ly.0(Y) — ZHVFQ&L(/,‘FL,P,;L(y)'F

Then obtain

3 1
e < Fasnytr,u(y) —F° < ZHVF%,L‘pJfLw,u(y)lP (C.18)
Inequality (C.I8)) guarantee that
1 [ep 5 1 5
5 E - 5\/ 252L¢ S EIIVF26,L¢+L¢,/L(ZJ)” - 5 \% 262L<P (0-19)

In case of (CI0) inequality (CI9) give us guarantees that the first inequality of the equation (C.I12) holds true

- en ©I0 1 [ep 5 I 1 5
E=+— < —4/==—=4/202L < —||VF — —/262L C.20
N N P | ) [V (©:20
Finally, combine the equations (C16) and (C.20) obtain the required chain of inequalities (C.12J). O

Let us prove the Theorem [3] using Lemma [Tt

Proof Firstly, let us collect all restrictions on 41, d2 and auxiliary problem precision for obtaining convergence of outer Algorithm-
and fulfillment of the Lemma [I7] together:

- H - -
€I -V (91,5,@, (@ Zps Y1) + 5 lykr = -Tk||2) + Vs, (k1) | <&
CI0) 62 < — =

T 642-L,’
k

k—1
@I0) VK : 61 + 52 + 2 <ZA1-> 82 /Ay, + <Z Ai> 51 /Ag < g
i=1

4V265L
o

=1
@I17) - <e/2.
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Let us have a look at (CIJ). We need obtain the sufficient condition for it in terms of the criterion (ZI3)).
v (91,5,% (@ %k, Yrt+1) + g lyk+1 — ’ik||2) + Vs,r, (Yet+1) |l
SIVQ1s,L, (0 Tk, Yrt1) £ 0@(@)|| + Hllyks1 — Tl + IVbs, L, (Y1) £ 09(2-)|
<Lgll#x — wall +2v/T08 + Hllyiss — Exll + Lyllunsr — well +2¢/Lyds

<(Lg + Ly + Hymax {|[&, — @, lyess — o} + 20/ T2 +2(/Ly62

E3) 4(E5 + 61 + 82)
< (L + Ly + H),/f7 +2v/Lb2 + 21/ Lyyda.

Then, according to (CI), the sufficient condition for ([2:6]) holds true is

4(.§f + 01 + (52) ER
L L H — " 4+ 2/ L6 24/ Lyoa < L—.
(Lo + Ly + )\/ p +24y/Lyd2 424/ Lyd2 < -

Next, under the assumption §; < d2, (ZI0) is converting into more simple sufficient condition
€

fp<—o < - (C.21)
2(1+4N) = o (1 +4 (Zizl A,-) /Ak>
where N is the number of outer steps. There was used the fact that A; < A;41. Finally, if 2 satisfies the inequality
£3/2
0o < ———
5+/2c1 H R?
then (C21)) holds true.
If we choose 61,02, &y such that:
. ep ep ep? g3/2
61 b 62 = min b b b b
8642L, 8642L,, 8642(L, + Ly + H)? 5+/2c, HR2
2
. ep
gr < ,
7= 864%(Ly + Ly + H)?
then all required inequalities are satisfied:
4(Ef+ 1+ 0 VE
(L + Ly + H)y % +24/T b2 + 2y/Lyda < 7—2“
ep
S < ———r )
=642 L,
23/2
52 S -
54/2c1 HR?
4262 L
VAR <. /2.
I
Also dependences 01(¢), 62(¢), Ef(e) are polynomial. 0O

Let’s prove the Theorem Ml using Theorem [3t

Proof
Suppose that at each iteration of the Algorithm 2] one have:

1. inexact (9,00, ftp, Ly), (8, 00, iy, Ly )-oracles of ¢, 1h;

2. the (g, 09)-solution of auxiliary problem.
Let us estimate the probability P with which inexact (6, pe, L), (0, thy, Ly )-oracles of ¢, and the e-solution of auxiliary
problem will be available at all iterations ([227]) of the Algorithm

N N | 2. @20, 220
P=(1-00)VE 1 -5V >1-N(e) (00 +5) > 1-0 (C.22)

Hence with probability (C.22]) the conditions of the Theorem [3] are satisfied which ends the proof. O
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D L-SVRG
In this Appendix [D] we reformulate the convergence results of Algorithm L-SVRG from [29] in terms of large deviations.
Lemma 18 (Corollary 5.6 from [29]) We consider the problem

min F(z) = o(2) + () (D.1)
zeR

where ¢ is of finite sum form
1 n
o)== @iz
nis

and 1 is Ly,-smooth, convex and proz-friendly. The function p; is conver and L;-smooth for all i =1,...,n. The function ¢
is convex, L-smooth with [ < > 1 L; an p-strongly convex. Then L-SVRG [29] achieves an (g, 0)-solution of (D)), i.e.
n Lai=

P{F(zy) — F(z+) > e} <o (D.2)
within

2
/ L 1
o Vn+4/2Dp— | log —
m €o

iterations where L = L 37" | L;, D;, =4 — 3% and . is solution of (D). We note that 1 < Dy, < 4.

—\ 2
Proof According to Corollary 5.6 from [29] we obtain that after O ((ﬁJr ‘/2DL%> log ei,) steps L-SVRG [29] gives &’

accurate solution, i.e.

<, (D.3)

holds true. For arbitrary &, > 0 let us take zy, ¢’ = 2e0/Lp accurate solution in terms of (I.3). Then from Ly = L + Ly-
smoothness of F' we have

L
E[F (k) — F(z,)] <E [TF ok — x*nQ] <eo. (D.4)
Using Markov inequality and (D.4)) we obtain that

P{F(ax) — Flz.) > e} < ) 22 o (D.5)

In other words, after

2 2
/ L 1 / L 1
o Vn+4/2Dp=| log= | =0 Vn+4/2Dp= | log —
w € w €o

Algorithm L-SVRG from [29] gives random point z such as (D.5)) holds true. In other words, zj, is (g, o)-solution of (D). O

E Proof of Lemma [I] and Lemma

Let us proof Lemma [I]
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Proof Using the Deffinition [3] for function ¢ and 1, we can obtain:

“w L
E2llo —yl1? < (@) = (#5200 @) + (V05,10 )0 =) € iz —ylP +6, wop. 1-0 (B-1)

o L
Bl = yll? S w@) = (gL )+ (V8L @2 = 9)) < olle = yl? 48y wop. 1- 0y (E.2)
Let us sum this equations:
@ ©
>l —wll* + %Ilw —ylI> < o(@) +¢(z) — (SO&;,,LWHw(y) + P51y () + <V906¢,Lw,w(y) + Vsy Ly 1), T — y>>

L L
<l =yl + e = ll® + 80+ 6y wop 1=~ 0y (E.3)

The equation (E.3) means that the pair (9"%7%7/«@ ) + Yoy, Ly iy, W)y VPS4 Lo W) + VU6 Ly (y)) is (6p + 0y, 00 +
oy Ly + Ly, pip + e )-oracle for ¢ 4 1. 0O

Let us proof Lemma

Proof The function S'(z, -) is py-strongly concave, and 5'(, y) is differentiable. Therefore, by Demyanov—Danskin’s theorem, for
any z € R  we have _
Vy(z) = ViS(z,y" (2)) = Vo F(z, y* (). (A1)

2
To prove that g(-) has an L-Lipschitz gradient for L = Lp + 25—’?, let us prove the Lipschitz condition for y*(-) with a
y
constant, the function y* is defined as: .
y*(z) := arg max S(z,y) Vz € R%= (E.4)
yer%y
Since g(zl, -) is py-strongly concave, for arbitrary zi,z2 € R

v (@)~ v @3 < — (Sry* @) - @1 (@2))) - (A2)
Hy

On the other hand, S(z2,y*(z1)) — S(z2,y*(z2)) < 0, since y*(z2) affords the maximum to S(z2,.) on R% . We have

S(x1,y" (1)) — S(z1,y* (w2)) < S(z1, 5% (21)) — S(z1,y" (w2)) — S(@2,y™ (21)) + S(w2,y" (x2)) =

FomBID (P, y* (@1)) — Fla1,y* (@2))) — (Flaz,y* (@1)) - Flaz,y* (@2)) =
= /01<VIF(11 +t(ez —21),y% (1)) — VaF (21 + t(@2 — ©1), y* (22)), 22 — 21)dt < (A3)
< |VeF(z1 + t(ze — 1),y (21)) — Vo F(z1 + t(z2 — 21),y" (x1))|l2 - [[z2 — z1]|2 <
S Lrly*(z1) —y* (z2)ll2 - [lz2 — z1]l2.
Thus, (A2) and (A3) imply the inequality
ly* (@2) — y* (@)ll2 < 25—;”@ ~ a1z, (A4)

i.e., the function y*(-) satisfies the Lipschitz condition with a constant %—F Next, from (AJ)), we obtain
Y

(IVg(z1) — Vg(z2)ll2 = V2 F(21,y"(21)) — Vo F(z2,y" (22))ll2 =
= |VaF(21,y" (1)) — Vo F(z1,y"(22)) + Vo F(z1,y" (72)) — Vo F (22, y" (z2))l|2 <
< Ve F(z1,y™(21)) — VaF(21,y" (x2))ll2 + [[V2 F (21, ¥ (22)) — Vo F(22,y" (22))]l2 <
< Lrly*(#1) —y" (@2)ll2 + Lrllzz — 212 =
from (AZ) <

212,
Lp 4+ — | |lz2 — x1]|2.
Hy
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2
This means that g(-) has an L-Lipschitz gradient with L = Ly + QiF .
Y
Let us now prove that Vi F (J:, gg/g(x)) is (6,2Lgy)-oracle of g, i.e.:
_ ~ _ 2L )
0<g(2) = [{F(x,s/2(x)) — w(@5/2(2)) } + (VaF(z,95/2(x)), 2 — x)] < - llz—=lz+4, (E.5)
First, we prove that, for any § > 0 and z € R%»
U é
IVaS (@, §5/2(x)) — Vg(z)ll2 < Lp o (A5)
Yy

For any = € R | it is true that V,S(x, Us/2(x)) = Vo F(x,95/2(z)). Then,

IVaS(, §s/2(x)) = Vg(@)|13 = | VaF (2, §5/2(2)) = Vo F(z,y"(2))]3 <
< L lly* (@) = G5 (@)ll3 <
from m 2L2
<

T: (S‘(z,y*(z)) - §($7§5/2(75))) <

from @2I) §7,2
< F
B Ky

)

which justifies inequality (AH).
Now , due to the pz-strong convexity of S(:,Js/2(x)) on R%= | for arbitrary z,z € R% it is true that

from (ZI13) . ~ ~
9(z) = Sz 0s52(x) 2 S(x, P /2(2) + (VaS(@, Js/2(2)), 2 — ).

Thus, R N
02> S(x, Js/2(x)) — 9(2) + (V2 S(z, Js2(2)), 2 — ),
which proves the left-hand side of (E&). To prove the right-hand side of (EH]), note that g is convex and has an L-Lipschitz
gradient on R . Therefore, for arbitrary ,z € R% , we have

9(2) < 9(@) + (Vo(a), = — o)+ 5 |1z — 2 <

from @ZI) B L 9 . 5
S S@05/2(2) +6/2+ Sllz —zll2 +(Vg(2), 2 — ) + (Ve S(@, J5/2(2), 2 — 2)—

—(V2S(@,§s/2()), @ — 2) =
= 5(a,5/2(2)) + 8/2 + (VaB(&,5/2(0)), 2 = 2) + (VaS(z, G /2(0)) ~ Vo(o), 7 — 2+
+Zlle - al3 <

from (AR B N _ 0 L 2
< S(@Psy2() +6/2+(VaS(w,§s/2(@)), 2 —x) + Lr o llz = zll2 + Sz —2ll3.
Y

5 L? L2
Lpy|— llz—zlz =/ -Flz—2l3 -6 < )l — 2|3 + /2
Hy Hy 24y

due to the classical inequality between the arithmetic and geometric mean. Therefore,

However,

by a0o = L% 9 L 2
9(2) < S(z,9s5/2(w)) + 0+ (VaS(z,P5/2(2)), 2 — z) + AT”Z — [z + 5”3 — |3,
Y

2
F

. 2L% L L
and since L = Lp + o, we have _ < 5 stherefore,
v v

9(2) < 8(x,Gs/2(x)) + (VaS(x,§5/2(x)), 2 — ) + 8 + Ll|z — 3.



72 Vladislav Tominin ! et al.

Thus, we have . )
9(2) = 8(z, G5 /2()) = (VoS (@, Js/2(2)), 2 — x) < L||z — |3 + 6,

which implies the left-hand side of inequality (E.3).
In the statement of Lemma [2] only (6/2, o)-solution to (ZI9) is available. In this case the inequality (E5) will be satisfied
with probability 1 — ¢. Then V,F (z, gg/g(x)) is (0, 0,2Lg)-oracle of g. m|

F A Variant of Accelerated Framework for Saddle-Point Problems.

In this appendix we consider saddle-point problem under the same assumptions as in Section Bl We describe in detail
the structure of a general framework for solving such problems which consists of three inner-outer loops. The only difference
compared with the general framework in Section [3] is that the order of the Loop 2 and Loop 3 has been reversed. We also
summarize the steps of the algorithm in Table [0l In each loop we apply Algorithm [2] with different value of parameter H
which defines its complexity. In the subsection after description of the loops we carefully choose the value of this parameter in
each level of the loops. Later, in the next Appendix [Gl we use this general framework in the proof of Theorems [l and [§ with
complexity estimates for problem (5.1 under Assumption[5] as well as Corollary [l with complexity estimates for problem (Z.1])
with mp = 1.

F.1 Main loops of the framework

In each of the three loops of the general framework we have a target accuracy € and a confidence level o which define the
required quality of the solution to an optimization problem in this loop. These quantities define the inexactness of the oracle in
this loop via inequalities (Z.22]) and (2:23) and the target accuracy and confidence level for the optimization problem in the next
loop via (228)), (Z26). Due to inexact strong convexity provided by (6, o, L, u)-oracle, Algorithm [2 has logarithmic dependence
of the complexity on the target accuracy and confidence level (see Theorem [). Since the dependencies on the target accuracy
and confidence level in (222)), (Z23), (Z25) and (Z26) are polynomial, we obtain that the dependency of the complexity in
each loop on the target accuracy and confidence level in the first loop, i.e. target accuracy and confidence level for the solution
to problem (3I)), is logarithmic. We hide such logarithmic factors in O notation.

For convenience, we summarize the main details of the loops in Table

Loop 1
The goal of Loop 1 is to find an (e, o)-solution of problem (3.3)), which is considered as a minimization problem in y with the
objective given in the form of auxiliary maximization problem in z. Finding an (e, o)-solution of this minimization problem
gives an approximate solution to the saddle-point problem (3I)) which is understood in the sense of Definition [l

To solve problem (B3]), we would like to apply Algorithm [ with

=0, ¥=h(y) + Jmax {=G(z,y) — f(z)}. (F.1)

The function ¢ is, clearly, convex and is known exactly. What makes solving problem (33) not straightforward is that the
exact value of v is not available. At the same time we can construct an inexact oracle for this function. First, the function
h is py-strongly convex, Lp-smooth and its exact gradient is available. Second, thanks to Assumption [B] it is possible to

2
construct a ((5(1) (e) ,0(()1) (e,0),2Lg +4];—§)—oracle for the function r(y) = max,cpa, {—f(z) — G(z,y)} for any 5D (e) =
(1)

poly (¢) and oy’ (¢,0) = poly (¢,0). Combining these two parts and using Lemma [I] we obtain that we can construct a
2
(5(1) (e) ,U(()l) (e,0),Lp +2Lg + 4i—f, uy)—oracle for v. Thus, we can apply Algorithm 2] with parameter H = Hy, which will

be chosen later, to solve problem (B.3]). Moreover, since Assumption Bl requires 51 (e) = poly (¢) and O'(()l) (e,0) = poly (,0),
which holds for the dependencies in [Z22)) and 23], we can choose §(1) (¢) and 0(()1) (e,0) such that (222) and (223) hold.
So, the first main assumption of Theorem M holds. At the same time, according to Assumptions [Tl and [3] constructing inexact
oracle for 1) requires 7, calls of the basic oracle for h, 7¢ calls of the basic oracle of G(z,-), N& (1¢) K& (g, o) calls of the basic
oracle for G(-,y), Ny (7¢) Ky (¢,0) calls of the basic oracle for f.

Let us discuss the second main assumption of Theorem [l To ensure that this assumption holds, we need in each iteration

of Algorithm [Il used as a building block in Algorithm 2] to find an (é;l) (e),&(l) (e,o))-solution to the auxiliary problem
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@3), where 51 (¢, 0) ,égcl) () satisfy inequalities (Z:25)), (Z26). For the particular definitions of ¢, ¢ (E)) in this Loop, this
problem has the following form:

. Hy
Y41 = arg min {h(y) + max {-G(z,y) - f(2)} + —-lly - yi”dIIQ} : (F.2)
yeR% zeRde 2

Below, in the next [paragraph ”Loop 2”] we explain how to solve this auxiliary problem to obtain its (5;1) (e),&(l) (e,a))-

solution. To summarize Loop 1, both main assumptions of Theorem H] hold and we can use it to guarantee that we obtain

1 _ 1
an (g, 0)-solution of problem (B.3). This requires O (1 + (Hwﬁlﬂu ) 2) =0 (1 + (I:—;) 2) calls to the inexact oracles for ¢

and for ¢, and the same number of times solving the auxiliary problem (.2)). Combining this oracle complexity with the cost

1
of calculating inexact oracles for ¢ and for 1, we obtain that solving problem (B3] requires O (1 + (f—;) 2) 7y, calls of the
1 _ 1
basic oracle for h, O (1 + (f—;) 2) 7@ calls of the basic oracle of G(z, ), O (1 + (f—;) 2 ) NE (1a) K% (g, 0) calls of the basic

1
oracle for G(-,y), O (1 4 (%) 2 ) N (11) K (¢,0) calls of the basic oracle for f. The only remaining thing is to provide an
Y

inexact solution to problem (E2)) and, next, we move to the Loop 2 to explain how to guarantee this. Note that we need to

1
solve problem (2] O (1 + (%) 2) times.

Loop 2
As mentioned in the previous Loop 1, in each iteration of Algorithm[2lin Loop 1 we need many times to find an (e}, o})-solution

of the auxiliary problem (E2)), where we denoted for simplicity o = A (e,0) and € = 5501) (¢). To do this, we reformulate

problem (E.2) by changing the order of minimization and maximization as follows:

iy 1)+ 5y o7 + max (-Gl - )} (F.3)
yeRY rERAx
H
= yon oehne {h(y) ~Gla,y) — @)+ lly - yL”dIIQ} (F.4)
H
~ max i {h) — Glo) — )+ Iy~ 1P (F.5)
zERY® yecR%Y
—— iy $ @)+ max {6~ hl) — Ty - (F.6)
rERdw yER%Y ’ 2 k

and obtain an (g}, o5)-solution of the problem (E2) by solving minimization problem (E.6)). Assume that we can find an
(e2,02)-solution & of the minimization problem (E6) in the sense of Definition @l Then, according to Assumption 2] we can
also obtain a point § which is (6(e2)/2, 50(02))-solution to the problem

Hy
s {Ga) — hi) - 21y =1 (.7
yEeRY
where §(£2), 50 (02) satisfy the following polynomial dependencies
= Hi+ py

0(eg) K ———————¢€9, O < os3. F.8
(e2) < ) (H1+uy>2 2, 0o(o2) < o2 (F.8)
He \ =315

If we choose €2, 02, d(e2),50(02) satisfying

H; + 2
g2 < ( ;L “y) fe 2L2 5’27 (Fg)
¢ Lp+Hy+ Lg + ¢

!
%2

2, (F.10)

o2 <

D) b H &3 H
5’0(0’2) < Ugﬁ%, 5(82)§ 1+ Ky gg < L+ Ky 5 6/2, (F.ll)

H 2 — 8L
A () ALy, +4H1 +4Lg + %
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then
2 2
Ly+Hi+ L+ 28 _ Lo \?In+Hi+Lo+28
—5(e2) + 8 ( ) E_gy < &b, (F.12)
Hi+ py Hi+ py Ha
o2 + do(02) < Oé. (F.13)

Thus, applying Corollary [ to minimization problem (E8) with F(z,y) = G(z,y), w(y) = h(y) + %Hy —ymd|2, ep = e,
0z = 02, £y = 0(g2), oy = Go(o2) we obtain (see [BI4), (BIG)) that ¢ satisfies inequality

. Hy . . . H
h(9) + —21 llg — yZ“iH2 + max {—G(z,9) — f(z)} — min max {h(y) + -1 lly — yg“’l”2 — G(z,y) — f(z)} < &
zeRdx yeRy z€Rde 2

with probability ob. Thus, by Definition H it is an (g}, 05)-solution of the problem (E2). By Assumption ] calculation
of § requires Ng (¢, H) IC% (e2,02) calls of the basic oracle O% of G(z,-), g calls of the basic oracle OF of G(-,y) and
Np (th, H) Ky, (22, 02) calls of the basic oracle Oy, of h.

Our next step is to provide an (g2, o2)-solution to minimization problem (8], for which we again apply Algorithm 2] but
this time with

Hy
o= 1) v = max {6 - b - Ty -2 (F.14)
yeRY
The function ¢ is pz-strongly convex, Lj-smooth and its exact gradient is available. What makes solving problem (E6) not
straightforward is that the exact value of 9 is not available. At the same time we can construct an inexact oracle for this function.
2

Thanks to Assumption [2] it is possible to construct a (5(2) (g2) ,o(()Q) (g2,02),2Lg + 41—;%”

y

2

)—oracle for the function v for
any 6(2) (e3) = poly (e2) and o,
a (5(2) (g2) ,082) (e2,02), Ly +2Lg + 4

€2,02) = poly (¢2,02). Using LemmalI]l we obtain that we can construct
LZ

Hy+py
parameter H = Hz > 2Ly, which will be chosen later, to solve the problem (E£6). Moreover, since Assumption ] requires
52 (e2) = poly (e2) and U(()Q) (e2,02) = poly (e2,02), which holds for the dependencies in (Z22) and ([Z23), we can choose
52 (e2) and U(()Q) (e2,02) such that (Z22) and (223)) hold. So, the first main assumption of Theorem ] holds. At the same time,
according to Assumptions [l and 2] constructing inexact oracle for v requires Ncy; (ra, H1) ICyG (g2, 02) calls of the basic oracle
for G(z,-), T calls of the basic oracle for G(-,y), N}, (7h, H1) K (g2,02) calls of the basic oracle for h, and constructing exact
oracle for ¢ = f requires 7y calls of the basic oracle for f.

Let us discuss the second main assumption of Theorem [l To ensure that this assumption holds, we need in each iteration

of Algorithm[I] used as a building block in Algorithm[2 to find (5;2) (€2),6@ (2, ag))—solution to the auxiliary problem (23)),

where () (g2, 02) ,5502) (e2) satisfy inequalities (2:25]), (226). For the particular definitions of ¢, v (EI4) in this Loop, this
problem has the following form:

,,uz)—oracle for the function ¢ + @. Thus, we can apply Algorithm [2] with

2l =arg min {(Vi(@p), o — o)

z€Rx
H, H>
+ ma {Glon) + o) ~ 2ty — I | + 2||xxz”d||2}, (F.15)
yEeRYY

Below, in the next [paragraph ” Loop 3”] we explain how to solve this auxiliary problem to obtain its

(5;2) (€2),63 (e2,02))-solution.
To summarize Loop 2, both main assumptions of Theorem [] hold and we can use it to guarantee that we obtain an
(€4, oh)-solution of the auxiliary problem (E2)). This requires one time to solve the problem (E), which, by Assumption

1
has the same cost as evaluating inexact oracle for the function . Further, we need O ((1 + (‘L }‘IFZMJ) 2) logggl) =
@

1
0] ((1 + (%) 2 ) log 6;1) calls to the inexact oracles for ¢ and for 9, and the same number of times solving the auxiliary prob-

lem (EI5). Combining this oracle complexity with the cost of calculating inexact oracles for ¢ and for ¢, we obtain that solving

1 1
problem (EL6)) requires O ((1 + (%) 2) loge;l) 7 calls of the basic oracle for f, O ((1 + (%) 2) logegl) N (ra, H1) KY, (e2,02)
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1
calls of the basic oracle for G(z,-), O ((1 + (%) 2) loga;l) 7@ calls of the basic oracle for G(-,y),

1
O ((1 + (%) 2) log 6;1 Np (Th, H1) Kj, (g2, 02) calls of the basic oracle for h. The only remaining thing is to provide an

inexact solution to problem (EI5) and, next, we move to Loop 3 to explain how to guarantee this. Note that we need to solve

1
problem (EXI5) O ((1 + (%) 2) log52—1) times.

Loop 3

As mentioned in the previous Loop 2, in each iteration of Algorithm[Plin Loop 2 we need to find many times an (£3, 03)-solution

of the auxiliary problem (E-15), where we denoted for simplicity o3 = 5 (e2,02) and 3 = 5;2) (e2). To solve problem (E.15)),
we would like to apply Algorithm 2lwith

H1 H2
o= max {Gloas) = (o) = 2y = o 6= (VI w - )+ 2 o — . (k16)
yeR™Y

The function v is, clearly, Ha-strongly convex, Ha-smooth and its exact gradient is available. What makes solving problem
(EI5) not straightforward is that the exact value of ¢ is not available. At the same time, we can construct an inexact oracle

L2
G )—oracle for the

for this function. Thanks to Assumption [Z it is possible to construct a (5(3) (e3) ,U(()S) (e3,03),2Lg + 4H1+#
y

function ¢ for any §®) (¢3) = poly (e3) and 0'(()3) (
2
a (5(3) (63) s Ués) (63, 0’3) yHo +2Lg + 4L7G

€3,03) = poly (e3,03). Using Lemmal/[Il we obtain that we can construct

Hitn 7Hg)—oracle for the function ¢ + 1. Thus, we can apply Algorithm [2] with

2
parameter H = Hs > 2Lg + 41'11LTGN7 which will be chosen later, to solve problem (EI5]). Moreover, since Assumption
y

requires §®) (e3) = poly (e3) and 0(23) (3,03) = poly (¢3,03), which holds for the dependencies in (Z22]) and (223), we can

choose 8 (e3) and 0(()3) (e3,03) such that (222) and ([Z23) hold. So, the first main assumption of Theorem M holds. At the
same time, according to Assumptions [[l and ] constructing inexact oracle for ¢ requires Ng (¢, H1) IC% (e3,03) calls of the
basic oracle for G(z, -), 7¢ calls of the basic oracle for G(-,y), Ny, (7n, H1) Ki, (€3, 03) calls of the basic oracle for h. At the same
time, no calls to the oracle for f are needed.

Let us discuss the second main assumption of Theorem Fl To ensure that this assumption holds, we need in each iteration

of Algorithm [0l used as a building block in Algorithm[2] to find (5;3) (€3),5®) (e3, 03)>—solution to the auxiliary problem (2.3)),

where 5®) (e3,03), 5503) (e3) satisfy inequalities (Z25)), (Z26]). For the particular definitions of ¢, ¥ in (EE16) in this Loop, this
problem has the following form:

H

. d d 3 d

Upypy = arg min UVes or, (Wm®), u —um®) +9u) + —=flu —upy 113}
u xT

. Ho Hj3
=arg min (Vs 01, (i) w = un®) + (V@) w2 ) + 5 =23 + T e = wndl3), (F17)
u @

12
where L, = Lg + H1+Gu
I

needs to be solved, Vs (s) 2L (um?) is already calculated. Thus, the second main assumption of Theorem Ml is satisfied with
53 (e3,03) = 0 and 5503) (e3) = 0, which clearly satisfy (222]) and (2.23).

To summarize Loop 3, both main assumptions of Theorem [] hold and we can use it to guarantee that we obtain an

1 1
(g3, 03)-solution of the auxiliary problem (EEIF]). This requires O ((1 + (ﬁ) 2) 1oga§1) =0 ((1 + (%;) 2) 1oga§1)
calls to the inexact oracles for ¢ and for 1), and the same number of times solving the auxiliary problem (IT). Combining this

oracle complexity with the cost of calculating inexact oracles for ¢ and for v, we obtain that solving problem (EI5) requires

i 1
(0] ((1 + (%) 2) logegl) N (tq, H1) K%, (e3,03) calls of the basic oracle for G(z,-), O ((1 + (g—g) 2) logegl) TG calls

. This quadratic auxiliary problem (EIT7) can be solved explicitly and exactly since at the point it

1
of the basic oracle for G(-,y) and O ((1 + (Z—Z) 2) logsgl) Np (th, H1) Kp, (€3, 03) calls of the basic oracle for h.
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Iteration number
Goal w, P w in ThiA] of Algorithm 1]
(Th. @)

Each iteration

requires

(6,00l Find (e1,01)-solution of (E.2)
€, 0)-solution ~
Loop 1 . blem €3 (1081 Ly O (1 ++/H1 /,uy> and calculate
of problem
(5(1) , Ly )-oracle of 4(y)

( J-sol Find (g2, 02)-solution of (EI5)
€1, 01 )-solution ~
Loop 2 Crobl (19 ta O+ +/Hz/pz) and calculate
of problem (E.6])
((5(2), Ly, )-oracle of ¢(z)

( J-solut Find (e3, 03)-solution of (EI7)
€2, 02)-solution

Loop 3 (E16) Hy O(1 + /Hz/H>) and calculate
of problem (£15)
(6(3) , L)-oracle of ¢(z)

Table 5: Summary of the three loops of the framework described in this Appendix.

F.2 Complexity of the framework

Below we formally finalize in Theorem [I7 the analysis of the framework by carefully combining the bounds obtained in
to obtain the final bounds for the total number of oracle calls for each part f, G, h of the objective in problem
@BJ). In the next Appendix[Gl] we apply Theorem [IT to obtain complexity bounds for our framework applied to problem (@I])
in the case mjy = 1.

Theorem 17 Let Assumptions[dl, [3 [A hold. Then, exzecution of the optimization framework described in [Loop 3| with

Hy =2Lg,Ho =2L;, H3 =2 L +72L2G
1= G, 112 = s 113 = G
d by + Hi

generates an (g,0)-solution to the problem ([BI) in the sense of Definition[f]l Moreover, for the number of basic oracle calls it
holds that

Number of calls of basic oracle Oy for f is:

9 <<1+ ﬁ) N (15) + <1+ ii) -Tf>> , (F.18)

Number of calls of basic oracle Oy, for h is:

9} <<1+1/L—G> (m + <1+ ﬂ) <1+,/L—G>Nh (’Th,ZLG)>> , (F.19)
Hy Ha Lf

Number of calls of basic oracle O for G(-,y) is:

o <<1 + ﬁ) <N5 () + (1 + if‘) <1+ ﬁ) m>> , (F.20)

Number of calls of basic oracle OY for G(z,-) is:

6<<1+ L—G> <TG+ <1+\/§> <1+1/L—G> N (Tg,QLg)>>. (F.21)
My Mz Ly

Proof By construction, as an output of Loop 1 we obtain an (g, o)-solution to the problem (B3] according to Definition [l

We prove the estimates of for the numbers of oracle calls in two steps. The first step is to formally prove that in each loop
the dependence of the number of oracle calls on the target accuracy € and a confidence level o is logarithmic. The second step
is to multiply the estimates for the number of oracle calls between loops and choose the parameters Hi, Ha, Hs.
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Step 1. Polynomial dependence. Proof of this part is equivalent to the proof of the Theorem
Step 2. Final estimates.

We have already counted the number of oracles calls for each oracle in each loop [Loop 1{Loop 3| see the last paragraph of
the description of each loop. We start with the number of basic oracle calls of f, which is called in each step of and
Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)

o<1+(fyl) )Nf(Tf)lcf(so+o 1+ >-<6<1+(HQ)§>W>

M

BT K

The basic oracle of h is called in each step of all the three loops. Thus, the total number is

where we used that K (¢,0) = o(1).

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)
+ (# of steps in Loop 1)-(# of steps in Loop 2)-(# of calls in Loop 3)

o (2ol () o () o)
( > . (5 <1+ (%))) - (6 <1+ (%))Nh (7h, H1) K, (63,03)>
(1 2) () s (1) )

~o( (12 (s (142 3+ V) o) ).

The basic oracle of G(-,y) is called in each step of all the three loops. Thus, the total number is

where we used that Kj, (g,0) = O(1).

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)
+ (# of steps in Loop 1)-(# of steps in Loop 2)-(# of calls in Loop 3)

o<1+(f:) )Né(m)fcéff’“)m(”(f[ )> <6 <1+(H )>G>
o (32)) 0+ 2))) (- () ) )

o((2) (e () o (- 2)-)
o) o e 2))

where we used that KF (e,0) = 5(1)
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Finally, the basic oracle of G(z, -) is called in each step of all the three loops. Thus, the total number is

# of calls in Loopl + (# of steps in Loop 1)-(# of calls in Loop 2)
+ (# of steps in Loop 1)-(# of steps in Loop 2)-(# of calls in Loop 3)

o1+ (2 él)ma(w(f;?).(( (2)") o <m>)
(o) (00 () o () i)
6<<1+ f—i) <TG+<1+ 72> (N T@Hl>+<1 f)Ny(m,Hn)))

5<<1+\/I:71> <m+< +ﬁ> <1+ ZS>N@/(TG,H1>>>

where we used that KY, (e2,02) = o(1).
The final estimates are obtained by substituting the constants Hi, H2, H3 given by

212, 212,
H1:2LG,H2:2Lf7H3:2 Lg+ ——— Lg +— =4L¢g
py + Hy Hy

G Proof of Theorem [7] and Theorem [8]

In this appendix we prove Theorems [T} Bl and Corollary ] and construct algorithms for problem (5.1 using the results of
Section 3] in particular, Theorem [l for the case Ly > Lg, and the results of the previous Appendix, in particular, Theorem [IT1
To use these theorems we need to satisfy Assumptions[2 [3 which is done in the first subsection. Then, in the next subsections,
we combine the building blocks to obitan the final results.

G.1 Algorithms to guarantee Assumptions 2] [3]

We start with two auxiliary results, that show how to satisfy Assumptions [2} B algorithmically. The first lemma provides
complexity for inexact solution of the maximization problem (3.I7) and the complexity of finding an inexact oracle for function
g defined in the same equation, thereby proving that Assumption [21 holds. We underline that the algorithm which guarantees
Assumption 2] depends on whether L;, > Lg or Lj, < Lg. After that we provide a simple corollary to show that Assumption [3]
also holds.

Lemma 19 Let the function g be defined via mazimization problem in (BIT), i.e

o) = max {Ges) ) = 5y~ ol | @)

yeR%Y

where G(x,y), h(y) are according to 1) and satisfy Assumption[d.1,2,3(a), yo € R%. Then, for each of two cases Lj, > Lg
and Lj, < Lg we organize computations in two loops and apply Algorithm[3 so that Assumption[2 holds with T basic oracle
calls for G(-,y) and the following estimates for the number of basic oracle calls for G(z,-) and h respectively

N (v, H) = O (m + /Lo (H + w)) , (G.2)
No (i H) = O (Th I/ (H + m) | (G.3)

We name these algorithms ”Sliding Ly, > Lg” and ”Sliding Ly, < Lg”.
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Proof To satisfy Assumption[2lwe need to provide an (6 (¢) /2, o0 (g, o))-solution to the problem (GI]) and (& (€), 00 (¢,0),2Lg)-
oracle of g in (), where Ly = Lg + 2L% /(py + H).

By Lemma Rl with F(z,y) = G(z,y), w(y) = h(y) + gHy —yoll?, 6§ =3 (¢) and oo = 09 (¢,0) applied to the problem (G, if
we find a (0/2, 0p)-solution §5/2(x) of the problem (GI), then V.G (Z‘,g5/2(]))) is (8,00,2Lg)-oracle of g and its calculation
requires 7g calls of the oracle VzG(:,y). To finish the proof, we now focus on obtaining a (§/2, op)-solution Fs,2(x) of the
problem (G)). For this we consider two cases L, > Lg and Lj < Lg and for each one we construct a two-loop procedure
described below. We begin with the case Lj > Lg.

Sliding for Ly, > Lg, Loop 1
The goal of Loop 1 is to find an (& (¢) /2, 00 (£, 0))-solution of problem (GI) as a maximization problem in y. To obtain such
an approximate solution, we change the sign of this optimization problem and apply Algorithm [2] with

o= —Gle,y), ¥ =he)+ Y Iy - vl (G4)

Function ¢ is convex and has Lg-Lipschitz continuous gradient, function v is H + p-strongly convex and has Lj, + H-Lipschitz
continuous gradient. Thus, we can apply Algorithm [2] with exact oracles and parameter H; > 2L, which will be chosen later,
to solve problem (G.J). To satisfy the conditions of Theorem M which gives the complexity of Algorithm 2] we, first, observe
that the oracles of ¢ and v are exact and, second, observe that we need in each iteration of Algorithm [I used as a building
block in Algorithm [2] to find an (55}) (6/2),6M (5/2, oo)>—solution to the auxiliary problem (23], which in this case has the

following form:

. H,
s = arg min {(V(), 2 = 5) + () + 1= = )13}
z€R"Y
H H
=arg min {—(V.G(z,2]"), 2 — 20 + h(2) + S |12 = wol® + SH|2 = 273, (G.5)
zeRdy 2 2

where (1) (6/2, 09) ,é;l) (6/2) need to satisfy inequalities (2.28), (Z26]). Below, in the Loop 2, we explain how to solve this
auxiliary problem in such a way that these inequalities hold.

To summarize Loop 1, both main assumptions of Theorem [] hold and we can use it to guarantee that we obtain an
(6/2, o¢)-solution of problem (G.I). Due to polynomial dependencies & (¢) = poly (¢), oo (¢,0) = poly (g,0) this requires

1 1
= H \3)\ _ ~ H, \2 . .
O (1 + (M«p"'ﬂ«p ) ) =0 (1 + (uy+H) ) calls to the (exact) oracles for ¢ and for 1, and the same number of times solving
the auxiliary problem ((LH)). Combining this oracle complexity with the cost of calculating (exact) oracles for ¢ and for v, we ob-
1 - 1

tain that solving problem ([@4) requires O (1 + (uﬁH) 2 ) 7 calls of the basic oracle for G(z, ) and O (Th (1 + (uyH-FlH) p) ))
of the basic oracles for h. The only remaining thing is to provide an inexact solution to problem (GH) and, next, we move to

1
Loop 2 to explain how to guarantee this. Note that we need to solve problem (G.Al) O (1 + (MH_’}H> 2) times.
v

Sliding for Ly, > Lg, Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm[Plin Loop 1 we need to find many times an (g2, o2)-solution
of the auxiliary problem ((ZH), where we denoted for simplicity a2 = (1) (§/2, 0¢) and g3 = 5;1) (6/2). To solve problem (G.H),
we would like to apply Algorithm 2lwith

H Hy
p=h(), ¥ =—(V:Gla, ),z = ) + Sz = woll® + Sl — =3, (G6)

Function ¢ is py-strongly convex and has Lj-Lipschitz continuous gradient, function % is H 4 Hi-strongly convex and has
H + H;-Lipschitz continuous gradient. Thus, we can apply Algorithm [2] with exact oracles and parameter Hy > 2L;, which
will be chosen later, to solve problem (G.H). To satisfy the conditions of Theorem [ which gives the complexity of Algorithm
2 we, first, observe that the oracles of ¢ and 1) are exact and, second, observe that we need in each iteration of Algorithm [

used as a building block in Algorithm 2] to find an (5;2) (e2),53 (ag,ag))—solution to the auxiliary problem (23], which in

this case has the following form:
. Hy
Up g1 = AT min {(Veolum®),u—um®) + ¢(u) + — M= up (13}
u x

. H Hy H>
= arg min {Vh(un®), u—ui®) = (V=G 2, u = ) + Tl — ol + - llu = 275 + - lu — w3} (G7)
u x
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This quadratic auxiliary problem (G.7)) can be solved explicitly and exactly. Thus, the second main assumption of Theorem [
is satisfied with 6(2) (g2, 02) = 0,5;2) (e2) = 0, which clearly satisfy (2:22)) and (2.23).
To summarize Loop 2, both main assumptions of Theorem [l hold and we can use it to guarantee that we obtain an (g2, 02)-
1 1
. .1 . . Ho 2 -1\ _ Hy 2 -1
solution of the auxiliary problem (G.5). This requires O ((1 + <”¢+“w> ) loge; ) =0 ((1 + <7uy+H+H1> ) logeg )

calls to the (exact) oracles for ¢ and for 9, and the same number of times solving the auxiliary problem (G.7)). Combining this
oracle complexity with the cost of calculating (exact) oracles for ¢ and for v, we obtain that solving problem (GLH) requires

1
o) (Th (1 + (#) 2) logagl) calls of the basic oracle for h. Also according to the polynomial dependencies (2:25]),

py+H+Hq
(226]) we obtain that
2 = 51 (8/2,00) = poly(6/2,00), 2 =&V (6/2,00) = poly(5/2, 00).

Using conditions § (¢) = poly (¢), oo (¢,0) = poly (¢, 0) in the formulation of Assumption 2l we obtain that the dependencies

02 (2,0),6W (5,0) 22 (¢,0) .6 (€, 0)

are polynomial. Then, we can use notation 5() without specifying what precision we mean and implying that the logarithmic
part depends on the initial €, 0.

Sliding Ly, > Lg, combining the estimates of both loops
Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point §5,2(z) that is a (¢ (¢) /2, o0 (&, 0))-solution
to the problem (G.)) requires the following number of calls of the basic oracles of G(z,-) and h respectively

0 (TG +TG,/H1/(H+M,,)), (G.8)
9} <Th (1 + \/Hl/(H-f—My)) + (1 + ,/H1/(H+uy)) T <1 + ,/ﬁ)) . (G.9)

Finding (6 (¢) , 00 (¢,0) , 2Lg)-oracle of g by calculating V.G (z, §5/2(x)) requires additionally 7¢ = m calls of the basic oracle
for G(+,y). Since in Assumption [2] we denote the dependence on the target accuracy ¢ and confidence level o by a separate
quantities denoted by K(e,0) and in this case it is logarithmic, choosing H1 = 2Lg and Ha = 2Lj we get the final estimates
for N¢ and N}, to guarantee that Assumption [ holds:

| Lg
Yy
N, O<7'G+7'G My‘f'H>’
Np =0 (1+ 2Lq/(H + )) 1+ 2Ln
— - / .
h h ¢ Hy wy + H +2L¢g

2L 2L 2L 2L L
=01+ ¢4 b4 = h m=0m 1+ h :
py +H py +H HA+py \ py +H+2Lg py +H

where we used that L; > Lg
Our aim now is to obtain the same estimates on Ncy; and N}, for the case when Lj;, < Lg. We do this by changing the order
of Loop 1 and Loop 2 in the construction of previous Algorithm.

Sliding for Ly, < Lg, Loop 1
The goal of Loop 1 is to find an (& (¢) /2, 00 (g, 0))-solution of problem (GI) as a maximization problem in y. To obtain such
an approximate solution, we change the sign of this optimization problem and apply Algorithm [2] with

H
p=h), ¥=-Gy) +Sly-vol? (G.10)

Function ¢ is py-strongly convex and has Lj-Lipschitz continuous gradient, function 1 is H-strongly convex and has L} + H-
Lipschitz continuous gradient. Thus, we can apply Algorithm [2] with exact oracles and parameter Hi > 2Lj, which will be
chosen later, to solve problem (G.IJ). To satisfy the conditions of Theorem H] which gives the complexity of Algorithm 2] we,
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first, observe that the oracles of ¢ and v are exact and, second, observe that we need in each iteration of Algorithm [ used
as a building block in Algorithm [2] to find an ( ) (6/2),6W (5/2, ao)>—solution to the auxiliary problem (Z35)), which in this

case has the following form:

Zhyy = arg mﬂ;ﬂy{<v¢(zk ),z = 2 ) +(2) + —II — 23}
€
m H Hy m
= arg min {(V:h(:[""), 2 =) = Gl 2) + G lle —woll® + 5= == I13), (G.11)
zE

where 51 (§/2,00) ,& ~(1 (6/2) need to satisfy inequalities (2.28)), (Z.26). Below, in the Loop 2, we explain how to solve this

auxiliary problem in such a way that these inequalities hold.
To summarize Loop 1, both main assumptions of Theorem [] hold and we can use it to guarantee that we obtain an
(6/2, o¢)-solution of problem (GI). Due to polynomial dependencies & (¢) = poly (¢), oo (¢,0) = poly (g,0) this requires

1 1
9] (1 + (M«p"'ﬂ«p ) 2) 9] (1 + (u +H> 2) calls to the (exact) oracles for ¢ and for 1, and the same number of times solving

the auxiliary problem ((ZIT]). Combining this oracle complexity with the cost of calculating (exact) oracles for ¢ and for ¥, we
1 N 1
- +H> 2) 7@ calls of the basic oracle for G(z, -) and O (1 + (u +H> 2) s

of the basic oracles for h. The only remaining thing is to provide an inexact solution to problem (G.II)) and, next, we move to

obtain that solving problem (Z4]) requires 9] (1 + (

1
Loop 2 to explain how to guarantee this. Note that we need to solve problem m O (1 + (uHJ:H> 2) times.
Kl

Sliding for Ly, < Lg, Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm[Plin Loop 2 we need to find many times an (g2, o2)-solution
of the auxiliary problem (GiII)), where we denoted for simplicity oo = (1) (§/2,0¢) and e2 = ~5£1) (6/2). To solve problem
(G11)), we would like to apply Algorithm [ with

¢=-G(z,2), ¥ = (Vh(z'"),z— =) + —IIZ —yol® + —||Z - 273, (G.12)

Function ¢ is convex and has Lg-Lipschitz continuous gradient, function ¢ is H 4+ H1y 4 py-strongly convex and has H + H1-
Lipschitz continuous gradient. Thus, we can apply Algorithm [2] with exact oracles and parameter Ha > 2L, which will be
chosen later, to solve problem (GII)). To satisfy the conditions of Theorem H which gives the complexity of Algorithm 2] we,
first, observe that the oracles of ¢ and 1) are exact and, second, observe that we need in each iteration of Algorithm [ used as

a building block in Algorithm 2] to find an (5;2) (e2),5® (ea, 02)>—solution to the auxiliary problem (2.35)), which in this case

has the following form:

. Hy
Up, 41 = arg min {(Ve(um®), u—un®) + (u) + - llu— um?3}
u x

Hy Ho
= arg min {(=(VuG(z,um®),u—up®) + (VA u = 2 + *Ilu —yoll® + *Hu -3 + — M= up|3}. (G.13)
u dg
This quadratic auxiliary problem (GI3]) can be solved explicitly and exactly. Thus, the second main assumption of Theorem []
is satisfied with (2) (e2,02) = 0,55[2) (e2) = 0, which clearly satisfy (Z22) and (Z23).
To summarize Loop 2, both main assumptions of Theorem [l hold and we can use it to guarantee that we obtain an (g2, 02)-

1 1
solution of the auxiliary problem (G.II)). This requires O ((1 + (u 2 ) 2) 1og52_1) =0 ((1 + (ﬁ) 2) 1oga2—1)

calls to the (exact) oracles for ¢ and for 1, and the same number of times solving the auxiliary problem (G.I3)). Combining this
oracle complexity with the cost of calculating (exact) oracles for ¢ and for 1, we obtain that solving problem (G.II) requires

1
O ((1 + (ﬁ) 2 ) log 6;1) T calls of the basic oracle for G(z, -). Also according to the polynomial dependences (2.25)),
([228) we obtain that

o2 =6 (8/2,00) = poly(§/2,00), 2 =Y (8/2,00) = poly(§/2, 00).

Using conditions § (¢) = poly (&), oo (¢,0) = poly (¢, 0) in the formulation of Asumption [2] we obtain that the dependencies

g2 (670) 76(1) (670) ) €2 (670) 75501) (57 0)
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are polynomial. Then, we can use notation 6() without specifying what precision we mean and implying that the logarithmic
part depends on the initial €, 0.

Sliding for Ly, < Lg, combining the estimates of both loops
Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point s, () which is an (4 (¢) /2, 00 (¢, 7))-
solution to the problem (G.I)) requires the following number of calls of the basic oracles of h and G(z, -) respectively

9} (1+ ,/Hl/(H+py)) Th, (G.14)
5<TG+TG\/m+(1+\/M) (TGJFTG”“erI[{{QJrHl))' (G.15)

Finding (d (¢) ,00 (¢,0) ,2Lg4)-oracle of g by calculating V.G (x, gg/g(x)) requires additionally 7¢ calls of the basic oracle for
G(-,y). Since in Assumption[2]we denote the dependence on the target accuracy € and confidence level o by a separate quantities
denoted by K(e,0) and in this case it is logarithmic, choosing H1 = 2Lj, and Ha = 2Lg we get the final estimates for Ncy; and
N}, to guarantee that Assumption 2] holds:

- _ 2ae
N, o<(1+ 2Lh/(H+Ny)) <1+ i+ H+2L, ) ) 7€

2L 2L 2L 2L L
=01+ h_ SH L N ¢ =0 | 16 + 76 ¢,
py +H py + H by +H\ py + H+ 2Ly wy +H

Ly
Npn=0 |1+ T,
g < gy +H )"

where for the first bound we used that L), < Lg.

It is important to note that the estimates on Ngy and N}, obtained in both cases L; > Lg and Lj, < Lg are exactly the
same. Thus, regardless of the relation between Lj; and Lg, we obtain the estimates in the statement of the Lemma. Yet, we
underline that the algorithm actually depends on whether Ly, > Lg or Ly < L. [}

We now obtain a simple counterpart of the previous Lemma for the case when Assumption[5l3(b) holds instead of Assump-
tion[Bl3(a). In this case h is prox-friendly and there is no need to consider different cases and just one Loop is enough since the
auxiliary problem (G.3)) in Loop 1 can be solved explicitly.

Lemma 20 Let the function g be defined via mazimization problem in BIT), i.e.

o) = max {Go,) =) = Gl =l | (G16)

where G(x,y), h(y) are according to (Z1) and satisfy Assumption[d.1,2,3(b), yo € R%. Then, applying Algorithm [@ to this

problem, we guarantee that Assumption[d holds with TG basic oracle calls for G(-,y) and the following estimates for the number
of basic oracle calls for G(z,-) and h respectively

Ng(’TG7H):O(Tg—f—TG\/LG/(H-i-uy)), (G.17)
Ny, (mn, H) = 0. (G.18)

Proof The proof is similar to the proof for the case ”Sliding L;, > Lg” in the proof of Lemma [I9 with the only change that
the auxiliary problem (G.3)) is solved explicitly thanks to h being prox-friendly. O

By changing the variables x and y in Lemma [I9 and choosing H = 0 we obtain the following simple corollary that ensures
Assumption [3l
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Different regimes Ly > Lg Ly < Lg
Framework from Appendix [[] (Theorem [[7) | Framework from Appendix [[] (Theorem [I7)
Ly < Lg + Sliding for Lj, > Lg (Lemma [T9) + Sliding for Lj, < Lg (Lemma [T9)
+ Sliding for Ly < L (Corollary [1) + Sliding for Ly < L (Corollary [)
General Framework (Theorem [B) General Framework (Theorem [B)
Ly > Lg + Sliding for Lj, > Lg (Lemma [19) + Sliding for Ly, < Lg (Lemma [19)
+ Sliding for Ly > Lg (Corollary [7) + Sliding for Ly > Lg (Corollary [7)

Table 6: Summary of the proof of Theorem [l For each regime we apply the algorithms described in the proofs
of the corresponding results listed in the table to obtain the complexity estimates (0.9)-(Z12) for the number
of basic oracle calls for each part of the objective f, h, and G.

Corollary 7 Let the function r be defined via mazimization problem in ([BI8), i.e.
r(y) = min {G(z,y) + f(=)}, (G.19)

where G(z,y), f(y) are according to (1) and satisfy AssumptionlB 1,2,8(a). Then, for each of two cases Ly > Lg and Ly < Lg
we organize computations in two loops and apply Algorithm[2 so that Assumption[3 holds with T basic oracle calls for G(z, )
and the following estimates for the number of basic oracle calls for G(-,y) and f respectively

Ng‘(TG):O(TGJFTG\/LG/ﬂz), (G.20)

N (15) :O(Tf +Tf1/Lf/ux) . (G.21)

We name these algorithms ”Sliding Ly > Lg” and ”Sliding Ly < Lg”.

G.2 Proof of Theorem [7]

Finally, we prove Theorem [7 for problem (B by combining the building blocks depending on the relation between L
and Lg and relation between Lj and Lg. If Ly > Lg we use the general framework from the main text (see Section Bl and
Theorem [B)). In the opposite case we apply the variation of this framework described in Appendix [[] (see Theorem [I7)). In both
cases we use Lemma [[9 and Corollary [T to ensure Assumptions 2l Bl but with different order of the loops described inside these
Lemma and Corollary depending on the relation between Lj and Lg, i.e. we use either sliding L, > Lg or sliding Ly, < La
in Lemma [T9 and either sliding Ly > Lg or sliding Ly < Lg in Corollary [l For convenience, we summarize which results are
used in which case in Table

Proof (of Theorem[7) Assumption [B1,2,3(a) with (E3) guarantee that Assumption [l holds. Further, the choice H = 2L¢ in
Lemma [T guarantee that Assumption 2] holds with the number of oracle calls given by (G.2]) and (G.3]). Corollary [7] guarantee
that Assumption 3] holds with the number of oracle calls given by (G20) and (G2I). We consider two cases Ly > Lg and
Ly < Lg and, for each case, apply either the general framework from the main text or from the previous appendix. We show
that in both cases the estimates are the same and are equal to the ones in the statement of the theorem. In each case we make
the derivations with o = 0 since all the algorithms are deterministic in this case.

We begin with the case Ly > Lg.

Case Ly > Lg
Applying Theorem [l with 74 = 7, = 1 and 7¢ = mq, Lemma [[9 with H = 2L¢, Corollary [l and combining the complexity
estimates in these results, we obtain the following final complexity bounds.

Number of basic oracle calls of f:

(i) (ol (o) O = () (e (52 (V2)
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where we used that, Lg < Ly and, by the assumptions of this Theorem, 1 < Lg/uy, 1 < Lg/pa, 1 < Ly /pia.
Number of basic oracle calls of h:

(i) (0 Ofmm))) -2 () O () (+42)
=6 (moe [l 2 ),

where we used that H = 2L¢ in Lemma [[9 and, by the assumptions of this Theorem, 1 < Lg/py, 1 < La/pa.-
Number of basic oracle calls of G(-,y):

~ / / / ~ L2
O<<1+ LG) <mg+mg L7G+WLG <1+ LG>>>=O mg G
Hy Hax Hax Ha by

where we used that, by the assumptions of this Theorem, 1 < Lg/uy and 1 < Lg /.
Number of basic oracle calls of G(z, -):

() e ) o)
oo 2) o)

where we used that H = 2L¢ in Lemma [[9 and, by the assumptions of this Theorem, 1 < Lg/py and 1 < Lg/piz.

Case Ly < Lg
Applying Theorem [I7] with 74 = 7, = 1 and 7¢ = mg, Lemma M9 with H = 2Lg, Corollary [{l and combining the, complexity
estimates we obtain the final complexity bounds as follows.

Number of basic oracle calls of f:

(o) Oz (o)) o () (i () -2 ()

where we used that, by the assumptions of this Theorem, 1 < Lg/puy and 1 < Ly /e
Number of basic oracle calls of h:

oA (B (-8 ()
)0 (2) (B (- 8)) o 22))

where we used that H = 2Lg in Lemma[I9 Lg > Ly and, by the assumptions of this Theorem, 1 < Lg/py, 1 < Ly /pz.
Number of basic oracle calls of G(-,y):

o f5) o () ()
(e () ()0 o () () o2

where we used that Lg > Ly and, by the assumptions of this Theorem, 1 < Lg/py, 1 < Lg/pz, 1 < Ly /pia.
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Number of basic oracle calls of G(z, -):

Al ()l )
o) (2 () ool ) - ()

where we used that H = 2Lg in Lemma [I9 Lg > Ly and, by the assumptions of this Theorem, 1 < Lg/uy, 1 < Lg/pz,

[m}

Proof (of Theorem [8) The only difference in the proof of Theorem [§] from the proof of Theorem [7]is the use of Lemma
instead of Lemma [[3 to satisfy Assumption [ Thus, applying expressions (G17), (GIR) for V¥ and N}, and following the
proof of Theorem [7] without any changes we obtain the same estimates for the number of basic oracle calls of f, G(-,y), G(z,").
Considering N}, = 0 and using that, by the assumptions of this Theorem, 1 < Lg/uy, we obtain that the number of basic

oracle calls of h is
~ L
of=5).
Hy
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