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Abstract
We propose ADOM – an accelerated method for
smooth and strongly convex decentralized opti-
mization over time-varying networks. ADOM
uses a dual oracle, i.e., we assume access to the
gradient of the Fenchel conjugate of the individ-
ual loss functions. Up to a constant factor, which
depends on the network structure only, its commu-
nication complexity is the same as that of acceler-
ated Nesterov gradient method (Nesterov, 2003).
To the best of our knowledge, only the algorithm
of Rogozin et al. (2019) has a convergence rate
with similar properties. However, their algorithm
converges under the very restrictive assumption
that the number of network changes can not be
greater than a tiny percentage of the number of
iterations. This assumption is hard to satisfy in
practice, as the network topology changes usually
can not be controlled. In contrast, ADOM merely
requires the network to stay connected throughout
time.

1. Introduction
We study the decentralized optimization problem

min
x∈Rd

n∑
i=1

fi(x), (1)

where each function fi : Rd → R is stored on a compute
node i ∈ [n] := {1, 2, . . . , n}. We assume that the nodes
are connected through a communication network defined by
an undirected connected graph. Each node can perform com-
putations based on its local state and data, and can directly
communicate with its neighbors only. Further, we assume
the functions fi to be smooth and strongly convex. Such de-
centralized optimization problems have been studied heavily
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Figure 1. A sample time-varying network with n = 20 nodes.

(Gorbunov et al., 2020b), and arise in many applications, in-
cluyding estimation by sensor networks (Rabbat & Nowak,
2004), network resource allocation (Beck et al., 2014), co-
operative control (Giselsson et al., 2013), distributed spec-
trum sensing (Bazerque & Giannakis, 2009), power system
control (Gan et al., 2012) and federated learning (Li et al.,
2020a; Kovalev et al., 2021). When the network is not
allowed to change in time, a lower communication com-
plexity bound has been established by Scaman et al. (2017).
This bound is tight as there is a matching upper bound both
in the case when a dual oracle is assumed (Scaman et al.,
2017), which means that we have access to the gradient of
the Fenchel conjugate of the functions fi(x), and also in
the case when a primal oracle is assumed (Kovalev et al.,
2020b), which means that we have access to the gradient of
the functions fi(x) themselves.

1.1. Time-varying networks

In this work, we study the situation when the links in the
communication network are allowed to change over time
(for an illustration, see Figure 1). Such time-varying net-
works (Zadeh, 1961; Kolar et al., 2010) are ubiquitous in
many complex systems and practical applications. In sensor
networks, for example, changes in the link structure occur
when the sensors are in motion, and due to other distur-
bances in the wireless signal connecting pairs of nodes. We
envisage that a similar regime will be supported in future-
generation federated learning systems (Konečný et al., 2016;
McMahan et al., 2017; Kovalev et al., 2021), where the com-
munication pattern among pairs of mobile devices or mobile
devices and edge servers will be dictated by their physical
proximity, which naturally changes over time. Our work
can be partially understood as an attempt to contribute to
the algorithmic foundations of this nascent field.
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1.2. On the smooth and strongly convex regime

As mentioned earlier, throughout this paper we restrict
each function fi(x) to be L-smooth and µ-strongly con-
vex. That is, we require that the inequalities fi(x) ≥
fi(y) + 〈∇fi(y), x− y〉+ µ

2 ‖x− y‖
2 and fi(x) ≤ fi(y) +

〈∇fi(y), x−y〉+ L
2 ‖x−y‖

2 hold for all nodes i ∈ [n] and
all x, y ∈ Rd. This naturally leads to the quantity

κ := L/µ (2)

known as the condition number of function f . As we shall
see, current understanding of decentralized optimization
over time-varying networks is insufficient even in this set-
ting, and we believe that the key technical issues we face
at present do not come from the difficulty of the function
class, but from the algorithmic and modeling aspect of deal-
ing with the decentralized and time-varying nature of the
problem. Thus, focusing on smooth and strongly convex
problems should not be seen as a weakness, but as a nec-
essary step in the quest to make a significant advance in
our understanding of how efficient decentralized methods
should be designed in the time-varying network regime.

1.3. Methods for time-varying networks

To the best of our knowledge, there is only a handful of al-
gorithms for solving the decentralized optimization problem
(1) that enjoy a linear convergence rate in the time-varying
regime under smoothness and strong convexity assumptions.
These include DIGing (Nedic et al., 2017) and Push-Pull
Gradient Method (Pu et al., 2020), which use the primal
oracle, and PANDA (Maros & Jaldén, 2018), which uses the
dual oracle. While linear, their rates are slow in comparison
to the best methods “on the market” at present (see Table 1).

A well known mechanism for improving the convergence
rates of standard gradient type methods is to apply or adapt
Nesterov acceleration (Nesterov, 2003), whose goal is to
reduce the dependence of the method on the condition num-
ber κ associated with the problem, the condition number
χ associated with the network structure (see (14) in Sec-
tion 4.3), or both. However, doing this is nontrivial in the
decentralized time-varying setting.

2. Summary of Contributions
We now briefly outline the main contributions:

2.1. New algorithm

In this paper we propose an accelerated algorithm—ADOM
(Algorithm 2)—for smooth and strongly convex decentral-
ized optimization over time-varying networks. This algo-
rithm uses the dual oracle, and is based on a careful general-
ization of the Projected Nesterov Gradient Descent method
(PNGD; Algorithm 1).

2.2. Convergence analysis

We prove that ADOM enjoys the rate O(χκ1/2 log 1
ε ) (see

Thm 1), which matches the O(κ1/2 log 1
ε ) rate of PNGD in

the special case of a fully connected time-invariant network.

2.3. Innovations in the analysis

Our analysis requires several new insights and tools. First,
we rely on the new observation that decentralized communi-
cation can be seen as the application of a certain contractive
compression operator (see Section 4.4). This operator is lin-
ear, but may be biased, which raises significant challenges.
While the use of unbiased compression operators, such as
sparsification and quantization, is increasingly popular in
modern literature on distributed optimization in the parame-
ter server framework1, we only know of a handful of results
combining compression with acceleration (Li et al., 2020b;
Qian et al., 2020). Of these, the first handles unbiased com-
pressors only, and the second is the only work we know
of successfully combining biased communication compres-
sion and acceleration. However, their work makes use of
a different acceleration mechanism from ours, and it is not
clear how to extend it to decentralized optimization. We are
not aware of any results combining the use of biased com-
pressors, acceleration and decentralized communication,
even if we allow for the networks to be time-invariant. The
observation that decentralized communication can be mod-
eled as the application of a certain contractive compressor
allows us to design a bespoke error-feedback mechanism,
previously studied in other settings by Stich & Karimireddy
(2019); Karimireddy et al. (2019); Beznosikov et al. (2020);
Gorbunov et al. (2020a), for achieving acceleration despite
dealing with a biased compressor.

2.4. Comparison to accelerated methods designed for
time-varying networks

While there were attempts to design accelerated algorithms
that could deal with time-varying networks, only several
methods provide sub-quadratic dependence on χ: Acc-
DNGD (Qu & Li, 2019), Mudag (Ye et al., 2020), and
the Accelerated Penalty Method (APM) (Rogozin et al.,
2020; Li et al., 2018). Acc-DNGD has O(χ3/2) depen-
dence on χ, which is worse than the linear dependence on χ
shared by Mudag, APM and our method ADOM. Moreover,
Acc-DNGD has O(κ5/7) dependence on κ and Mudag has
O(κ1/2 log κ) dependence, which is worse than theO(κ1/2)
dependence of APM and our method ADOM. Lastly, APM
has a square-logarithmic dependence on 1/ε, which is worse
than the dependence of all the other methods on this quan-
tity. These results are summarized in Table 1. In summary,

1Distributed optimization in a parameter server framework is
mathematically equivalent to the setting where communication
happens over a fully connected time-invariant network.
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Table 1. A review of decentralized optimization algorithms capa-
ble of working in the time-varying network regime, with guaran-
tees. Complexity terms highlighted in red represent the best known
dependencies. Our method is the only method with best known
dependencies in all terms.

Algorithm Communication complexity
DIGing

Nedic et al. (2017) O
(
n1/2χ2κ3/2log 1

ε

)
PANDA

Maros & Jaldén (2018) O
(
χ2κ3/2log 1

ε

)
Acc-DNGD

Qu & Li (2019) O
(
χ3/2κ5/7log 1

ε

)
APM

Li et al. (2018) O
(
χκ1/2 log2 1

ε

)
Mudag

Ye et al. (2020) O
(
χκ1/2 log(κ)log 1

ε

)
ADOM (Algorithm 2)

THIS PAPER O
(
χκ1/2 log 1

ε

)
ADOM achieves the new state-of-the-art rate for decentral-
ized optimization over time-varying networks.

2.5. Comparison to DNM of Rogozin et al. (2019)

We left one relevant method our from the above comparison
– the Distributed Nesterov Method (DNM) of Rogozin et al.
(2019). This method has O(χ1/2) dependence on χ. How-
ever, DNM converges under the very restrictive assumption
requiring the number of network changes to not exceed a
tiny percentage of the number of iterations. This assumption
is hard to satisfy in practice, as the changes in the network
topology usually can not be controlled and happen indepen-
dently of the algorithm run. In contrast, our algorithm just
requires the network to be connected all the time. In Fig-
ure 2 we give a representative comparison of the workings
of our method ADOM and DNM in a regime where the num-
ber of network changes exceeds the theoretical limit. While
ADOM converges, DNM often diverges, which shows that
DNM is not robust to the network dynamics, and that the
restrictive assumption is crucial to their analysis.

3. Problem Formulation and Projected
Nesterov Gradient Descent

The design of our method is based on a particular reformu-
lation of problem (1), which we now describe.

3.1. Reformulation via Lifting

Consider function F : (Rd)V → R defined by

F (x) =
∑
i∈V

fi(xi), (3)

where x = (x1, . . . , xn) ∈ (Rd)V and V := [n] denotes
the set of compute nodes. Then F is L-smooth µ-strongly

convex since the individual functions fi are. Consider also
the so called consensus space L ⊂ (Rd)V defined by

L := {(x1, . . . , xn) ∈ (Rd)V : x1 = · · · = xn}. (4)

Using this notation, we arrive at an equivalent formulation
of problem (1), which we call the primal formulation:

min
x∈L

F (x). (5)

Since the function F (x) is strongly convex, this problem
has a unique solution, which we denote as x∗ ∈ L.

3.2. Dual Problem

It is a well known fact that problem (5) has an equivalent
dual formulation of the form

min
z∈L⊥

F ∗(z), (6)

where F ∗ is the Fenchel transform of F and L⊥ ⊂ (Rd)V is
the orthogonal complement to the space L, given as follows:

L⊥ =
{

(z1, . . . , zn) ∈ (Rd)V :
∑n
i=1 zi = 0

}
. (7)

Note that the function F ∗(z) is 1
µ -smooth and 1

L -strongly
convex (Rockafellar, 1970). Hence, problem (6) also has a
unique solution, which we denote as z∗ ∈ L⊥.

3.3. Projected Nesterov Gradient Descent

A natural way to tackle problem (6) is to use a projected ver-
sion of Nesterov’s accelerated gradient method: Projected
Nesterov Gradient Descent (PNGD) (Nesterov, 2003). This
algorithm requires us to calculate projection onto the set
L⊥, which can be written in the closed form

projL(g) := arg min
z∈L⊥

‖g − z‖2 = Pg, (8)

where g ∈ (Rd)V and P is an orthogonal projection matrix
onto the subspace L⊥. Matrix P is given as follows:

P =
(
In − 1

n1n1
>
n

)
⊗ Id, (9)

where Ip denotes p× p identity matrix, 1n = (1, . . . , 1) ∈
Rn, ⊗ is a Kronecker product. Note that

P2 = P. (10)

With this notation, PNGD is presented as Algorithm 1.

A key property of Algorithm 1 is that it converges with
the accelerated rate O

(√
L/µ log 1

ε

)
. However, PNGD in

each iteration calculates the matrix-vector multiplication
P∇F ∗(zkg ), which requires full averaging, i.e., consensus,
over all nodes of the communication network. In particular,
this can not be done in decentralized fashion. In Section 5
we describe our algorithm ADOM, which in a certain sense
mimics the behavior of Algorithm 1, but can be imple-
mented in a decentralized fashion.
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Algorithm 1 PNGD: Projected Nesterov Gradient Descent
1: input: z0 ∈ L⊥, α, η, θ > 0, τ ∈ (0, 1)
2: set z0f = z0

3: for k = 0, 1, 2 . . . do
4: zkg = τzk + (1− τ)zkf
5: zk+1 = zk + ηα(zkg − zk)− ηP∇F ∗(zkg )

6: zk+1
f = zkg − θP∇F ∗(zkg )

7: end for

4. Decentralized Communication
We now introduce the necessary notation, definitions and
formalism to be able to describe our method. Compute
nodes V = [n] are connected through a communication
network represented as a graph Gk = (V, Ek), where k ∈
{0, 1, 2, . . .} encodes time, and Ek ⊆ {(i, j) ∈ V ×V : i 6=
j} is the set of edges at time k. In this work we assume
that the graph Gk is undirected, that is, (i, j) ∈ Ek implies
(j, i) ∈ Ek. We also assume that Gk is connected. For each
node i ∈ V we consider a set of its neighbors at time step
k: N k

i = {j ∈ V : (i, j) ∈ Ek}. At time step k, each
node i ∈ V can communicate with the nodes from set N k

i

only. This type of communication is known as decentralized
communication in the literature.

4.1. Gossip Matrices

Decentralized communication between nodes is typically
represented via a matrix-vector multiplication with a gossip
matrix. For time-invariant networks such representations
can be found in, e.g., (Kovalev et al., 2020b). For each time
step k ∈ {0, 1, 2, . . .} consider a matrix Ŵ(k) ∈ Rn×n
with the following properties:

1. Ŵ(k) is symmetric and positive semi-definite,

2. Ŵ(k)i,j 6= 0 if and only if (i, j) ∈ Ek or i = j,

3. kerŴ(k) = {(x1, . . . , xn) ∈ Rn : x1 = . . . = xn}.

Matrix Ŵ(k) is often called a gossip matrix. A typical
example is the Laplacian of the graph Gk. Consider also a
linear map W(k) : (Rd)V → (Rd)V , i.e., nd × nd matrix
defined by W(k) = Ŵ(k) ⊗ Id. This matrix can be rep-
resented as a block matrix (W(k)i,j)(i,j)∈V2 , where each
block W(k)i,j = Ŵ(k)i,jId is a d× d matrix proportional
to Id. Matrix W(k) satisfies similar properties to Ŵ(k):

1. W(k) is symmetric and positive semi-definite,

2. W(k)i,j 6= 0 if and only if (i, j) ∈ Ek or i = j,

3. kerW(k) = L or equivalently rangeW(k) = L⊥.

With a slight abuse of language, in the rest of this paper we
will refer to W(k) as a gossip matrix as well.

4.2. Decentralized Communication as Multiplication
with the Gossip Matrix

Decentralized communication of vectors x1, . . . , xn ∈ Rd
stored on the nodes among neighboring nodes at time
step k can be represented as a multiplication of the nd-
dimensional vector by matrix W(k). Indeed, consider
x = (x1, . . . , xn) ∈ (Rd)V , y = (y1, . . . , yn) ∈ (Rd)V ,
where each xi is stored by node i ∈ V , and let y = W(k)x.
One can observe that

yi =
n∑
j=1

Ŵ(k)i,jxj =
∑
j∈Ni

Ŵ(k)i,jxj .

Hence, for each node i, vector yi is a linear combination of
vectors xj , stored at the neighboring nodes j ∈ Ni. This
means that matrix-vector multiplications by matrix W(k)
can be computed in a decentralized fashion.

4.3. Condition Number of Time-Varying Networks

A condition number of the matrix Ŵ(k) is given as
λmax(Ŵ(k))

λ+
min(Ŵ(k))

, where λmax refers to the largest and λ+min to
the smallest positive eigenvalue. This quantity is known to
be a measure of the connectivity of graph Gk, and appears
in convergence rates of many decentralized algorithms. In
this work we assume that this condition number is bounded
for all k ∈ {0, 1, 2 . . .}. In particular, we assume that there
exist constants 0 < λ+min < λmax such that

λ+min ≤ λ
+
min(Ŵ(k)) ≤ λmax(Ŵ(k)) ≤ λmax. (11)

So, we assume that the worst case spectral behavior of the
gossip matrices is bounded, and these bounds will later
appear in our convergence rate for ADOM.

Relation (11) can be equivalently written in the form of a
linear matrix inequality involving the gossip matrix W(k):

λ+minP �W(k) � λmaxP, (12)

where P is orthogonal projector onto subspace rangeWk =
L⊥ given by (9). Note that

PW(k) = W(k)P = W(k). (13)

By χ we denote a bound on the condition number of matri-
ces W(k), k = 0, 1, 2 . . ., given by

χ := λmax/λ
+
min. (14)

4.4. Decentralized Communication as a Compression
Operator

We have just shown that decentralized communication at
time step k can be represented as multiplication by the gos-
sip matrix W(k). We will now show, and this is a key



ADOM

insight which was the starting point of our work, that decen-
tralized communication can also be seen as the application
of a contractive compression operator.

Let Q be a linear space. A mapping C : Q → Q is called a
compression operator if there exists δ ∈ (0, 1] such that

‖C(z)− z‖2 ≤ (1− δ)‖z‖2 for all z ∈ Q. (15)

The following lemma shows that matrix-vector multiplica-
tion by gossip matrix W(k) is a contractive compression
operator acting on the subspace L⊥.
Lemma 1. Let σ ∈ (0, 1/λmax), k ∈ {0, 1, 2 . . .}. Then
the following inequality holds for all z ∈ L⊥:

‖σW(k)z − z‖2 ≤ (1− σλ+min)‖z‖2.

There is a natural question regarding Algorithm 1: can we re-
place the gradient P∇F ∗(zkg ) on lines 5 and 6 with its com-
pressed version W(k)P∇F ∗(zkg ), or some modification
thereof, and still obtain a good convergence result? Note
that (13) implies W(k)P∇F ∗(zkg ) = W(k)∇F ∗(zkg ). In
Section 5 we will provide a positive answer to this question.

Convergence of gradient-type methods with contractive
compression operators satisfying (15) was studied in several
recent papers. In particular, Stich & Karimireddy (2019);
Karimireddy et al. (2019); Beznosikov et al. (2020); Gor-
bunov et al. (2020a) study a mechanism called error feed-
back, which allows to design variations with better conver-
gence properties. However, these works do not study ac-
celerated algorithms, nor provide any connections between
compression and decentralized communication, which we
do.

The only exception we are aware of is (Qian et al., 2020),
which is the first work proposing an accelerated error com-
pensated method. However, their ECLK method is more
complicated than ours, uses the Katyusha momentum (Allen-
Zhu, 2017; Kovalev et al., 2020a) instead of the Nesterov
momentum we employ, and does not apply to decentralized
optimization. Moreover, while for us it is crucial that the
contractive property is enforced on a subspace only, Qian
et al. (2020) require this property to hold globally.

5. ADOM: Algorithm and its Analysis
Armed with the notions and ideas described in preceding
sections, we are now ready to present our method ADOM
(Algorithm 2). As alluded to in the introduction, ADOM
is a generalization of Algorithm 1 that can be implemented
in a decentralized fashion. Indeed, our algorithm does not
make use of matrix-vector multiplication by P in the way
Algorithm 1 does, which requires full averaging over the
network. Instead, ADOM uses matrix-vector multiplication
by the gossip matrix W(k), which represents a single decen-
tralized communication round, as we discussed in Section 4.

Algorithm 2 ADOM: Accelerated Decentralized Optimiza-
tion Method

1: input: z0 ∈ L⊥,m0 ∈ (Rd)V , α, η, θ, σ>0, τ ∈(0, 1)
2: set z0f = z0

3: for k = 0, 1, 2, . . . do
4: zkg = τzk + (1− τ)zkf
5: ∆k = σW(k)(mk − η∇F ∗(zkg ))

6: mk+1 = mk − η∇F ∗(zkg )−∆k

7: zk+1 = zk + ηα(zkg − zk) + ∆k

8: zk+1
f = zkg − θW(k)∇F ∗(zkg )

9: end for

5.1. Design and Analysis of the New Algorithm

First, we mention two lemmas, which play an important role
in the convergence analysis of Algorithm 2.

Lemma 2. For θ ≤ µ
λmax

we have the inequality

F ∗(zk+1
f ) ≤ F ∗(zkg )− θλ+

min

2 ‖∇F ∗(zkg )‖2P. (16)

Lemma 3. For σ ≤ 1
λmax

we have the inequality

‖mk‖2P ≤
(

1− σλ+
min

4

)
4

σλ+
min

‖mk‖2P

− 4
σλ+

min

‖mk+1‖2P + 8η2

(σλ+
min)

2
‖∇F ∗(zkg )‖2P.

(17)

We now make a few remarks about the main steps of Algo-
rithm 2 compared to Algorithm 1 and comment on some
aspects of our convergence analysis and the role of the above
lemmas in it:

• Line 4 of Algorithm 2 is unchanged compared to line 4
of Algorithm 1.

• Line 8 of Algorithm 2 corresponds to line 6 of Algo-
rithm 1. Note that the analysis of Algorithm 1 requires
an inequality of the type

F ∗(zk+1
f ) ≤ F ∗(zkg )− const · ‖∇F ∗(zkg )‖2P.

Lemma 2 establishes a similar inequality for Algo-
rithm 2.

• Together, lines 5, 6 and 7 of Algorithm 2 form an error
feedback update, which we discussed in Section 4.4
when we interpreted a decentralized communication
round as the application of a contractive compression
operator. A key to the theoretical analysis of this update
is to make use of the so-called ghost iterate ẑk =
zk + Pmk. One can observe that the ghost iterate is
updated as

ẑk+1 = ẑk + ηα(zkg − zk)− ηP∇F ∗(zkg ),

which is similar to the update on line 5 of Algorithm 1.
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• Another key step in the analysis of Algorithm 2 is to
bound the distance between the actual iterate zk and
the ghost iterate ẑk, which is equal to ‖mk‖2P. This is
done in Lemma 3 based on line 6 of Algorithm 2.

5.2. Main Convergence Theorem

Now, we are ready to present our main theorem.

Theorem 1. Set parameters α, η, θ, σ, τ of Algorithm 2 to

α = 1
2L , η =

2λ+
min

√
µL

7λmax
, θ = µ

λmax
, σ = 1

λmax
, and

τ =
λ+
min

7λmax

√
µ
L . Then there exists C > 0, such that

‖∇F ∗(zkg )− x∗‖2 ≤ C
(

1− λ+
min

7λmax

√
µ
L

)k
. (18)

Note that the rate is O(χκ1/2 log 1
ε ), as previously adver-

tised. Proofs of all our results are available in the appendix.

5.3. Comparison with Existing Algorithms

In this paper we compare our Algorithm 2 with current
state-of-the-art algorithms for decentralized optimization
over time-varying networks. While the Accelerated Penalty
Method (APM) (Li et al., 2018) and Mudag (Ye et al., 2020)
were originally designed for time-invariant networks, they
can be easily extended to the time-varying case. Also note
that DIGing (Nedic et al., 2017), Push-Pull Gradient Method
(Pu et al., 2020) and PANDA (Maros & Jaldén, 2018) con-
verge under slightly more general assumptions than those
we used to analyze our method. However, these methods
converge at a substantially slower rate due to the fact that
they do not employ any acceleration mechanism. Moreover,
to the best of our knowledge, no results improving the con-
vergence rates of these algorithms under our assumptions
exist in the literature.

6. Numerical Experiments
In this section we perform experiments with logistic regres-
sion for binary classification with `2 regularization. That is,
our loss function has the form

fi(x) = 1
m

m∑
j=1

log(1 + exp(−bija>ijx)) + r
2‖x‖

2, (19)

where aij ∈ Rd and bij ∈ {−1,+1} are data
points and labels, r > 0 is a regularization pa-
rameter, and m is the number of data points stored
on each node. In our experiments we use function
sklearn.datasets.make classification from
scikit-learn library for dataset generation. We generate
a number of datasets consisting of 10, 000 samples, dis-
tributed to the n = 100 nodes of the network with m = 100
samples on each node. We vary r to obtain different values

of the condition number κ. We also vary the number of
features d.

In order to simulate a time-varying network, we use ge-
ometric random graphs. That is, we generate n = 100
nodes from the uniform distribution over [0, 1]2 ⊂ R2 and
connect each pair of nodes whose distance is less than a
certain radius. Since a geometric graph is likely to be dis-
connected when the radius is small, we enforce connectivity
by adding a minimal number of edges. We obtain a sequence
of networks {Gk}∞k=0 by generating 1, 000 random geomet-
ric graphs and switching between them in a cyclic way. For
each k, matrix Wk is chosen to be the Laplacian of graph
Gk divided by its largest eigenvalue. We obtain different
values of the time-varying network structure parameter χ
by choosing different values of the radius.

One potential problem with ADOM is that it has to calcu-
late the dual gradient ∇F ∗(zkg ), which is known to be the
solution of the following problem:

∇F ∗(zkg ) = arg min
x∈(Rd)V

F (x)− 〈x, zkg 〉. (20)

In practice,∇F ∗(zkg ) may be hard to compute. In our exper-
iments we solve this issue by calculating∇F ∗(zkg ) inexactly
using T iterations of Gradient Descent (GD) or Accelerated
Gradient Descent (AGD) initialized with the previous esti-
mate of ∇F ∗(zk−1g ). It turns out that it is sufficient to use
T ≤ 3 to obtain a good convergence rate in practice.

6.1. Experiment 1: While DNM may diverge, ADOM is
stable

We first compare ADOM with the Distributed Nesterov
Method (DNM) of Rogozin et al. (2019). The condition
number κ is set to 30, the number of features is d = 40. To
calculate the dual gradient∇F ∗(z) we use T = 3 steps of
AGD in ADOM and T = 30 steps of AGD in DNM.

We switch between 2 networks every t iterations, where t ∈
{50, 20, 10, 5}. We use the following choice of networks:
(i) two random geometric graphs with χ ≈ 400; see Figure 2
(top row); (ii) two networks with ring and star topology with
χ ≈ 1, 000; see Figure 2 (bottom row).

DNM diverges in 7 out of 8 cases presented in Figure 2,
while ADOM converges in all cases. However, when DNM
converges, it can converge faster than ADOM, since its
communication complexity has better dependence on χ (

√
χ

of DNM vs χ of ADOM).

6.2. Experiment 2: Comparing ADOM with the state of
the art: Mudag, Acc-DNGD and APM

We compare ADOM with the following algorithms for de-
centralized optimization over time-varying networks, all
equipped with Nesterov acceleration: Mudag (Ye et al.,
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Figure 2. Comparison of DNM and ADOM on a problem with κ = 30 and d = 40. Top row: We alternate between two geometric graphs
(χ ≈ 400). Bottom row: We alternate between two networks, one with a ring and the other with a star topology (χ ≈ 1000).
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Figure 3. Comparison of Mudag, Acc-DNGD, APM and ADOM on problems with χ ≈ 30, d ∈ {40, 60, 80, 100} and κ ∈
{10, 102, 103, 104}.
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Figure 4. Comparison of Mudag, Acc-DNGD, APM and ADOM on problems with χ ∈ {9, 32, 134, 521}, d ∈ {40, 60, 80, 100} and
κ = 100.

2020), Acc-DNGD (Qu & Li, 2019) and Accelerated Penalty
Method (APM) (Li et al., 2018; Rogozin et al., 2020). We
do not compare ADOM with PANDA (Maros & Jaldén,
2018) and DIGing (Nedic et al., 2017) because they are
not accelerated and have very slow convergence rate both
in theory and practice. We use T = 1 iterations of GD to
calculate ∇F ∗(zkg ) in ADOM.

We generate random datasets with the number of fea-
tures d ∈ {40, 60, 80, 100}. In Figure 3 we fix the net-
work structure parameter χ ≈ 30 and perform compar-
ison for condition number κ ∈ {10, 102, 103, 104}. In
Figure 4 we fix κ = 100 and perform comparison for
χ ∈ {9, 32, 134, 521}.

Overall, ADOM is better than the contenders. Acc-DNGD
performs worse as the values of χ and κ grow since it has the
worst dependence on them. One can also observe that APM
suffers from sub-linear convergence, which becomes clear
as the number of iterations grows (see bottom row of Fig-

ure 3) since its communication complexity is proportional
to log2 1

ε .
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L. Optimal algorithms for smooth and strongly con-
vex distributed optimization in networks. arXiv preprint
arXiv:1702.08704, 2017.

Stich, S. U. and Karimireddy, S. P. The error-feedback
framework: Better rates for SGD with delayed gradi-
ents and compressed communication. arXiv preprint
arXiv:1909.05350, 2019.

Ye, H., Luo, L., Zhou, Z., and Zhang, T. Multi-consensus
decentralized accelerated gradient descent. arXiv preprint
arXiv:2005.00797, 2020.

Zadeh, L. A. Time-varying networks, i. Proceedings of the
IRE, 49(10):1488–1503, 1961.



ADOM

Appendix
A. Proof of Lemma 2
Proof. We start with 1

µ -smoothness of F ∗:

F ∗(zk+1
f ) ≤ F ∗(zkg ) + 〈∇F ∗(zkg ), zk+1

f − zkg 〉+
1

2µ
‖zk+1
f − zkg‖2.

Using line 8 of Algorithm 2 together with (12) we get

F ∗(zk+1
f ) ≤ F ∗(zkg )− θ‖∇F ∗(zkg )‖2W(k) +

θ2

2µ
‖∇F ∗(zkg )‖2W2(k)

≤ F ∗(zkg )− θλ+min

2
‖∇F ∗(zkg )‖2P −

θ

2
‖∇F ∗(zkg )‖2W(k) +

θ2λmax

2µ
‖∇F ∗(zkg )‖2W(k)

= F ∗(zkg )− θλ+min

2
‖∇F ∗(zkg )‖2P +

θ

2

(
θλmax

µ
− 1

)
‖∇F ∗(zkg )‖2W(k).

Using condition θ ≤ µ
λmax

we get

F ∗(zk+1
f ) ≤ F ∗(zkg )− θλ+min

2
‖∇F ∗(zkg )‖2P.

B. Proof of Lemma 3
Proof. Using (10) and (13) together with lines 5 and 6 of Algorithm 2 we obtain

‖mk+1‖2P = ‖mk − η∇F ∗(zkg )−∆k‖2P
= ‖(P− σW(k))(mk − η∇F ∗(zkg ))‖2

= ‖mk − η∇F ∗(zkg )‖2P − 2σ‖mk − η∇F ∗(zkg )‖2W(k) + σ2‖mk − η∇F ∗(zkg )‖2W2(k).

Using (12) we obtain

‖mk+1‖2P ≤ ‖mk − η∇F ∗(zkg )‖2P − σλ+min‖m
k − η∇F ∗(zkg )‖2P

− σ‖mk − η∇F ∗(zkg )‖2W(k) + σ2λmax‖mk − η∇F ∗(zkg )‖2W(k)

= ‖mk − η∇F ∗(zkg )‖2P − σλ+min‖m
k − η∇F ∗(zkg )‖2P

+ σ(σλmax − 1)‖mk − η∇F ∗(zkg )‖2W(k)

Using condition σ ≤ 1
λmax

we get

‖mk+1‖2P ≤ (1− σλ+min)‖mk − η∇F ∗(zkg )‖2P.

Using Young’s inequality we get

‖mk+1‖2P ≤ (1− σλ+min)

((
1 +

σλ+min

2(1− σλ+min)

)
‖mk‖2P +

(
1 +

2(1− σλ+min)

σλ+min

)
‖η∇F ∗(zkg )‖2P

)
=

(
1− σλ+min

2

)
‖mk‖2P + η2

(1− σλ+min)(2− σλ+min)

σλ+min

‖∇F ∗(zkg )‖2P

≤
(

1− σλ+min

2

)
‖mk‖2P +

2η2

σλ+min

‖∇F ∗(zkg )‖2P.

Rearranging concludes the proof.
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C. New Lemma
Lemma 4. Let

α =
1

2L
, (21)

η =
2λ+min

√
µL

7λmax
, (22)

θ =
µ

λmax
, (23)

σ =
1

λmax
, (24)

τ =
λ+min

7λmax

√
µ

L
. (25)

Define the Lyapunov function

Ψk := ‖ẑk − z∗‖2 +
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗)) + 6‖mk‖2P, (26)

where ẑk is defined by
ẑk = zk + Pmk. (27)

Then the following inequality holds:

Ψk+1 ≤
(

1− λ+min

7λmax

√
µ

L

)
Ψk. (28)

Proof. Using (27) together with lines 6 and 7 of Algorithm 2, we get

ẑk+1 = zk+1 + Pnk+1

= zk + ηα(zkg − zk) + ∆k + P(mk − η∇F ∗(zkg )−∆k)

= zk + Pmk + ηα(zkg − zk)− ηP∇F ∗(zkg ) + ∆k −P∆k.

From line 5 of Algorithm 2 and (13) it follows that P∆k = ∆k, which implies

ẑk+1 = zk + Pmk + ηα(zkg − zk)− ηP∇F ∗(zkg )

= ẑk + ηα(zkg − zk)− ηP∇F ∗(zkg ).

Hence,

‖ẑk+1 − z∗‖2 = ‖ẑk − z∗ + ηα(zkg − zk)− ηP∇F ∗(zkg )‖2

= ‖(1− ηα)(ẑk − z∗) + ηα(zkg + Pmk − z∗)‖2 + η2‖∇F ∗(zkg )‖2P
− 2η〈P∇F ∗(zkg ), zk + Pmk − z∗ + ηα(zkg − zk)〉
≤ (1− ηα)‖ẑk − z∗‖2 + ηα‖zkg + Pmk − z∗‖2 + η2‖∇F ∗(zkg )‖2P
− 2η〈∇F ∗(zkg ),P(zkg − z∗)〉+ 2η(1− ηα)〈∇F ∗(zkg ),P(zkg − zk)〉 − 2η〈PF ∗(zkg ),mk〉
≤ (1− ηα)‖ẑk − z∗‖2 + 2ηα‖zkg − z∗‖2 + 2ηα‖mk‖2P + η2‖∇F ∗(zkg )‖2P
− 2η〈∇F ∗(zkg ),P(zkg − z∗)〉+ 2η(1− ηα)〈∇F ∗(zkg ),P(zkg − zk)〉 − 2η〈PF ∗(zkg ),mk〉

One can observe, that zk, zkg , z
∗ ∈ L⊥. Hence,

‖ẑk+1 − z∗‖2 ≤ (1− ηα)‖ẑk − z∗‖2 + 2ηα‖zkg − z∗‖2 + 2ηα‖mk‖2P + η2‖∇F ∗(zkg )‖2P
− 2η〈∇F ∗(zkg ), zkg − z∗〉+ 2η(1− ηα)〈∇F ∗(zkg ), zkg − zk〉 − 2η〈PF ∗(zkg ),mk〉.
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Using line 4 of Algorithm 2 we get

‖ẑk+1 − z∗‖2 ≤ (1− ηα)‖ẑk − z∗‖2 + 2ηα‖zkg − z∗‖2 + 2ηα‖mk‖2P + η2‖∇F ∗(zkg )‖2P

− 2η〈∇F ∗(zkg ), zkg − z∗〉+ 2η(1− ηα)
(1− τ)

τ
〈∇F ∗(zkg ), zkf − zkg 〉 − 2η〈PF ∗(zkg ),mk〉.

Using convexity and 1
L -strong convexity of F ∗(z) we get

‖ẑk+1 − z∗‖2 ≤ (1− ηα)‖ẑk − z∗‖2 + 2ηα‖zkg − z∗‖2 + 2ηα‖mk‖2P + η2‖∇F ∗(zkg )‖2P

− 2η(F ∗(zkg )− F ∗(z∗))− η

L
‖zkg − z∗‖2 + 2η(1− ηα)

(1− τ)

τ
(F ∗(zkf )− F ∗(zkg ))− 2η〈PF ∗(zkg ),mk〉

= (1− ηα)‖ẑk − z∗‖2 +
(

2ηα− η

L

)
‖zkg − z∗‖2 + η2‖∇F ∗(zkg )‖2P

− 2η(F ∗(zkg )− F ∗(z∗)) + 2η(1− ηα)
(1− τ)

τ
(F ∗(zkf )− F ∗(zkg ))− 2η〈PF ∗(zkg ),mk〉+ 2ηα‖mk‖2P.

Using α defined by (21) we get

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 + η2‖∇F ∗(zkg )‖2P

− 2η(F ∗(zkg )− F ∗(z∗)) + 2η(1− ηα)
(1− τ)

τ
(F ∗(zkf )− F ∗(zkg ))− 2η〈PF ∗(zkg ),mk〉+ 2ηα‖mk‖2P.

Since F ∗(zkg ) ≥ F ∗(z∗), we get

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 + η2‖∇F ∗(zkg )‖2P

− 2η(1− ηα)(F ∗(zkg )− F ∗(z∗)) + 2η(1− ηα)
(1− τ)

τ
(F ∗(zkf )− F ∗(zkg ))

− 2η〈PF ∗(zkg ),mk〉+ 2ηα‖mk‖2P
=
(

1− η

2L

)
‖ẑk − z∗‖2 + η2‖∇F ∗(zkg )‖2P

+ 2η(1− ηα)

(
(1− τ)

τ
F ∗(zkf ) + F ∗(z∗)− 1

τ
F ∗(zkg )

)
− 2η〈PF ∗(zkg ),mk〉+ 2ηα‖mk‖2P.

Using (16) and θ defined by (23) we get

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
η2 − (1− ηα)ηµλ+min

τλmax

)
‖∇F ∗(zkg )‖2P

+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

− 2η〈PF ∗(zkg ),mk〉+ 2ηα‖mk‖2P.

Using Young’s inequality we get

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
η2 − (1− ηα)ηµλ+min

τλmax

)
‖∇F ∗(zkg )‖2P

+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

+
η2λmax

λ+min

‖∇F ∗(zkg )‖2P +
λ+min

λmax
‖mk‖2P + 2ηα‖mk‖2P

=
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
η2 +

η2λmax

λ+min

− (1− ηα)ηµλ+min

τλmax

)
‖∇F ∗(zkg )‖2P
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+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

+

(
λ+min

λmax
+ 2ηα

)
‖mk‖2P.

Using (22) and (21), that imply ηα ≤ λ+
min

4λmax
, we obtain

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
η2 +

η2λmax

λ+min

− 3ηµλ+min

4τλmax

)
‖∇F ∗(zkg )‖2P

+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗)) +
3λ+min

2λmax
‖mk‖2P.

Using (17) and σ defined by (24) we get

‖ẑk+1 − z∗‖2 ≤
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
η2 +

η2λmax

λ+min

− 3ηµλ+min

4τλmax

)
‖∇F ∗(zkg )‖2P

+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

+

(
1− λ+min

4λmax

)
6‖mk‖2P − 6‖mk+1‖2P +

12η2λmax

λ+min

‖∇F ∗(zkg )‖2P

≤
(

1− η

2L

)
‖ẑk − z∗‖2 +

(
14η2λmax

λ+min

− 3ηµλ+min

4τλmax

)
‖∇F ∗(zkg )‖2P

+ (1− τ)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

+

(
1− λ+min

4λmax

)
6‖mk‖2P − 6‖mk+1‖2P.

Using η defined by (22) and τ defined by (25) we get

‖ẑk+1 − z∗‖2 ≤
(

1− λ+min

7λmax

√
µ

L

)
‖ẑk − z∗‖2 +

(
1− λ+min

4λmax

)
6‖mk‖2P − 6‖mk+1‖2P

+

(
1− λ+min

7λmax

√
µ

L

)
2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗))− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))

≤
(

1− λ+min

7λmax

√
µ

L

)(
‖ẑk − z∗‖2 +

2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗)) + 6‖mk‖2P

)
− 2η(1− ηα)

τ
(F ∗(zk+1

f )− F ∗(z∗))− 6‖mk+1‖2P.

Rearranging and using (26) concludes the proof.

D. Proof of Theorem 1
Proof. Using 1

µ -smoothness of F ∗ and the fact that∇F ∗(z∗) = x∗, we get:

‖∇F ∗(zkg )− x∗‖2 = ‖∇F ∗(zkg )−∇F ∗(z∗)‖2 ≤ 1

µ2
‖zkg − z∗‖2.

Using line 4 of Algorithm 2 we get

‖∇F ∗(zkg )− x∗‖2 ≤ τ

µ2
‖zk − z∗‖2 +

(1− τ)

µ2
‖zkf − z∗‖2.

Using 1
L -strong convexity of F ∗ we get

‖∇F ∗(zkg )− x∗‖2 ≤ τ

µ2
‖zk − z∗‖2 +

2(1− τ)L

µ2
(F ∗(zkf )− F ∗(z∗)).
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Using (27) we get

‖∇F ∗(zkg )− x∗‖2 ≤ 2τ

µ2
‖ẑk − z∗‖2 +

2τ

µ2
‖mk‖2P +

2(1− τ)L

µ2
(F ∗(zkf )− F ∗(z∗))

=
2τ

µ2
‖ẑk − z∗‖2 +

τ(1− τ)L

η(1− ηα)µ2

2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗)) +

τ

3µ2
6‖mk‖2P.

≤ max

{
2τ

µ2
,
τ(1− τ)L

η(1− ηα)µ2
,
τ

3µ2

}(
‖ẑk − z∗‖2 +

2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗)) + 6‖mk‖2P

)
= max

{
2τ

µ2
,
τ(1− τ)L

η(1− ηα)µ2

}(
‖ẑk − z∗‖2 +

2η(1− ηα)

τ
(F ∗(zkf )− F ∗(z∗)) + 6‖mk‖2P

)
.

Using the definition of Ψk (26) and denoting C = Ψ0 max
{

2τ
µ2 ,

τ(1−τ)L
η(1−ηα)µ2

}
we get

‖∇F ∗(zkg )− x∗‖2 ≤ C

Ψ0
Ψk.

One can observe, that conditions of Lemma 4 are satisfied. Hence, inequality (28) holds, which implies

‖∇F ∗(zkg )− x∗‖2 ≤ C

Ψ0

(
1− λ+min

7λmax

√
µ

L

)
Ψk−1

≤ C

Ψ0

(
1− λ+min

7λmax

√
µ

L

)2

Ψk−2

...

≤ C

Ψ0

(
1− λ+min

7λmax

√
µ

L

)k
Ψ0

= C

(
1− λ+min

7λmax

√
µ

L

)k
,

which concludes the proof.

E. Additional Experiments
E.1. Real data

In this section, we perform experiments for the same problem (19) and network setup as in Section 6 (and 6.2), but with
LIBSVM2 datasets: a6a, w6a, ijcnn1 instead of the synthetic ones (see Table 2). In Figure 5, the network structure parameter
is fixed (χ ≈ 30), and condition number κ ∈ {10, 102, 103, 104} changes. In Figure 6, we fix κ = 100 and perform
comparison for χ ∈ {9, 32, 134, 521}.

dataset samples dimension
a6a 11220 122
w6a 17188 300

ijcnn1 49990 22

Table 2. Details of the datasets

To summarize the obtained results, ADOM outperforms all other methods for every set of parameters. This becomes even
more evident on real data. One can also observe that for some cases, Acc-DNGD almost does not converge. Apart from that,
competing methods (such as APM and Mudag) often show divergence during the first iterations, while ADOM consistently
demonstrates significant progress during the initial phase. Besides, it is enough to use one iteration (T = 1) of GD to
calculate ∇F ∗(zkg ) in ADOM to ensure liner convergence.

2The LIBSVM (Chang & Lin, 2011) dataset collection is available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 5. Comparison of Mudag, Acc-DNGD, APM and ADOM on LIBSVM datasets (a6a, w6a, ijcnn1 in separate rows) with χ ≈ 30,
and κ ∈ {10, 102, 103, 104} (in different columns).
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Figure 6. Comparison of Mudag, Acc-DNGD, APM and ADOM on LIBSVM datasets with χ ∈ {9, 32, 134, 521} and κ = 100.



ADOM

E.2. Real networks

For the next set of experiments, we use a real-world temporal graph dataset infectious ct1 representing social interactions
from the TUDataset3 collection (Morris et al., 2020). It consists of 200 graphs Gk on n = 50 nodes with χ ≈ 232. For each
k, matrix Wk is chosen to be the Laplacian of graph Gk divided by its largest eigenvalue.

Our experimental results are presented in Figure 7. We solve the regularized logistic regression problem (19) described in
Section 6 for κ ∈ {10, 104} with the same LIBSVM datasets from Section E.1. Overall, the algorithms perform in a similar
fashion as in the case of the synthetic geometric graphs. Notice that for smaller κ (κ = 10), Mudag outperforms APM after
reaching a certain solution accuracy, while for κ = 103 the situation is the opposite. Superiority of ADOM persists for every
dataset and condition number κ. We use one iteration (T = 1) of GD to calculate ∇F ∗(zkg ) in ADOM.
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Figure 7. Comparison of Mudag, Acc-DNGD, APM and ADOM on temporal graph dataset infectious ct1 with χ ≈ 232 and κ ∈
{10, 104}.

3Dataset infectious ct1 is available in Social networks section at https://chrsmrrs.github.io/datasets/docs/datasets/.

https://chrsmrrs.github.io/datasets/docs/datasets/

