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Abstract. The article is devoted to the development of numerical meth-
ods for solving saddle point problems and variational inequalities with
simplified requirements for the smoothness conditions of functionals. Re-
cently, some notable methods for optimization problems with strongly
monotone operators were proposed. Our focus here is on newly proposed
techniques for solving strongly convex-concave saddle point problems.
One of the goals of the article is to improve the obtained estimates of
the complexity of introduced algorithms by using accelerated methods
for solving auxiliary problems. The second focus of the article is intro-
ducing an analogue of the boundedness condition for the operator in the
case of arbitrary (not necessarily Euclidean) prox structure. We propose
an analogue of the Mirror Descent method for solving variational in-
equalities with such operators, which is optimal in the considered class
of problems.

Keywords: Strongly Convex Programming Problem. Relative Bound-
edness. Inexact Model. Variational Inequality. Saddle Point Problem.

Introduction

Modern numerical optimization methods are widely used in solving problems in
various fields of science. The problem of finding the optimal value in the inves-
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was supported by the Russian Science Foundation (project 18-71-10044).
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tigated mathematical model naturally arises in machine learning, data analysis,
economics, market equilibrium problems, electric power systems, control theory,
optimal transport, molecular modeling, etc. This paper is devoted to the devel-
opment and analysis of numerical methods for solving saddle point problems and
variational inequalities. Both saddle point problems and variational inequalities
play a critical role in structural analysis, resistive networks, image processing,
zero-sum game, and Nash equilibrium problems [4,6,8,13].

Despite variational inequalities and saddle point problems are closely related
(it will be discussed later), the article consists of two conditionally independent
parts, each devoted to the special type of generalization of smoothness conditions
and the corresponding problem.

Firstly, the paper focuses on recently proposed numerical methods for solving
(µx, µy)-strongly convex-concave saddle point problems of the following form:

min
x

max
y

f. (1)

In particular, in [1] authors considered the modification of some well-known
scheme for speeding up methods for solving smooth saddle point problems. The
smoothness, in such a setting, means the Lipschitz continuity of all partial gra-
dients of the objective function f . We improve the obtained estimates of the
complexity for the case of non-smooth objective.

In more details, we consider the saddle point problem under the assumption,
that one of the partial gradients still satisfies the Lipschitz condition, while the
other three satisfy simplified smoothness condition, namely, the Hölder continu-
ity. Note, it is the Lipschitz continuity, which makes it possible to use accelerated
methods for solving auxiliary problems. The Hölder continuity is an important
generalization of the Lipschitz condition, it appears in a large number of applica-
tions [9,14]. In particular, if a function is uniformly convex, then its conjugated
will necessarily have the Hölder-continuous gradient [9].

We prove, that the strongly convex-concave saddle point problem, modified in
a functional form, admits an inexact (δ, L, µx)–model, where δ is comparable to ε,
and apply the Fast Gradient Method to achieve the ε–solution of the considered
problem. The total number of iterations is estimated as follows:

O

(√
L

µx

·

√
Lyy

µy

· log
2LyyR

2

ε
· log

2LD2

ε

)
,

where L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
,

Lxx, Lxy, Lyy > 0, ν is the Hölder exponent of∇f , D is a diameter of the domain
of f(x, ·), R denotes the distance between the initial point of the algorithm x0

and the exact solution of the problem. Remind that (x̃, ỹ) is called an ε–solution
of the saddle point problem, if

max
y

f(x̃, y)−min
x

f(x, ỹ) ≤ ε. (2)
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Let us note, that due to the strong convexity-concavity of the considered
saddle point problem, the convergence in argument takes place with the similar
asymptotic behavior. Thus, we can consider the introduced definition of the
ε-solution (2) for the strongly convex-concave saddle point problem (1).

The second part of the article continues with the study of accelerated meth-
ods and is devoted to the numerical experiments for some recently proposed
[14] universal algorithms. In particular, we consider the restarted version of the
algorithm and apply it to the analogue of the covering circle problem with non-
smooth functional constraints. We show, that the method can work faster, than
O(1

ε
).
Finally, the third part of the article explores Minty variational inequalities

with the Relatively bounded operator. Recently Y. Nesterov proposed [10] a gen-
eralization of the Lipschitz condition, which consists in abandoning the classical
boundedness of the norm of the objective‘s gradient ∇f in favor of a more com-
plex structure. This structure allows one to take into account the peculiarities of
the domain of the optimization problem, which can be effectively used in solving
support vector machine (SVM) problem and intersection of n ellipsoids problem
[7,15].

Remind the formulation of the Minty variational inequality. For a given oper-
ator g(x) : X → R, where X is a closed convex subset of some finite-dimensional
vector space, we need to find a vector x∗ ∈ X , such that

〈g(x), x∗ − x〉 ≤ 0, ∀x ∈ X. (3)

We consider the variational inequality problem under the assumption of Rel-
ative boundedness of the operator g, which is the modification of the aforemen-
tioned Relative Lipschitz condition for functionals. We introduce the modifica-
tion of the Mirror Descent method to solve such variational inequality problems.
The proposed method guarantees an (ε + σ)–solution of the problem after no
more than

2RM2

ε2

iterations, where M is the Relative boundedness constant, which depends on
the characteristics of the operator g and R can be understood as the distance
between the initial point of the algorithm and the exact solution of the variational
inequality in some generalized sense. The constant σ reflects certain features
of the monotonicity of the operator g. An (ε + σ)–solution of the variational
inequality is understood as the point x̃, such that

max
x∈X

〈g(x), x̃ − x〉 ≤ ε+ σ. (4)

The paper consists of the introduction and 3 main sections. In Sect. 1, we con-
sider the strongly convex-concave saddle point problem in non-a smooth setting.
Sect. 2, is devoted to some numerical experiments concerning the methods, re-
cently proposed in [14] and the analysis of their asymptotics in comparison with
the method proposed in Sect. 1. In Sect. 3, we consider the Minty variational
inequality problem with Relatively Bounded operator.
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To sum it up, the contributions of the paper can be formulated as follows:

– We consider the strongly convex-concave saddle point problem and its mod-
ified functional form. We prove, that the functional form admits an inex-
act (δ, L, µx)–model and apply the Fast Gradient Method to achieve the
ε–solution of the considered problem. Moreover, we show, that δ = O(ε).

– We show, that the total number of iterations of the proposed method does
not exceed

O

(√
L

µx

·

√
Lyy

µy

· log
2LyyR

2

ε
· log

2LD2

ε

)
,

where L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
.

– We introduce the modification of the Mirror Descent method to solve Minty
variational inequalities with Relatively Bounded and σ–monotone operators.

– We show, that the proposed method can be applied to obtain an

(ε+ σ)–solution after no more than 2RM2

ε2
iterations.

1 Accelerated Method for Saddle Point Problems with

Generalized Smoothness Condition

Let Qx ⊂ R
n and Qy ⊂ R

m be nonempty, convex, compact sets and there exist
D > 0 and R > 0, such that

‖x1 − x2‖2≤ D ∀x1, x2 ∈ Qx,

‖y1 − y2‖2≤ R ∀y1, y2 ∈ Qy,

Let f : Qx × Qy → R be a µx-strongly convex function for fixed y ∈ Qy

and µy-strongly concave for fixed x ∈ Qx. Remind, that differentiable function
h(x) : Qx → R is called µ-strongly convex, if

〈∇h(x1)−∇h(x2), x1 − x2〉 ≥ µ‖x1 − x2‖
2
2 ∀x1, x2 ∈ Qx.

Consider (µx, µy)-strongly convex–concave saddle point problem (1) under as-
sumptions, that one of the partial gradients of f satisfies the Lipschitz condition,
while other three gradients satisfy the Hölder condition. More formally, for any
x, x′ ∈ Qx, y, y

′ ∈ Qy and for some ν ∈ [0, 1], the following inequalities hold:

‖∇xf(x, y)−∇xf(x
′, y)‖2≤ Lxx‖x− x′‖ν2 , (5)

‖∇xf(x, y)−∇xf(x, y
′)‖2≤ Lxy‖y − y′‖ν2 , (6)

‖∇yf(x, y)−∇yf(x
′, y)‖2≤ Lxy‖x− x′‖ν2 , (7)

‖∇yf(x, y)−∇yf(x, y
′)‖2≤ Lyy‖y − y′‖2. (8)
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Define the following function:

g(x) = max
y∈Qy

f, x ∈ Qx. (9)

It is obvious, that the considered saddle point problem (1) can be rewritten in
the following more simple way:

g(x) = max
y∈Qy

f → min
x∈Qx

. (10)

Since f(x, ·) is µy-strongly concave on Qy, the maximization problem (9) has
the unique solution

y∗(x) = arg max
y∈Qy

f ∀x ∈ Qx,

so g(x) = f(x, y∗(x)). Moreover,

‖y∗(x1)− y∗(x2)‖
2
2≤

2

µy

(
f
(
x1, y

∗(x1)
)
− f

(
x1, y

∗(x2)
))

∀x1, x2 ∈ Qx. (11)

Lemma 1. Consider the problem 1 under assumptions (5)–(8). Define the func-
tion g(x) : Qx → R according to (9). Then g(x) has the Hölder continuous gra-

dient with Hölder constant

(
Lxy

(
2Lxy

µy

) ν
2−ν

+LxxD
ν−ν2

2−ν

)
and Hölder exponent

ν
2−ν

.

Proof. Similarly to [1], for any x1, x2 ∈ Qx, let us estimate the following differ-
ence:
(
f
(
x1, y

∗(x1)
)
− f

(
x1, y

∗(x2)
))

−

(
f
(
x2, y

∗(x1)
)
− f

(
x2, y

∗(x2)
))

≤

≤
∥∥∥∇xf

(
x1+ t(x2−x1), y

∗(x1)
)
−∇xf

(
x1+ t(x2−x1), y

∗(x2)
)∥∥∥

2
· ‖x2−x1‖2≤

≤ Lxy‖y
∗(x1)− y∗(x2)‖

ν
2 ·‖x2 − x1‖2, t ∈ [0, 1].

Using (11), one can get

‖y∗(x1)− y∗(x2)‖2≤

(
2Lxy

µy

) 1
2−ν

‖x2 − x1‖
1

2−ν

2 ,

which means, that y∗(x) satisfies the Hölder condition on Qx with Hölder con-

stant
(

2Lxy

µy

) 1
2−ν

and Hölder exponent 1
2−ν

∈ [ 12 , 1].

Further,

‖∇g(x1)−∇g(x2)‖2= ‖∇xf(x1, y
∗(x1)) −∇xf(x2, y

∗(x2))‖2≤

≤ ‖∇xf(x1, y
∗(x1))−∇xf(x1, y

∗(x2))‖2+‖∇xf(x1, y
∗(x2))−∇xf(x2, y

∗(x2))‖2≤
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≤ Lxy‖y
∗(x1)− y∗(x2)‖

ν
2+Lxx‖x2 − x1‖

ν
2=

≤ Lxy

(
2Lxy

µy

) ν
2−ν

‖x2 − x1‖
ν

2−ν

2 +Lxx‖x2 − x1‖
ν
2=

= Lxy

(
2Lxy

µy

) ν
2−ν

‖x2 − x1‖
ν

2−ν

2 +Lxx‖x2 − x1‖
ν

2−ν

2 ·‖x2 − x1‖
ν−ν2

2−ν

2 .

Since Qx is bounded, we have

‖∇g(x1)−∇g(x2)‖2≤

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
‖x2 − x1‖

ν
2−ν

2 , (12)

which means, that g(x) has the Hölder continuous gradient.

Definition 1. A function h(x) : Qx → R admits (δ, L, µ)-model, if, for any
x1, x2 ∈ Qx, the following inequalities hold:

(13)

µ

2
‖x2 − x1‖

2
2 + 〈∇h(x1), x2 − x1〉+ h(x1)− δ ≤ h(x2) ≤ h(x1)

+ 〈∇h(x1), x2 − x1〉+
L

2
‖x2 − x1‖

2
2 + δ

Remark 1. [5] Note, that if a function h(x) has the Hölder-continuous gradient
with Hölder constant L̃ν̃ and Hölder exponent ν̃, then h(x) admits (δ, L, µ)-

model. More precisely, inequalities (13) hold with L = L̃ν̃

(
L̃ν̃

2δ
1−ν̃
1+ν̃

) 1−ν̃
1+ν̃

.

Remark 2. According to Lemma 1, g(x) has the Hölder continuous gradient, so
g(x) admits (δ0, L, µx)-model (δ was replaced by δ0 to simplify notation) with

L = L̃

(
L̃

2δ0

(1− ν)(2 − ν)

2− ν

) (1−ν)(1+ν)
2−ν

,

where L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
.

Let us now assume, that instead of the ordinary gradient ∇g(x) we are given

an inexact one ∇̃g(x) := ∇xf(x, ỹ), such that

‖y1 − ỹ‖2≤ ∆̃, (14)

where f(x, y1) = max
y∈Qy

f, ∆̃ = const > 0.

Theorem 1. Consider the strongly convex-concave saddle point problem (1) un-
der assumptions (5)-(8). Define the function g(x) according to (10). Then g(x)
admits an inexact (δ, L, µx)-model with δ = (D∆+ δ0) and L defined in Remark
2. Applying k steps of the Fast Gradient Method to the ”outer” problem (10) and
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solving the ”inner” problem (14) in linear time, we obtain an ε-solution (2) to
the problem (1), where δ = O(ε). The total number of iterations does not exceed

O

(√
L

µx

·

√
Lyy

µy

· log
2LyyR

2

ε
· log

2LD2

ε

)
,

where L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
.

Proof. Since the problem max
y∈Qy

f(x1, y) is smooth ((8) holds) and µy-strongly

concave, one can achieve any arbitrary accuracy in (14), furthermore, in linear

time [5]. More formally, for any ∆̃ > 0, in particular, ∆̃ =
(

∆
Lxy

) 1
ν

, there exists

ỹ, such that

‖ỹ − y1‖2≤

(
∆

Lxy

) 1
ν

.

Then

‖∇̃g(x1)−∇g(x1)‖2= ‖∇xf(x1, ỹ)−∇xf(x1, y1)‖2≤ Lxy‖ỹ − y1‖
ν
2≤ ∆. (15)

Thus, taking into account that

〈∇g(x1), x2 − x1〉 = 〈∇g(x1)− ∇̃g(x1), x2 − x1〉+ 〈∇̃g(x1), x2 − x1〉,

we get:

(16)

µx

2
‖x2 − x1‖

2
2 + 〈∇̃g(x1), x2 − x1〉+ g(x1)−D∆− δ0 ≤

≤ g(x2) ≤ g(x1) + 〈∇̃g(x1), x2 − x1〉+
L

2
‖x2 − x1‖

2
2 +D∆+ δ0.

The inequality (16) means, that g(x) admits the inexact (δ, L, µx)-model with
δ = (D∆+ δ0) and L defined in Remark 2.

It is well known [5], that using Fast Gradient Method for the described con-
struction, after k iterations, one can obtain the following accuracy of the solution:

g(xk)− g(x∗) ≤ LR2 exp

(
−
k

2

√
µx

L

)
+ δ

(
1 +

√
L

µx

)
.

As noted above, it is possible to achieve an arbitrarily small value of ∆̃, more
precisely, such ∆̃, that

DLxy∆̃
ν + δ0 = D∆+ δ0 = δ ≤

ε

2
(
1 +

√
L
µx

) .
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In other words, we can obtain the appropriate ∆̃, such that δ will be comparable
to ε. For example, we can put

δ0 6
ε

4
(
1 +

√
L
µx

) , ∆ 6
ε

4D
(
1 +

√
L
µx

) .

Thus, after no more than k = 2
√

L
µx

log 2LR2

ε
iterations we obtain an

ε-solution (2) of the considered saddle point problem (1).

The total number of iterations (including achieving the appropriate precision

of ∆̃) is expressed as follows:

O

(√
L

µx

·

√
Lyy

µy

· log
2LyyR

2

ε
· log

2LD2

ε

)
,

where L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
.

2 Comparison of Theoretical Results for Accelerated

Method and the Universal Proximal Method for

Saddle-Point Problems with Generalized Smoothness

Let us investigate the effectiveness of the proposed method for solving strongly
convex–concave saddle point problems in comparison with the Universal Algo-
rithm, which was recently proposed in [14] to solve variational inequalities. We
have to start with the problem statement and define all basics concerning varia-
tional inequalities and Proximal Setup. Note, that in Sect. 1 we used exclusively
the Euclidean norm, while results of Sect. 2 and Sect. 3 hold for an arbitrary
norm.

Let E be some finite-dimensional vector space, E∗ be its dual. Let us choose
some norm ‖·‖ on E. Define the dual norm ‖·‖∗ as follows:

‖φ‖∗= max
‖x‖≤1

{〈φ, x〉},

where 〈φ, x〉 denotes the value of the linear function φ ∈ E∗ at the point x ∈ E.
Let X ⊂ E be a closed convex set and g(x) : X → E∗ be a monotone

operator, i.e.

〈g(x)− g(y), x− y〉 ≥ 0 ∀x, y ∈ X. (17)

We also need to choose a so-called prox-function d(x), which is continuously
differentiable and convex on X , and the corresponding Bregman divergence,
which can be understood as an analogue of the distance, defined as follows:

V (y, x) = Vd(y, x) = d(y)− d(x)− 〈∇d(x), y − x〉, ∀x, y ∈ X. (18)
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In [14], the authors proposed the Universal Proximal method (UMP, this
method is listed as Algorithm 1 below) for solving the problem (3) with in-
exactly given operator. In details, suppose that there exist some δ > 0, L(δ) > 0,
such that, for any points x, y, z ∈ X , we are able to calculate g̃(x, δ), g̃(y, δ) ∈ E∗,
satisfying

〈g̃(y, δ)− g̃(x, δ), y − z〉 ≤
L(δ)

2

(
‖y − x‖2+‖y − z‖2

)
+ δ, ∀z ∈ Q. (19)

In addition, there was considered the possibility of using the restarted version
of the method (Restarted UMP, see Algorithm 2 below) in the case of µ–strongly
monotone operator g:

〈g(x)− g(y), x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ X.

We additionally assume that argminx∈X d(x) = 0 and d(·) is bounded on the
unit ball in the chosen norm ‖·‖, more precisely

d(x) ≤
Ω

2
, ∀x ∈ X : ‖x‖≤ 1,

where Ω is a known constant.

Algorithm 1 Universal Mirror Prox (UMP)

Require: ε > 0, δ > 0, x0 ∈ X, initial guess L0 > 0, prox-setup: d(x), V (x, z).
1: Set k = 0, z0 = argminu∈Q d(u).
2: for k = 0, 1, ... do
3: Set Mk = Lk/2.
4: Set δ = ε

2
.

5: repeat

6: Set Mk = 2Mk.
7: Calculate g̃(zk, δ) and

wk = argmin
x∈Q

{〈g̃(zk, δ), x〉+MkV (x, zk)} . (20)

8: Calculate g̃(wk, δ) and

zk+1 = argmin
x∈Q

{〈g̃(wk, δ), x〉+MkV (x, zk)} . (21)

9: until

〈g̃(wk, δ)− g̃(zk, δ), wk−zk+1〉 ≤
Mk

2

(

‖wk − zk‖
2+‖wk − zk+1‖

2
)

+
ε

2
+δ. (22)

10: Set Lk+1 = Mk/2, k = k + 1.
11: end for

Ensure: zk = 1
∑k−1

i=0 M
−1
i

∑k−1
i=0 M−1

i wi.
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Algorithm 2 Restarted Universal Mirror Prox (Restarted UMP).

Require: ε > 0, µ > 0, Ω : d(x) ≤ Ω
2
∀x ∈ Q : ‖x‖≤ 1; x0, R0 : ‖x0 − x∗‖

2≤ R2
0.

1: Set p = 0, d0(x) = R2
0d

(

x−x0
R0

)

.

2: repeat

3: Set xp+1 as the output of UMP for monotone case with prox-function dp(·) and
stopping criterion

∑k−1
i=0 M−1

i ≥ Ω
µ
.

4: Set R2
p+1 = R2

0 · 2
−(p+1) + 2(1− 2−(p+1)) ε

4µ
.

5: Set dp+1(x)← R2
p+1d

(

x−xp+1

Rp+1

)

.

6: Set p = p+ 1.

7: until p > log2

(

2R2
0

ε

)

.

Ensure: xp.

Remark 3. (Connection between saddle point problem and VI). Any saddle point
problem

min
x∈Qx

max
y∈Qy

f

can be reduced to a variational inequality problem by considering the following
operator:

g(z) =

(
∇xf
−∇yf

)
, z = (x, y) ∈ Q := Qx ×Qy. (23)

Remark 4. Restarted UMP method returns a point xp such that

‖xp − x∗‖
2≤ ε+

2δ

µ
.

The total number of iterations of the inner Algorithm UMP does not exceed

inf
ν∈[0,1]

⌈(
Lν

µ

) 2
1+ν

·
2

2
1+ν Ω

ε
1−ν
1+ν

· log2
2R2

0

ε

⌉
.

Remark 5. Note, that for ν = 0 the convergence rate of the Restarted UMP and
the accelerated method, introduced in Sect. 1, coincides, while for ν > 0 the
asymptotic of the proposed accelerated method is better.

2.1 Numerical Experiments for Restarted Universal Mirror Prox

Method

The problem of constrained minimization of convex functionals arises and at-
tracts widespread interest in many areas of modern large-scale optimization and
its applications [3,12].

In this subsection, in order to demonstrate the performance of the Restarted
UMP, we consider an example of the Lagrange saddle point problem induced by a
problem with geometrical nature, namely, an analogue of the well-known small-
est covering ball problem with non-smooth functional constraints. This example



Algorithms for Variational Inequalities and Saddle Point Problems 11

is equivalent to the following non-smooth convex optimization problem with
functional constraints

min
x∈Q

{
f(x) := max

1≤k≤N
‖x−Ak‖

2
2; ϕp(x) ≤ 0, p = 1, ...,m

}
, (24)

where Ak ∈ R
n, k = 1, ..., N are given points and Q is a convex compact set.

Functional constraints ϕp, for p = 1, ...,m, have the following form:

ϕp(x) :=
n∑

i=1

αpix
2
i − 5, p = 1, ...,m. (25)

For solving such problems there are various first-order methods, which guar-
antee achieving an acceptable precision ε by function with complexity O

(
ε−1
)
.

We present the results of some numerical experiments, which demonstrate the
effectiveness of the Restarted UMP. Remind, that we analyze how the restart
technique can be used to improve the convergence rate of the UMP, and show
that in practice it works with a convergence rate smaller than O

(
ε−1
)
, for some

different randomly generated data associated with functional constraints (25).
The corresponding Lagrange saddle point problem of the problem (24) is

defined as follows

min
x∈Q

max−→
λ =(λ1,λ2,...,λm)T∈R

m
+

L(x, λ) := f(x) +

m∑

p=1

λpϕp(x)−
1

2

m∑

p=1

λ2
p.

This problem is satisfied to (5) – (8) for ν = 0 and equivalent to the variational
inequality with the monotone bounded operator

G(x, λ) =


 ∇f(x) +

m∑
p=1

λp∇ϕp(x),

(−ϕ1(x) + λ1,−ϕ2(x) + λ2, . . . ,−ϕm(x) + λm)T


 ,

where ∇f and ∇ϕp are subgradients of f and ϕp. For simplicity, let us assume
that there exists (potentially very large) bound for the optimal Lagrange mul-

tiplier
−→
λ

∗
. Thus, we are able to compactify the feasible set for the pair (x,

−→
λ )

to be an Euclidean ball of some radius.
To demonstrate the independence on the choice of experimental data, the

coefficients αpi in (25) are drawn randomly from four different distributions.

– Case 1: the standard exponential distribution.
– Case 2: the Gumbel distribution with mode and scale equal to zero and 1,

respectively.
– Case 3: the inverse Gaussian distribution with mean and scale equal to 1

and 2, respectively.
– Case 4: from the discrete uniform distribution in the half open interval

[1, 6).
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We run Restarted UMP for different values of n and m with standard Eu-

clidean prox-structure and the starting point (x0,
−→
λ

0
) = 1√

m+n
1 ∈ R

n+m, where

1 is the vector of all ones. Points Ak, k = 1, ..., N , are chosen randomly from
the uniform distribution over [0, 1). For each value of the parameters the ran-
dom data was drawn 5 times and the results were averaged. The results of the
work of Restarted UMP are presented in Table 1. These results demonstrate the
number of iterations produced by Restarted UMP to reach the ε-solution of the
problem (24) with (25), the running time of the algorithm in seconds, qualities
of the solution with respect to the objective function f (fbest := f(xout)) and
the functional constraints g (gout := g(xout)), where xout denotes the output of
the compared algorithms, with different values of ε ∈ {1/2i, i = 1, 2, 3, 4, 5, 6}.

All experiments were implemented in Python 3.4, on a computer fitted with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical
Processor(s). RAM of the computer is 8 GB.

Table 1: The results of Restarted UMP, for the problem (24) with constraints (25) for
Cases 1 – 4.

Case 1: n = 1000, m = 50, N = 10 Case 2: n = 1000, m = 50, N = 10
1
ε

Iter. Time (sec.) fbest gout Iter. Time (sec.) fbest gout

2 9 0.392 324.066325 -4.349744 12 0.517 324.889649 -3.965223
4 12 0.519 324.066312 -4.349732 16 0.630 324.889634 -3.965213
8 15 0.599 324.066305 -4.349692 20 0.807 324.889621 -3.965197
16 18 0.972 324.066295 -4.349680 24 0.977 324.889598 -3.965165
32 21 0.984 324.066291 -4.349653 28 1.224 324.889540 -3.965223
64 24 1.357 324.066286 -4.349598 32 1.317 324.889527 -3.965111

Case 3: n = 500, m = 25, N = 10 Case 4: n = 500, m = 25, N = 10

2 624 20.321 153.846214 -4.398782 832 26.629 158.210875 -2.610276
4 1319 39.045 153.842306 -4.398106 1702 51.258 158.201645 -2.601072
8 2158 58.919 153.830012 -4.397387 4144 96.136 158.190455 -2.599223
16 4298 117.383 153.827731 -4.397271 6145 174.713 158.188211 -2.598865
32 8523 264.777 153.826829 -4.397226 12081 351.52 158.187255 -2.598713
64 17584 554.480 153.826382 -4.397204 30186 768.861 158.186744 -2.598628

From the results in Table 1 we can see that the work of Restarted UMP,
does not only dependent on the dimension n of the problem, the number of
the constraints ϕp, p = 1, ...,m and the number of the points Ak, k = 1, ..., N ,
but also depends on the shape of the data, that generated to the coefficients
αpi in (25). Also, these results demonstrate how the Restarted UMP, due to its
adaptivity to the level of smoothness of the problem, in practice works with a
convergence rate smaller than O

(
ε−1
)
, for all different cases 1–4.
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3 Mirror Descent for Variational Inequalities with

Relatively Bounded Operator

Let us remind the definition of the boundedness of an operator.

Definition 2. (The classical boundedness). Let g(x) : X → E∗, be an operator,
given on some convex set X ⊂ E. g(x) is bounded on X, if there exists M > 0,
such that

‖g(x)‖∗≤ M, ∀x ∈ X.

We can replace the classical concept of the boundedness of an operator by the
so-called Relative boundedness condition as following.

Definition 3. (The Relative boundedness). An operator g(x) : X → E∗ is Rel-
atively bounded on X, if there exists M > 0, such that

〈g(x), y − x〉 ≤ M
√
2V (y, x), ∀x, y ∈ X, (26)

where V (y, x) is the Bregmann divergence, defined in (18).

Let us note the following special case of the definition.

Remark 6. The Relative boundedness condition can be rewritten in the following
way:

‖g(x)‖∗≤
M
√
2V (y, x)

‖y − x‖
, y 6= x.

In addition to the Relative boundedness condition, suppose that the operator
g(x) is σ-monotone.

Definition 4. (σ-monotonicity). Let σ > 0. The operator g(x) : X → E∗ is
σ-monotone, if the following inequality holds:

〈g(y)− g(x), y − x〉 ≥ −σ, ∀x, y ∈ X. (27)

Let us propose an analogue of the Mirror Descent algorithm for variational
inequalities with Relatively bounded and σ-monotone operator.

For any x ∈ X and p ∈ E∗, we define the Mirror Descent step Mirrx(p) as
follows:

Mirrx(p) = argmin
y∈X

{
〈p, y〉+ V (y, x)

}
.

The following theorem describes the effectiveness of the proposed Algorithm
3.

Theorem 2. Let g : X → E∗ be Relatively bounded and σ–monotone operator,
i.e. (26) and (27) hold. Then after no more than

N =
2RM2

ε2

iterations of Algorithm 3, one can obtain an (ε+ σ)–solution (4) of the problem
(3).
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Algorithm 3 Mirror Descent method for variational inequalities.

Require: ε > 0, σ > 0,M > 0;x0 and R such that V (x∗, x0) ≤ R2.
1: Set h = ε

M2 .

2: Initialization k = 0.
3: repeat

4: xk+1 = Mirrxk

(

hg(xk)
)

.

5: Set k = k + 1.

6: until k ≥ N = 2RM2

ε2
.

Ensure: x̃ = 1
N

∑N−1
k=0 xk.

Proof. According to the listing of the Algorithm 3, the following inequality holds:

h〈g(xk), xk − x〉 ≤
h2M2

2
+ V (x, xk)− V (x, xk+1).

Taking summation over k = 0, 1, . . . , N − 1, we get

h

N−1∑

k=0

〈
g(xk), xk − x

〉
≤

N−1∑

k=0

h2M2

2
+ V (x, x0)− V (x, xN ) ≤

≤
N

2
h2M2 + V (x, x0).

Due to the σ–monotonicity of g(x), we have

〈g(xk), xk − x〉 ≥ 〈g(x), xk − x〉 − σ.

Whence,

h

N−1∑

k=0

(〈
g(xk), xk − x

〉
+ σ

)
≥ h

〈
g(x),

N−1∑

k=0

(xk − x)

〉
= h 〈g(x), N(x̃− x)〉 ,

where x̃ = 1
N

∑N−1
k=0 xk. Since

Nh〈g(x), x̃− x〉 ≤
N

2
h2M2 + V (x, x0) +Nhσ,

we get

〈g(x), x̃ − x〉 ≤
M2h

2
+

V (x, x0)

Nh
+ σ.

As h = ε
M2 , after the stopping criterion N ≥ 2RM2

ε2
is satisfied, we obtain an

(ε+ σ)-solution of the problem (3), i.e.

max
x∈X

〈g(x), x̃ − x〉 ≤ ε+ σ.
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4 Conclusions

In the first part of the article we considered strongly convex-concave saddle point
problems; using the concept of (δ, L, µx)–model we applied the Fast Gradient
Method to obtain an ε-solution of the problem. We proved, that the proposed
method can generate an ε-solution of the saddle point problem after no more
than

O

(√
L

µx

·

√
Lyy

µy

· log
2LyyR

2

ε
· log

2LD2

ε

)
iterations,

where L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy

µy

) ν
2−ν

+ LxxD
ν−ν2

2−ν

)
.

We conducted some numerical experiments for the Universal Proximal algorithm
and its restarted version and analyzed their asymptotics in comparison with the
proposed method.

Also, we considered Minty variational inequalities with Relatively bounded
and σ–monotone operator. We introduced the modification of the Mirror Descent
method and proved, that obtaining an (ε + σ)-solution will take no more than
2RM2

ε2
iterations.
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