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Abstract

We consider the problem of learning the op-
timal policy for infinite-horizon Markov de-
cision processes (MDPs). For this purpose,
some variant of Stochastic Mirror Descent is
proposed for convex programming problems
with Lipschitz-continuous functionals. An
important detail is the ability to use inexact
values of functional constraints and compute
the value of dual variables. We analyze this
algorithm in a general case and obtain an es-
timate of the convergence rate that does not
accumulate errors during the operation of the
method. Using this algorithm, we get the
first parallel algorithm for mixing average-
reward MDPs with a generative model with-
out reduction to discounted MDP. One of the
main features of the presented method is low
communication costs in a distributed central-
ized setting, even with very large networks.

1 INTRODUCTION

We consider the following nonsmooth convex optimiza-
tion problem over a simple closed convex set Q ⊆ E,
where E is a finite-dimensional normed space, with
additional functional constraints

min
x∈Q

f(x),

s.t. g(l)(x) ≤ 0, ∀l ∈ [m].

In the context of modern large-scale optimization, the
number of constraints m could be huge, so we are in-
terested in first-order algorithms in which a number
of iterations does not depend on m. In book by Ne-
mirovski and Yudin (1983) it was noticed that the
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usual (sub)gradient method could handle functional
constraints without additional price in terms of a to-
tal number of iterations. The proposed scheme in the
simple form could be written as follows

xk+1 =


xk − η∇f(xk), max

l∈[m]
g(l)(xk) ≤ ε;

xk − η∇g(l(k))(xk), max
l∈[m]

g(l)(xk) > ε,

where l(k) = argmaxl∈[m] g
(l)(xk) and ε is a desired ac-

curacy of constraint satisfaction. We emphasize that
this scheme could be paralleled very efficiently: dif-
ferent threads or nodes of the network could handle
the computation of different constraints. The ability
to parallel computation is crucial for any large-scale
application.

Next there were two main directions in the develop-
ment of this scheme:

• use of stochastic (sub)gradients;

• computation of dual variables for the Lagrange
dual problem (primal-duality).

The first direction is essential for large-scale applica-
tions because the computation of exact gradients could
be impossible or computationally heavy. The value of
the second type of development highly depends on the
particular application but always gives a possibility to
use stopping criteria based on the duality gap.

The development of the stochastic case was initiated
in the paper (Nemirovski et al., 2009) for Mirror De-
scent without functional constraint and developed for
high-probability deviations bounds in the paper (Lan
et al., 2012). The work (Bayandina et al., 2018) makes
possible application of these results to the scheme with
functional constraints.

The first step to the primal-duality of subgradient
method was done in the paper (Nesterov, 2009) but in
a different direction: the author solves the dual prob-
lem using subgradient method and reconstructs the
primal variables. In the work (Nesterov and Shpirko,
2014) the authors propose the scheme that solves the
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primal conic problem using subgradient method with
functional constraints and afterward computes dual
variables without any computational price. This ap-
proach was generalized to arbitrary deterministic con-
vex optimization problems in the paper (Bayandina
et al., 2018).

However, a natural question appears: Is it possible to
combine these two properties and propose a stochastic
subgradient algorithm that computes the dual variables
without additional computational price? In this paper,
we give a positive answer. Additionally, we propose a
bright application that requires combining both traits
with additional inexactness in constraint computation.

Markov Decision Process. We apply the pro-
posed primal-dual stochastic Mirror Descent to the
problem of mixing average-reward Markov Decision
Process.

Markov Decision Process (MDP) is a mathematical
model for the reinforcement learning (RL) problem,
the rapidly developing branch of modern machine
learning (Sutton and Barto, 2018; Szepesvari, 2010).
We consider the infinite horizon average-reward set-
ting of this problem. For complete notations we refer
to Section 3.

The solution to the average-reward MDP (AMDP)
with S states and Atot state-action pairs could be de-
scribed through the linear program that obtained from
Bellman equations (Bertsekas, 2005)

min
v̄,h

v̄

s.t. v̄1 + (Î−P)h− r ≥ 0,

where Î(i,ai),j = Ii,j ,P ∈ RAtot×S is a transition prob-
ability matrix, r ∈ RAtot is a vector of rewards for
state-action pairs, v̄ is an average reward value, and
h is a bias vector. For another setting of discounted
MDP we refer to the line of the previous work (Azar
et al., 2012; Sidford et al., 2018a,b; Agarwal et al.,
2020; Li et al., 2020) and references within.

Let us list important properties of the problem (6): 1)
it has a huge number of constraints Atot; 2) it is im-
possible to compute neither constraints nor its gradi-
ent since the transition probability matrix P is usually
unknown; 3) a policy that corresponds to the optimal
average reward v̄ can be computed from the solution
to the dual problem of (6).

To handle the second problem we consider solving
AMDP with generative model or sampler (Azar et al.,
2012; Jin and Sidford, 2020; Agarwal et al., 2020):
a stochastic oracle generates a transition state from
a given state-action pair according to probabilities
P. This assumption makes applying of the proposed

stochastic primal-dual Mirror Descent possible to the
problem (6) after a suitable approximation of con-
straint functions. We underline that it is required to
use a combination of all properties of our algorithm
to solve this problem. Additionally, we notice that
the work (Lan and Zhou, 2020) can handle stochastic
constraints without additional approximation of con-
straint functions but at the price of much worse com-
plexity ∼ ε−4.

However, it is impossible to obtain rates for AMDP
solving without additional assumptions. We consider
the mixing assumption that the Markov chain that
corresponds to the choice of any policy converges to
the stationary distribution sufficiently fast. In papers
(Wang, 2017; Jin and Sidford, 2020) authors showed
that under mixing assumption, the search space for the
bias vector h could be bounded using mixing time tmix.
A similar assumption was studied in the paper (Kearns
and Singh, 2002) and an alternative one of communi-
cating MDP with a finite diameter in works (Bartlett
and Tewari, 2009; Jaksch et al., 2010; Agrawal and Jia,
2017).

To the authors’ best knowledge, there are only three
works that consider the infinite-horizon mixing AMDP
with a generative model – (Wang, 2017; Jin and Sid-
ford, 2020, 2021). In the first two papers the same
general convex optimization algorithm was used –
Stochastic Mirror Descent for saddle-point problems,
and both of the presented algorithms are not designed
for parallel computations. In the last paper authors
perform reduction to the discounted problem, and the
price of this reduction is sample complexity of order
O(ε−3). In this paper, we present the first paral-
lel algorithm for this problem without reductions to
discounted MDP with very low communication costs.
The parallelism gives a possibility to handle very large
setups of MDPs that cannot be stored in the memory
of one machine. In the case of simultaneous working
of Atot workers, our algorithm works in Õ(t2mix|S|ε−2)
real time and outperforms approach of Jin and Sidford
(2020) which works in Õ(t2mixAtotε

−2).

Our contribution.

• The first (sub)gradient-based algorithm for opti-
mization with functional constraints that 1) al-
lows the use of stochastic gradients, 2) computes
the value of Lagrange dual variables, 3) allows
inexact computation of constraints at the same
time.

• The first parallel algorithm for solving mixing
average-reward MDP without reduction to the
discounted problem. Additionally, this algorithm
has very low communication costs and thus could
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work on very large centralized networks effec-
tively.

Paper organization. Section 2 is devoted to the
proposed primal-dual stochastic variant of the Mirror
Descent algorithm. All proofs are presented in the sup-
plementary material. Section 3 describes how to apply
the results of Section 2 to the mixing AMDP problem.
Finally, Section 4 contains a numerical comparison to
the approach described in the paper of Jin and Sidford
(2020).

Notation. For a matrix A ∈ Rn×m we define its i-th
row as A(i). We denote by 1 = (1, . . . ,1)> the vec-
tor filled with ones. By ei we define a standard basis
vector. Also we define ∆n = {x ∈ Rn | ∀i : xi ≥
0,
∑n
i=1 xi = 1} and Bnc = [−c,c]n. I is an identity

matrix of size deducible from the context. Inner prod-
uct 〈·, ·〉 : E∗ × E → R is defined on pairs of vectors
from dual and primal spaces. In the case of Euclidean
spaces, it coincides with the standard inner product.
For a normed space (E, ‖ · ‖) we define a dual norm
on a space E∗ as follows: ‖v‖∗ = supx:‖x‖=1〈v, x〉.
Also we define [m] = {1, . . . ,m}. By I{A} we de-
fine an indicator of a set A. For i ∈ [m] define
ei ∈ Rm : ei[j] = I{i = j}.

2 PRIMAL-DUAL STOCHASTIC
MIRROR DESCENT

In this section we develop techniques of Bayandina
et al. (2018). Firstly, we introduce a basic notation
that will be used further. Then we propose a new
algorithm for the constrained convex stochastic opti-
mization problem in the model of inexact computation
of constraint functions. Finally, we prove convergence
of the algorithm in terms of the duality gap between
primal and (Lagrange) dual problems. The last part
is crucial for an application on average-reward MDPs.

2.1 Notation

We consider the constrained convex optimization prob-
lem over a convex compact set Q ⊆ E, where E is a
finite-dimensional normed space

min
x∈Q

f(x),

s.t. g(l)(x) ≤ 0, ∀l ∈ [m],
(1)

and f : Q → R, g(l) : Q → R are convex functions. We
assume that subgradients of these functions exist for
each x ∈ Q for simplicity. We call ∇f(x),∇g(l)(x) any
subgradients of corresponding functions. However, in
our algorithm we have an access only to stochastic
subgradient oracles ∇f(x, ξ),∇g(l)(x, ξ(l)).

Now we are going to introduce definitions that will be
useful in the algorithm description.

Definition 1 Function hδ : Q → R is called a δ-
approximation of h : Q → R if |hδ(x) − h(x)| ≤ δ for
all x ∈ Q.

For our problem, we suggest that we have an oracle
not for computation of constraints g(l) but their δ-

approximations g
(l)
δ . It is the important difference with

the setup of Bayandina et al. (2018): in our assump-
tion we cannot consider only one constraint of form
g(x) = maxl∈[m] g

(l)(x) because it does not seem pos-
sible to compute a subgradient of g given subgradients
of g(l) when index on which the maximal value attains
is unknown.

Now we are ready to list all our assumptions on prob-
lem setup (1) for our algorithm:

(A1) f and all g(l) are Lipschitz continuous with con-
stant M for objective function and for all con-
straints;

(A2) Stochastic subgradients are unbiased:
E∇f(x,ξ) = ∇f(x), E∇g(l)(x,ξ(l)) = ∇g(l)(x);

(A3) Stochastic subgradiens are bounded:
‖∇f(x,ξ)‖∗ ≤M, ‖∇g(l)(x,ξ(l))‖∗ ≤M a.s.;

Since our algorithm is Mirror-Descent based, the next
step is to define the proximal step and basic properties
of Mirror Descent.

Firstly, we define a prox-function d : Q → R as a con-
tinuous 1-strongly convex function d with respect to
the norm ‖ · ‖ on E that admits continous selection
of subgradients ∇d(x) where they exist. Bregman di-
vergence that corresponds to a prox-function d is a
function V (x,y) = d(y)− d(x)− 〈∇d(x), y − x〉.

Given vectors x ∈ E and v ∈ E∗, the mirror step is
defined as

x+ = Mirr(x, v) = argmin
y∈X

{〈v, y〉+ V (x,y)} .

We assume that the mirror step can be easily com-
puted.

2.2 Primal Problem

In this subsection, we consider problem (1) in terms
of convergence of the objective function in confidence
region. Formally speaking, a vector x̂ is called an
(εf , εg, σ)-solution to the primal problem (1), if

f(x̂)− f(x∗) ≤ εf ,
g(l)(x̂) ≤ εg ∀l ∈ {1, . . . ,m} w.p. ≥ 1− σ,

(2)



Primal-Dual Stochastic Mirror Descent for MDPs

where x∗ is a true minimizer of the problem (1). We
assume that an algorithm have access only to stochas-
tic subgradient oracles of functions f, g(l) and to δ-

approximations g
(l)
δ of constraint functions.

Algorithm 1: Stochastic Mirror Descent
with noisy constraints

Input: accuracy ε > 0, number of steps N ,
stepsize η = ε/M2

1 x0 = argminx∈Q d(x);

2 I = ∅, J = ∅;
3 for k = 0,1,2, . . . ,N − 1 do

4 if g
(l)
δ (xk) ≤ ε+ δ ∀l ∈ [m] then

5 xk+1 = Mirr(xk, η∇f(xk, ξk)) ;
// "productive" steps

6 Add k to I

7 else

8 l(k) = argmax
l∈[m]

g
(l)
δ (xk);

9 xk+1 = Mirr(xk, η∇g(l(k))(xk, ξk(l(k)))) ;

// "non-productive" steps

10 Add k to J ;

11 return x̂ = 1
|I|
∑
k∈I x

k;

Denote ∇̂kf = ∇f(xk, ξk),∇kf = ∇f(xk) and
∇̂kg(l) = ∇g(l)(xk, ξk(l)),∇kg

(l) = ∇g(l)(xk). Addi-

tionally, we define Θ2
0 = d(x∗)− d(x0). In these terms

we could provide the main theorem.

Theorem 1 Algorithm 1 with a constant stepsize η =
ε/M2 outputs (ε, ε+ 2δ, σ)-solution for any ε > 0, σ ∈
(0,1), δ ≥ 0 in sense of (2) after

N ≥ N0 =
280 ·Θ2

0M
2 log(1/σ)

ε2
.

The proof of this theorem is given in supplementary
material.

Remark 1. Notice that from theoretical point of view
selection of the maximum in line 9 of Algorithm 1 could
not be avoided. However, in case of non-stochastic
constraint computation one of used heuristic is to set
l(k) to any index of violated constraint and we suggest
that such heuristic could work in the noisy setting too.

Remark 2. Notice that a quantity Θ2
0 is not used in the

pseudocode of Algorithm 1. Thus, it is possible to use
another initial x0 and have a warm start such that our
algorithm converges faster. This warm start could be
obtained by running an algorithm several times with
a decreasing value of ε.

Remark 3. We used a constant stepsize for the sake of
simplicity. It is possible to adapt techniques of Bayan-

dina et al. (2018); Stonyakin et al. (2019) to use adap-
tive stepsizes that does not rely on knowledge of Lip-
schitz constant M .

2.3 Primal-Dual Convergence

In this subsection, we extend properties of the previous
algorithm and prove its primal-duality. First of all, let
us define the (Lagrange) dual optimization problem
associated with the problem (1)

max
λ∈Rm

+

{
φ(λ) := min

x∈Q
{f(x) +

n∑
i=1

λlg
(l)(x)}

}
. (3)

Call λ∗ a solution to this dual problem (if it exists).
We refer to (Boyd and Vandenberghe, 2004) for an
additional background and examples.

It is well-known that for any x ∈ Q : g(l)(x) ≤
0 ∀l ∈ {1, . . . ,m} and λ ∈ Rm+ the weak duality holds:
∆(x,λ) = f(x) − φ(λ) ≥ 0, where ∆ is so-called the
duality gap. We assume that for our primal problem
(1) the Slater’s condition holds, i.e. ∃x ∈ Q : ∀l ∈
{1, . . . ,m} : g(l)(x) < 0. It implies that the dual
problem has a solution and there is the strong dual-
ity : ∆(x∗, λ∗) = 0 for any x∗ and λ∗ are solutions to
the primal and the dual problems respectively.

It gives us a natural way to measure a quality of the
pair (x̂, λ̂) by the value of the duality gap ∆(x̂, λ̂). Let

us call the pair (x̂, λ̂) a primal-dual (ε∆, εg, σ)-solution
to (1) if the following holds with probability at least
1− σ

∆(x̂, λ̂) ≤ ε∆,

g(l)(x̂) ≤ εg ∀l ∈ [m].
(4)

Notice that since x̂ is not a feasible solution to the
primal problem (1), we do not have the weak duality

inequality ∆(x̂, λ̂) ≥ 0. However, the value of duality
gap could be controlled from below because of con-
trolled unfeasibility.

The most powerful property of Algorithm 1 is a pos-
sibility to generate a pair of primal-dual solutions in
sense of (4): we could control the value of the dual-
ity gap without the explicit access to the constraint
functions.

Following (Nesterov and Shpirko, 2014; Bayandina

et al., 2018), we choose the following λ̂ ∈ Rm+ as an
estimate of dual variables

λ̂l =
1

|I|
∑
k∈J

I{l = l(k)} (5)

in terms of Algorithm 1. Additionally, we define useful

constant Θ
2

0 = supy∈Q(d(y)− d(x0)).
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Using λ̂, we could provide primal-dual properties of
Algorithm 1.

Theorem 2 Let us choose λ̂ ∈ Rm+ as defined in (5)
and x̂ is an output of Algorithm 1 with a constant step-
size η = ε/M2. Then the pair (x̂, λ̂) is an (ε, ε+2δ, σ)-
solution in sense of (4) for any ε > 0, δ ≥ 0, σ ∈
(0, 1/2) after

N ≥ N ′0 =
128Θ

2

0M
2(17 log(2/σ) + 2κ(E∗))

ε2
,

where κ(E∗) is a constant of Nemirovski’s inequality
(Boucheron et al., 2013) for the dual space.

Remark 1. If E has a finite dimension d, then we
always have κ(E∗) ≤ d. Additionally, if E is endowed
with `p norm, then E∗ is endowed with `q norm, where
1/p + 1/q = 1, and there is a more precise bound,
according to (Dümbgen et al., 2010)

κ(E∗) ≤ K
(

p

p− 1
, d

)
=

{
d

2
p−1, p ∈ [1,2]

d1− 2
p , p ∈ (2,+∞]

In particular, if E has `2 norm, κ(E∗) = 1. For p ∈
[2, +∞] this bound is tight, however, in the case p ∈
[1,2] and d ≥ 3 it could be improved (Boucheron et al.,
2013) to, for instance, a logarithmic bound κ(E∗) ≤
2e log(d)−e, that could be useful in the case of `1-norm
and an entropy prox-function.

We can write bound on N ′0 using O-notation as follows

N = O

(
Θ

2

0M
2(log(1/σ) + κ(E∗))

ε2

)
.

The only difference between primal and dual case is
connected to the constant in Nemirovski’s inequality.

Remark 2. As in the primal case, in the complexity

bounds we have a constant Θ
2

0 that does not appear in
the algorithm description. This fact gives us a chance
to work much better in practice than using worst-case
constant. The same situation with constant κ(E∗).

3 MIXING AMDP

In this section, we discuss the application of the devel-
oped algorithm to the problem of approximate solv-
ing mixing average-reward Markov Decision Processes
(MDP). Firstly, we propose basic definitions connected
to MDPs. Next, we discuss some technical nuances
that will appear in the algorithm and, finally, we out-
line the complete algorithm and its parallel implemen-
tation.

3.1 Markov Decision Process

An instance of MDP is a tupleM = (S,A,P, r), where
S is a finite set of states; A =

⊔
i∈S Ai is a finite

state of actions, each set Ai contains actions from the
state i. P is the collection of state-to-state transition
probabilities given actions: P = {pij(ai) | i,j ∈ S, ai ∈
A} where pij(ai) is a probability of transition from a
state i to a state j given an action ai. Also, we define
r ∈ [0,1]|A| as the state-action reward vector, ri,ai is
the instant reward received when taking the action ai
at the state i ∈ S. For consistency of notation with
work of Jin and Sidford (2020), let (i,ai) ∈ A denote
an action ai at a state i. Atot = |A| =

∑
i∈S |Ai|

denotes the total number of state-action pairs. Also
we denote by P the action-state transition probability
matrix of size Atot × |S|, where P(i,ai),j = pij(ai) in
terms of P.

The goal is to find a stationary (randomized) policy
that specifies actions to choose in the fixed state. For-
mally, a policy π is a block vector such that i-th block
corresponds to a probability distribution over Ai. De-
fine as Pπ, rπ the transition matrix and the cost vector
under the fixed policy π.

Now we are going to define optimality of the policy.
In this paper we consider the infinite-horizon average-
reward MDP with the following objective to maximize

v̄π = lim
T→∞

Eπ

[
1

T

T∑
t=1

rit,at | i1 ∼ q

]
.

Here {i1,a1, . . . ,it,at} are state-actions transitions gen-
erated by MDP under a policy π, q is an initial dis-
tribution, and an expectation Eπ[·] is taken over tra-
jectories. In our case we interested in the case then
the Markov chain generated by an AMDP under a
fixed policy π has a unique stationary distribution
νπ : νπ ·Pπ = νπ. Notice that in this case the value of
v̄π does not depend on an initial distribution q. Then
the objective simplifies a lot:

v̄π = 〈νπ, rπ〉.

Next, we define Bellman equations for an AMDP
(Bertsekas, 2005): v̄∗ is the optimal average reward
if and only if there exists a vector h∗ ∈ R|S| satisfying
the following

v̄∗ + h∗i = max
ai∈Ai

∑
j∈S

pij(ai)h
∗
j + ri,ai

 ,∀i ∈ S.

We focus on study of the primal LP which solution is
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equivalent to the solution to Bellman equation

min
v̄,h

v̄

s.t. v̄1 + (Î−P)h− r ≥ 0,
(6)

where Î(i,ai),j = Ii,j .

However, without additional assumptions it is hard to
analyze problem. Following (Jin and Sidford, 2020;
Wang, 2017), we introduce one important assumption
on an AMDP instance.

Assumption 1 (Mixing AMDP) We call an
AMDP instance mixing if its so-called mixing time
(defined below) is bounded

tmix := max
π

[
argmin
t≥1

{
max
q
‖(Pπ>)tq− νπ‖1 ≤

1

2

}]
.

The most powerful corollary of this result is a possi-
bility to make the search space a compact convex set.
Formally speaking, in (Jin and Sidford, 2020) it was
proven that the search space for primal variables could

be reduced to X = [0,1] × B|S|2R = [0,1] × [−2R,2R]|S|,
where R = 2tmix. We choose bounds of size 2R instead
of R because of the same reasons as (Jin and Sidford,
2020) that will be described in Section 3.3.

Overall, we have a (linear) optimization problem on a
compact with a large number of constraints

min
v̄,h∈X

v̄

s.t. v̄1 + (Î−P)h− r ≥ 0.
(7)

If we knew the matrix P, we could apply Stochas-
tic Mirror Descent with constraints (Bayandina et al.,
2018) and get an approximate solution to this LP prob-
lem. However, it is not the case: we have only sam-
pling access to the transition probability matrix. An-
other problem we face is computing an optimal policy
by an approximate solution to this linear program. It
is known that there is a strong connection between the
optimal policy and the dual LP but not the primal one.
Therefore, we use primal-duality of Algorithm 1 and
construct a policy using dual variables.

3.2 Preprocessing

In this subsection we aim to describe complexity of the
preprocessing connected to the estimate of the transi-
tion probability matrix. We take the estimate of the
form

P̃(i,ai) =
1

n

n∑
j=1

eXj
,

where Xj are sampled from categorical distribution
P(i,ai). Choosing appropriate N and compute these

quantities for each state-action pair in parallel, we ob-
tain the following proposition.

Proposition 1 For each δ′,σ′ > 0, the estimate P̃

of P, such that for each a ∈ A, h ∈ B|S|2R : |〈P(a) −
P̃(a), h〉| ≤ δ′ with probability at least 1 − σ′, could be

computed in O
(
t2mixAtot · |S|+log(Atot/σ

′)
δ′2

)
total sam-

ples, O(1) parallel depth and O
(
t2mix

|S|+log(Atot/σ
′)

δ′2

)
samples proceed by each single node. In the
case of m ≤ Atot available workers, it works in

O
(
Atot

m · t
2
mix
|S|+log(Atot/σ

′)
δ′2

)
real time.

The proof of this proposition is given in supplemen-
tary.

3.3 Rounding to Optimal Policy

In this subsection, we prove the result that give us
a possibility to obtain an approximate optimal policy
from the dual variables produced by (1).

Proposition 2 Suppose that primal (v̄ε, hε) and dual
µε variables are (εf , εg, σ) -approximate solution to
(7) in terms of (expected) primal-dual convergence (4).

Define the policy π: πi,ai =
µi,ai

λi
, where λ ∈ R|S|+ is

defined as λi =
∑
ai∈Ai

µi,ai . Then π is an 4(εf +εg)-
optimal policy with probability at least 1− σ.

The proof is given in supplementary material, and it
is very similar to the proof of (Jin and Sidford, 2020).
There are two differences. Firstly, we have guar-
antees on our primal-dual solution, not the solution
to a saddle-point problem, and this slightly changes
the structure of the proof. Secondly, we have high-
probability bounds instead of bounds in expectation.

3.4 Parallel Algorithm

In this subsection, we describe a final algorithm to
approximate solving AMDP in parallel. In our setup,
each single node of a centralized network corresponds
to a single state-action pair.

First of all, we describe linear program corresponding
to AMDP (7) in terms of (1),

min
v̄,h∈X

f(v̄, h) = v̄,

s.t. g(i,ai)(v̄, h) = r(i,ai) − v̄
+ (〈P(i,ai), h〉 − hi) ≤ 0 ∀(i,ai) ∈ A.

(8)

where X = [0,1] × B|S|4tmix
. We set standard Euclidean

prox-structure on X : `2-norm ‖·‖2 and a prox-function
d(x) = 1

2‖ · ‖
2
2. In these terms, we have the following

constants: M = 2 and Θ
2

0 = (4R)2|S|+1 = O(t2mix|S|).
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However, in our case we cannot compute constraints
since there is no access to the true model. To over-
come this, we run preprocessing described in Section
3.2 to derive approximate model P̃ and obtain δ-

approximation of constraints g
(i,ai)
δ

g
(i,ai)
δ (v̄,h) = r(i,ai) − v̄ + (〈P̃(i,ai), h〉 − hi). (9)

Additionally, we are going to use stochastic subgradi-
ents for g by using samples of next state s ∼ P(i,ai):

∇v̄g
(i,ai)(v̄, h) = −1, ∇̂hg

(i,ai)(v̄, h, s) = es − ei, (10)

with constant M = 2. In this case, we can use Al-
gorithm 1 with the following update rules for primal
variables v̄k and hk. For productive steps (k ∈ I)

v̄k+1 = v̄k − η, hk+1 = hk, (11)

and for non-productive steps (k ∈ J)

v̄k+1 = v̄k + η, hk+1 = hk − η(es − ei), (12)

where (i, ai) is a state-action pair where
maxa∈A g

a
δ (v̄k, hk) attains, and s ∼ P(i,ai) is a

transition sample. We note that in this form this
algorithm is sequential.

To design a parallel version of Mirror Descent that pre-
sented in Algorithm 2, we are going to use a separate
node for each state-action pair (j,aj). The aim of node
corresponds to state-action pair (j,aj) is 1) compute

and update value of ck(j,aj) := g
(j,aj)
δ and 2) sample

transitions of MDP.

To compute ck(j,aj) faster than in O(|S|) operations, we

note that updates of v̄k and hk are sparse and we can
store the previous value ck−1

(j,aj).

In the case of productive steps (k ∈ I) we update as
follows:

ck(j,aj) = ck−1
(j,aj) + η. (13)

This update rule is correct by the update rule (11) and
equation (9).

In the case of non-productive steps (k ∈ J) we have a
more complicated update

ck(j,aj) = ck−1
(j,aj) − η(1 + P̃(j,aj),s − P̃(j,aj),i

+ I{j = i} − I{j = s}).
(14)

The correctness of the procedure is guaranteed by the
update rule (12) and definition (9). Update rules (13)
and (14) gives us an opportunity to update constraints
in O(1) time per each node.

Theorem 3 Let ε > 0 and σ ∈ (0, 1/2). The policy
π̂ generated by Algorithm 2 with a constant stepsize

η = ε/64 and preprocessing described in Section 3.2
performed with parameters δ′ = ε/16, σ′ = σ/2 is an
ε-approximate optimal policy with probability at least
1− σ if

N = O

(
t2mix|S| log(1/σ)

ε2

)
.

The described algorithm has O(1) parallel depth,
O(Atot·N) sample and running time complexity. In the
case of m ≤ Atot available workers, algorithm works in
O
(
Atot

m · t
2
mix|S| log(1/σ) · ε−2

)
real time. The full de-

scription is presented in Algorithm 2.

Remark 1. Notice that complexity of preprocessing
and Algorithm 2 matches up to logarithmic factors.

Remark 2. Messages ”Productive step” and ”Non-
productive step” ensure that nodes update their values
to actual ones.

Remark 3. The communication costs on each round
of communication are low: each text message could be
send using O(1) bits, and each message with a sample
could be sent using only O(log |S|) bits.

Remark 4. Additional advantage of the algorithm is
a sparsity of updates: there are at most 2 values in
the vector h updated each iteration. From the point
of view of external memory algorithms, it gives us a
possibility to make only 2 requests to the memory if
the state-space is too large to store a vector h in RAM.

Remark 5. We use a very coarse bound on Θ
2 ∼ |S|. In

practice we might expect that Θ
2 ∼ poly log |S| and,

thus, reduce our dependence on |S| to logarithmic.

Proof. By Proposition 2, we can produce ε-optimal
policy with probability at least 1 − σ/2 by running
Algorithm 1 on problem (8) with an accuracy ε′ = ε/8
because 4(ε∆ + εg) = 4(ε′ + 2δ) = 4ε′ + 8δ = 8ε′.
Performing union bound for probability of failure for
a preprocessing and an algorithm, we have required
probability of success of whole scheme.

Since from the point of view of the head node
Algorithm 2 is essentially Algorithm 1, we have
needed guarantees on number of Mirror Descent it-

erations by computed constants M = O(1),Θ
2

0 =
O(t2mix|S|), κ(E∗) = 1 and Theorem 2. Notice that
the parallel depth of the algorithm is equal to 1.

Total running time complexity forms by additional
Atot computations on constraints on each iterations
and each computation spends O(1) time by using pre-
vious values of computed constraints. The last obser-
vation connected to the fact that update of v̄k and h̄k

also spends O(1) time by sparsity. �
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Algorithm 2: Parallel average-reward MDP

Input: accuracy ε > 0, number of steps N ,
approximation accuracy δ = ε/16,
Mirror Descent accuracy ε̃ = ε/16,
stepsize η = ε̃/4, confidence level σ.

1 Procedure MirrorDescent():
2 v̄0 = 0;h0 = 0;
3 for k = 0,1,2 . . . , N − 1 do
4 Send ”Check constraints” to all nodes;

5 Receive g
(i,ai)
δ (v̄k, hk) ∀(i, ai) ∈ A;

6 if max
a∈A

g
(i,ai)
δ (v̄k, hk) ≤ ε̃+ δ then

7 v̄k+1 = v̄k − η, hk+1 = hk;
8 Send ”Productive step” to all nodes;
9 Add k to I;

10 end
11 else

12 (i,ai)k = argmaxa∈A g
(i,ai)
δ (v̄k, hk);

13 Send ”Sample” to node (i,ai)k;
14 Receive state s;

15 v̄k+1 = v̄k + η,

hk+1 = hk − η · (es − ei);
16 Send ”Non-productive step”, i and

s to all nodes;
17 Add k to J ;

18 end

19 end

20 µ̂(i,ai) = 1
|I|
∑
k∈J I{(i,ai)k = (i,ai)};

21 return πi,ai = µi,ai/
(∑

ai∈Ai
µi,ai

)
;

22 Procedure WorkerNode(j, aj):

23 Compute P̃(j,aj) with precision δ and

confidence level σ/2;
24 c0(j,aj) = rj,aj ,k = 0;

25 while is not finished do
26 Wait message;
27 if ”Compute constraints” then

28 Send ck(j,aj) as g
(j,aj)
δ (v̄k, hk);

29 end
30 else if ”Sample” then
31 Sample s ∼ P(j,aj) and send it;

32 end
33 else if ”Productive step” then
34 k = k + 1;

35 ck(j,aj) = ck−1
(j,aj) + η;

36 end
37 else if ”Non-productive step” then
38 Receive s and i;
39 k = k + 1;

40 ck(j,aj) = ck−1
(j,aj) − η(1 + P̃(j,aj),s −

P̃(j,aj),i + I{j = i} − I{j = s});
41 end

42 end

Figure 1: Comparison between Stochastic Mirror De-
scent (Jin and Sidford, 2020) and Algorithm 2 on
RiverSwim environment with 6 states and 2 actions.

4 NUMERICAL EXPERIMENTS

In this section we perform numerical comparison of
Algorithm 2 in sequential setting with algorithm de-
scribed in paper (Jin and Sidford, 2020).

At first, we highlight technical features. In both men-
tioned algorithms, the value of mixing time tmix is
needed. However, computation of maximum over poli-
cies of discrete-valued function seems to be a very
hard problem to be computed precisely. We replace
the value of tmix by its estimate t̂mix computed over
1000 randomly generated policies. Additionally, to
make precise comparison we compute optimal average-
reward value v∗ using LP-representation of the prob-
lem (6) for known model, and the average-reward value
vπ of the given policy π by computing a stationary dis-
tribution using known model.

For our comparison, we apply algorithms to two dif-
ferent environments: RiverSwim (Strehl and Littman,
2008), Access-Control Queuing task (Sutton and
Barto, 2018). We choose these environments because
we have an exact model for them, and they require
non-trivial exploration.

RiverSwim. We start with the environment de-
scription. RiverSwim is an environment with 6 states
in a row with 2 actions for each state: swim to the left
or swim to the right. Swimming to the left is always
successful. For the first state, this action returns to
itself and gives 0.005 reward. Swimming to the right
move the agent to the right state with probability 0.35,
make the agent stay in the current state with proba-
bility 0.6, and move to the left with probability 0.05.
For the last state moving to the right state returns the
agent to this last state and gives 1 reward. Thus, the
optimal average-reward policy is always swimming to
the right.

Estimate value of t̂mix is equal to 155 and it makes this
environment hard for our algorithm 2 and Stochastic
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Figure 2: Comparison between Stochastic Mirror De-
scent (Jin and Sidford, 2020) and Algorithm 2 on
Access-Control Queuing task with 10 servers.

Mirror Descent (SMD) (Jin and Sidford, 2020). We
compare these algorithm with ε = 10−2 and use 1000
samples for preprocessing, the result is presented on
Figure 1. Significant superior of our approach could
be explained by independence of stepsize of Algorithm
2 to the value of tmix, whereas stepsize in algorithm of
(Jin and Sidford, 2020) depends on this quanitity as
1/t2mix. In the case of this MDP, stepsize of SMD is
smaller in 2.5 · 104 times. Additionally, notice that we
generated a very little number of samples during pre-
processing, and therefore these computation does not
affect the total running time. Additionally, high spar-
sity of rewards explains the high value of the objective
function during first iterates.

Access-Control Queuing task. This environment
is modelling very practical situation for using average-
reward MDP model. For the description we refer to
(Sutton and Barto, 2018). The only difference is nor-
malization of rewards to make them in the interval
[0,1].

Estimated value of mixing time t̂mix = 44 and has
dense rewards. On Figure 2 we present comparison
between Algorithm 2 and SMD with ε = 10−2 and
500 samples for preprocessing. Again, since the value
of tmix is relatively large for this MDP, worse conver-
gence of SMD is explained by smaller stepsize that is
required by theoretical analysis. Our algorithm is al-
most agnostic to the value of tmix and it makes it much
more effective for large values of tmix.

5 CONCLUSION

In this work, we proposed a parallel algorithm for solv-
ing an average-reward MDP. As far as we know, it is
the first parallel algorithm in the generative model set-
ting without reduction to the discounted problem. The
interesting properties of the provided method are very
low communication costs between the head node and
all other nodes and the sparsity of updates that offer

a possibility to work with a very large state space.

Another contribution is the development of Mirror
Descent with constraints algorithms. We provide
an algorithm that works with inexact computation
of constraints and prove its primal-dual properties.
The setting of inexact computation of constraints was
developed in (Lan and Zhou, 2020) but results on
primal-dual convergence of such algorithms appeared
in known literature only in a deterministic exact case
(Bayandina et al., 2018).

Turning to possible extensions, there arise natural
questions.

Could a preprocessing step be avoided and make the
algorithm model-free? In the current version, we
needed to do a required number of preprocessing it-
erations to guarantee the condition on constraints. It
seems possible to use an unbiased stochastic oracle for
constraint evaluation.

Another question is connected to the total work com-
plexity. The cost of a high level of parallelism is
worse total running time and sample complexity in
comparison to algorithms based on saddle-point for-
mulations. It is connected to two theoretical issues:
1) `1-approximation of the model and 2) performing
Mirror Descent with box constraints. The first issue
could be resolved using another approximation metric
that respects MDP structure as it was done in (Agar-
wal et al., 2020). The second issue is fundamental for
non-linear optimization due to existing lower bounds
(Guzmán and Nemirovski, 2015). The only way to
avoid it is to use the linear structure of mixing AMDP
problem. Could the total work time and sample com-
plexity be reduced without losing the possibility to run
in parallel?

The last question is about further generalizations of
our approach. One of the interesting directions is to
use our algorithm for solving constrained MDP as it is
done in the paper (Jin and Sidford, 2020). However,
we note that it is possible to use non-linear constraints
in our case.
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Supplementary Material:
Primal-Dual Stochastic Mirror Descent for MDPs

A MISSING PROOFS

A.1 Proof of Theorem 1

To simplify the notation, we introduce the stochastic gradient noise function

γk(y) =

{
η〈∇̂kf −∇kf, y − xk〉, k ∈ I;

η〈∇̂kg(l(k)) −∇kg(l(k)), y − xk〉, k ∈ J.
(15)

The main property of this quantity is that it forms a martingale-difference sequence.

Now we are going to provide some useful properties of Algorithm 1 in terms of bounds of error in objective
function f and constraint satisfiability. Afterwards, we combine all properties to a convergence analysis of the
algorithm. But at first, we state one useful technical result. We will actively use the following lemma:

Lemma 1 (Bayandina et al. (2018)) Let h be some convex function over a set Q, η > 0 is a stepsize, x ∈ Q.
Let the point x+ = Mirr(x, η(∇h(x) + ∆)), where ∆ is some vector from the dual space. Then, for any y ∈ Q

η(h(x)− h(y) + 〈∆, x− y〉) ≤ η〈∇h(x) + ∆, x− y〉

≤ η2

2
‖∇h(x) + ∆‖2∗ + V (x,y)− V (x+, y).

Lemma 2 For a point x̂ produced by Algorithm 1 and any y ∈ Q the following holds

η|I| · (f(x̂)− f(y)) ≤ η2M2

2
N + [d(y)− d(x0)]− |J |η · ε

+

N−1∑
k=0

γk(y) + η
∑
k∈J

g(l(k))(y).

(16)

Proof. By the construction of ”productive” and ”non-productive” steps in Algorithm 1 and Lemma 1, we have
for all y ∈ Q

η(f(xk)− f(y)) ≤ η2M2

2
+ V (xk, y)− V (xk+1, y)

+ η〈∇̂kf −∇kf, y − xk〉,
k ∈ I;

η(g(l(k))(xk)− g(l(k))(y)) ≤ η2M2

2
+ V (xk, y)− V (xk+1, y)

+ η〈∇̂kg(l(k)) −∇kg(l(k)), y − xk〉
k ∈ J.

By definition of δ-approximation, we have the following inequalities for ”productive” and ”non-productive” steps
respectively

η(f(xk)− f(y)) ≤ η2M2

2
+ V (xk, y)− V (xk+1, y) + γk(y),

η(g
(l(k))
δ (xk)− g(l(k))(y)) ≤ η2M2

2
+ V (xk, y)− V (xk+1, y) + γk(y) + ηδ.
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Sum all these inequalities over all k ∈ I and k ∈ J and use the fact that I ∪ J = {0, . . . ,N − 1}∑
k∈I

η(f(xk)− f(y)) +
∑
k∈J

η(g
(l(k))
δ (xk)− g(l(k))(y))

≤ η2M2

2
|I|+ η2M2

2
|J |+

N−1∑
k=0

[V (xk,y)− V (xk+1,y)] +

N−1∑
k=0

γk(y) + |J |ηδ.
(17)

By the choice of x0 = argminx∈Q d(x), we have

N−1∑
k=0

[V (xk,y)− V (xk+1,y)] ≤ V (x0,y) = d(y)− d(x0)− 〈∇d(x0), y − x0〉 = d(y)− d(x0).

Using definition of ”non-productive” steps g
(l(k))
δ (xk) > ε+ δ and convexity of f∑

k∈I

η(f(xk)− f(y)) +
∑
k∈J

η(g
(l(k))
δ (xk)− g(l(k))(y))

≥ η|I|(f(x̂)− f(y)) + η|J |(ε+ δ)− η
∑
k∈J

g(l(k))(y).

By application of inequality (17) and simple regrouping of terms, we finish the proof. �

During this section we set y = x∗. In this case d(x∗)− d(x0) ≤ Θ2
0. Further we are going to derive bound on g(l)

at x̂ for each separate function g(l):

Lemma 3 For x̂ produced by Algorithm 1 the following holds

g(l)(x̂) ≤ ε+ 2δ. (18)

Proof. By convexity and definition of a δ-approximation

g(l)(x̂) ≤ 1

|I|
∑
k∈I

g(l)(xk) ≤ 1

|I|
∑
k∈I

(g
(l)
δ (xk) + δ).

We finish the proof by definition of ”productive” steps and a set I. �

Before obtaining final bounds on f we prove some technical fact:

Lemma 4 For any y ∈ Q: ‖y − x0‖2 ≤ 2(d(y)− d(x0)).

Proof. Follows from strongly convexity of d with respect to norm ‖ · ‖ and the fact that x0 is a minimum of d. �

Now we derive bounds on sums of our stochastic noise function with high probability.

Lemma 5 Define event E such that the following inequalities holds

N−1∑
k=0

γk(x∗) <
2Θ0

M
·
√

2Nε2 log(1/σ).

Then Pr[E ] ≥ 1− σ.

Proof. Define filtration of σ-algebras Fk = σ
(
{ξi, ξi(l)}i≤k

)
. Notice that γk(x∗) is a martingale-difference

sequence adapted to Fk.

Let us derive bound on the sum. Notice that by Holder inequality and Lemma 4

|γk(x∗)| ≤ 2ηM‖x∗ − xk‖ ≤ 4εΘ0

M
,
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Then by Azuma-Hoeffding inequality

Pr

[
N−1∑
k=0

γk(x∗) ≥ t1

]
≤ exp

(
−t21

2N · (16ε2Θ2
0)/(M2)

)
;

By setting t1 = 4Θ0M
−1 ·

√
2Nε2 log(1/σ) we finish the proof. �

One could apply Lemma 5 to inequalities in Lemmas 2 and 3:

Corollary 1 Under event E defined in Lemma 5, the following inequalities holds for all l ∈ [m]

η|I|(f(x̂)− f(x∗)) < η|I|ε− ε2N

2M2
+ Θ2

0 +
4Θ0

√
2Nε2 log(1/σ)

M
;

g(l)(x̂) < ε+ 2δ.

Proof. The second inequality follows directly from Lemma 5. The first one uses definition η = ε/M2, inequalities
g(l))(x∗) ≤ 0 and, finally, Lemma 5. �

Now we are going to prove last technical result before the statement of the main theorem of this subsection:

Lemma 6 If σ < 1 and

N ≥ N0 =
280 ·Θ2

0M
2 log(1/σ)

ε2

then
ε2N

2M2
−Θ2

0 −
√

2Nε2

(
4Θ0

√
log(1/σ)

M

)
≥ 0.

Proof. Fix variable t = 2Nε2. Then we have quadratic inequality of type at2−(b1+b2)t−c ≥ 0. By exact formula
for quadrativ equation and Taylor approximation we know that inequality holds if t > (b1+b2)/a+c/(b1+b2). By
numeric inequality 1/(b1 +b2) ≤ 1/b1 for nonnegative b1,b2, we have that enough to choose t ≥ b1/a+b2/a+c/b1.
Using our choice of N and numeric inequality 2a2 + 2b2 ≥ (a+ b)2

√
2Nε2 ≥

√
280 ·Θ0M

√
log(1/σ) ≥ 16Θ0

√
log(3/σ) ·M +

Θ2
0M

2Θ0

√
log(1/σ)

.

Here we use that log(1/σ) ≥ 1 and 16 + 1/2 ≤
√

280. �

Finally, we are ready to state theorem that describe convergence properties of Algorithm 1.

Proof of Theorem 1. To guarantee that f(x̂)−f(x∗) ≤ ε with probability at least 1−σ, we use the first inequality
in Corollary 1 and Lemma 6. To guarantee satisfaction of constraints, we simply use Corollary 1. �

A.2 Proof of Theorem 2

Recall our estimate of a dual variables

λ̂l =
1

|I|
∑
k∈J

I{l = l(k)}.

Lemma 7 Suppose x̂ is an output of Algorithm 1 and λ̂ is defined as in (5) and Θ
2

0 ≥ supy∈Q(d(y)− d(x0)).

Then the following holds

η|I|∆(x̂, λ̂) ≤ η2M2

2
N + Θ

2

0 − |J |ηε

+

N−1∑
k=0

γk(x0) + Θ0

√
2 ·

∥∥∥∥∥
N−1∑
k=0

∆k

∥∥∥∥∥
∗

,

(19)
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where ∆k is defined as follows

∆k =

η
(
∇̂kf −∇kf

)
, k ∈ I

η
(
∇̂kg(l(k)) −∇kg(l(k))

)
, k ∈ J.

Proof. We start from Lemma 2. Here we move all terms consist of y to the right-hand side and minimize over y

η|I|f(x̂) ≤ η2M2

2
N − |J |ηε

+ min
y∈Q

{
d(y)− d(x0) +

N−1∑
k=0

γk(y) + η|I|f(y) + η
∑
k∈J

g(l(k))(y)

}
.

Notice that by definition of λ̂ we have

η|I|φ(λ̂) = min
y∈Q

{
η|I|f(y) + η

∑
k∈J

g(l(k))

}
.

Thus, we have to upper bound d(y)− d(x0) and
∑N−1
k=0 γk(y) without dependence on y to obtain required result.

The first upper bound is trivial: d(y)− d(x0) ≤ Θ0
2

by definition of Θ0
2
.

To analyse the second term, we use the definition of γk in terms of ∆k and Holder inequality

N−1∑
k=0

γk(y) =

N−1∑
k=0

〈∆k, y − x0 + x0 − xk〉 ≤ ‖y − x0‖

∥∥∥∥∥
N−1∑
k=0

∆k

∥∥∥∥∥
∗

+

N−1∑
k=0

γk(x0).

The last step is to apply Lemma 4 and definition of Θ
2

0 to obtain uniform bound on ‖y − x0‖. �

Our next goal is to derive bound on the right-hand side of (19). It is possible using concentration of measure
techniques as in Lemma 5.

Lemma 8 Define event E ′ such that the following inequalities holds

N−1∑
k=0

γk(x0) <
2Θ0

M
·
√

2Nε2 log(2/σ)∥∥∥∥∥
N−1∑
k=0

∆k

∥∥∥∥∥
∗

<

√
2κ(E∗) +

√
4 log (2/σ)

M

√
2Nε2,

where ∆k is defined in 7 and κ(E∗) is a constant of Nemirovski’s inequality (Boucheron et al., 2013) for the dual
space. Then Pr[E ′] ≥ 1− σ.

Remark. If E has a finite dimension d, then we always have κ(E∗) ≤ d. Additionally, if E is endowed with `p
norm, then E∗ is endowed with `q norm, where 1/p+ 1/q = 1, and there is a more precise bound, according to
(Dümbgen et al., 2010)

κ(E∗) ≤ K
(

p

p− 1
, d

)
=

{
d

2
p−1, p ∈ [1,2]

d1− 2
p , p ∈ (2,+∞]

In particular, if E has `2 norm, κ(E∗) = 1. For p ∈ [2, +∞] this bound is tight, however, in the case p ∈ [1,2]
and d ≥ 3 it could be improved to, for instance, a logarithmic bound κ(E∗) ≤ 2e log(d)− e, that could be useful
in the case of `1-norm and an entropy prox-function. Proof. The case of first inequality is identical to Lemma 5
by rescaling σ to σ/2.

To ensure the last inequality, we apply bounded difference inequality (Boucheron et al., 2013). This follows by

observing that Z = ‖
∑N−1
k=0 ∆k‖∗ satisfies bounded difference condition with a constant 4 · εM−1 that is greater

than 2 · ‖∆k‖∗ a.s.. Thus

Pr[Z − EZ > t2] ≤ exp

(
−t22

2 ·Nε2 · 4M−2

)
.
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Take t2 = 2M−1
√

2Nε2 ·
√

log(4/σ) and the last we have to do is to bound expectation of Z. Here we apply
Nemirovski’s inequality(

E

∥∥∥∥∥
N−1∑
k=0

∆k

∥∥∥∥∥
∗

)2

≤ E

∥∥∥∥∥
N−1∑
k=0

∆k

∥∥∥∥∥
2

∗

 ≤ κ(E∗)

N−1∑
k=0

E
[
‖∆k‖2∗

]
≤ κ(E∗)

4Nε2

M2
.

By application of the union bound we finish the proof. �

Corollary 2 Under event E ′ defined in Lemma 8, the following inequalities holds for all l ∈ [m]

η|I|∆(x̂, λ̂) < η|I|ε− ε2N

2M2
+ Θ

2

0 +
√

2Nε2

(
2Θ0(4

√
log(2/σ) +

√
2κ(E∗))

M

)
;

g(l)(x̂) < ε+ 2δ.

Proof. Inequalities on g(l)(x̂) is equivalent to the same in 1. Inequality on ∆(x̂, λ̂) follows from a combination of
Lemma 7 and Lemma 8. �

Now we are ready to state a technical lemma that is similar to Lemma 6.

Lemma 9 If σ ≤ 1/2 and

N ≥ N ′0 =
128Θ

2

0M
2(17 log(2/σ) + 2κ(E∗))

ε2

then
ε2N

2M2
−Θ

2

0 −
√

2Nε2

(
2Θ0(4

√
log(2/σ) +

√
2κ(E∗))

M

)
≥ 0.

Proof. Using the same reasoning about solving quadratic inequality in terms of t =
√

2Nε2 as in Lemma 6 it is
sufficient to show that

√
2Nε2 ≥ 4

(
2Θ0M(4

√
log(2/σ) +

√
2κ(E∗))

)
+

Θ
2

0M

2Θ0(4
√

log(2/σ) +
√

2κ(E∗))
.

Since σ ≤ 1/2⇒ log(2/σ) ≥ 1 and
√

2κ(E∗) ≥ 1, we have that it is sufficient to show that

√
2Nε2 ≥ 4

(
2Θ0M((4 + 1/20)

√
log(2/σ) +

√
2κ(E∗))

)
.

By numeric inequality 2a2 + 2b2 ≥ (a+ b)2 and (4 + 1/20)2 ≤ 17, it is satisfied with our choice of N ≥ N ′0. �

Now we are ready to prove our main result.

Proof of Theorem 2. The inequality on g(x̂) is satisfies by Corollary 2. We have to satisfy inequality on duality
gap. The inequality on duality gap follows directly from Corollary 2 and Lemma 9 since N ≥ N ′0. Notice that a
probability 1− σ appears from the event E ′ defined in Lemma 8. �

A.3 Proof of Proposition 1

At first, we prove one technical lemma.

Lemma 10 (Estimation of parameters of categorical distribution) Suppose that we have samples
{Xi}Ni=1, Xi ∈ {1, . . . ,d} drawn from categorical distribution with a parameter s ∈ ∆d. Define an empirical

estimate ŝ = 1
N

∑N
i=1 eXi ∈ ∆d, where ej is an j-th standard basis vector.

Then, for any δ′,σ′ > 0, the inequality ‖s− ŝ‖1 ≤ δ′ holds with probability at least 1− σ′ if

N ≥ 8d+ 4 log(1/σ′)

δ′2
.
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Proof. First of all, notice that EeXi = s. Denote by ∆ a centred random variable ŝ − s = 1
N

∑n
i=1(eXi − s).

Then, by Nemirovski’s inequality and bound on the `1 norm of elements of a simplex, we might estimate the
mean of the square of `1 norm of this random variable: E‖∆‖21 ≤ 4d/N .

Let us define function f(X1, . . . ,XN ) = ‖∆‖1. It might be checked that this function satisfies conditions of the
bounded difference inequality (Boucheron et al., 2013) with constant 2/N . Thus, for all t > 2

√
d/N ≥ E‖∆‖1

Pr[‖∆‖1 > t] = Pr[‖∆‖1 − E‖∆‖1 > t− E‖∆‖1] ≤ exp

(
−(t− 2

√
d/N)2

2N−1

)
.

Taking N ≥ (8d+ 4 log(1/σ′)) · (δ′)−2 and t = δ′, we finish the proof. �

Using this simple lemma, we can easily obtain required sample complexity for the preprocessing even in parallel
sampling setting. Remember that we are going to use Algorithm 1, hence, we want to approximate each constraint
function.

Proof of Proposition 1. Notice that each P(a) ∈ ∆|S| is a parameters of a categorical distribution we sampling
from, and the estimator from the previous lemma could be applied.

By Holder’s inequality and the definition of the search space for h we have that |〈P(a)− P̃(a), h〉| ≤ 2M · ‖P(a)−
P̃(a)‖1. Hence, to make it less than δ′, we required to make `1 norm of difference less than δ′/(2M). To make
all conditions work simultaneously, it is enough to make the probability in the terms of the previous lemma less
than σ′/Atot and apply the union bound over all Atot conditions. The last observation that finishes the proof is

that sampling for an estimation of each P̃a could be done separately and independent. �

A.4 Proof of Proposition 2

Proof. Conditions of the proposition give us the following guarantees in terms of the duality gap and constraint
satisfaction with needed probability ≥ 1− σ

v̄ε −min
v̄,h

(
v̄ + (µε)>

(
−v̄1− (Î−P)h+ r

))
≤ εf ,

v̄ε1 + (Î−P)hε − r ≥ −εg1.
(20)

We can rewrite the first condition in more suitable terms of λε

∀v̄,∀h ∈ X :εf ≥ (v̄ε − v̄) + v̄ · (λε)>1 + (λε)>([I −Pπ]h− rπ). (21)

Now we have all required instruments and we can bound the expectation of an average value of our policy

vπ = (νπ)>rπ = (νπ − λε)>([Pπ − I]hε + rπ) + (λε)>([Pπ − I]hε + rπ).

Here we used the stationary of our policy: (νπ)>(Pπ − I) = 0. For simplicity, we remind that µε, λε ≥ 0, and,
hence, 〈µε,1〉 = 〈λε,1〉 = ‖λε‖1.

Firstly, bound the second term by 21

(λε)>([Pπ − I]hε + rπ) ≥ v̄ε − v̄(1− ‖λε‖1)− εf .

To bound the first term we will use Lemma 7 from (Jin and Sidford, 2020):

‖(I−Pπ + 1(νπ)>)−1‖∞ ≤M.

Also we have for all µ ≥ 0 by primal feasibility: µ>([Î − P]h∗ − r + v̄∗1) ≥ 0. We can combine it with our
condition (21) for arbitrary h and v̄ = v̄∗, using the fact that v̄ε ≥ v̄∗ − εg

εf + εg ≥ v̄∗ − v̄∗ + (µε)>([Î−P]h− r + v̄∗1)

≥ (µε)>([Î−P]h− r + v̄∗1)− (µε)>([Î−P]h∗ − r + v̄∗1)

= (µε)>([Î−P](h− h∗)) = (λε)>[I−Pπ](h− h∗).
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Hence, we have

2M‖(λε)>[I−Pπ]‖1 = max
h∈B|S|

2M

(λε)>[I−Pπ]h

= max
h∈B|S|

2M

(λε)>[I−Pπ](h− h∗) + (λε)>[I−Pπ]h∗

≤ εf + εg +M‖(λε)>[I−Pπ]‖1.

Combining with the fact that νπ(I − Pπ) = 0, we obtain‖(νπ − λε)>[I − Pπ]‖1 ≤ εf+εg
M . By almost the same

argument as in (Jin and Sidford, 2020), we also have |〈νπ − λε, rπ〉| ≤ εf + εg. Hence, there is a bound on the
required first term:

(νπ − λε)>([Pπ − I]hε + rπ) ≥ −2M · (εf + εg)

M
− (εf + εg).

Overall, we obtain the required inequality by taking v̄ = 0 and by feasibility of the pair (v̄ε + εg, h
ε)

v̄π ≥ v̄ε − v̄(1− ‖λε‖1)− εf − 3(εf + εg) ≥ v̄∗ − 4(εf + εg).

�


