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Parallel algorithms and probability of large deviation for stochastic optimization

problems

Pavel Dvurechensky 1, Alexander Gasnikov 2, Anastasia Lagunovskaya 3

Abstract

We consider convex stochastic optimization problems under different assumptions on

the properties of available stochastic subgradient. It is known that, if the value of the ob-

jective function is available, one can obtain, in parallel, several independent approximate

solutions in terms of the objective residual expectation. Then, choosing the solution with

the minimum function value, one can control the probability of large deviation of the

objective residual. On the contrary, in this short paper, we address the situation, when

the value of the objective function is unavailable or is too expensive to calculate. Under

"‘light-tail"’ assumption for stochastic subgradient and in general case with moderate

large deviation probability, we show that parallelization combined with averaging gives

bounds for probability of large deviation similar to a serial method. Thus, in these cases,

one can benefit from parallel computations and reduce the computational time without

loss in the solution quality.
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1 Introduction

We consider the following general stochastic optimization problem over a convex compact set
Q:

min
x∈Q⊂E

{f (x) := Eξ [f (x, ξ)]} , (1)

where E is a finite-dimensional real vector space, ξ is a random vector, f (x, ξ) is a closed
convex function w.r.t x for a.e. ξ, and x and ξ are independent. Under these assumptions,
this problem is a convex optimization problem.

Our main goal is to approximately solve this problem using some algorithm. Usually, in
the stochastic optimization literature [1, 2], two measures for the quality of an approximate
solution x̄ are considered. The first is expectation of the objective residual. In this case, x̄
is an ε-solution of (1) for ε > 0 iff Ef(x̄) − f∗ ≤ ε, where f∗ is the optimal value in (1) and
expectation is taken with respect to all the randomness arising in the algorithmic process.
The second is bound for probability of large deviation of the objective residual. In this case
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x̄, is an (ε, σ)-solution of (1) for ε > 0, σ ∈ (0, 1) iff P{f(x̄)− f∗ > ε} ≤ σ. We mainly focus
on the latter quality measure in this paper.

It is known that, if the value of the objective function is available (e.g. in randomized
methods [3]), one can obtain in parallel logarithmic in σ−1 number of independent ε-solutions.
Then, the solution with the minimum function value is an (ε, σ)-solution. Nevertheless, the
value of the objective function can be unavailable or too expensive to calculate or approximate.
The latter is easy to imagine since, for ξ ∈ R

p, the computational effort for calculation of
f̄ s.t. |f̄ − f(x)| ≤ δ can amount up to O (δ−p) calculations of f(x, ξ) at different ξ. Our
goal is to propose a technique, which allows to obtain an (ε, σ)-solution based on a number
computed in parallel ε-solutions without calculation of the function f(x) value.

Our approach is based on Stochastic Mirror Descent algorithm [2]. It turns out that,
under some mild assumptions, an ε-solution to (1), obtained by Stochastic Mirror Descent, is
also an (ε̃, σ)-solution. We use this fact and calculate in parallel logarithmic in σ−1 number of
independent ε-solutions, average them and prove that this average is an (ε, σ)-solution. Thus,
we can benefit from parallelization and reduce the computation time without any loss in the
solution quality.

2 Stochastic Mirror Descent

This section is devoted to description of Stochastic Mirror Descent (SMD) [2, 3] and its
convergence properties in terms of expectation of the objective residual and also in terms of
probability of large deviation of this residual. These convergence results provide the basis of
our approach for constructing an (ε, σ)-solution by parallelization. Let us choose some norm
‖·‖ on E and denote the conjugate norm by ‖·‖∗. We assume that, at any point x ∈ Q, a
stochastic subgradient ∇xf (x, ξ) of f(x) is available and satisfies

Eξ [∇xf (x, ξ)] ∈ ∂f (x) , Eξ

[

‖∇xf (x, ξ)‖2∗
]

≤ M2 (2)

for some constant M > 0. We choose a prox-function d (x) which is 1-strongly convex in ‖·‖.
Let x0 = argminx∈Q d(x). W.l.o.g. we assume that d(x0) = 0. The algorithm uses Bregman’s
divergence Vz (x) = d (x)−d (z)−〈∇d (z) , x− z〉. Let x∗ be a solution of (1), R be a number
s.t. Vx0 (x∗) ≤ R2, and R̄ be a number s.t. maxx∈Q Vx (x∗) ≤ R̄.

Stochastic Mirror Descent [2, 3] iterates as follows, starting from x0 ∈ Q,

xk+1 = Mirrxk

(

h∇xf
(

xk, ξk
))

, Mirrxk (v) := argmin
x∈Q

{〈

v, x− xk
〉

+ Vxk (x)
}

, (3)

where h > 0 is the stepsize,
{
ξk
}

k≥0
is an i.i.d. sample of ξ. The main property of SMD-step

[3] is

2Vxk+1 (x) ≤ 2Vxk (x) + 2h
〈

∇xf
(

xk, ξk
)

, x− xk
〉

+ h2
∥
∥
∥∇xf

(

xk, ξk
)∥
∥
∥

2

∗
, ∀x ∈ Q.

Further, using convexity of f(x), for any ∇f(xk) ∈ ∂f(xk) and x ∈ Q,

f
(

xk
)

− f (x) ≤
〈

∇f(xk), xk − x
〉

≤
〈

∇f(xk)−∇xf
(

xk, ξk
)

, xk − x
〉

+

+
1

h
(Vxk (x)− Vxk+1 (x)) +

h

2

∥
∥
∥∇xf

(

xk, ξk
)∥
∥
∥

2

∗
.
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Taking conditional expectation w.r.t. ξ1, ..., ξk−1 and using (2), one obtains

f
(

xk
)

−f (x) ≤ 1

h

(

Vxk (x)− E

[

Vxk+1 (x)| ξ1, ..., ξk−1
])

+
h

2
E

[∥
∥
∥∇xf

(

xk, ξk
)∥
∥
∥

2

∗

∣
∣
∣
∣
ξ1, ..., ξk−1

]

︸ ︷︷ ︸

(2)

≤M2

.

Since
{
ξk
}

k≥0
is an i.i.d. sample, taking full expectation from the both sides of these in-

equalities for k = 0, ..., N − 1, summing them up and taking x = x∗ gives, by convexity of
f (x),

E
[
f
(
x̄N
)]

− f∗ ≤ E
1

N

N−1∑

k=0

f(xk)− f∗ ≤
1

hN
Vx0 (x∗) +

M2h

2
≤
√

2M2R2

N
,

where

R is s.t. Vx0 (x∗) ≤ R2, x̄N :=
1

N

N−1∑

k=0

xk, h =
R

M

√

2

N
. (4)

Choosing

N =

⌈
2M2R2

ε2

⌉

, (5)

we obtain that x̄N satisfies E
[
f
(
x̄N
)]

− f∗ ≤ ε and, hence, is an ε-solution. Note that
this bound for N is optimal [3] up to a multiplicative constant factor for the class of convex
stochastic programming problems (1) with a.e. bounded stochastic subgradients.

It turns out that it is possible to prove bounds for probability of large deviation for
f
(
x̄N
)
− f∗.

Proposition 1 ([2, 5, 6]). Assume that one of the following assumptions holds. a) ‖∇xf (x, ξ)‖∗ ≤
M for a.e. ξ; b) Eξ

(

exp
(

‖∇xf (x, ξ)‖2∗
/

M2
))

≤ exp (1) and lnσ−1 ≪ N ; c) There exists

some α > 2 s.t., for all, t ≥ 0, P

(
‖∇f(x,ξ)‖2

2

M2 ≥ t
)

≤ 1
(t+1)α , and σ−1/(α−1) ≪ N . Then the

point x̄N generated by SMD (3), (4) satisfies

P

{

f
(
x̄N
)
− f∗ ≤

C1M√
N

(

R+ C2R̄
√

ln (1/σ)
)}

≥ 1− σ, (6)

where in the case a) C1 =
√
2, C2 = 2

√
2; in the case b) C1 = C2 = 2

√
2; in the case c)

C1 = C1(α), C2 = 1.

Corollary 1. Let any of three assumptions of Proposition 1 hold. Choose N =
⌈
CM2R̄2

ε2

⌉

,

where the constant C depends on C1, C2. Then the point x̄N generated by SMD (3), (4)
satisfies, for any c ≥ 0,

P
{
f
(
x̄N
)
− f∗ ≥ c

)
≤ P {η ≥ c} , (7)

where η ∈ N
(
ε, ε2

)
– normal random variable with mean ε and variance ε2.
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3 Parallelization and bounds for probability of large deviation

In this section, we first discuss a known way to obtain an (ε, σ)-solution using a number of ε-
solutions calculated in parallel. Then, we suggest a new way of doing this without calculation
of the objective f(x) value, state and prove the main result.

Assume that x̄N is an ε/2-solution, obtained by SMD (3), (4) with N =
⌈
8M2R2

ε2

⌉

. Then,

using the Markov inequality [5], we obtain

P
(
f
(
x̄N
)
− f∗ ≥ ε

)
≤ E

[
f
(
x̄N
)]

− f∗

ε
≤ 1

2
.

If one calculates in parallel K =
⌈
log2

(
σ−1

)⌉
independent SMD ε/2-solutions

{
x̄N,i

}K

i=1
and

chooses the one x̄Nmin which minimizes f
(
x̄N,i

)
, then, in total

⌈
8M2R2

ε2

⌉ ⌈
log2

(
σ−1

)⌉
calcu-

lations of stochastic subgradient, one obtains P
(
f
(
x̄Nmin

)
− f∗ ≥ ε

)
≤ σ. Thus, x̄Nmin is an

(ε, σ)-solution of (1). The crucial point here is the possibility to calculate the value of the
function f (x).

We now suggest a technique which does not rely on the assumption of the function f (x)
value availability. This assumption may not hold [1] in many real stochastic programming
problems, e.g. in maximum likelihood approach used in mathematical statistics.

Theorem 1. Let any of three assumptions of Proposition 1 hold. Let K =
⌈
2 ln

(
σ−1

)⌉
and

{
x̄N,i

}K

i=1
be independent points obtained by SMD (3), (4) with N =

⌈
4CM2R̄2

ε2

⌉

. Then the

point x̄K = 1
K

K∑

i=1
x̄N,i is an (ε, σ)-solution of (1).

Proof Using Corollary 1 with c = ε, we obtain, for all i = 1, ...,K,

P
{
f
(
x̄N,i

)
− f∗ ≥ ε

}
≤ P {ηi ≥ ε} , ηi ∈ N

(
ε

2
,
ε2

4

)

. (8)

By convexity of f(x), since
{
x̄N,i

}K

i=1
are i.i.d., {ηi}Ki=1 are i.i.d.,

P
{
f
(
x̄K
)
− f∗ ≥ ε

}
≤ P

{

1

K

K∑

k=i

(
f
(
x̄N,i

)
− f∗

)
≥ ε

}
(8)

≤ (9)

P

{

1

K

K∑

i=1

ηi ≥
ε

2
+

ε

2

)

= P

{(

1

K

K∑

i=1

ηi

)

− ε

2
≥ ε

2

}

= P

{

η − ε

2
≥ ε

2

√
K
}

≤ σ, (10)

where η ∈ N
(
ε
2 ,

ε2

4

)

. Here we used well-known facts about the properties of sum of indepen-

dent normal random variables [4]

N

(
ε

2
,
ε2

4

)

+ ...+N

(
ε

2
,
ε2

4

)
d
=N

(
Kε

2
,
Kε2

4

)

,
1

K
N

(
Kε

2
,
Kε2

4

)
d
=N

(
ε

2
,
ε2

4K

)

,

that K =
⌈
2 ln

(
σ−1

)⌉
and, for η ∈ N

(
ε
2 ,

ε2

4

)

, P

{

η − ε
2 ≥ ε

2

√

2 ln (σ−1)
}

≤ σ. Thus, the

point x̄K is an (ε, σ)-solution of (1).
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To sum up, under some mild assumptions, but without calculation of the objective function
value, we propose a way to obtain an (ε, σ)-solution using a number of ε-solutions calculated
in parallel. This approach allows to reduce the computational time without any loss in the
solution quality. At the same time, we answer to the question of Yu. Nesterov [7]. The
question can be stated as follows. When the quality of a solution of problem (1) obtained
by one wise old man, thinking for Θ

(
M2R̄2 ln

(
σ−1

)
/ε2
)

days, is the same as obtained by
Θ
(
ln
(
σ−1

))
experts, each thinking for Θ

(
M2R̄2/ε2

)
days? Our answer is that the quality is

equivalent under any of three assumptions of Proposition 1.
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